XVoxel-ASync/lib/three.js

36302 lines
1.1 MiB

/**
* @license
* Copyright 2010-2021 Three.js Authors
* SPDX-License-Identifier: MIT
*/
(function (global, factory) {
typeof exports === 'object' && typeof module !== 'undefined' ? factory(exports) :
typeof define === 'function' && define.amd ? define(['exports'], factory) :
(global = typeof globalThis !== 'undefined' ? globalThis : global || self, factory(global.THREE = {}));
}(this, (function (exports) { 'use strict';
const REVISION = '134dev';
const MOUSE = {
LEFT: 0,
MIDDLE: 1,
RIGHT: 2,
ROTATE: 0,
DOLLY: 1,
PAN: 2
};
const TOUCH = {
ROTATE: 0,
PAN: 1,
DOLLY_PAN: 2,
DOLLY_ROTATE: 3
};
const CullFaceNone = 0;
const CullFaceBack = 1;
const CullFaceFront = 2;
const CullFaceFrontBack = 3;
const BasicShadowMap = 0;
const PCFShadowMap = 1;
const PCFSoftShadowMap = 2;
const VSMShadowMap = 3;
const FrontSide = 0;
const BackSide = 1;
const DoubleSide = 2;
const FlatShading = 1;
const SmoothShading = 2;
const NoBlending = 0;
const NormalBlending = 1;
const AdditiveBlending = 2;
const SubtractiveBlending = 3;
const MultiplyBlending = 4;
const CustomBlending = 5;
const AddEquation = 100;
const SubtractEquation = 101;
const ReverseSubtractEquation = 102;
const MinEquation = 103;
const MaxEquation = 104;
const ZeroFactor = 200;
const OneFactor = 201;
const SrcColorFactor = 202;
const OneMinusSrcColorFactor = 203;
const SrcAlphaFactor = 204;
const OneMinusSrcAlphaFactor = 205;
const DstAlphaFactor = 206;
const OneMinusDstAlphaFactor = 207;
const DstColorFactor = 208;
const OneMinusDstColorFactor = 209;
const SrcAlphaSaturateFactor = 210;
const NeverDepth = 0;
const AlwaysDepth = 1;
const LessDepth = 2;
const LessEqualDepth = 3;
const EqualDepth = 4;
const GreaterEqualDepth = 5;
const GreaterDepth = 6;
const NotEqualDepth = 7;
const MultiplyOperation = 0;
const MixOperation = 1;
const AddOperation = 2;
const NoToneMapping = 0;
const LinearToneMapping = 1;
const ReinhardToneMapping = 2;
const CineonToneMapping = 3;
const ACESFilmicToneMapping = 4;
const CustomToneMapping = 5;
const UVMapping = 300;
const CubeReflectionMapping = 301;
const CubeRefractionMapping = 302;
const EquirectangularReflectionMapping = 303;
const EquirectangularRefractionMapping = 304;
const CubeUVReflectionMapping = 306;
const CubeUVRefractionMapping = 307;
const RepeatWrapping = 1000;
const ClampToEdgeWrapping = 1001;
const MirroredRepeatWrapping = 1002;
const NearestFilter = 1003;
const NearestMipmapNearestFilter = 1004;
const NearestMipMapNearestFilter = 1004;
const NearestMipmapLinearFilter = 1005;
const NearestMipMapLinearFilter = 1005;
const LinearFilter = 1006;
const LinearMipmapNearestFilter = 1007;
const LinearMipMapNearestFilter = 1007;
const LinearMipmapLinearFilter = 1008;
const LinearMipMapLinearFilter = 1008;
const UnsignedByteType = 1009;
const ByteType = 1010;
const ShortType = 1011;
const UnsignedShortType = 1012;
const IntType = 1013;
const UnsignedIntType = 1014;
const FloatType = 1015;
const HalfFloatType = 1016;
const UnsignedShort4444Type = 1017;
const UnsignedShort5551Type = 1018;
const UnsignedShort565Type = 1019;
const UnsignedInt248Type = 1020;
const AlphaFormat = 1021;
const RGBFormat = 1022;
const RGBAFormat = 1023;
const LuminanceFormat = 1024;
const LuminanceAlphaFormat = 1025;
const RGBEFormat = RGBAFormat;
const DepthFormat = 1026;
const DepthStencilFormat = 1027;
const RedFormat = 1028;
const RedIntegerFormat = 1029;
const RGFormat = 1030;
const RGIntegerFormat = 1031;
const RGBIntegerFormat = 1032;
const RGBAIntegerFormat = 1033;
const RGB_S3TC_DXT1_Format = 33776;
const RGBA_S3TC_DXT1_Format = 33777;
const RGBA_S3TC_DXT3_Format = 33778;
const RGBA_S3TC_DXT5_Format = 33779;
const RGB_PVRTC_4BPPV1_Format = 35840;
const RGB_PVRTC_2BPPV1_Format = 35841;
const RGBA_PVRTC_4BPPV1_Format = 35842;
const RGBA_PVRTC_2BPPV1_Format = 35843;
const RGB_ETC1_Format = 36196;
const RGB_ETC2_Format = 37492;
const RGBA_ETC2_EAC_Format = 37496;
const RGBA_ASTC_4x4_Format = 37808;
const RGBA_ASTC_5x4_Format = 37809;
const RGBA_ASTC_5x5_Format = 37810;
const RGBA_ASTC_6x5_Format = 37811;
const RGBA_ASTC_6x6_Format = 37812;
const RGBA_ASTC_8x5_Format = 37813;
const RGBA_ASTC_8x6_Format = 37814;
const RGBA_ASTC_8x8_Format = 37815;
const RGBA_ASTC_10x5_Format = 37816;
const RGBA_ASTC_10x6_Format = 37817;
const RGBA_ASTC_10x8_Format = 37818;
const RGBA_ASTC_10x10_Format = 37819;
const RGBA_ASTC_12x10_Format = 37820;
const RGBA_ASTC_12x12_Format = 37821;
const RGBA_BPTC_Format = 36492;
const SRGB8_ALPHA8_ASTC_4x4_Format = 37840;
const SRGB8_ALPHA8_ASTC_5x4_Format = 37841;
const SRGB8_ALPHA8_ASTC_5x5_Format = 37842;
const SRGB8_ALPHA8_ASTC_6x5_Format = 37843;
const SRGB8_ALPHA8_ASTC_6x6_Format = 37844;
const SRGB8_ALPHA8_ASTC_8x5_Format = 37845;
const SRGB8_ALPHA8_ASTC_8x6_Format = 37846;
const SRGB8_ALPHA8_ASTC_8x8_Format = 37847;
const SRGB8_ALPHA8_ASTC_10x5_Format = 37848;
const SRGB8_ALPHA8_ASTC_10x6_Format = 37849;
const SRGB8_ALPHA8_ASTC_10x8_Format = 37850;
const SRGB8_ALPHA8_ASTC_10x10_Format = 37851;
const SRGB8_ALPHA8_ASTC_12x10_Format = 37852;
const SRGB8_ALPHA8_ASTC_12x12_Format = 37853;
const LoopOnce = 2200;
const LoopRepeat = 2201;
const LoopPingPong = 2202;
const InterpolateDiscrete = 2300;
const InterpolateLinear = 2301;
const InterpolateSmooth = 2302;
const ZeroCurvatureEnding = 2400;
const ZeroSlopeEnding = 2401;
const WrapAroundEnding = 2402;
const NormalAnimationBlendMode = 2500;
const AdditiveAnimationBlendMode = 2501;
const TrianglesDrawMode = 0;
const TriangleStripDrawMode = 1;
const TriangleFanDrawMode = 2;
const LinearEncoding = 3000;
const sRGBEncoding = 3001;
const GammaEncoding = 3007;
const RGBEEncoding = 3002;
const LogLuvEncoding = 3003;
const RGBM7Encoding = 3004;
const RGBM16Encoding = 3005;
const RGBDEncoding = 3006;
const BasicDepthPacking = 3200;
const RGBADepthPacking = 3201;
const TangentSpaceNormalMap = 0;
const ObjectSpaceNormalMap = 1;
const ZeroStencilOp = 0;
const KeepStencilOp = 7680;
const ReplaceStencilOp = 7681;
const IncrementStencilOp = 7682;
const DecrementStencilOp = 7683;
const IncrementWrapStencilOp = 34055;
const DecrementWrapStencilOp = 34056;
const InvertStencilOp = 5386;
const NeverStencilFunc = 512;
const LessStencilFunc = 513;
const EqualStencilFunc = 514;
const LessEqualStencilFunc = 515;
const GreaterStencilFunc = 516;
const NotEqualStencilFunc = 517;
const GreaterEqualStencilFunc = 518;
const AlwaysStencilFunc = 519;
const StaticDrawUsage = 35044;
const DynamicDrawUsage = 35048;
const StreamDrawUsage = 35040;
const StaticReadUsage = 35045;
const DynamicReadUsage = 35049;
const StreamReadUsage = 35041;
const StaticCopyUsage = 35046;
const DynamicCopyUsage = 35050;
const StreamCopyUsage = 35042;
const GLSL1 = '100';
const GLSL3 = '300 es';
/**
* https://github.com/mrdoob/eventdispatcher.js/
*/
class EventDispatcher {
addEventListener(type, listener) {
if (this._listeners === undefined) this._listeners = {};
const listeners = this._listeners;
if (listeners[type] === undefined) {
listeners[type] = [];
}
if (listeners[type].indexOf(listener) === -1) {
listeners[type].push(listener);
}
}
hasEventListener(type, listener) {
if (this._listeners === undefined) return false;
const listeners = this._listeners;
return listeners[type] !== undefined && listeners[type].indexOf(listener) !== -1;
}
removeEventListener(type, listener) {
if (this._listeners === undefined) return;
const listeners = this._listeners;
const listenerArray = listeners[type];
if (listenerArray !== undefined) {
const index = listenerArray.indexOf(listener);
if (index !== -1) {
listenerArray.splice(index, 1);
}
}
}
dispatchEvent(event) {
if (this._listeners === undefined) return;
const listeners = this._listeners;
const listenerArray = listeners[event.type];
if (listenerArray !== undefined) {
event.target = this; // Make a copy, in case listeners are removed while iterating.
const array = listenerArray.slice(0);
for (let i = 0, l = array.length; i < l; i++) {
array[i].call(this, event);
}
event.target = null;
}
}
}
let _seed = 1234567;
const DEG2RAD = Math.PI / 180;
const RAD2DEG = 180 / Math.PI; //
const _lut = [];
for (let i = 0; i < 256; i++) {
_lut[i] = (i < 16 ? '0' : '') + i.toString(16);
}
const hasRandomUUID = typeof crypto !== 'undefined' && 'randomUUID' in crypto;
function generateUUID() {
if (hasRandomUUID) {
return crypto.randomUUID().toUpperCase();
} // TODO Remove this code when crypto.randomUUID() is available everywhere
// http://stackoverflow.com/questions/105034/how-to-create-a-guid-uuid-in-javascript/21963136#21963136
const d0 = Math.random() * 0xffffffff | 0;
const d1 = Math.random() * 0xffffffff | 0;
const d2 = Math.random() * 0xffffffff | 0;
const d3 = Math.random() * 0xffffffff | 0;
const uuid = _lut[d0 & 0xff] + _lut[d0 >> 8 & 0xff] + _lut[d0 >> 16 & 0xff] + _lut[d0 >> 24 & 0xff] + '-' + _lut[d1 & 0xff] + _lut[d1 >> 8 & 0xff] + '-' + _lut[d1 >> 16 & 0x0f | 0x40] + _lut[d1 >> 24 & 0xff] + '-' + _lut[d2 & 0x3f | 0x80] + _lut[d2 >> 8 & 0xff] + '-' + _lut[d2 >> 16 & 0xff] + _lut[d2 >> 24 & 0xff] + _lut[d3 & 0xff] + _lut[d3 >> 8 & 0xff] + _lut[d3 >> 16 & 0xff] + _lut[d3 >> 24 & 0xff]; // .toUpperCase() here flattens concatenated strings to save heap memory space.
return uuid.toUpperCase();
}
function clamp(value, min, max) {
return Math.max(min, Math.min(max, value));
} // compute euclidian modulo of m % n
// https://en.wikipedia.org/wiki/Modulo_operation
function euclideanModulo(n, m) {
return (n % m + m) % m;
} // Linear mapping from range <a1, a2> to range <b1, b2>
function mapLinear(x, a1, a2, b1, b2) {
return b1 + (x - a1) * (b2 - b1) / (a2 - a1);
} // https://www.gamedev.net/tutorials/programming/general-and-gameplay-programming/inverse-lerp-a-super-useful-yet-often-overlooked-function-r5230/
function inverseLerp(x, y, value) {
if (x !== y) {
return (value - x) / (y - x);
} else {
return 0;
}
} // https://en.wikipedia.org/wiki/Linear_interpolation
function lerp(x, y, t) {
return (1 - t) * x + t * y;
} // http://www.rorydriscoll.com/2016/03/07/frame-rate-independent-damping-using-lerp/
function damp(x, y, lambda, dt) {
return lerp(x, y, 1 - Math.exp(-lambda * dt));
} // https://www.desmos.com/calculator/vcsjnyz7x4
function pingpong(x, length = 1) {
return length - Math.abs(euclideanModulo(x, length * 2) - length);
} // http://en.wikipedia.org/wiki/Smoothstep
function smoothstep(x, min, max) {
if (x <= min) return 0;
if (x >= max) return 1;
x = (x - min) / (max - min);
return x * x * (3 - 2 * x);
}
function smootherstep(x, min, max) {
if (x <= min) return 0;
if (x >= max) return 1;
x = (x - min) / (max - min);
return x * x * x * (x * (x * 6 - 15) + 10);
} // Random integer from <low, high> interval
function randInt(low, high) {
return low + Math.floor(Math.random() * (high - low + 1));
} // Random float from <low, high> interval
function randFloat(low, high) {
return low + Math.random() * (high - low);
} // Random float from <-range/2, range/2> interval
function randFloatSpread(range) {
return range * (0.5 - Math.random());
} // Deterministic pseudo-random float in the interval [ 0, 1 ]
function seededRandom(s) {
if (s !== undefined) _seed = s % 2147483647; // Park-Miller algorithm
_seed = _seed * 16807 % 2147483647;
return (_seed - 1) / 2147483646;
}
function degToRad(degrees) {
return degrees * DEG2RAD;
}
function radToDeg(radians) {
return radians * RAD2DEG;
}
function isPowerOfTwo(value) {
return (value & value - 1) === 0 && value !== 0;
}
function ceilPowerOfTwo(value) {
return Math.pow(2, Math.ceil(Math.log(value) / Math.LN2));
}
function floorPowerOfTwo(value) {
return Math.pow(2, Math.floor(Math.log(value) / Math.LN2));
}
function setQuaternionFromProperEuler(q, a, b, c, order) {
// Intrinsic Proper Euler Angles - see https://en.wikipedia.org/wiki/Euler_angles
// rotations are applied to the axes in the order specified by 'order'
// rotation by angle 'a' is applied first, then by angle 'b', then by angle 'c'
// angles are in radians
const cos = Math.cos;
const sin = Math.sin;
const c2 = cos(b / 2);
const s2 = sin(b / 2);
const c13 = cos((a + c) / 2);
const s13 = sin((a + c) / 2);
const c1_3 = cos((a - c) / 2);
const s1_3 = sin((a - c) / 2);
const c3_1 = cos((c - a) / 2);
const s3_1 = sin((c - a) / 2);
switch (order) {
case 'XYX':
q.set(c2 * s13, s2 * c1_3, s2 * s1_3, c2 * c13);
break;
case 'YZY':
q.set(s2 * s1_3, c2 * s13, s2 * c1_3, c2 * c13);
break;
case 'ZXZ':
q.set(s2 * c1_3, s2 * s1_3, c2 * s13, c2 * c13);
break;
case 'XZX':
q.set(c2 * s13, s2 * s3_1, s2 * c3_1, c2 * c13);
break;
case 'YXY':
q.set(s2 * c3_1, c2 * s13, s2 * s3_1, c2 * c13);
break;
case 'ZYZ':
q.set(s2 * s3_1, s2 * c3_1, c2 * s13, c2 * c13);
break;
default:
console.warn('THREE.MathUtils: .setQuaternionFromProperEuler() encountered an unknown order: ' + order);
}
}
var MathUtils = /*#__PURE__*/Object.freeze({
__proto__: null,
DEG2RAD: DEG2RAD,
RAD2DEG: RAD2DEG,
generateUUID: generateUUID,
clamp: clamp,
euclideanModulo: euclideanModulo,
mapLinear: mapLinear,
inverseLerp: inverseLerp,
lerp: lerp,
damp: damp,
pingpong: pingpong,
smoothstep: smoothstep,
smootherstep: smootherstep,
randInt: randInt,
randFloat: randFloat,
randFloatSpread: randFloatSpread,
seededRandom: seededRandom,
degToRad: degToRad,
radToDeg: radToDeg,
isPowerOfTwo: isPowerOfTwo,
ceilPowerOfTwo: ceilPowerOfTwo,
floorPowerOfTwo: floorPowerOfTwo,
setQuaternionFromProperEuler: setQuaternionFromProperEuler
});
class Vector2 {
constructor(x = 0, y = 0) {
this.x = x;
this.y = y;
}
get width() {
return this.x;
}
set width(value) {
this.x = value;
}
get height() {
return this.y;
}
set height(value) {
this.y = value;
}
set(x, y) {
this.x = x;
this.y = y;
return this;
}
setScalar(scalar) {
this.x = scalar;
this.y = scalar;
return this;
}
setX(x) {
this.x = x;
return this;
}
setY(y) {
this.y = y;
return this;
}
setComponent(index, value) {
switch (index) {
case 0:
this.x = value;
break;
case 1:
this.y = value;
break;
default:
throw new Error('index is out of range: ' + index);
}
return this;
}
getComponent(index) {
switch (index) {
case 0:
return this.x;
case 1:
return this.y;
default:
throw new Error('index is out of range: ' + index);
}
}
clone() {
return new this.constructor(this.x, this.y);
}
copy(v) {
this.x = v.x;
this.y = v.y;
return this;
}
add(v, w) {
if (w !== undefined) {
console.warn('THREE.Vector2: .add() now only accepts one argument. Use .addVectors( a, b ) instead.');
return this.addVectors(v, w);
}
this.x += v.x;
this.y += v.y;
return this;
}
addScalar(s) {
this.x += s;
this.y += s;
return this;
}
addVectors(a, b) {
this.x = a.x + b.x;
this.y = a.y + b.y;
return this;
}
addScaledVector(v, s) {
this.x += v.x * s;
this.y += v.y * s;
return this;
}
sub(v, w) {
if (w !== undefined) {
console.warn('THREE.Vector2: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.');
return this.subVectors(v, w);
}
this.x -= v.x;
this.y -= v.y;
return this;
}
subScalar(s) {
this.x -= s;
this.y -= s;
return this;
}
subVectors(a, b) {
this.x = a.x - b.x;
this.y = a.y - b.y;
return this;
}
multiply(v) {
this.x *= v.x;
this.y *= v.y;
return this;
}
multiplyScalar(scalar) {
this.x *= scalar;
this.y *= scalar;
return this;
}
divide(v) {
this.x /= v.x;
this.y /= v.y;
return this;
}
divideScalar(scalar) {
return this.multiplyScalar(1 / scalar);
}
applyMatrix3(m) {
const x = this.x,
y = this.y;
const e = m.elements;
this.x = e[0] * x + e[3] * y + e[6];
this.y = e[1] * x + e[4] * y + e[7];
return this;
}
min(v) {
this.x = Math.min(this.x, v.x);
this.y = Math.min(this.y, v.y);
return this;
}
max(v) {
this.x = Math.max(this.x, v.x);
this.y = Math.max(this.y, v.y);
return this;
}
clamp(min, max) {
// assumes min < max, componentwise
this.x = Math.max(min.x, Math.min(max.x, this.x));
this.y = Math.max(min.y, Math.min(max.y, this.y));
return this;
}
clampScalar(minVal, maxVal) {
this.x = Math.max(minVal, Math.min(maxVal, this.x));
this.y = Math.max(minVal, Math.min(maxVal, this.y));
return this;
}
clampLength(min, max) {
const length = this.length();
return this.divideScalar(length || 1).multiplyScalar(Math.max(min, Math.min(max, length)));
}
floor() {
this.x = Math.floor(this.x);
this.y = Math.floor(this.y);
return this;
}
ceil() {
this.x = Math.ceil(this.x);
this.y = Math.ceil(this.y);
return this;
}
round() {
this.x = Math.round(this.x);
this.y = Math.round(this.y);
return this;
}
roundToZero() {
this.x = this.x < 0 ? Math.ceil(this.x) : Math.floor(this.x);
this.y = this.y < 0 ? Math.ceil(this.y) : Math.floor(this.y);
return this;
}
negate() {
this.x = -this.x;
this.y = -this.y;
return this;
}
dot(v) {
return this.x * v.x + this.y * v.y;
}
cross(v) {
return this.x * v.y - this.y * v.x;
}
lengthSq() {
return this.x * this.x + this.y * this.y;
}
length() {
return Math.sqrt(this.x * this.x + this.y * this.y);
}
manhattanLength() {
return Math.abs(this.x) + Math.abs(this.y);
}
normalize() {
return this.divideScalar(this.length() || 1);
}
angle() {
// computes the angle in radians with respect to the positive x-axis
const angle = Math.atan2(-this.y, -this.x) + Math.PI;
return angle;
}
distanceTo(v) {
return Math.sqrt(this.distanceToSquared(v));
}
distanceToSquared(v) {
const dx = this.x - v.x,
dy = this.y - v.y;
return dx * dx + dy * dy;
}
manhattanDistanceTo(v) {
return Math.abs(this.x - v.x) + Math.abs(this.y - v.y);
}
setLength(length) {
return this.normalize().multiplyScalar(length);
}
lerp(v, alpha) {
this.x += (v.x - this.x) * alpha;
this.y += (v.y - this.y) * alpha;
return this;
}
lerpVectors(v1, v2, alpha) {
this.x = v1.x + (v2.x - v1.x) * alpha;
this.y = v1.y + (v2.y - v1.y) * alpha;
return this;
}
equals(v) {
return v.x === this.x && v.y === this.y;
}
fromArray(array, offset = 0) {
this.x = array[offset];
this.y = array[offset + 1];
return this;
}
toArray(array = [], offset = 0) {
array[offset] = this.x;
array[offset + 1] = this.y;
return array;
}
fromBufferAttribute(attribute, index, offset) {
if (offset !== undefined) {
console.warn('THREE.Vector2: offset has been removed from .fromBufferAttribute().');
}
this.x = attribute.getX(index);
this.y = attribute.getY(index);
return this;
}
rotateAround(center, angle) {
const c = Math.cos(angle),
s = Math.sin(angle);
const x = this.x - center.x;
const y = this.y - center.y;
this.x = x * c - y * s + center.x;
this.y = x * s + y * c + center.y;
return this;
}
random() {
this.x = Math.random();
this.y = Math.random();
return this;
}
*[Symbol.iterator]() {
yield this.x;
yield this.y;
}
}
Vector2.prototype.isVector2 = true;
class Matrix3 {
constructor() {
this.elements = [1, 0, 0, 0, 1, 0, 0, 0, 1];
if (arguments.length > 0) {
console.error('THREE.Matrix3: the constructor no longer reads arguments. use .set() instead.');
}
}
set(n11, n12, n13, n21, n22, n23, n31, n32, n33) {
const te = this.elements;
te[0] = n11;
te[1] = n21;
te[2] = n31;
te[3] = n12;
te[4] = n22;
te[5] = n32;
te[6] = n13;
te[7] = n23;
te[8] = n33;
return this;
}
identity() {
this.set(1, 0, 0, 0, 1, 0, 0, 0, 1);
return this;
}
copy(m) {
const te = this.elements;
const me = m.elements;
te[0] = me[0];
te[1] = me[1];
te[2] = me[2];
te[3] = me[3];
te[4] = me[4];
te[5] = me[5];
te[6] = me[6];
te[7] = me[7];
te[8] = me[8];
return this;
}
extractBasis(xAxis, yAxis, zAxis) {
xAxis.setFromMatrix3Column(this, 0);
yAxis.setFromMatrix3Column(this, 1);
zAxis.setFromMatrix3Column(this, 2);
return this;
}
setFromMatrix4(m) {
const me = m.elements;
this.set(me[0], me[4], me[8], me[1], me[5], me[9], me[2], me[6], me[10]);
return this;
}
multiply(m) {
return this.multiplyMatrices(this, m);
}
premultiply(m) {
return this.multiplyMatrices(m, this);
}
multiplyMatrices(a, b) {
const ae = a.elements;
const be = b.elements;
const te = this.elements;
const a11 = ae[0],
a12 = ae[3],
a13 = ae[6];
const a21 = ae[1],
a22 = ae[4],
a23 = ae[7];
const a31 = ae[2],
a32 = ae[5],
a33 = ae[8];
const b11 = be[0],
b12 = be[3],
b13 = be[6];
const b21 = be[1],
b22 = be[4],
b23 = be[7];
const b31 = be[2],
b32 = be[5],
b33 = be[8];
te[0] = a11 * b11 + a12 * b21 + a13 * b31;
te[3] = a11 * b12 + a12 * b22 + a13 * b32;
te[6] = a11 * b13 + a12 * b23 + a13 * b33;
te[1] = a21 * b11 + a22 * b21 + a23 * b31;
te[4] = a21 * b12 + a22 * b22 + a23 * b32;
te[7] = a21 * b13 + a22 * b23 + a23 * b33;
te[2] = a31 * b11 + a32 * b21 + a33 * b31;
te[5] = a31 * b12 + a32 * b22 + a33 * b32;
te[8] = a31 * b13 + a32 * b23 + a33 * b33;
return this;
}
multiplyScalar(s) {
const te = this.elements;
te[0] *= s;
te[3] *= s;
te[6] *= s;
te[1] *= s;
te[4] *= s;
te[7] *= s;
te[2] *= s;
te[5] *= s;
te[8] *= s;
return this;
}
determinant() {
const te = this.elements;
const a = te[0],
b = te[1],
c = te[2],
d = te[3],
e = te[4],
f = te[5],
g = te[6],
h = te[7],
i = te[8];
return a * e * i - a * f * h - b * d * i + b * f * g + c * d * h - c * e * g;
}
invert() {
const te = this.elements,
n11 = te[0],
n21 = te[1],
n31 = te[2],
n12 = te[3],
n22 = te[4],
n32 = te[5],
n13 = te[6],
n23 = te[7],
n33 = te[8],
t11 = n33 * n22 - n32 * n23,
t12 = n32 * n13 - n33 * n12,
t13 = n23 * n12 - n22 * n13,
det = n11 * t11 + n21 * t12 + n31 * t13;
if (det === 0) return this.set(0, 0, 0, 0, 0, 0, 0, 0, 0);
const detInv = 1 / det;
te[0] = t11 * detInv;
te[1] = (n31 * n23 - n33 * n21) * detInv;
te[2] = (n32 * n21 - n31 * n22) * detInv;
te[3] = t12 * detInv;
te[4] = (n33 * n11 - n31 * n13) * detInv;
te[5] = (n31 * n12 - n32 * n11) * detInv;
te[6] = t13 * detInv;
te[7] = (n21 * n13 - n23 * n11) * detInv;
te[8] = (n22 * n11 - n21 * n12) * detInv;
return this;
}
transpose() {
let tmp;
const m = this.elements;
tmp = m[1];
m[1] = m[3];
m[3] = tmp;
tmp = m[2];
m[2] = m[6];
m[6] = tmp;
tmp = m[5];
m[5] = m[7];
m[7] = tmp;
return this;
}
getNormalMatrix(matrix4) {
return this.setFromMatrix4(matrix4).invert().transpose();
}
transposeIntoArray(r) {
const m = this.elements;
r[0] = m[0];
r[1] = m[3];
r[2] = m[6];
r[3] = m[1];
r[4] = m[4];
r[5] = m[7];
r[6] = m[2];
r[7] = m[5];
r[8] = m[8];
return this;
}
setUvTransform(tx, ty, sx, sy, rotation, cx, cy) {
const c = Math.cos(rotation);
const s = Math.sin(rotation);
this.set(sx * c, sx * s, -sx * (c * cx + s * cy) + cx + tx, -sy * s, sy * c, -sy * (-s * cx + c * cy) + cy + ty, 0, 0, 1);
return this;
}
scale(sx, sy) {
const te = this.elements;
te[0] *= sx;
te[3] *= sx;
te[6] *= sx;
te[1] *= sy;
te[4] *= sy;
te[7] *= sy;
return this;
}
rotate(theta) {
const c = Math.cos(theta);
const s = Math.sin(theta);
const te = this.elements;
const a11 = te[0],
a12 = te[3],
a13 = te[6];
const a21 = te[1],
a22 = te[4],
a23 = te[7];
te[0] = c * a11 + s * a21;
te[3] = c * a12 + s * a22;
te[6] = c * a13 + s * a23;
te[1] = -s * a11 + c * a21;
te[4] = -s * a12 + c * a22;
te[7] = -s * a13 + c * a23;
return this;
}
translate(tx, ty) {
const te = this.elements;
te[0] += tx * te[2];
te[3] += tx * te[5];
te[6] += tx * te[8];
te[1] += ty * te[2];
te[4] += ty * te[5];
te[7] += ty * te[8];
return this;
}
equals(matrix) {
const te = this.elements;
const me = matrix.elements;
for (let i = 0; i < 9; i++) {
if (te[i] !== me[i]) return false;
}
return true;
}
fromArray(array, offset = 0) {
for (let i = 0; i < 9; i++) {
this.elements[i] = array[i + offset];
}
return this;
}
toArray(array = [], offset = 0) {
const te = this.elements;
array[offset] = te[0];
array[offset + 1] = te[1];
array[offset + 2] = te[2];
array[offset + 3] = te[3];
array[offset + 4] = te[4];
array[offset + 5] = te[5];
array[offset + 6] = te[6];
array[offset + 7] = te[7];
array[offset + 8] = te[8];
return array;
}
clone() {
return new this.constructor().fromArray(this.elements);
}
}
Matrix3.prototype.isMatrix3 = true;
function arrayMax(array) {
if (array.length === 0) return -Infinity;
let max = array[0];
for (let i = 1, l = array.length; i < l; ++i) {
if (array[i] > max) max = array[i];
}
return max;
}
const TYPED_ARRAYS = {
Int8Array: Int8Array,
Uint8Array: Uint8Array,
Uint8ClampedArray: Uint8ClampedArray,
Int16Array: Int16Array,
Uint16Array: Uint16Array,
Int32Array: Int32Array,
Uint32Array: Uint32Array,
Float32Array: Float32Array,
Float64Array: Float64Array
};
function getTypedArray(type, buffer) {
return new TYPED_ARRAYS[type](buffer);
}
function createElementNS(name) {
return document.createElementNS('http://www.w3.org/1999/xhtml', name);
}
/**
* cyrb53 hash for string from: https://stackoverflow.com/a/52171480
*
* Public Domain, @bryc - https://stackoverflow.com/users/815680/bryc
*
* It is roughly similar to the well-known MurmurHash/xxHash algorithms. It uses a combination
* of multiplication and Xorshift to generate the hash, but not as thorough. As a result it's
* faster than either would be in JavaScript and significantly simpler to implement. Keep in
* mind this is not a secure algorithm, if privacy/security is a concern, this is not for you.
*
* @param {string} str
* @param {number} seed, default 0
* @returns number
*/
function hashString(str, seed = 0) {
let h1 = 0xdeadbeef ^ seed,
h2 = 0x41c6ce57 ^ seed;
for (let i = 0, ch; i < str.length; i++) {
ch = str.charCodeAt(i);
h1 = Math.imul(h1 ^ ch, 2654435761);
h2 = Math.imul(h2 ^ ch, 1597334677);
}
h1 = Math.imul(h1 ^ h1 >>> 16, 2246822507) ^ Math.imul(h2 ^ h2 >>> 13, 3266489909);
h2 = Math.imul(h2 ^ h2 >>> 16, 2246822507) ^ Math.imul(h1 ^ h1 >>> 13, 3266489909);
return 4294967296 * (2097151 & h2) + (h1 >>> 0);
}
let _canvas;
class ImageUtils {
static getDataURL(image) {
if (/^data:/i.test(image.src)) {
return image.src;
}
if (typeof HTMLCanvasElement == 'undefined') {
return image.src;
}
let canvas;
if (image instanceof HTMLCanvasElement) {
canvas = image;
} else {
if (_canvas === undefined) _canvas = createElementNS('canvas');
_canvas.width = image.width;
_canvas.height = image.height;
const context = _canvas.getContext('2d');
if (image instanceof ImageData) {
context.putImageData(image, 0, 0);
} else {
context.drawImage(image, 0, 0, image.width, image.height);
}
canvas = _canvas;
}
if (canvas.width > 2048 || canvas.height > 2048) {
console.warn('THREE.ImageUtils.getDataURL: Image converted to jpg for performance reasons', image);
return canvas.toDataURL('image/jpeg', 0.6);
} else {
return canvas.toDataURL('image/png');
}
}
}
let textureId = 0;
class Texture extends EventDispatcher {
constructor(image = Texture.DEFAULT_IMAGE, mapping = Texture.DEFAULT_MAPPING, wrapS = ClampToEdgeWrapping, wrapT = ClampToEdgeWrapping, magFilter = LinearFilter, minFilter = LinearMipmapLinearFilter, format = RGBAFormat, type = UnsignedByteType, anisotropy = 1, encoding = LinearEncoding) {
super();
Object.defineProperty(this, 'id', {
value: textureId++
});
this.uuid = generateUUID();
this.name = '';
this.image = image;
this.mipmaps = [];
this.mapping = mapping;
this.wrapS = wrapS;
this.wrapT = wrapT;
this.magFilter = magFilter;
this.minFilter = minFilter;
this.anisotropy = anisotropy;
this.format = format;
this.internalFormat = null;
this.type = type;
this.offset = new Vector2(0, 0);
this.repeat = new Vector2(1, 1);
this.center = new Vector2(0, 0);
this.rotation = 0;
this.matrixAutoUpdate = true;
this.matrix = new Matrix3();
this.generateMipmaps = true;
this.premultiplyAlpha = false;
this.flipY = true;
this.unpackAlignment = 4; // valid values: 1, 2, 4, 8 (see http://www.khronos.org/opengles/sdk/docs/man/xhtml/glPixelStorei.xml)
// Values of encoding !== THREE.LinearEncoding only supported on map, envMap and emissiveMap.
//
// Also changing the encoding after already used by a Material will not automatically make the Material
// update. You need to explicitly call Material.needsUpdate to trigger it to recompile.
this.encoding = encoding;
this.version = 0;
this.onUpdate = null;
this.isRenderTargetTexture = false;
}
updateMatrix() {
this.matrix.setUvTransform(this.offset.x, this.offset.y, this.repeat.x, this.repeat.y, this.rotation, this.center.x, this.center.y);
}
clone() {
return new this.constructor().copy(this);
}
copy(source) {
this.name = source.name;
this.image = source.image;
this.mipmaps = source.mipmaps.slice(0);
this.mapping = source.mapping;
this.wrapS = source.wrapS;
this.wrapT = source.wrapT;
this.magFilter = source.magFilter;
this.minFilter = source.minFilter;
this.anisotropy = source.anisotropy;
this.format = source.format;
this.internalFormat = source.internalFormat;
this.type = source.type;
this.offset.copy(source.offset);
this.repeat.copy(source.repeat);
this.center.copy(source.center);
this.rotation = source.rotation;
this.matrixAutoUpdate = source.matrixAutoUpdate;
this.matrix.copy(source.matrix);
this.generateMipmaps = source.generateMipmaps;
this.premultiplyAlpha = source.premultiplyAlpha;
this.flipY = source.flipY;
this.unpackAlignment = source.unpackAlignment;
this.encoding = source.encoding;
return this;
}
toJSON(meta) {
const isRootObject = meta === undefined || typeof meta === 'string';
if (!isRootObject && meta.textures[this.uuid] !== undefined) {
return meta.textures[this.uuid];
}
const output = {
metadata: {
version: 4.5,
type: 'Texture',
generator: 'Texture.toJSON'
},
uuid: this.uuid,
name: this.name,
mapping: this.mapping,
repeat: [this.repeat.x, this.repeat.y],
offset: [this.offset.x, this.offset.y],
center: [this.center.x, this.center.y],
rotation: this.rotation,
wrap: [this.wrapS, this.wrapT],
format: this.format,
type: this.type,
encoding: this.encoding,
minFilter: this.minFilter,
magFilter: this.magFilter,
anisotropy: this.anisotropy,
flipY: this.flipY,
premultiplyAlpha: this.premultiplyAlpha,
unpackAlignment: this.unpackAlignment
};
if (this.image !== undefined) {
// TODO: Move to THREE.Image
const image = this.image;
if (image.uuid === undefined) {
image.uuid = generateUUID(); // UGH
}
if (!isRootObject && meta.images[image.uuid] === undefined) {
let url;
if (Array.isArray(image)) {
// process array of images e.g. CubeTexture
url = [];
for (let i = 0, l = image.length; i < l; i++) {
// check cube texture with data textures
if (image[i].isDataTexture) {
url.push(serializeImage(image[i].image));
} else {
url.push(serializeImage(image[i]));
}
}
} else {
// process single image
url = serializeImage(image);
}
meta.images[image.uuid] = {
uuid: image.uuid,
url: url
};
}
output.image = image.uuid;
}
if (!isRootObject) {
meta.textures[this.uuid] = output;
}
return output;
}
dispose() {
this.dispatchEvent({
type: 'dispose'
});
}
transformUv(uv) {
if (this.mapping !== UVMapping) return uv;
uv.applyMatrix3(this.matrix);
if (uv.x < 0 || uv.x > 1) {
switch (this.wrapS) {
case RepeatWrapping:
uv.x = uv.x - Math.floor(uv.x);
break;
case ClampToEdgeWrapping:
uv.x = uv.x < 0 ? 0 : 1;
break;
case MirroredRepeatWrapping:
if (Math.abs(Math.floor(uv.x) % 2) === 1) {
uv.x = Math.ceil(uv.x) - uv.x;
} else {
uv.x = uv.x - Math.floor(uv.x);
}
break;
}
}
if (uv.y < 0 || uv.y > 1) {
switch (this.wrapT) {
case RepeatWrapping:
uv.y = uv.y - Math.floor(uv.y);
break;
case ClampToEdgeWrapping:
uv.y = uv.y < 0 ? 0 : 1;
break;
case MirroredRepeatWrapping:
if (Math.abs(Math.floor(uv.y) % 2) === 1) {
uv.y = Math.ceil(uv.y) - uv.y;
} else {
uv.y = uv.y - Math.floor(uv.y);
}
break;
}
}
if (this.flipY) {
uv.y = 1 - uv.y;
}
return uv;
}
set needsUpdate(value) {
if (value === true) this.version++;
}
}
Texture.DEFAULT_IMAGE = undefined;
Texture.DEFAULT_MAPPING = UVMapping;
Texture.prototype.isTexture = true;
function serializeImage(image) {
if (typeof HTMLImageElement !== 'undefined' && image instanceof HTMLImageElement || typeof HTMLCanvasElement !== 'undefined' && image instanceof HTMLCanvasElement || typeof ImageBitmap !== 'undefined' && image instanceof ImageBitmap) {
// default images
return ImageUtils.getDataURL(image);
} else {
if (image.data) {
// images of DataTexture
return {
data: Array.prototype.slice.call(image.data),
width: image.width,
height: image.height,
type: image.data.constructor.name
};
} else {
console.warn('THREE.Texture: Unable to serialize Texture.');
return {};
}
}
}
class Vector4 {
constructor(x = 0, y = 0, z = 0, w = 1) {
this.x = x;
this.y = y;
this.z = z;
this.w = w;
}
get width() {
return this.z;
}
set width(value) {
this.z = value;
}
get height() {
return this.w;
}
set height(value) {
this.w = value;
}
set(x, y, z, w) {
this.x = x;
this.y = y;
this.z = z;
this.w = w;
return this;
}
setScalar(scalar) {
this.x = scalar;
this.y = scalar;
this.z = scalar;
this.w = scalar;
return this;
}
setX(x) {
this.x = x;
return this;
}
setY(y) {
this.y = y;
return this;
}
setZ(z) {
this.z = z;
return this;
}
setW(w) {
this.w = w;
return this;
}
setComponent(index, value) {
switch (index) {
case 0:
this.x = value;
break;
case 1:
this.y = value;
break;
case 2:
this.z = value;
break;
case 3:
this.w = value;
break;
default:
throw new Error('index is out of range: ' + index);
}
return this;
}
getComponent(index) {
switch (index) {
case 0:
return this.x;
case 1:
return this.y;
case 2:
return this.z;
case 3:
return this.w;
default:
throw new Error('index is out of range: ' + index);
}
}
clone() {
return new this.constructor(this.x, this.y, this.z, this.w);
}
copy(v) {
this.x = v.x;
this.y = v.y;
this.z = v.z;
this.w = v.w !== undefined ? v.w : 1;
return this;
}
add(v, w) {
if (w !== undefined) {
console.warn('THREE.Vector4: .add() now only accepts one argument. Use .addVectors( a, b ) instead.');
return this.addVectors(v, w);
}
this.x += v.x;
this.y += v.y;
this.z += v.z;
this.w += v.w;
return this;
}
addScalar(s) {
this.x += s;
this.y += s;
this.z += s;
this.w += s;
return this;
}
addVectors(a, b) {
this.x = a.x + b.x;
this.y = a.y + b.y;
this.z = a.z + b.z;
this.w = a.w + b.w;
return this;
}
addScaledVector(v, s) {
this.x += v.x * s;
this.y += v.y * s;
this.z += v.z * s;
this.w += v.w * s;
return this;
}
sub(v, w) {
if (w !== undefined) {
console.warn('THREE.Vector4: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.');
return this.subVectors(v, w);
}
this.x -= v.x;
this.y -= v.y;
this.z -= v.z;
this.w -= v.w;
return this;
}
subScalar(s) {
this.x -= s;
this.y -= s;
this.z -= s;
this.w -= s;
return this;
}
subVectors(a, b) {
this.x = a.x - b.x;
this.y = a.y - b.y;
this.z = a.z - b.z;
this.w = a.w - b.w;
return this;
}
multiply(v) {
this.x *= v.x;
this.y *= v.y;
this.z *= v.z;
this.w *= v.w;
return this;
}
multiplyScalar(scalar) {
this.x *= scalar;
this.y *= scalar;
this.z *= scalar;
this.w *= scalar;
return this;
}
applyMatrix4(m) {
const x = this.x,
y = this.y,
z = this.z,
w = this.w;
const e = m.elements;
this.x = e[0] * x + e[4] * y + e[8] * z + e[12] * w;
this.y = e[1] * x + e[5] * y + e[9] * z + e[13] * w;
this.z = e[2] * x + e[6] * y + e[10] * z + e[14] * w;
this.w = e[3] * x + e[7] * y + e[11] * z + e[15] * w;
return this;
}
divideScalar(scalar) {
return this.multiplyScalar(1 / scalar);
}
setAxisAngleFromQuaternion(q) {
// http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm
// q is assumed to be normalized
this.w = 2 * Math.acos(q.w);
const s = Math.sqrt(1 - q.w * q.w);
if (s < 0.0001) {
this.x = 1;
this.y = 0;
this.z = 0;
} else {
this.x = q.x / s;
this.y = q.y / s;
this.z = q.z / s;
}
return this;
}
setAxisAngleFromRotationMatrix(m) {
// http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToAngle/index.htm
// assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)
let angle, x, y, z; // variables for result
const epsilon = 0.01,
// margin to allow for rounding errors
epsilon2 = 0.1,
// margin to distinguish between 0 and 180 degrees
te = m.elements,
m11 = te[0],
m12 = te[4],
m13 = te[8],
m21 = te[1],
m22 = te[5],
m23 = te[9],
m31 = te[2],
m32 = te[6],
m33 = te[10];
if (Math.abs(m12 - m21) < epsilon && Math.abs(m13 - m31) < epsilon && Math.abs(m23 - m32) < epsilon) {
// singularity found
// first check for identity matrix which must have +1 for all terms
// in leading diagonal and zero in other terms
if (Math.abs(m12 + m21) < epsilon2 && Math.abs(m13 + m31) < epsilon2 && Math.abs(m23 + m32) < epsilon2 && Math.abs(m11 + m22 + m33 - 3) < epsilon2) {
// this singularity is identity matrix so angle = 0
this.set(1, 0, 0, 0);
return this; // zero angle, arbitrary axis
} // otherwise this singularity is angle = 180
angle = Math.PI;
const xx = (m11 + 1) / 2;
const yy = (m22 + 1) / 2;
const zz = (m33 + 1) / 2;
const xy = (m12 + m21) / 4;
const xz = (m13 + m31) / 4;
const yz = (m23 + m32) / 4;
if (xx > yy && xx > zz) {
// m11 is the largest diagonal term
if (xx < epsilon) {
x = 0;
y = 0.707106781;
z = 0.707106781;
} else {
x = Math.sqrt(xx);
y = xy / x;
z = xz / x;
}
} else if (yy > zz) {
// m22 is the largest diagonal term
if (yy < epsilon) {
x = 0.707106781;
y = 0;
z = 0.707106781;
} else {
y = Math.sqrt(yy);
x = xy / y;
z = yz / y;
}
} else {
// m33 is the largest diagonal term so base result on this
if (zz < epsilon) {
x = 0.707106781;
y = 0.707106781;
z = 0;
} else {
z = Math.sqrt(zz);
x = xz / z;
y = yz / z;
}
}
this.set(x, y, z, angle);
return this; // return 180 deg rotation
} // as we have reached here there are no singularities so we can handle normally
let s = Math.sqrt((m32 - m23) * (m32 - m23) + (m13 - m31) * (m13 - m31) + (m21 - m12) * (m21 - m12)); // used to normalize
if (Math.abs(s) < 0.001) s = 1; // prevent divide by zero, should not happen if matrix is orthogonal and should be
// caught by singularity test above, but I've left it in just in case
this.x = (m32 - m23) / s;
this.y = (m13 - m31) / s;
this.z = (m21 - m12) / s;
this.w = Math.acos((m11 + m22 + m33 - 1) / 2);
return this;
}
min(v) {
this.x = Math.min(this.x, v.x);
this.y = Math.min(this.y, v.y);
this.z = Math.min(this.z, v.z);
this.w = Math.min(this.w, v.w);
return this;
}
max(v) {
this.x = Math.max(this.x, v.x);
this.y = Math.max(this.y, v.y);
this.z = Math.max(this.z, v.z);
this.w = Math.max(this.w, v.w);
return this;
}
clamp(min, max) {
// assumes min < max, componentwise
this.x = Math.max(min.x, Math.min(max.x, this.x));
this.y = Math.max(min.y, Math.min(max.y, this.y));
this.z = Math.max(min.z, Math.min(max.z, this.z));
this.w = Math.max(min.w, Math.min(max.w, this.w));
return this;
}
clampScalar(minVal, maxVal) {
this.x = Math.max(minVal, Math.min(maxVal, this.x));
this.y = Math.max(minVal, Math.min(maxVal, this.y));
this.z = Math.max(minVal, Math.min(maxVal, this.z));
this.w = Math.max(minVal, Math.min(maxVal, this.w));
return this;
}
clampLength(min, max) {
const length = this.length();
return this.divideScalar(length || 1).multiplyScalar(Math.max(min, Math.min(max, length)));
}
floor() {
this.x = Math.floor(this.x);
this.y = Math.floor(this.y);
this.z = Math.floor(this.z);
this.w = Math.floor(this.w);
return this;
}
ceil() {
this.x = Math.ceil(this.x);
this.y = Math.ceil(this.y);
this.z = Math.ceil(this.z);
this.w = Math.ceil(this.w);
return this;
}
round() {
this.x = Math.round(this.x);
this.y = Math.round(this.y);
this.z = Math.round(this.z);
this.w = Math.round(this.w);
return this;
}
roundToZero() {
this.x = this.x < 0 ? Math.ceil(this.x) : Math.floor(this.x);
this.y = this.y < 0 ? Math.ceil(this.y) : Math.floor(this.y);
this.z = this.z < 0 ? Math.ceil(this.z) : Math.floor(this.z);
this.w = this.w < 0 ? Math.ceil(this.w) : Math.floor(this.w);
return this;
}
negate() {
this.x = -this.x;
this.y = -this.y;
this.z = -this.z;
this.w = -this.w;
return this;
}
dot(v) {
return this.x * v.x + this.y * v.y + this.z * v.z + this.w * v.w;
}
lengthSq() {
return this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w;
}
length() {
return Math.sqrt(this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w);
}
manhattanLength() {
return Math.abs(this.x) + Math.abs(this.y) + Math.abs(this.z) + Math.abs(this.w);
}
normalize() {
return this.divideScalar(this.length() || 1);
}
setLength(length) {
return this.normalize().multiplyScalar(length);
}
lerp(v, alpha) {
this.x += (v.x - this.x) * alpha;
this.y += (v.y - this.y) * alpha;
this.z += (v.z - this.z) * alpha;
this.w += (v.w - this.w) * alpha;
return this;
}
lerpVectors(v1, v2, alpha) {
this.x = v1.x + (v2.x - v1.x) * alpha;
this.y = v1.y + (v2.y - v1.y) * alpha;
this.z = v1.z + (v2.z - v1.z) * alpha;
this.w = v1.w + (v2.w - v1.w) * alpha;
return this;
}
equals(v) {
return v.x === this.x && v.y === this.y && v.z === this.z && v.w === this.w;
}
fromArray(array, offset = 0) {
this.x = array[offset];
this.y = array[offset + 1];
this.z = array[offset + 2];
this.w = array[offset + 3];
return this;
}
toArray(array = [], offset = 0) {
array[offset] = this.x;
array[offset + 1] = this.y;
array[offset + 2] = this.z;
array[offset + 3] = this.w;
return array;
}
fromBufferAttribute(attribute, index, offset) {
if (offset !== undefined) {
console.warn('THREE.Vector4: offset has been removed from .fromBufferAttribute().');
}
this.x = attribute.getX(index);
this.y = attribute.getY(index);
this.z = attribute.getZ(index);
this.w = attribute.getW(index);
return this;
}
random() {
this.x = Math.random();
this.y = Math.random();
this.z = Math.random();
this.w = Math.random();
return this;
}
*[Symbol.iterator]() {
yield this.x;
yield this.y;
yield this.z;
yield this.w;
}
}
Vector4.prototype.isVector4 = true;
/*
In options, we can specify:
* Texture parameters for an auto-generated target texture
* depthBuffer/stencilBuffer: Booleans to indicate if we should generate these buffers
*/
class WebGLRenderTarget extends EventDispatcher {
constructor(width, height, options = {}) {
super();
this.width = width;
this.height = height;
this.depth = 1;
this.scissor = new Vector4(0, 0, width, height);
this.scissorTest = false;
this.viewport = new Vector4(0, 0, width, height);
this.texture = new Texture(undefined, options.mapping, options.wrapS, options.wrapT, options.magFilter, options.minFilter, options.format, options.type, options.anisotropy, options.encoding);
this.texture.isRenderTargetTexture = true;
this.texture.image = {
width: width,
height: height,
depth: 1
};
this.texture.generateMipmaps = options.generateMipmaps !== undefined ? options.generateMipmaps : false;
this.texture.internalFormat = options.internalFormat !== undefined ? options.internalFormat : null;
this.texture.minFilter = options.minFilter !== undefined ? options.minFilter : LinearFilter;
this.depthBuffer = options.depthBuffer !== undefined ? options.depthBuffer : true;
this.stencilBuffer = options.stencilBuffer !== undefined ? options.stencilBuffer : false;
this.depthTexture = options.depthTexture !== undefined ? options.depthTexture : null;
}
setTexture(texture) {
texture.image = {
width: this.width,
height: this.height,
depth: this.depth
};
this.texture = texture;
}
setSize(width, height, depth = 1) {
if (this.width !== width || this.height !== height || this.depth !== depth) {
this.width = width;
this.height = height;
this.depth = depth;
this.texture.image.width = width;
this.texture.image.height = height;
this.texture.image.depth = depth;
this.dispose();
}
this.viewport.set(0, 0, width, height);
this.scissor.set(0, 0, width, height);
}
clone() {
return new this.constructor().copy(this);
}
copy(source) {
this.width = source.width;
this.height = source.height;
this.depth = source.depth;
this.viewport.copy(source.viewport);
this.texture = source.texture.clone();
this.texture.image = { ...this.texture.image
}; // See #20328.
this.depthBuffer = source.depthBuffer;
this.stencilBuffer = source.stencilBuffer;
this.depthTexture = source.depthTexture;
return this;
}
dispose() {
this.dispatchEvent({
type: 'dispose'
});
}
}
WebGLRenderTarget.prototype.isWebGLRenderTarget = true;
class WebGLMultipleRenderTargets extends WebGLRenderTarget {
constructor(width, height, count) {
super(width, height);
const texture = this.texture;
this.texture = [];
for (let i = 0; i < count; i++) {
this.texture[i] = texture.clone();
}
}
setSize(width, height, depth = 1) {
if (this.width !== width || this.height !== height || this.depth !== depth) {
this.width = width;
this.height = height;
this.depth = depth;
for (let i = 0, il = this.texture.length; i < il; i++) {
this.texture[i].image.width = width;
this.texture[i].image.height = height;
this.texture[i].image.depth = depth;
}
this.dispose();
}
this.viewport.set(0, 0, width, height);
this.scissor.set(0, 0, width, height);
return this;
}
copy(source) {
this.dispose();
this.width = source.width;
this.height = source.height;
this.depth = source.depth;
this.viewport.set(0, 0, this.width, this.height);
this.scissor.set(0, 0, this.width, this.height);
this.depthBuffer = source.depthBuffer;
this.stencilBuffer = source.stencilBuffer;
this.depthTexture = source.depthTexture;
this.texture.length = 0;
for (let i = 0, il = source.texture.length; i < il; i++) {
this.texture[i] = source.texture[i].clone();
}
return this;
}
}
WebGLMultipleRenderTargets.prototype.isWebGLMultipleRenderTargets = true;
class WebGLMultisampleRenderTarget extends WebGLRenderTarget {
constructor(width, height, options) {
super(width, height, options);
this.samples = 4;
}
copy(source) {
super.copy.call(this, source);
this.samples = source.samples;
return this;
}
}
WebGLMultisampleRenderTarget.prototype.isWebGLMultisampleRenderTarget = true;
class Quaternion {
constructor(x = 0, y = 0, z = 0, w = 1) {
this._x = x;
this._y = y;
this._z = z;
this._w = w;
}
static slerp(qa, qb, qm, t) {
console.warn('THREE.Quaternion: Static .slerp() has been deprecated. Use qm.slerpQuaternions( qa, qb, t ) instead.');
return qm.slerpQuaternions(qa, qb, t);
}
static slerpFlat(dst, dstOffset, src0, srcOffset0, src1, srcOffset1, t) {
// fuzz-free, array-based Quaternion SLERP operation
let x0 = src0[srcOffset0 + 0],
y0 = src0[srcOffset0 + 1],
z0 = src0[srcOffset0 + 2],
w0 = src0[srcOffset0 + 3];
const x1 = src1[srcOffset1 + 0],
y1 = src1[srcOffset1 + 1],
z1 = src1[srcOffset1 + 2],
w1 = src1[srcOffset1 + 3];
if (t === 0) {
dst[dstOffset + 0] = x0;
dst[dstOffset + 1] = y0;
dst[dstOffset + 2] = z0;
dst[dstOffset + 3] = w0;
return;
}
if (t === 1) {
dst[dstOffset + 0] = x1;
dst[dstOffset + 1] = y1;
dst[dstOffset + 2] = z1;
dst[dstOffset + 3] = w1;
return;
}
if (w0 !== w1 || x0 !== x1 || y0 !== y1 || z0 !== z1) {
let s = 1 - t;
const cos = x0 * x1 + y0 * y1 + z0 * z1 + w0 * w1,
dir = cos >= 0 ? 1 : -1,
sqrSin = 1 - cos * cos; // Skip the Slerp for tiny steps to avoid numeric problems:
if (sqrSin > Number.EPSILON) {
const sin = Math.sqrt(sqrSin),
len = Math.atan2(sin, cos * dir);
s = Math.sin(s * len) / sin;
t = Math.sin(t * len) / sin;
}
const tDir = t * dir;
x0 = x0 * s + x1 * tDir;
y0 = y0 * s + y1 * tDir;
z0 = z0 * s + z1 * tDir;
w0 = w0 * s + w1 * tDir; // Normalize in case we just did a lerp:
if (s === 1 - t) {
const f = 1 / Math.sqrt(x0 * x0 + y0 * y0 + z0 * z0 + w0 * w0);
x0 *= f;
y0 *= f;
z0 *= f;
w0 *= f;
}
}
dst[dstOffset] = x0;
dst[dstOffset + 1] = y0;
dst[dstOffset + 2] = z0;
dst[dstOffset + 3] = w0;
}
static multiplyQuaternionsFlat(dst, dstOffset, src0, srcOffset0, src1, srcOffset1) {
const x0 = src0[srcOffset0];
const y0 = src0[srcOffset0 + 1];
const z0 = src0[srcOffset0 + 2];
const w0 = src0[srcOffset0 + 3];
const x1 = src1[srcOffset1];
const y1 = src1[srcOffset1 + 1];
const z1 = src1[srcOffset1 + 2];
const w1 = src1[srcOffset1 + 3];
dst[dstOffset] = x0 * w1 + w0 * x1 + y0 * z1 - z0 * y1;
dst[dstOffset + 1] = y0 * w1 + w0 * y1 + z0 * x1 - x0 * z1;
dst[dstOffset + 2] = z0 * w1 + w0 * z1 + x0 * y1 - y0 * x1;
dst[dstOffset + 3] = w0 * w1 - x0 * x1 - y0 * y1 - z0 * z1;
return dst;
}
get x() {
return this._x;
}
set x(value) {
this._x = value;
this._onChangeCallback();
}
get y() {
return this._y;
}
set y(value) {
this._y = value;
this._onChangeCallback();
}
get z() {
return this._z;
}
set z(value) {
this._z = value;
this._onChangeCallback();
}
get w() {
return this._w;
}
set w(value) {
this._w = value;
this._onChangeCallback();
}
set(x, y, z, w) {
this._x = x;
this._y = y;
this._z = z;
this._w = w;
this._onChangeCallback();
return this;
}
clone() {
return new this.constructor(this._x, this._y, this._z, this._w);
}
copy(quaternion) {
this._x = quaternion.x;
this._y = quaternion.y;
this._z = quaternion.z;
this._w = quaternion.w;
this._onChangeCallback();
return this;
}
setFromEuler(euler, update) {
if (!(euler && euler.isEuler)) {
throw new Error('THREE.Quaternion: .setFromEuler() now expects an Euler rotation rather than a Vector3 and order.');
}
const x = euler._x,
y = euler._y,
z = euler._z,
order = euler._order; // http://www.mathworks.com/matlabcentral/fileexchange/
// 20696-function-to-convert-between-dcm-euler-angles-quaternions-and-euler-vectors/
// content/SpinCalc.m
const cos = Math.cos;
const sin = Math.sin;
const c1 = cos(x / 2);
const c2 = cos(y / 2);
const c3 = cos(z / 2);
const s1 = sin(x / 2);
const s2 = sin(y / 2);
const s3 = sin(z / 2);
switch (order) {
case 'XYZ':
this._x = s1 * c2 * c3 + c1 * s2 * s3;
this._y = c1 * s2 * c3 - s1 * c2 * s3;
this._z = c1 * c2 * s3 + s1 * s2 * c3;
this._w = c1 * c2 * c3 - s1 * s2 * s3;
break;
case 'YXZ':
this._x = s1 * c2 * c3 + c1 * s2 * s3;
this._y = c1 * s2 * c3 - s1 * c2 * s3;
this._z = c1 * c2 * s3 - s1 * s2 * c3;
this._w = c1 * c2 * c3 + s1 * s2 * s3;
break;
case 'ZXY':
this._x = s1 * c2 * c3 - c1 * s2 * s3;
this._y = c1 * s2 * c3 + s1 * c2 * s3;
this._z = c1 * c2 * s3 + s1 * s2 * c3;
this._w = c1 * c2 * c3 - s1 * s2 * s3;
break;
case 'ZYX':
this._x = s1 * c2 * c3 - c1 * s2 * s3;
this._y = c1 * s2 * c3 + s1 * c2 * s3;
this._z = c1 * c2 * s3 - s1 * s2 * c3;
this._w = c1 * c2 * c3 + s1 * s2 * s3;
break;
case 'YZX':
this._x = s1 * c2 * c3 + c1 * s2 * s3;
this._y = c1 * s2 * c3 + s1 * c2 * s3;
this._z = c1 * c2 * s3 - s1 * s2 * c3;
this._w = c1 * c2 * c3 - s1 * s2 * s3;
break;
case 'XZY':
this._x = s1 * c2 * c3 - c1 * s2 * s3;
this._y = c1 * s2 * c3 - s1 * c2 * s3;
this._z = c1 * c2 * s3 + s1 * s2 * c3;
this._w = c1 * c2 * c3 + s1 * s2 * s3;
break;
default:
console.warn('THREE.Quaternion: .setFromEuler() encountered an unknown order: ' + order);
}
if (update !== false) this._onChangeCallback();
return this;
}
setFromAxisAngle(axis, angle) {
// http://www.euclideanspace.com/maths/geometry/rotations/conversions/angleToQuaternion/index.htm
// assumes axis is normalized
const halfAngle = angle / 2,
s = Math.sin(halfAngle);
this._x = axis.x * s;
this._y = axis.y * s;
this._z = axis.z * s;
this._w = Math.cos(halfAngle);
this._onChangeCallback();
return this;
}
setFromRotationMatrix(m) {
// http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm
// assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)
const te = m.elements,
m11 = te[0],
m12 = te[4],
m13 = te[8],
m21 = te[1],
m22 = te[5],
m23 = te[9],
m31 = te[2],
m32 = te[6],
m33 = te[10],
trace = m11 + m22 + m33;
if (trace > 0) {
const s = 0.5 / Math.sqrt(trace + 1.0);
this._w = 0.25 / s;
this._x = (m32 - m23) * s;
this._y = (m13 - m31) * s;
this._z = (m21 - m12) * s;
} else if (m11 > m22 && m11 > m33) {
const s = 2.0 * Math.sqrt(1.0 + m11 - m22 - m33);
this._w = (m32 - m23) / s;
this._x = 0.25 * s;
this._y = (m12 + m21) / s;
this._z = (m13 + m31) / s;
} else if (m22 > m33) {
const s = 2.0 * Math.sqrt(1.0 + m22 - m11 - m33);
this._w = (m13 - m31) / s;
this._x = (m12 + m21) / s;
this._y = 0.25 * s;
this._z = (m23 + m32) / s;
} else {
const s = 2.0 * Math.sqrt(1.0 + m33 - m11 - m22);
this._w = (m21 - m12) / s;
this._x = (m13 + m31) / s;
this._y = (m23 + m32) / s;
this._z = 0.25 * s;
}
this._onChangeCallback();
return this;
}
setFromUnitVectors(vFrom, vTo) {
// assumes direction vectors vFrom and vTo are normalized
let r = vFrom.dot(vTo) + 1;
if (r < Number.EPSILON) {
// vFrom and vTo point in opposite directions
r = 0;
if (Math.abs(vFrom.x) > Math.abs(vFrom.z)) {
this._x = -vFrom.y;
this._y = vFrom.x;
this._z = 0;
this._w = r;
} else {
this._x = 0;
this._y = -vFrom.z;
this._z = vFrom.y;
this._w = r;
}
} else {
// crossVectors( vFrom, vTo ); // inlined to avoid cyclic dependency on Vector3
this._x = vFrom.y * vTo.z - vFrom.z * vTo.y;
this._y = vFrom.z * vTo.x - vFrom.x * vTo.z;
this._z = vFrom.x * vTo.y - vFrom.y * vTo.x;
this._w = r;
}
return this.normalize();
}
angleTo(q) {
return 2 * Math.acos(Math.abs(clamp(this.dot(q), -1, 1)));
}
rotateTowards(q, step) {
const angle = this.angleTo(q);
if (angle === 0) return this;
const t = Math.min(1, step / angle);
this.slerp(q, t);
return this;
}
identity() {
return this.set(0, 0, 0, 1);
}
invert() {
// quaternion is assumed to have unit length
return this.conjugate();
}
conjugate() {
this._x *= -1;
this._y *= -1;
this._z *= -1;
this._onChangeCallback();
return this;
}
dot(v) {
return this._x * v._x + this._y * v._y + this._z * v._z + this._w * v._w;
}
lengthSq() {
return this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w;
}
length() {
return Math.sqrt(this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w);
}
normalize() {
let l = this.length();
if (l === 0) {
this._x = 0;
this._y = 0;
this._z = 0;
this._w = 1;
} else {
l = 1 / l;
this._x = this._x * l;
this._y = this._y * l;
this._z = this._z * l;
this._w = this._w * l;
}
this._onChangeCallback();
return this;
}
multiply(q, p) {
if (p !== undefined) {
console.warn('THREE.Quaternion: .multiply() now only accepts one argument. Use .multiplyQuaternions( a, b ) instead.');
return this.multiplyQuaternions(q, p);
}
return this.multiplyQuaternions(this, q);
}
premultiply(q) {
return this.multiplyQuaternions(q, this);
}
multiplyQuaternions(a, b) {
// from http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/code/index.htm
const qax = a._x,
qay = a._y,
qaz = a._z,
qaw = a._w;
const qbx = b._x,
qby = b._y,
qbz = b._z,
qbw = b._w;
this._x = qax * qbw + qaw * qbx + qay * qbz - qaz * qby;
this._y = qay * qbw + qaw * qby + qaz * qbx - qax * qbz;
this._z = qaz * qbw + qaw * qbz + qax * qby - qay * qbx;
this._w = qaw * qbw - qax * qbx - qay * qby - qaz * qbz;
this._onChangeCallback();
return this;
}
slerp(qb, t) {
if (t === 0) return this;
if (t === 1) return this.copy(qb);
const x = this._x,
y = this._y,
z = this._z,
w = this._w; // http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/slerp/
let cosHalfTheta = w * qb._w + x * qb._x + y * qb._y + z * qb._z;
if (cosHalfTheta < 0) {
this._w = -qb._w;
this._x = -qb._x;
this._y = -qb._y;
this._z = -qb._z;
cosHalfTheta = -cosHalfTheta;
} else {
this.copy(qb);
}
if (cosHalfTheta >= 1.0) {
this._w = w;
this._x = x;
this._y = y;
this._z = z;
return this;
}
const sqrSinHalfTheta = 1.0 - cosHalfTheta * cosHalfTheta;
if (sqrSinHalfTheta <= Number.EPSILON) {
const s = 1 - t;
this._w = s * w + t * this._w;
this._x = s * x + t * this._x;
this._y = s * y + t * this._y;
this._z = s * z + t * this._z;
this.normalize();
this._onChangeCallback();
return this;
}
const sinHalfTheta = Math.sqrt(sqrSinHalfTheta);
const halfTheta = Math.atan2(sinHalfTheta, cosHalfTheta);
const ratioA = Math.sin((1 - t) * halfTheta) / sinHalfTheta,
ratioB = Math.sin(t * halfTheta) / sinHalfTheta;
this._w = w * ratioA + this._w * ratioB;
this._x = x * ratioA + this._x * ratioB;
this._y = y * ratioA + this._y * ratioB;
this._z = z * ratioA + this._z * ratioB;
this._onChangeCallback();
return this;
}
slerpQuaternions(qa, qb, t) {
this.copy(qa).slerp(qb, t);
}
random() {
// Derived from http://planning.cs.uiuc.edu/node198.html
// Note, this source uses w, x, y, z ordering,
// so we swap the order below.
const u1 = Math.random();
const sqrt1u1 = Math.sqrt(1 - u1);
const sqrtu1 = Math.sqrt(u1);
const u2 = 2 * Math.PI * Math.random();
const u3 = 2 * Math.PI * Math.random();
return this.set(sqrt1u1 * Math.cos(u2), sqrtu1 * Math.sin(u3), sqrtu1 * Math.cos(u3), sqrt1u1 * Math.sin(u2));
}
equals(quaternion) {
return quaternion._x === this._x && quaternion._y === this._y && quaternion._z === this._z && quaternion._w === this._w;
}
fromArray(array, offset = 0) {
this._x = array[offset];
this._y = array[offset + 1];
this._z = array[offset + 2];
this._w = array[offset + 3];
this._onChangeCallback();
return this;
}
toArray(array = [], offset = 0) {
array[offset] = this._x;
array[offset + 1] = this._y;
array[offset + 2] = this._z;
array[offset + 3] = this._w;
return array;
}
fromBufferAttribute(attribute, index) {
this._x = attribute.getX(index);
this._y = attribute.getY(index);
this._z = attribute.getZ(index);
this._w = attribute.getW(index);
return this;
}
_onChange(callback) {
this._onChangeCallback = callback;
return this;
}
_onChangeCallback() {}
}
Quaternion.prototype.isQuaternion = true;
class Vector3 {
constructor(x = 0, y = 0, z = 0) {
this.x = x;
this.y = y;
this.z = z;
}
set(x, y, z) {
if (z === undefined) z = this.z; // sprite.scale.set(x,y)
this.x = x;
this.y = y;
this.z = z;
return this;
}
setScalar(scalar) {
this.x = scalar;
this.y = scalar;
this.z = scalar;
return this;
}
setX(x) {
this.x = x;
return this;
}
setY(y) {
this.y = y;
return this;
}
setZ(z) {
this.z = z;
return this;
}
setComponent(index, value) {
switch (index) {
case 0:
this.x = value;
break;
case 1:
this.y = value;
break;
case 2:
this.z = value;
break;
default:
throw new Error('index is out of range: ' + index);
}
return this;
}
getComponent(index) {
switch (index) {
case 0:
return this.x;
case 1:
return this.y;
case 2:
return this.z;
default:
throw new Error('index is out of range: ' + index);
}
}
clone() {
return new this.constructor(this.x, this.y, this.z);
}
copy(v) {
this.x = v.x;
this.y = v.y;
this.z = v.z;
return this;
}
add(v, w) {
if (w !== undefined) {
console.warn('THREE.Vector3: .add() now only accepts one argument. Use .addVectors( a, b ) instead.');
return this.addVectors(v, w);
}
this.x += v.x;
this.y += v.y;
this.z += v.z;
return this;
}
addScalar(s) {
this.x += s;
this.y += s;
this.z += s;
return this;
}
addVectors(a, b) {
this.x = a.x + b.x;
this.y = a.y + b.y;
this.z = a.z + b.z;
return this;
}
addScaledVector(v, s) {
this.x += v.x * s;
this.y += v.y * s;
this.z += v.z * s;
return this;
}
sub(v, w) {
if (w !== undefined) {
console.warn('THREE.Vector3: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.');
return this.subVectors(v, w);
}
this.x -= v.x;
this.y -= v.y;
this.z -= v.z;
return this;
}
subScalar(s) {
this.x -= s;
this.y -= s;
this.z -= s;
return this;
}
subVectors(a, b) {
this.x = a.x - b.x;
this.y = a.y - b.y;
this.z = a.z - b.z;
return this;
}
multiply(v, w) {
if (w !== undefined) {
console.warn('THREE.Vector3: .multiply() now only accepts one argument. Use .multiplyVectors( a, b ) instead.');
return this.multiplyVectors(v, w);
}
this.x *= v.x;
this.y *= v.y;
this.z *= v.z;
return this;
}
multiplyScalar(scalar) {
this.x *= scalar;
this.y *= scalar;
this.z *= scalar;
return this;
}
multiplyVectors(a, b) {
this.x = a.x * b.x;
this.y = a.y * b.y;
this.z = a.z * b.z;
return this;
}
applyEuler(euler) {
if (!(euler && euler.isEuler)) {
console.error('THREE.Vector3: .applyEuler() now expects an Euler rotation rather than a Vector3 and order.');
}
return this.applyQuaternion(_quaternion$4.setFromEuler(euler));
}
applyAxisAngle(axis, angle) {
return this.applyQuaternion(_quaternion$4.setFromAxisAngle(axis, angle));
}
applyMatrix3(m) {
const x = this.x,
y = this.y,
z = this.z;
const e = m.elements;
this.x = e[0] * x + e[3] * y + e[6] * z;
this.y = e[1] * x + e[4] * y + e[7] * z;
this.z = e[2] * x + e[5] * y + e[8] * z;
return this;
}
applyNormalMatrix(m) {
return this.applyMatrix3(m).normalize();
}
applyMatrix4(m) {
const x = this.x,
y = this.y,
z = this.z;
const e = m.elements;
const w = 1 / (e[3] * x + e[7] * y + e[11] * z + e[15]);
this.x = (e[0] * x + e[4] * y + e[8] * z + e[12]) * w;
this.y = (e[1] * x + e[5] * y + e[9] * z + e[13]) * w;
this.z = (e[2] * x + e[6] * y + e[10] * z + e[14]) * w;
return this;
}
applyQuaternion(q) {
const x = this.x,
y = this.y,
z = this.z;
const qx = q.x,
qy = q.y,
qz = q.z,
qw = q.w; // calculate quat * vector
const ix = qw * x + qy * z - qz * y;
const iy = qw * y + qz * x - qx * z;
const iz = qw * z + qx * y - qy * x;
const iw = -qx * x - qy * y - qz * z; // calculate result * inverse quat
this.x = ix * qw + iw * -qx + iy * -qz - iz * -qy;
this.y = iy * qw + iw * -qy + iz * -qx - ix * -qz;
this.z = iz * qw + iw * -qz + ix * -qy - iy * -qx;
return this;
}
project(camera) {
return this.applyMatrix4(camera.matrixWorldInverse).applyMatrix4(camera.projectionMatrix);
}
unproject(camera) {
return this.applyMatrix4(camera.projectionMatrixInverse).applyMatrix4(camera.matrixWorld);
}
transformDirection(m) {
// input: THREE.Matrix4 affine matrix
// vector interpreted as a direction
const x = this.x,
y = this.y,
z = this.z;
const e = m.elements;
this.x = e[0] * x + e[4] * y + e[8] * z;
this.y = e[1] * x + e[5] * y + e[9] * z;
this.z = e[2] * x + e[6] * y + e[10] * z;
return this.normalize();
}
divide(v) {
this.x /= v.x;
this.y /= v.y;
this.z /= v.z;
return this;
}
divideScalar(scalar) {
return this.multiplyScalar(1 / scalar);
}
min(v) {
this.x = Math.min(this.x, v.x);
this.y = Math.min(this.y, v.y);
this.z = Math.min(this.z, v.z);
return this;
}
max(v) {
this.x = Math.max(this.x, v.x);
this.y = Math.max(this.y, v.y);
this.z = Math.max(this.z, v.z);
return this;
}
clamp(min, max) {
// assumes min < max, componentwise
this.x = Math.max(min.x, Math.min(max.x, this.x));
this.y = Math.max(min.y, Math.min(max.y, this.y));
this.z = Math.max(min.z, Math.min(max.z, this.z));
return this;
}
clampScalar(minVal, maxVal) {
this.x = Math.max(minVal, Math.min(maxVal, this.x));
this.y = Math.max(minVal, Math.min(maxVal, this.y));
this.z = Math.max(minVal, Math.min(maxVal, this.z));
return this;
}
clampLength(min, max) {
const length = this.length();
return this.divideScalar(length || 1).multiplyScalar(Math.max(min, Math.min(max, length)));
}
floor() {
this.x = Math.floor(this.x);
this.y = Math.floor(this.y);
this.z = Math.floor(this.z);
return this;
}
ceil() {
this.x = Math.ceil(this.x);
this.y = Math.ceil(this.y);
this.z = Math.ceil(this.z);
return this;
}
round() {
this.x = Math.round(this.x);
this.y = Math.round(this.y);
this.z = Math.round(this.z);
return this;
}
roundToZero() {
this.x = this.x < 0 ? Math.ceil(this.x) : Math.floor(this.x);
this.y = this.y < 0 ? Math.ceil(this.y) : Math.floor(this.y);
this.z = this.z < 0 ? Math.ceil(this.z) : Math.floor(this.z);
return this;
}
negate() {
this.x = -this.x;
this.y = -this.y;
this.z = -this.z;
return this;
}
dot(v) {
return this.x * v.x + this.y * v.y + this.z * v.z;
} // TODO lengthSquared?
lengthSq() {
return this.x * this.x + this.y * this.y + this.z * this.z;
}
length() {
return Math.sqrt(this.x * this.x + this.y * this.y + this.z * this.z);
}
manhattanLength() {
return Math.abs(this.x) + Math.abs(this.y) + Math.abs(this.z);
}
normalize() {
return this.divideScalar(this.length() || 1);
}
setLength(length) {
return this.normalize().multiplyScalar(length);
}
lerp(v, alpha) {
this.x += (v.x - this.x) * alpha;
this.y += (v.y - this.y) * alpha;
this.z += (v.z - this.z) * alpha;
return this;
}
lerpVectors(v1, v2, alpha) {
this.x = v1.x + (v2.x - v1.x) * alpha;
this.y = v1.y + (v2.y - v1.y) * alpha;
this.z = v1.z + (v2.z - v1.z) * alpha;
return this;
}
cross(v, w) {
if (w !== undefined) {
console.warn('THREE.Vector3: .cross() now only accepts one argument. Use .crossVectors( a, b ) instead.');
return this.crossVectors(v, w);
}
return this.crossVectors(this, v);
}
crossVectors(a, b) {
const ax = a.x,
ay = a.y,
az = a.z;
const bx = b.x,
by = b.y,
bz = b.z;
this.x = ay * bz - az * by;
this.y = az * bx - ax * bz;
this.z = ax * by - ay * bx;
return this;
}
projectOnVector(v) {
const denominator = v.lengthSq();
if (denominator === 0) return this.set(0, 0, 0);
const scalar = v.dot(this) / denominator;
return this.copy(v).multiplyScalar(scalar);
}
projectOnPlane(planeNormal) {
_vector$c.copy(this).projectOnVector(planeNormal);
return this.sub(_vector$c);
}
reflect(normal) {
// reflect incident vector off plane orthogonal to normal
// normal is assumed to have unit length
return this.sub(_vector$c.copy(normal).multiplyScalar(2 * this.dot(normal)));
}
angleTo(v) {
const denominator = Math.sqrt(this.lengthSq() * v.lengthSq());
if (denominator === 0) return Math.PI / 2;
const theta = this.dot(v) / denominator; // clamp, to handle numerical problems
return Math.acos(clamp(theta, -1, 1));
}
distanceTo(v) {
return Math.sqrt(this.distanceToSquared(v));
}
distanceToSquared(v) {
const dx = this.x - v.x,
dy = this.y - v.y,
dz = this.z - v.z;
return dx * dx + dy * dy + dz * dz;
}
manhattanDistanceTo(v) {
return Math.abs(this.x - v.x) + Math.abs(this.y - v.y) + Math.abs(this.z - v.z);
}
setFromSpherical(s) {
return this.setFromSphericalCoords(s.radius, s.phi, s.theta);
}
setFromSphericalCoords(radius, phi, theta) {
const sinPhiRadius = Math.sin(phi) * radius;
this.x = sinPhiRadius * Math.sin(theta);
this.y = Math.cos(phi) * radius;
this.z = sinPhiRadius * Math.cos(theta);
return this;
}
setFromCylindrical(c) {
return this.setFromCylindricalCoords(c.radius, c.theta, c.y);
}
setFromCylindricalCoords(radius, theta, y) {
this.x = radius * Math.sin(theta);
this.y = y;
this.z = radius * Math.cos(theta);
return this;
}
setFromMatrixPosition(m) {
const e = m.elements;
this.x = e[12];
this.y = e[13];
this.z = e[14];
return this;
}
setFromMatrixScale(m) {
const sx = this.setFromMatrixColumn(m, 0).length();
const sy = this.setFromMatrixColumn(m, 1).length();
const sz = this.setFromMatrixColumn(m, 2).length();
this.x = sx;
this.y = sy;
this.z = sz;
return this;
}
setFromMatrixColumn(m, index) {
return this.fromArray(m.elements, index * 4);
}
setFromMatrix3Column(m, index) {
return this.fromArray(m.elements, index * 3);
}
equals(v) {
return v.x === this.x && v.y === this.y && v.z === this.z;
}
fromArray(array, offset = 0) {
this.x = array[offset];
this.y = array[offset + 1];
this.z = array[offset + 2];
return this;
}
toArray(array = [], offset = 0) {
array[offset] = this.x;
array[offset + 1] = this.y;
array[offset + 2] = this.z;
return array;
}
fromBufferAttribute(attribute, index, offset) {
if (offset !== undefined) {
console.warn('THREE.Vector3: offset has been removed from .fromBufferAttribute().');
}
this.x = attribute.getX(index);
this.y = attribute.getY(index);
this.z = attribute.getZ(index);
return this;
}
random() {
this.x = Math.random();
this.y = Math.random();
this.z = Math.random();
return this;
}
randomDirection() {
// Derived from https://mathworld.wolfram.com/SpherePointPicking.html
const u = (Math.random() - 0.5) * 2;
const t = Math.random() * Math.PI * 2;
const f = Math.sqrt(1 - u ** 2);
this.x = f * Math.cos(t);
this.y = f * Math.sin(t);
this.z = u;
return this;
}
*[Symbol.iterator]() {
yield this.x;
yield this.y;
yield this.z;
}
}
Vector3.prototype.isVector3 = true;
const _vector$c = /*@__PURE__*/new Vector3();
const _quaternion$4 = /*@__PURE__*/new Quaternion();
class Box3 {
constructor(min = new Vector3(+Infinity, +Infinity, +Infinity), max = new Vector3(-Infinity, -Infinity, -Infinity)) {
this.min = min;
this.max = max;
}
set(min, max) {
this.min.copy(min);
this.max.copy(max);
return this;
}
setFromArray(array) {
let minX = +Infinity;
let minY = +Infinity;
let minZ = +Infinity;
let maxX = -Infinity;
let maxY = -Infinity;
let maxZ = -Infinity;
for (let i = 0, l = array.length; i < l; i += 3) {
const x = array[i];
const y = array[i + 1];
const z = array[i + 2];
if (x < minX) minX = x;
if (y < minY) minY = y;
if (z < minZ) minZ = z;
if (x > maxX) maxX = x;
if (y > maxY) maxY = y;
if (z > maxZ) maxZ = z;
}
this.min.set(minX, minY, minZ);
this.max.set(maxX, maxY, maxZ);
return this;
}
setFromBufferAttribute(attribute) {
let minX = +Infinity;
let minY = +Infinity;
let minZ = +Infinity;
let maxX = -Infinity;
let maxY = -Infinity;
let maxZ = -Infinity;
for (let i = 0, l = attribute.count; i < l; i++) {
const x = attribute.getX(i);
const y = attribute.getY(i);
const z = attribute.getZ(i);
if (x < minX) minX = x;
if (y < minY) minY = y;
if (z < minZ) minZ = z;
if (x > maxX) maxX = x;
if (y > maxY) maxY = y;
if (z > maxZ) maxZ = z;
}
this.min.set(minX, minY, minZ);
this.max.set(maxX, maxY, maxZ);
return this;
}
setFromPoints(points) {
this.makeEmpty();
for (let i = 0, il = points.length; i < il; i++) {
this.expandByPoint(points[i]);
}
return this;
}
setFromCenterAndSize(center, size) {
const halfSize = _vector$b.copy(size).multiplyScalar(0.5);
this.min.copy(center).sub(halfSize);
this.max.copy(center).add(halfSize);
return this;
}
setFromObject(object) {
this.makeEmpty();
return this.expandByObject(object);
}
clone() {
return new this.constructor().copy(this);
}
copy(box) {
this.min.copy(box.min);
this.max.copy(box.max);
return this;
}
makeEmpty() {
this.min.x = this.min.y = this.min.z = +Infinity;
this.max.x = this.max.y = this.max.z = -Infinity;
return this;
}
isEmpty() {
// this is a more robust check for empty than ( volume <= 0 ) because volume can get positive with two negative axes
return this.max.x < this.min.x || this.max.y < this.min.y || this.max.z < this.min.z;
}
getCenter(target) {
return this.isEmpty() ? target.set(0, 0, 0) : target.addVectors(this.min, this.max).multiplyScalar(0.5);
}
getSize(target) {
return this.isEmpty() ? target.set(0, 0, 0) : target.subVectors(this.max, this.min);
}
expandByPoint(point) {
this.min.min(point);
this.max.max(point);
return this;
}
expandByVector(vector) {
this.min.sub(vector);
this.max.add(vector);
return this;
}
expandByScalar(scalar) {
this.min.addScalar(-scalar);
this.max.addScalar(scalar);
return this;
}
expandByObject(object) {
// Computes the world-axis-aligned bounding box of an object (including its children),
// accounting for both the object's, and children's, world transforms
object.updateWorldMatrix(false, false);
const geometry = object.geometry;
if (geometry !== undefined) {
if (geometry.boundingBox === null) {
geometry.computeBoundingBox();
}
_box$3.copy(geometry.boundingBox);
_box$3.applyMatrix4(object.matrixWorld);
this.union(_box$3);
}
const children = object.children;
for (let i = 0, l = children.length; i < l; i++) {
this.expandByObject(children[i]);
}
return this;
}
containsPoint(point) {
return point.x < this.min.x || point.x > this.max.x || point.y < this.min.y || point.y > this.max.y || point.z < this.min.z || point.z > this.max.z ? false : true;
}
containsBox(box) {
return this.min.x <= box.min.x && box.max.x <= this.max.x && this.min.y <= box.min.y && box.max.y <= this.max.y && this.min.z <= box.min.z && box.max.z <= this.max.z;
}
getParameter(point, target) {
// This can potentially have a divide by zero if the box
// has a size dimension of 0.
return target.set((point.x - this.min.x) / (this.max.x - this.min.x), (point.y - this.min.y) / (this.max.y - this.min.y), (point.z - this.min.z) / (this.max.z - this.min.z));
}
intersectsBox(box) {
// using 6 splitting planes to rule out intersections.
return box.max.x < this.min.x || box.min.x > this.max.x || box.max.y < this.min.y || box.min.y > this.max.y || box.max.z < this.min.z || box.min.z > this.max.z ? false : true;
}
intersectsSphere(sphere) {
// Find the point on the AABB closest to the sphere center.
this.clampPoint(sphere.center, _vector$b); // If that point is inside the sphere, the AABB and sphere intersect.
return _vector$b.distanceToSquared(sphere.center) <= sphere.radius * sphere.radius;
}
intersectsPlane(plane) {
// We compute the minimum and maximum dot product values. If those values
// are on the same side (back or front) of the plane, then there is no intersection.
let min, max;
if (plane.normal.x > 0) {
min = plane.normal.x * this.min.x;
max = plane.normal.x * this.max.x;
} else {
min = plane.normal.x * this.max.x;
max = plane.normal.x * this.min.x;
}
if (plane.normal.y > 0) {
min += plane.normal.y * this.min.y;
max += plane.normal.y * this.max.y;
} else {
min += plane.normal.y * this.max.y;
max += plane.normal.y * this.min.y;
}
if (plane.normal.z > 0) {
min += plane.normal.z * this.min.z;
max += plane.normal.z * this.max.z;
} else {
min += plane.normal.z * this.max.z;
max += plane.normal.z * this.min.z;
}
return min <= -plane.constant && max >= -plane.constant;
}
intersectsTriangle(triangle) {
if (this.isEmpty()) {
return false;
} // compute box center and extents
this.getCenter(_center);
_extents.subVectors(this.max, _center); // translate triangle to aabb origin
_v0$2.subVectors(triangle.a, _center);
_v1$7.subVectors(triangle.b, _center);
_v2$3.subVectors(triangle.c, _center); // compute edge vectors for triangle
_f0.subVectors(_v1$7, _v0$2);
_f1.subVectors(_v2$3, _v1$7);
_f2.subVectors(_v0$2, _v2$3); // test against axes that are given by cross product combinations of the edges of the triangle and the edges of the aabb
// make an axis testing of each of the 3 sides of the aabb against each of the 3 sides of the triangle = 9 axis of separation
// axis_ij = u_i x f_j (u0, u1, u2 = face normals of aabb = x,y,z axes vectors since aabb is axis aligned)
let axes = [0, -_f0.z, _f0.y, 0, -_f1.z, _f1.y, 0, -_f2.z, _f2.y, _f0.z, 0, -_f0.x, _f1.z, 0, -_f1.x, _f2.z, 0, -_f2.x, -_f0.y, _f0.x, 0, -_f1.y, _f1.x, 0, -_f2.y, _f2.x, 0];
if (!satForAxes(axes, _v0$2, _v1$7, _v2$3, _extents)) {
return false;
} // test 3 face normals from the aabb
axes = [1, 0, 0, 0, 1, 0, 0, 0, 1];
if (!satForAxes(axes, _v0$2, _v1$7, _v2$3, _extents)) {
return false;
} // finally testing the face normal of the triangle
// use already existing triangle edge vectors here
_triangleNormal.crossVectors(_f0, _f1);
axes = [_triangleNormal.x, _triangleNormal.y, _triangleNormal.z];
return satForAxes(axes, _v0$2, _v1$7, _v2$3, _extents);
}
clampPoint(point, target) {
return target.copy(point).clamp(this.min, this.max);
}
distanceToPoint(point) {
const clampedPoint = _vector$b.copy(point).clamp(this.min, this.max);
return clampedPoint.sub(point).length();
}
getBoundingSphere(target) {
this.getCenter(target.center);
target.radius = this.getSize(_vector$b).length() * 0.5;
return target;
}
intersect(box) {
this.min.max(box.min);
this.max.min(box.max); // ensure that if there is no overlap, the result is fully empty, not slightly empty with non-inf/+inf values that will cause subsequence intersects to erroneously return valid values.
if (this.isEmpty()) this.makeEmpty();
return this;
}
union(box) {
this.min.min(box.min);
this.max.max(box.max);
return this;
}
applyMatrix4(matrix) {
// transform of empty box is an empty box.
if (this.isEmpty()) return this; // NOTE: I am using a binary pattern to specify all 2^3 combinations below
_points[0].set(this.min.x, this.min.y, this.min.z).applyMatrix4(matrix); // 000
_points[1].set(this.min.x, this.min.y, this.max.z).applyMatrix4(matrix); // 001
_points[2].set(this.min.x, this.max.y, this.min.z).applyMatrix4(matrix); // 010
_points[3].set(this.min.x, this.max.y, this.max.z).applyMatrix4(matrix); // 011
_points[4].set(this.max.x, this.min.y, this.min.z).applyMatrix4(matrix); // 100
_points[5].set(this.max.x, this.min.y, this.max.z).applyMatrix4(matrix); // 101
_points[6].set(this.max.x, this.max.y, this.min.z).applyMatrix4(matrix); // 110
_points[7].set(this.max.x, this.max.y, this.max.z).applyMatrix4(matrix); // 111
this.setFromPoints(_points);
return this;
}
translate(offset) {
this.min.add(offset);
this.max.add(offset);
return this;
}
equals(box) {
return box.min.equals(this.min) && box.max.equals(this.max);
}
}
Box3.prototype.isBox3 = true;
const _points = [/*@__PURE__*/new Vector3(), /*@__PURE__*/new Vector3(), /*@__PURE__*/new Vector3(), /*@__PURE__*/new Vector3(), /*@__PURE__*/new Vector3(), /*@__PURE__*/new Vector3(), /*@__PURE__*/new Vector3(), /*@__PURE__*/new Vector3()];
const _vector$b = /*@__PURE__*/new Vector3();
const _box$3 = /*@__PURE__*/new Box3(); // triangle centered vertices
const _v0$2 = /*@__PURE__*/new Vector3();
const _v1$7 = /*@__PURE__*/new Vector3();
const _v2$3 = /*@__PURE__*/new Vector3(); // triangle edge vectors
const _f0 = /*@__PURE__*/new Vector3();
const _f1 = /*@__PURE__*/new Vector3();
const _f2 = /*@__PURE__*/new Vector3();
const _center = /*@__PURE__*/new Vector3();
const _extents = /*@__PURE__*/new Vector3();
const _triangleNormal = /*@__PURE__*/new Vector3();
const _testAxis = /*@__PURE__*/new Vector3();
function satForAxes(axes, v0, v1, v2, extents) {
for (let i = 0, j = axes.length - 3; i <= j; i += 3) {
_testAxis.fromArray(axes, i); // project the aabb onto the seperating axis
const r = extents.x * Math.abs(_testAxis.x) + extents.y * Math.abs(_testAxis.y) + extents.z * Math.abs(_testAxis.z); // project all 3 vertices of the triangle onto the seperating axis
const p0 = v0.dot(_testAxis);
const p1 = v1.dot(_testAxis);
const p2 = v2.dot(_testAxis); // actual test, basically see if either of the most extreme of the triangle points intersects r
if (Math.max(-Math.max(p0, p1, p2), Math.min(p0, p1, p2)) > r) {
// points of the projected triangle are outside the projected half-length of the aabb
// the axis is seperating and we can exit
return false;
}
}
return true;
}
const _box$2 = /*@__PURE__*/new Box3();
const _v1$6 = /*@__PURE__*/new Vector3();
const _toFarthestPoint = /*@__PURE__*/new Vector3();
const _toPoint = /*@__PURE__*/new Vector3();
class Sphere {
constructor(center = new Vector3(), radius = -1) {
this.center = center;
this.radius = radius;
}
set(center, radius) {
this.center.copy(center);
this.radius = radius;
return this;
}
setFromPoints(points, optionalCenter) {
const center = this.center;
if (optionalCenter !== undefined) {
center.copy(optionalCenter);
} else {
_box$2.setFromPoints(points).getCenter(center);
}
let maxRadiusSq = 0;
for (let i = 0, il = points.length; i < il; i++) {
maxRadiusSq = Math.max(maxRadiusSq, center.distanceToSquared(points[i]));
}
this.radius = Math.sqrt(maxRadiusSq);
return this;
}
copy(sphere) {
this.center.copy(sphere.center);
this.radius = sphere.radius;
return this;
}
isEmpty() {
return this.radius < 0;
}
makeEmpty() {
this.center.set(0, 0, 0);
this.radius = -1;
return this;
}
containsPoint(point) {
return point.distanceToSquared(this.center) <= this.radius * this.radius;
}
distanceToPoint(point) {
return point.distanceTo(this.center) - this.radius;
}
intersectsSphere(sphere) {
const radiusSum = this.radius + sphere.radius;
return sphere.center.distanceToSquared(this.center) <= radiusSum * radiusSum;
}
intersectsBox(box) {
return box.intersectsSphere(this);
}
intersectsPlane(plane) {
return Math.abs(plane.distanceToPoint(this.center)) <= this.radius;
}
clampPoint(point, target) {
const deltaLengthSq = this.center.distanceToSquared(point);
target.copy(point);
if (deltaLengthSq > this.radius * this.radius) {
target.sub(this.center).normalize();
target.multiplyScalar(this.radius).add(this.center);
}
return target;
}
getBoundingBox(target) {
if (this.isEmpty()) {
// Empty sphere produces empty bounding box
target.makeEmpty();
return target;
}
target.set(this.center, this.center);
target.expandByScalar(this.radius);
return target;
}
applyMatrix4(matrix) {
this.center.applyMatrix4(matrix);
this.radius = this.radius * matrix.getMaxScaleOnAxis();
return this;
}
translate(offset) {
this.center.add(offset);
return this;
}
expandByPoint(point) {
// from https://github.com/juj/MathGeoLib/blob/2940b99b99cfe575dd45103ef20f4019dee15b54/src/Geometry/Sphere.cpp#L649-L671
_toPoint.subVectors(point, this.center);
const lengthSq = _toPoint.lengthSq();
if (lengthSq > this.radius * this.radius) {
const length = Math.sqrt(lengthSq);
const missingRadiusHalf = (length - this.radius) * 0.5; // Nudge this sphere towards the target point. Add half the missing distance to radius,
// and the other half to position. This gives a tighter enclosure, instead of if
// the whole missing distance were just added to radius.
this.center.add(_toPoint.multiplyScalar(missingRadiusHalf / length));
this.radius += missingRadiusHalf;
}
return this;
}
union(sphere) {
// from https://github.com/juj/MathGeoLib/blob/2940b99b99cfe575dd45103ef20f4019dee15b54/src/Geometry/Sphere.cpp#L759-L769
// To enclose another sphere into this sphere, we only need to enclose two points:
// 1) Enclose the farthest point on the other sphere into this sphere.
// 2) Enclose the opposite point of the farthest point into this sphere.
_toFarthestPoint.subVectors(sphere.center, this.center).normalize().multiplyScalar(sphere.radius);
this.expandByPoint(_v1$6.copy(sphere.center).add(_toFarthestPoint));
this.expandByPoint(_v1$6.copy(sphere.center).sub(_toFarthestPoint));
return this;
}
equals(sphere) {
return sphere.center.equals(this.center) && sphere.radius === this.radius;
}
clone() {
return new this.constructor().copy(this);
}
}
const _vector$a = /*@__PURE__*/new Vector3();
const _segCenter = /*@__PURE__*/new Vector3();
const _segDir = /*@__PURE__*/new Vector3();
const _diff = /*@__PURE__*/new Vector3();
const _edge1 = /*@__PURE__*/new Vector3();
const _edge2 = /*@__PURE__*/new Vector3();
const _normal$1 = /*@__PURE__*/new Vector3();
class Ray {
constructor(origin = new Vector3(), direction = new Vector3(0, 0, -1)) {
this.origin = origin;
this.direction = direction;
}
set(origin, direction) {
this.origin.copy(origin);
this.direction.copy(direction);
return this;
}
copy(ray) {
this.origin.copy(ray.origin);
this.direction.copy(ray.direction);
return this;
}
at(t, target) {
return target.copy(this.direction).multiplyScalar(t).add(this.origin);
}
lookAt(v) {
this.direction.copy(v).sub(this.origin).normalize();
return this;
}
recast(t) {
this.origin.copy(this.at(t, _vector$a));
return this;
}
closestPointToPoint(point, target) {
target.subVectors(point, this.origin);
const directionDistance = target.dot(this.direction);
if (directionDistance < 0) {
return target.copy(this.origin);
}
return target.copy(this.direction).multiplyScalar(directionDistance).add(this.origin);
}
distanceToPoint(point) {
return Math.sqrt(this.distanceSqToPoint(point));
}
distanceSqToPoint(point) {
const directionDistance = _vector$a.subVectors(point, this.origin).dot(this.direction); // point behind the ray
if (directionDistance < 0) {
return this.origin.distanceToSquared(point);
}
_vector$a.copy(this.direction).multiplyScalar(directionDistance).add(this.origin);
return _vector$a.distanceToSquared(point);
}
distanceSqToSegment(v0, v1, optionalPointOnRay, optionalPointOnSegment) {
// from http://www.geometrictools.com/GTEngine/Include/Mathematics/GteDistRaySegment.h
// It returns the min distance between the ray and the segment
// defined by v0 and v1
// It can also set two optional targets :
// - The closest point on the ray
// - The closest point on the segment
_segCenter.copy(v0).add(v1).multiplyScalar(0.5);
_segDir.copy(v1).sub(v0).normalize();
_diff.copy(this.origin).sub(_segCenter);
const segExtent = v0.distanceTo(v1) * 0.5;
const a01 = -this.direction.dot(_segDir);
const b0 = _diff.dot(this.direction);
const b1 = -_diff.dot(_segDir);
const c = _diff.lengthSq();
const det = Math.abs(1 - a01 * a01);
let s0, s1, sqrDist, extDet;
if (det > 0) {
// The ray and segment are not parallel.
s0 = a01 * b1 - b0;
s1 = a01 * b0 - b1;
extDet = segExtent * det;
if (s0 >= 0) {
if (s1 >= -extDet) {
if (s1 <= extDet) {
// region 0
// Minimum at interior points of ray and segment.
const invDet = 1 / det;
s0 *= invDet;
s1 *= invDet;
sqrDist = s0 * (s0 + a01 * s1 + 2 * b0) + s1 * (a01 * s0 + s1 + 2 * b1) + c;
} else {
// region 1
s1 = segExtent;
s0 = Math.max(0, -(a01 * s1 + b0));
sqrDist = -s0 * s0 + s1 * (s1 + 2 * b1) + c;
}
} else {
// region 5
s1 = -segExtent;
s0 = Math.max(0, -(a01 * s1 + b0));
sqrDist = -s0 * s0 + s1 * (s1 + 2 * b1) + c;
}
} else {
if (s1 <= -extDet) {
// region 4
s0 = Math.max(0, -(-a01 * segExtent + b0));
s1 = s0 > 0 ? -segExtent : Math.min(Math.max(-segExtent, -b1), segExtent);
sqrDist = -s0 * s0 + s1 * (s1 + 2 * b1) + c;
} else if (s1 <= extDet) {
// region 3
s0 = 0;
s1 = Math.min(Math.max(-segExtent, -b1), segExtent);
sqrDist = s1 * (s1 + 2 * b1) + c;
} else {
// region 2
s0 = Math.max(0, -(a01 * segExtent + b0));
s1 = s0 > 0 ? segExtent : Math.min(Math.max(-segExtent, -b1), segExtent);
sqrDist = -s0 * s0 + s1 * (s1 + 2 * b1) + c;
}
}
} else {
// Ray and segment are parallel.
s1 = a01 > 0 ? -segExtent : segExtent;
s0 = Math.max(0, -(a01 * s1 + b0));
sqrDist = -s0 * s0 + s1 * (s1 + 2 * b1) + c;
}
if (optionalPointOnRay) {
optionalPointOnRay.copy(this.direction).multiplyScalar(s0).add(this.origin);
}
if (optionalPointOnSegment) {
optionalPointOnSegment.copy(_segDir).multiplyScalar(s1).add(_segCenter);
}
return sqrDist;
}
intersectSphere(sphere, target) {
_vector$a.subVectors(sphere.center, this.origin);
const tca = _vector$a.dot(this.direction);
const d2 = _vector$a.dot(_vector$a) - tca * tca;
const radius2 = sphere.radius * sphere.radius;
if (d2 > radius2) return null;
const thc = Math.sqrt(radius2 - d2); // t0 = first intersect point - entrance on front of sphere
const t0 = tca - thc; // t1 = second intersect point - exit point on back of sphere
const t1 = tca + thc; // test to see if both t0 and t1 are behind the ray - if so, return null
if (t0 < 0 && t1 < 0) return null; // test to see if t0 is behind the ray:
// if it is, the ray is inside the sphere, so return the second exit point scaled by t1,
// in order to always return an intersect point that is in front of the ray.
if (t0 < 0) return this.at(t1, target); // else t0 is in front of the ray, so return the first collision point scaled by t0
return this.at(t0, target);
}
intersectsSphere(sphere) {
return this.distanceSqToPoint(sphere.center) <= sphere.radius * sphere.radius;
}
distanceToPlane(plane) {
const denominator = plane.normal.dot(this.direction);
if (denominator === 0) {
// line is coplanar, return origin
if (plane.distanceToPoint(this.origin) === 0) {
return 0;
} // Null is preferable to undefined since undefined means.... it is undefined
return null;
}
const t = -(this.origin.dot(plane.normal) + plane.constant) / denominator; // Return if the ray never intersects the plane
return t >= 0 ? t : null;
}
intersectPlane(plane, target) {
const t = this.distanceToPlane(plane);
if (t === null) {
return null;
}
return this.at(t, target);
}
intersectsPlane(plane) {
// check if the ray lies on the plane first
const distToPoint = plane.distanceToPoint(this.origin);
if (distToPoint === 0) {
return true;
}
const denominator = plane.normal.dot(this.direction);
if (denominator * distToPoint < 0) {
return true;
} // ray origin is behind the plane (and is pointing behind it)
return false;
}
intersectBox(box, target) {
let tmin, tmax, tymin, tymax, tzmin, tzmax;
const invdirx = 1 / this.direction.x,
invdiry = 1 / this.direction.y,
invdirz = 1 / this.direction.z;
const origin = this.origin;
if (invdirx >= 0) {
tmin = (box.min.x - origin.x) * invdirx;
tmax = (box.max.x - origin.x) * invdirx;
} else {
tmin = (box.max.x - origin.x) * invdirx;
tmax = (box.min.x - origin.x) * invdirx;
}
if (invdiry >= 0) {
tymin = (box.min.y - origin.y) * invdiry;
tymax = (box.max.y - origin.y) * invdiry;
} else {
tymin = (box.max.y - origin.y) * invdiry;
tymax = (box.min.y - origin.y) * invdiry;
}
if (tmin > tymax || tymin > tmax) return null; // These lines also handle the case where tmin or tmax is NaN
// (result of 0 * Infinity). x !== x returns true if x is NaN
if (tymin > tmin || tmin !== tmin) tmin = tymin;
if (tymax < tmax || tmax !== tmax) tmax = tymax;
if (invdirz >= 0) {
tzmin = (box.min.z - origin.z) * invdirz;
tzmax = (box.max.z - origin.z) * invdirz;
} else {
tzmin = (box.max.z - origin.z) * invdirz;
tzmax = (box.min.z - origin.z) * invdirz;
}
if (tmin > tzmax || tzmin > tmax) return null;
if (tzmin > tmin || tmin !== tmin) tmin = tzmin;
if (tzmax < tmax || tmax !== tmax) tmax = tzmax; //return point closest to the ray (positive side)
if (tmax < 0) return null;
return this.at(tmin >= 0 ? tmin : tmax, target);
}
intersectsBox(box) {
return this.intersectBox(box, _vector$a) !== null;
}
intersectTriangle(a, b, c, backfaceCulling, target) {
// Compute the offset origin, edges, and normal.
// from http://www.geometrictools.com/GTEngine/Include/Mathematics/GteIntrRay3Triangle3.h
_edge1.subVectors(b, a);
_edge2.subVectors(c, a);
_normal$1.crossVectors(_edge1, _edge2); // Solve Q + t*D = b1*E1 + b2*E2 (Q = kDiff, D = ray direction,
// E1 = kEdge1, E2 = kEdge2, N = Cross(E1,E2)) by
// |Dot(D,N)|*b1 = sign(Dot(D,N))*Dot(D,Cross(Q,E2))
// |Dot(D,N)|*b2 = sign(Dot(D,N))*Dot(D,Cross(E1,Q))
// |Dot(D,N)|*t = -sign(Dot(D,N))*Dot(Q,N)
let DdN = this.direction.dot(_normal$1);
let sign;
if (DdN > 0) {
if (backfaceCulling) return null;
sign = 1;
} else if (DdN < 0) {
sign = -1;
DdN = -DdN;
} else {
return null;
}
_diff.subVectors(this.origin, a);
const DdQxE2 = sign * this.direction.dot(_edge2.crossVectors(_diff, _edge2)); // b1 < 0, no intersection
if (DdQxE2 < 0) {
return null;
}
const DdE1xQ = sign * this.direction.dot(_edge1.cross(_diff)); // b2 < 0, no intersection
if (DdE1xQ < 0) {
return null;
} // b1+b2 > 1, no intersection
if (DdQxE2 + DdE1xQ > DdN) {
return null;
} // Line intersects triangle, check if ray does.
const QdN = -sign * _diff.dot(_normal$1); // t < 0, no intersection
if (QdN < 0) {
return null;
} // Ray intersects triangle.
return this.at(QdN / DdN, target);
}
applyMatrix4(matrix4) {
this.origin.applyMatrix4(matrix4);
this.direction.transformDirection(matrix4);
return this;
}
equals(ray) {
return ray.origin.equals(this.origin) && ray.direction.equals(this.direction);
}
clone() {
return new this.constructor().copy(this);
}
}
class Matrix4 {
constructor() {
this.elements = [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1];
if (arguments.length > 0) {
console.error('THREE.Matrix4: the constructor no longer reads arguments. use .set() instead.');
}
}
set(n11, n12, n13, n14, n21, n22, n23, n24, n31, n32, n33, n34, n41, n42, n43, n44) {
const te = this.elements;
te[0] = n11;
te[4] = n12;
te[8] = n13;
te[12] = n14;
te[1] = n21;
te[5] = n22;
te[9] = n23;
te[13] = n24;
te[2] = n31;
te[6] = n32;
te[10] = n33;
te[14] = n34;
te[3] = n41;
te[7] = n42;
te[11] = n43;
te[15] = n44;
return this;
}
identity() {
this.set(1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1);
return this;
}
clone() {
return new Matrix4().fromArray(this.elements);
}
copy(m) {
const te = this.elements;
const me = m.elements;
te[0] = me[0];
te[1] = me[1];
te[2] = me[2];
te[3] = me[3];
te[4] = me[4];
te[5] = me[5];
te[6] = me[6];
te[7] = me[7];
te[8] = me[8];
te[9] = me[9];
te[10] = me[10];
te[11] = me[11];
te[12] = me[12];
te[13] = me[13];
te[14] = me[14];
te[15] = me[15];
return this;
}
copyPosition(m) {
const te = this.elements,
me = m.elements;
te[12] = me[12];
te[13] = me[13];
te[14] = me[14];
return this;
}
setFromMatrix3(m) {
const me = m.elements;
this.set(me[0], me[3], me[6], 0, me[1], me[4], me[7], 0, me[2], me[5], me[8], 0, 0, 0, 0, 1);
return this;
}
extractBasis(xAxis, yAxis, zAxis) {
xAxis.setFromMatrixColumn(this, 0);
yAxis.setFromMatrixColumn(this, 1);
zAxis.setFromMatrixColumn(this, 2);
return this;
}
makeBasis(xAxis, yAxis, zAxis) {
this.set(xAxis.x, yAxis.x, zAxis.x, 0, xAxis.y, yAxis.y, zAxis.y, 0, xAxis.z, yAxis.z, zAxis.z, 0, 0, 0, 0, 1);
return this;
}
extractRotation(m) {
// this method does not support reflection matrices
const te = this.elements;
const me = m.elements;
const scaleX = 1 / _v1$5.setFromMatrixColumn(m, 0).length();
const scaleY = 1 / _v1$5.setFromMatrixColumn(m, 1).length();
const scaleZ = 1 / _v1$5.setFromMatrixColumn(m, 2).length();
te[0] = me[0] * scaleX;
te[1] = me[1] * scaleX;
te[2] = me[2] * scaleX;
te[3] = 0;
te[4] = me[4] * scaleY;
te[5] = me[5] * scaleY;
te[6] = me[6] * scaleY;
te[7] = 0;
te[8] = me[8] * scaleZ;
te[9] = me[9] * scaleZ;
te[10] = me[10] * scaleZ;
te[11] = 0;
te[12] = 0;
te[13] = 0;
te[14] = 0;
te[15] = 1;
return this;
}
makeRotationFromEuler(euler) {
if (!(euler && euler.isEuler)) {
console.error('THREE.Matrix4: .makeRotationFromEuler() now expects a Euler rotation rather than a Vector3 and order.');
}
const te = this.elements;
const x = euler.x,
y = euler.y,
z = euler.z;
const a = Math.cos(x),
b = Math.sin(x);
const c = Math.cos(y),
d = Math.sin(y);
const e = Math.cos(z),
f = Math.sin(z);
if (euler.order === 'XYZ') {
const ae = a * e,
af = a * f,
be = b * e,
bf = b * f;
te[0] = c * e;
te[4] = -c * f;
te[8] = d;
te[1] = af + be * d;
te[5] = ae - bf * d;
te[9] = -b * c;
te[2] = bf - ae * d;
te[6] = be + af * d;
te[10] = a * c;
} else if (euler.order === 'YXZ') {
const ce = c * e,
cf = c * f,
de = d * e,
df = d * f;
te[0] = ce + df * b;
te[4] = de * b - cf;
te[8] = a * d;
te[1] = a * f;
te[5] = a * e;
te[9] = -b;
te[2] = cf * b - de;
te[6] = df + ce * b;
te[10] = a * c;
} else if (euler.order === 'ZXY') {
const ce = c * e,
cf = c * f,
de = d * e,
df = d * f;
te[0] = ce - df * b;
te[4] = -a * f;
te[8] = de + cf * b;
te[1] = cf + de * b;
te[5] = a * e;
te[9] = df - ce * b;
te[2] = -a * d;
te[6] = b;
te[10] = a * c;
} else if (euler.order === 'ZYX') {
const ae = a * e,
af = a * f,
be = b * e,
bf = b * f;
te[0] = c * e;
te[4] = be * d - af;
te[8] = ae * d + bf;
te[1] = c * f;
te[5] = bf * d + ae;
te[9] = af * d - be;
te[2] = -d;
te[6] = b * c;
te[10] = a * c;
} else if (euler.order === 'YZX') {
const ac = a * c,
ad = a * d,
bc = b * c,
bd = b * d;
te[0] = c * e;
te[4] = bd - ac * f;
te[8] = bc * f + ad;
te[1] = f;
te[5] = a * e;
te[9] = -b * e;
te[2] = -d * e;
te[6] = ad * f + bc;
te[10] = ac - bd * f;
} else if (euler.order === 'XZY') {
const ac = a * c,
ad = a * d,
bc = b * c,
bd = b * d;
te[0] = c * e;
te[4] = -f;
te[8] = d * e;
te[1] = ac * f + bd;
te[5] = a * e;
te[9] = ad * f - bc;
te[2] = bc * f - ad;
te[6] = b * e;
te[10] = bd * f + ac;
} // bottom row
te[3] = 0;
te[7] = 0;
te[11] = 0; // last column
te[12] = 0;
te[13] = 0;
te[14] = 0;
te[15] = 1;
return this;
}
makeRotationFromQuaternion(q) {
return this.compose(_zero, q, _one);
}
lookAt(eye, target, up) {
const te = this.elements;
_z.subVectors(eye, target);
if (_z.lengthSq() === 0) {
// eye and target are in the same position
_z.z = 1;
}
_z.normalize();
_x.crossVectors(up, _z);
if (_x.lengthSq() === 0) {
// up and z are parallel
if (Math.abs(up.z) === 1) {
_z.x += 0.0001;
} else {
_z.z += 0.0001;
}
_z.normalize();
_x.crossVectors(up, _z);
}
_x.normalize();
_y.crossVectors(_z, _x);
te[0] = _x.x;
te[4] = _y.x;
te[8] = _z.x;
te[1] = _x.y;
te[5] = _y.y;
te[9] = _z.y;
te[2] = _x.z;
te[6] = _y.z;
te[10] = _z.z;
return this;
}
multiply(m, n) {
if (n !== undefined) {
console.warn('THREE.Matrix4: .multiply() now only accepts one argument. Use .multiplyMatrices( a, b ) instead.');
return this.multiplyMatrices(m, n);
}
return this.multiplyMatrices(this, m);
}
premultiply(m) {
return this.multiplyMatrices(m, this);
}
multiplyMatrices(a, b) {
const ae = a.elements;
const be = b.elements;
const te = this.elements;
const a11 = ae[0],
a12 = ae[4],
a13 = ae[8],
a14 = ae[12];
const a21 = ae[1],
a22 = ae[5],
a23 = ae[9],
a24 = ae[13];
const a31 = ae[2],
a32 = ae[6],
a33 = ae[10],
a34 = ae[14];
const a41 = ae[3],
a42 = ae[7],
a43 = ae[11],
a44 = ae[15];
const b11 = be[0],
b12 = be[4],
b13 = be[8],
b14 = be[12];
const b21 = be[1],
b22 = be[5],
b23 = be[9],
b24 = be[13];
const b31 = be[2],
b32 = be[6],
b33 = be[10],
b34 = be[14];
const b41 = be[3],
b42 = be[7],
b43 = be[11],
b44 = be[15];
te[0] = a11 * b11 + a12 * b21 + a13 * b31 + a14 * b41;
te[4] = a11 * b12 + a12 * b22 + a13 * b32 + a14 * b42;
te[8] = a11 * b13 + a12 * b23 + a13 * b33 + a14 * b43;
te[12] = a11 * b14 + a12 * b24 + a13 * b34 + a14 * b44;
te[1] = a21 * b11 + a22 * b21 + a23 * b31 + a24 * b41;
te[5] = a21 * b12 + a22 * b22 + a23 * b32 + a24 * b42;
te[9] = a21 * b13 + a22 * b23 + a23 * b33 + a24 * b43;
te[13] = a21 * b14 + a22 * b24 + a23 * b34 + a24 * b44;
te[2] = a31 * b11 + a32 * b21 + a33 * b31 + a34 * b41;
te[6] = a31 * b12 + a32 * b22 + a33 * b32 + a34 * b42;
te[10] = a31 * b13 + a32 * b23 + a33 * b33 + a34 * b43;
te[14] = a31 * b14 + a32 * b24 + a33 * b34 + a34 * b44;
te[3] = a41 * b11 + a42 * b21 + a43 * b31 + a44 * b41;
te[7] = a41 * b12 + a42 * b22 + a43 * b32 + a44 * b42;
te[11] = a41 * b13 + a42 * b23 + a43 * b33 + a44 * b43;
te[15] = a41 * b14 + a42 * b24 + a43 * b34 + a44 * b44;
return this;
}
multiplyScalar(s) {
const te = this.elements;
te[0] *= s;
te[4] *= s;
te[8] *= s;
te[12] *= s;
te[1] *= s;
te[5] *= s;
te[9] *= s;
te[13] *= s;
te[2] *= s;
te[6] *= s;
te[10] *= s;
te[14] *= s;
te[3] *= s;
te[7] *= s;
te[11] *= s;
te[15] *= s;
return this;
}
determinant() {
const te = this.elements;
const n11 = te[0],
n12 = te[4],
n13 = te[8],
n14 = te[12];
const n21 = te[1],
n22 = te[5],
n23 = te[9],
n24 = te[13];
const n31 = te[2],
n32 = te[6],
n33 = te[10],
n34 = te[14];
const n41 = te[3],
n42 = te[7],
n43 = te[11],
n44 = te[15]; //TODO: make this more efficient
//( based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm )
return n41 * (+n14 * n23 * n32 - n13 * n24 * n32 - n14 * n22 * n33 + n12 * n24 * n33 + n13 * n22 * n34 - n12 * n23 * n34) + n42 * (+n11 * n23 * n34 - n11 * n24 * n33 + n14 * n21 * n33 - n13 * n21 * n34 + n13 * n24 * n31 - n14 * n23 * n31) + n43 * (+n11 * n24 * n32 - n11 * n22 * n34 - n14 * n21 * n32 + n12 * n21 * n34 + n14 * n22 * n31 - n12 * n24 * n31) + n44 * (-n13 * n22 * n31 - n11 * n23 * n32 + n11 * n22 * n33 + n13 * n21 * n32 - n12 * n21 * n33 + n12 * n23 * n31);
}
transpose() {
const te = this.elements;
let tmp;
tmp = te[1];
te[1] = te[4];
te[4] = tmp;
tmp = te[2];
te[2] = te[8];
te[8] = tmp;
tmp = te[6];
te[6] = te[9];
te[9] = tmp;
tmp = te[3];
te[3] = te[12];
te[12] = tmp;
tmp = te[7];
te[7] = te[13];
te[13] = tmp;
tmp = te[11];
te[11] = te[14];
te[14] = tmp;
return this;
}
setPosition(x, y, z) {
const te = this.elements;
if (x.isVector3) {
te[12] = x.x;
te[13] = x.y;
te[14] = x.z;
} else {
te[12] = x;
te[13] = y;
te[14] = z;
}
return this;
}
invert() {
// based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm
const te = this.elements,
n11 = te[0],
n21 = te[1],
n31 = te[2],
n41 = te[3],
n12 = te[4],
n22 = te[5],
n32 = te[6],
n42 = te[7],
n13 = te[8],
n23 = te[9],
n33 = te[10],
n43 = te[11],
n14 = te[12],
n24 = te[13],
n34 = te[14],
n44 = te[15],
t11 = n23 * n34 * n42 - n24 * n33 * n42 + n24 * n32 * n43 - n22 * n34 * n43 - n23 * n32 * n44 + n22 * n33 * n44,
t12 = n14 * n33 * n42 - n13 * n34 * n42 - n14 * n32 * n43 + n12 * n34 * n43 + n13 * n32 * n44 - n12 * n33 * n44,
t13 = n13 * n24 * n42 - n14 * n23 * n42 + n14 * n22 * n43 - n12 * n24 * n43 - n13 * n22 * n44 + n12 * n23 * n44,
t14 = n14 * n23 * n32 - n13 * n24 * n32 - n14 * n22 * n33 + n12 * n24 * n33 + n13 * n22 * n34 - n12 * n23 * n34;
const det = n11 * t11 + n21 * t12 + n31 * t13 + n41 * t14;
if (det === 0) return this.set(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);
const detInv = 1 / det;
te[0] = t11 * detInv;
te[1] = (n24 * n33 * n41 - n23 * n34 * n41 - n24 * n31 * n43 + n21 * n34 * n43 + n23 * n31 * n44 - n21 * n33 * n44) * detInv;
te[2] = (n22 * n34 * n41 - n24 * n32 * n41 + n24 * n31 * n42 - n21 * n34 * n42 - n22 * n31 * n44 + n21 * n32 * n44) * detInv;
te[3] = (n23 * n32 * n41 - n22 * n33 * n41 - n23 * n31 * n42 + n21 * n33 * n42 + n22 * n31 * n43 - n21 * n32 * n43) * detInv;
te[4] = t12 * detInv;
te[5] = (n13 * n34 * n41 - n14 * n33 * n41 + n14 * n31 * n43 - n11 * n34 * n43 - n13 * n31 * n44 + n11 * n33 * n44) * detInv;
te[6] = (n14 * n32 * n41 - n12 * n34 * n41 - n14 * n31 * n42 + n11 * n34 * n42 + n12 * n31 * n44 - n11 * n32 * n44) * detInv;
te[7] = (n12 * n33 * n41 - n13 * n32 * n41 + n13 * n31 * n42 - n11 * n33 * n42 - n12 * n31 * n43 + n11 * n32 * n43) * detInv;
te[8] = t13 * detInv;
te[9] = (n14 * n23 * n41 - n13 * n24 * n41 - n14 * n21 * n43 + n11 * n24 * n43 + n13 * n21 * n44 - n11 * n23 * n44) * detInv;
te[10] = (n12 * n24 * n41 - n14 * n22 * n41 + n14 * n21 * n42 - n11 * n24 * n42 - n12 * n21 * n44 + n11 * n22 * n44) * detInv;
te[11] = (n13 * n22 * n41 - n12 * n23 * n41 - n13 * n21 * n42 + n11 * n23 * n42 + n12 * n21 * n43 - n11 * n22 * n43) * detInv;
te[12] = t14 * detInv;
te[13] = (n13 * n24 * n31 - n14 * n23 * n31 + n14 * n21 * n33 - n11 * n24 * n33 - n13 * n21 * n34 + n11 * n23 * n34) * detInv;
te[14] = (n14 * n22 * n31 - n12 * n24 * n31 - n14 * n21 * n32 + n11 * n24 * n32 + n12 * n21 * n34 - n11 * n22 * n34) * detInv;
te[15] = (n12 * n23 * n31 - n13 * n22 * n31 + n13 * n21 * n32 - n11 * n23 * n32 - n12 * n21 * n33 + n11 * n22 * n33) * detInv;
return this;
}
scale(v) {
const te = this.elements;
const x = v.x,
y = v.y,
z = v.z;
te[0] *= x;
te[4] *= y;
te[8] *= z;
te[1] *= x;
te[5] *= y;
te[9] *= z;
te[2] *= x;
te[6] *= y;
te[10] *= z;
te[3] *= x;
te[7] *= y;
te[11] *= z;
return this;
}
getMaxScaleOnAxis() {
const te = this.elements;
const scaleXSq = te[0] * te[0] + te[1] * te[1] + te[2] * te[2];
const scaleYSq = te[4] * te[4] + te[5] * te[5] + te[6] * te[6];
const scaleZSq = te[8] * te[8] + te[9] * te[9] + te[10] * te[10];
return Math.sqrt(Math.max(scaleXSq, scaleYSq, scaleZSq));
}
makeTranslation(x, y, z) {
this.set(1, 0, 0, x, 0, 1, 0, y, 0, 0, 1, z, 0, 0, 0, 1);
return this;
}
makeRotationX(theta) {
const c = Math.cos(theta),
s = Math.sin(theta);
this.set(1, 0, 0, 0, 0, c, -s, 0, 0, s, c, 0, 0, 0, 0, 1);
return this;
}
makeRotationY(theta) {
const c = Math.cos(theta),
s = Math.sin(theta);
this.set(c, 0, s, 0, 0, 1, 0, 0, -s, 0, c, 0, 0, 0, 0, 1);
return this;
}
makeRotationZ(theta) {
const c = Math.cos(theta),
s = Math.sin(theta);
this.set(c, -s, 0, 0, s, c, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1);
return this;
}
makeRotationAxis(axis, angle) {
// Based on http://www.gamedev.net/reference/articles/article1199.asp
const c = Math.cos(angle);
const s = Math.sin(angle);
const t = 1 - c;
const x = axis.x,
y = axis.y,
z = axis.z;
const tx = t * x,
ty = t * y;
this.set(tx * x + c, tx * y - s * z, tx * z + s * y, 0, tx * y + s * z, ty * y + c, ty * z - s * x, 0, tx * z - s * y, ty * z + s * x, t * z * z + c, 0, 0, 0, 0, 1);
return this;
}
makeScale(x, y, z) {
this.set(x, 0, 0, 0, 0, y, 0, 0, 0, 0, z, 0, 0, 0, 0, 1);
return this;
}
makeShear(xy, xz, yx, yz, zx, zy) {
this.set(1, yx, zx, 0, xy, 1, zy, 0, xz, yz, 1, 0, 0, 0, 0, 1);
return this;
}
compose(position, quaternion, scale) {
const te = this.elements;
const x = quaternion._x,
y = quaternion._y,
z = quaternion._z,
w = quaternion._w;
const x2 = x + x,
y2 = y + y,
z2 = z + z;
const xx = x * x2,
xy = x * y2,
xz = x * z2;
const yy = y * y2,
yz = y * z2,
zz = z * z2;
const wx = w * x2,
wy = w * y2,
wz = w * z2;
const sx = scale.x,
sy = scale.y,
sz = scale.z;
te[0] = (1 - (yy + zz)) * sx;
te[1] = (xy + wz) * sx;
te[2] = (xz - wy) * sx;
te[3] = 0;
te[4] = (xy - wz) * sy;
te[5] = (1 - (xx + zz)) * sy;
te[6] = (yz + wx) * sy;
te[7] = 0;
te[8] = (xz + wy) * sz;
te[9] = (yz - wx) * sz;
te[10] = (1 - (xx + yy)) * sz;
te[11] = 0;
te[12] = position.x;
te[13] = position.y;
te[14] = position.z;
te[15] = 1;
return this;
}
decompose(position, quaternion, scale) {
const te = this.elements;
let sx = _v1$5.set(te[0], te[1], te[2]).length();
const sy = _v1$5.set(te[4], te[5], te[6]).length();
const sz = _v1$5.set(te[8], te[9], te[10]).length(); // if determine is negative, we need to invert one scale
const det = this.determinant();
if (det < 0) sx = -sx;
position.x = te[12];
position.y = te[13];
position.z = te[14]; // scale the rotation part
_m1$2.copy(this);
const invSX = 1 / sx;
const invSY = 1 / sy;
const invSZ = 1 / sz;
_m1$2.elements[0] *= invSX;
_m1$2.elements[1] *= invSX;
_m1$2.elements[2] *= invSX;
_m1$2.elements[4] *= invSY;
_m1$2.elements[5] *= invSY;
_m1$2.elements[6] *= invSY;
_m1$2.elements[8] *= invSZ;
_m1$2.elements[9] *= invSZ;
_m1$2.elements[10] *= invSZ;
quaternion.setFromRotationMatrix(_m1$2);
scale.x = sx;
scale.y = sy;
scale.z = sz;
return this;
}
makePerspective(left, right, top, bottom, near, far) {
if (far === undefined) {
console.warn('THREE.Matrix4: .makePerspective() has been redefined and has a new signature. Please check the docs.');
}
const te = this.elements;
const x = 2 * near / (right - left);
const y = 2 * near / (top - bottom);
const a = (right + left) / (right - left);
const b = (top + bottom) / (top - bottom);
const c = -(far + near) / (far - near);
const d = -2 * far * near / (far - near);
te[0] = x;
te[4] = 0;
te[8] = a;
te[12] = 0;
te[1] = 0;
te[5] = y;
te[9] = b;
te[13] = 0;
te[2] = 0;
te[6] = 0;
te[10] = c;
te[14] = d;
te[3] = 0;
te[7] = 0;
te[11] = -1;
te[15] = 0;
return this;
}
makeOrthographic(left, right, top, bottom, near, far) {
const te = this.elements;
const w = 1.0 / (right - left);
const h = 1.0 / (top - bottom);
const p = 1.0 / (far - near);
const x = (right + left) * w;
const y = (top + bottom) * h;
const z = (far + near) * p;
te[0] = 2 * w;
te[4] = 0;
te[8] = 0;
te[12] = -x;
te[1] = 0;
te[5] = 2 * h;
te[9] = 0;
te[13] = -y;
te[2] = 0;
te[6] = 0;
te[10] = -2 * p;
te[14] = -z;
te[3] = 0;
te[7] = 0;
te[11] = 0;
te[15] = 1;
return this;
}
equals(matrix) {
const te = this.elements;
const me = matrix.elements;
for (let i = 0; i < 16; i++) {
if (te[i] !== me[i]) return false;
}
return true;
}
fromArray(array, offset = 0) {
for (let i = 0; i < 16; i++) {
this.elements[i] = array[i + offset];
}
return this;
}
toArray(array = [], offset = 0) {
const te = this.elements;
array[offset] = te[0];
array[offset + 1] = te[1];
array[offset + 2] = te[2];
array[offset + 3] = te[3];
array[offset + 4] = te[4];
array[offset + 5] = te[5];
array[offset + 6] = te[6];
array[offset + 7] = te[7];
array[offset + 8] = te[8];
array[offset + 9] = te[9];
array[offset + 10] = te[10];
array[offset + 11] = te[11];
array[offset + 12] = te[12];
array[offset + 13] = te[13];
array[offset + 14] = te[14];
array[offset + 15] = te[15];
return array;
}
}
Matrix4.prototype.isMatrix4 = true;
const _v1$5 = /*@__PURE__*/new Vector3();
const _m1$2 = /*@__PURE__*/new Matrix4();
const _zero = /*@__PURE__*/new Vector3(0, 0, 0);
const _one = /*@__PURE__*/new Vector3(1, 1, 1);
const _x = /*@__PURE__*/new Vector3();
const _y = /*@__PURE__*/new Vector3();
const _z = /*@__PURE__*/new Vector3();
const _matrix$1 = /*@__PURE__*/new Matrix4();
const _quaternion$3 = /*@__PURE__*/new Quaternion();
class Euler {
constructor(x = 0, y = 0, z = 0, order = Euler.DefaultOrder) {
this._x = x;
this._y = y;
this._z = z;
this._order = order;
}
get x() {
return this._x;
}
set x(value) {
this._x = value;
this._onChangeCallback();
}
get y() {
return this._y;
}
set y(value) {
this._y = value;
this._onChangeCallback();
}
get z() {
return this._z;
}
set z(value) {
this._z = value;
this._onChangeCallback();
}
get order() {
return this._order;
}
set order(value) {
this._order = value;
this._onChangeCallback();
}
set(x, y, z, order = this._order) {
this._x = x;
this._y = y;
this._z = z;
this._order = order;
this._onChangeCallback();
return this;
}
clone() {
return new this.constructor(this._x, this._y, this._z, this._order);
}
copy(euler) {
this._x = euler._x;
this._y = euler._y;
this._z = euler._z;
this._order = euler._order;
this._onChangeCallback();
return this;
}
setFromRotationMatrix(m, order = this._order, update = true) {
// assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)
const te = m.elements;
const m11 = te[0],
m12 = te[4],
m13 = te[8];
const m21 = te[1],
m22 = te[5],
m23 = te[9];
const m31 = te[2],
m32 = te[6],
m33 = te[10];
switch (order) {
case 'XYZ':
this._y = Math.asin(clamp(m13, -1, 1));
if (Math.abs(m13) < 0.9999999) {
this._x = Math.atan2(-m23, m33);
this._z = Math.atan2(-m12, m11);
} else {
this._x = Math.atan2(m32, m22);
this._z = 0;
}
break;
case 'YXZ':
this._x = Math.asin(-clamp(m23, -1, 1));
if (Math.abs(m23) < 0.9999999) {
this._y = Math.atan2(m13, m33);
this._z = Math.atan2(m21, m22);
} else {
this._y = Math.atan2(-m31, m11);
this._z = 0;
}
break;
case 'ZXY':
this._x = Math.asin(clamp(m32, -1, 1));
if (Math.abs(m32) < 0.9999999) {
this._y = Math.atan2(-m31, m33);
this._z = Math.atan2(-m12, m22);
} else {
this._y = 0;
this._z = Math.atan2(m21, m11);
}
break;
case 'ZYX':
this._y = Math.asin(-clamp(m31, -1, 1));
if (Math.abs(m31) < 0.9999999) {
this._x = Math.atan2(m32, m33);
this._z = Math.atan2(m21, m11);
} else {
this._x = 0;
this._z = Math.atan2(-m12, m22);
}
break;
case 'YZX':
this._z = Math.asin(clamp(m21, -1, 1));
if (Math.abs(m21) < 0.9999999) {
this._x = Math.atan2(-m23, m22);
this._y = Math.atan2(-m31, m11);
} else {
this._x = 0;
this._y = Math.atan2(m13, m33);
}
break;
case 'XZY':
this._z = Math.asin(-clamp(m12, -1, 1));
if (Math.abs(m12) < 0.9999999) {
this._x = Math.atan2(m32, m22);
this._y = Math.atan2(m13, m11);
} else {
this._x = Math.atan2(-m23, m33);
this._y = 0;
}
break;
default:
console.warn('THREE.Euler: .setFromRotationMatrix() encountered an unknown order: ' + order);
}
this._order = order;
if (update === true) this._onChangeCallback();
return this;
}
setFromQuaternion(q, order, update) {
_matrix$1.makeRotationFromQuaternion(q);
return this.setFromRotationMatrix(_matrix$1, order, update);
}
setFromVector3(v, order = this._order) {
return this.set(v.x, v.y, v.z, order);
}
reorder(newOrder) {
// WARNING: this discards revolution information -bhouston
_quaternion$3.setFromEuler(this);
return this.setFromQuaternion(_quaternion$3, newOrder);
}
equals(euler) {
return euler._x === this._x && euler._y === this._y && euler._z === this._z && euler._order === this._order;
}
fromArray(array) {
this._x = array[0];
this._y = array[1];
this._z = array[2];
if (array[3] !== undefined) this._order = array[3];
this._onChangeCallback();
return this;
}
toArray(array = [], offset = 0) {
array[offset] = this._x;
array[offset + 1] = this._y;
array[offset + 2] = this._z;
array[offset + 3] = this._order;
return array;
}
toVector3(optionalResult) {
if (optionalResult) {
return optionalResult.set(this._x, this._y, this._z);
} else {
return new Vector3(this._x, this._y, this._z);
}
}
_onChange(callback) {
this._onChangeCallback = callback;
return this;
}
_onChangeCallback() {}
}
Euler.prototype.isEuler = true;
Euler.DefaultOrder = 'XYZ';
Euler.RotationOrders = ['XYZ', 'YZX', 'ZXY', 'XZY', 'YXZ', 'ZYX'];
class Layers {
constructor() {
this.mask = 1 | 0;
}
set(channel) {
this.mask = 1 << channel | 0;
}
enable(channel) {
this.mask |= 1 << channel | 0;
}
enableAll() {
this.mask = 0xffffffff | 0;
}
toggle(channel) {
this.mask ^= 1 << channel | 0;
}
disable(channel) {
this.mask &= ~(1 << channel | 0);
}
disableAll() {
this.mask = 0;
}
test(layers) {
return (this.mask & layers.mask) !== 0;
}
}
let _object3DId = 0;
const _v1$4 = /*@__PURE__*/new Vector3();
const _q1 = /*@__PURE__*/new Quaternion();
const _m1$1 = /*@__PURE__*/new Matrix4();
const _target = /*@__PURE__*/new Vector3();
const _position$3 = /*@__PURE__*/new Vector3();
const _scale$2 = /*@__PURE__*/new Vector3();
const _quaternion$2 = /*@__PURE__*/new Quaternion();
const _xAxis = /*@__PURE__*/new Vector3(1, 0, 0);
const _yAxis = /*@__PURE__*/new Vector3(0, 1, 0);
const _zAxis = /*@__PURE__*/new Vector3(0, 0, 1);
const _addedEvent = {
type: 'added'
};
const _removedEvent = {
type: 'removed'
};
class Object3D extends EventDispatcher {
constructor() {
super();
Object.defineProperty(this, 'id', {
value: _object3DId++
});
this.uuid = generateUUID();
this.name = '';
this.type = 'Object3D';
this.parent = null;
this.children = [];
this.up = Object3D.DefaultUp.clone();
const position = new Vector3();
const rotation = new Euler();
const quaternion = new Quaternion();
const scale = new Vector3(1, 1, 1);
function onRotationChange() {
quaternion.setFromEuler(rotation, false);
}
function onQuaternionChange() {
rotation.setFromQuaternion(quaternion, undefined, false);
}
rotation._onChange(onRotationChange);
quaternion._onChange(onQuaternionChange);
Object.defineProperties(this, {
position: {
configurable: true,
enumerable: true,
value: position
},
rotation: {
configurable: true,
enumerable: true,
value: rotation
},
quaternion: {
configurable: true,
enumerable: true,
value: quaternion
},
scale: {
configurable: true,
enumerable: true,
value: scale
},
modelViewMatrix: {
value: new Matrix4()
},
normalMatrix: {
value: new Matrix3()
}
});
this.matrix = new Matrix4();
this.matrixWorld = new Matrix4();
this.matrixAutoUpdate = Object3D.DefaultMatrixAutoUpdate;
this.matrixWorldNeedsUpdate = false;
this.layers = new Layers();
this.visible = true;
this.castShadow = false;
this.receiveShadow = false;
this.frustumCulled = true;
this.renderOrder = 0;
this.animations = [];
this.userData = {};
}
onBeforeRender() {}
onAfterRender() {}
applyMatrix4(matrix) {
if (this.matrixAutoUpdate) this.updateMatrix();
this.matrix.premultiply(matrix);
this.matrix.decompose(this.position, this.quaternion, this.scale);
}
applyQuaternion(q) {
this.quaternion.premultiply(q);
return this;
}
setRotationFromAxisAngle(axis, angle) {
// assumes axis is normalized
this.quaternion.setFromAxisAngle(axis, angle);
}
setRotationFromEuler(euler) {
this.quaternion.setFromEuler(euler, true);
}
setRotationFromMatrix(m) {
// assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)
this.quaternion.setFromRotationMatrix(m);
}
setRotationFromQuaternion(q) {
// assumes q is normalized
this.quaternion.copy(q);
}
rotateOnAxis(axis, angle) {
// rotate object on axis in object space
// axis is assumed to be normalized
_q1.setFromAxisAngle(axis, angle);
this.quaternion.multiply(_q1);
return this;
}
rotateOnWorldAxis(axis, angle) {
// rotate object on axis in world space
// axis is assumed to be normalized
// method assumes no rotated parent
_q1.setFromAxisAngle(axis, angle);
this.quaternion.premultiply(_q1);
return this;
}
rotateX(angle) {
return this.rotateOnAxis(_xAxis, angle);
}
rotateY(angle) {
return this.rotateOnAxis(_yAxis, angle);
}
rotateZ(angle) {
return this.rotateOnAxis(_zAxis, angle);
}
translateOnAxis(axis, distance) {
// translate object by distance along axis in object space
// axis is assumed to be normalized
_v1$4.copy(axis).applyQuaternion(this.quaternion);
this.position.add(_v1$4.multiplyScalar(distance));
return this;
}
translateX(distance) {
return this.translateOnAxis(_xAxis, distance);
}
translateY(distance) {
return this.translateOnAxis(_yAxis, distance);
}
translateZ(distance) {
return this.translateOnAxis(_zAxis, distance);
}
localToWorld(vector) {
return vector.applyMatrix4(this.matrixWorld);
}
worldToLocal(vector) {
return vector.applyMatrix4(_m1$1.copy(this.matrixWorld).invert());
}
lookAt(x, y, z) {
// This method does not support objects having non-uniformly-scaled parent(s)
if (x.isVector3) {
_target.copy(x);
} else {
_target.set(x, y, z);
}
const parent = this.parent;
this.updateWorldMatrix(true, false);
_position$3.setFromMatrixPosition(this.matrixWorld);
if (this.isCamera || this.isLight) {
_m1$1.lookAt(_position$3, _target, this.up);
} else {
_m1$1.lookAt(_target, _position$3, this.up);
}
this.quaternion.setFromRotationMatrix(_m1$1);
if (parent) {
_m1$1.extractRotation(parent.matrixWorld);
_q1.setFromRotationMatrix(_m1$1);
this.quaternion.premultiply(_q1.invert());
}
}
add(object) {
if (arguments.length > 1) {
for (let i = 0; i < arguments.length; i++) {
this.add(arguments[i]);
}
return this;
}
if (object === this) {
console.error('THREE.Object3D.add: object can\'t be added as a child of itself.', object);
return this;
}
if (object && object.isObject3D) {
if (object.parent !== null) {
object.parent.remove(object);
}
object.parent = this;
this.children.push(object);
object.dispatchEvent(_addedEvent);
} else {
console.error('THREE.Object3D.add: object not an instance of THREE.Object3D.', object);
}
return this;
}
remove(object) {
if (arguments.length > 1) {
for (let i = 0; i < arguments.length; i++) {
this.remove(arguments[i]);
}
return this;
}
const index = this.children.indexOf(object);
if (index !== -1) {
object.parent = null;
this.children.splice(index, 1);
object.dispatchEvent(_removedEvent);
}
return this;
}
removeFromParent() {
const parent = this.parent;
if (parent !== null) {
parent.remove(this);
}
return this;
}
clear() {
for (let i = 0; i < this.children.length; i++) {
const object = this.children[i];
object.parent = null;
object.dispatchEvent(_removedEvent);
}
this.children.length = 0;
return this;
}
attach(object) {
// adds object as a child of this, while maintaining the object's world transform
this.updateWorldMatrix(true, false);
_m1$1.copy(this.matrixWorld).invert();
if (object.parent !== null) {
object.parent.updateWorldMatrix(true, false);
_m1$1.multiply(object.parent.matrixWorld);
}
object.applyMatrix4(_m1$1);
this.add(object);
object.updateWorldMatrix(false, true);
return this;
}
getObjectById(id) {
return this.getObjectByProperty('id', id);
}
getObjectByName(name) {
return this.getObjectByProperty('name', name);
}
getObjectByProperty(name, value) {
if (this[name] === value) return this;
for (let i = 0, l = this.children.length; i < l; i++) {
const child = this.children[i];
const object = child.getObjectByProperty(name, value);
if (object !== undefined) {
return object;
}
}
return undefined;
}
getWorldPosition(target) {
this.updateWorldMatrix(true, false);
return target.setFromMatrixPosition(this.matrixWorld);
}
getWorldQuaternion(target) {
this.updateWorldMatrix(true, false);
this.matrixWorld.decompose(_position$3, target, _scale$2);
return target;
}
getWorldScale(target) {
this.updateWorldMatrix(true, false);
this.matrixWorld.decompose(_position$3, _quaternion$2, target);
return target;
}
getWorldDirection(target) {
this.updateWorldMatrix(true, false);
const e = this.matrixWorld.elements;
return target.set(e[8], e[9], e[10]).normalize();
}
raycast() {}
traverse(callback) {
callback(this);
const children = this.children;
for (let i = 0, l = children.length; i < l; i++) {
children[i].traverse(callback);
}
}
traverseVisible(callback) {
if (this.visible === false) return;
callback(this);
const children = this.children;
for (let i = 0, l = children.length; i < l; i++) {
children[i].traverseVisible(callback);
}
}
traverseAncestors(callback) {
const parent = this.parent;
if (parent !== null) {
callback(parent);
parent.traverseAncestors(callback);
}
}
updateMatrix() {
this.matrix.compose(this.position, this.quaternion, this.scale);
this.matrixWorldNeedsUpdate = true;
}
updateMatrixWorld(force) {
if (this.matrixAutoUpdate) this.updateMatrix();
if (this.matrixWorldNeedsUpdate || force) {
if (this.parent === null) {
this.matrixWorld.copy(this.matrix);
} else {
this.matrixWorld.multiplyMatrices(this.parent.matrixWorld, this.matrix);
}
this.matrixWorldNeedsUpdate = false;
force = true;
} // update children
const children = this.children;
for (let i = 0, l = children.length; i < l; i++) {
children[i].updateMatrixWorld(force);
}
}
updateWorldMatrix(updateParents, updateChildren) {
const parent = this.parent;
if (updateParents === true && parent !== null) {
parent.updateWorldMatrix(true, false);
}
if (this.matrixAutoUpdate) this.updateMatrix();
if (this.parent === null) {
this.matrixWorld.copy(this.matrix);
} else {
this.matrixWorld.multiplyMatrices(this.parent.matrixWorld, this.matrix);
} // update children
if (updateChildren === true) {
const children = this.children;
for (let i = 0, l = children.length; i < l; i++) {
children[i].updateWorldMatrix(false, true);
}
}
}
toJSON(meta) {
// meta is a string when called from JSON.stringify
const isRootObject = meta === undefined || typeof meta === 'string';
const output = {}; // meta is a hash used to collect geometries, materials.
// not providing it implies that this is the root object
// being serialized.
if (isRootObject) {
// initialize meta obj
meta = {
geometries: {},
materials: {},
textures: {},
images: {},
shapes: {},
skeletons: {},
animations: {}
};
output.metadata = {
version: 4.5,
type: 'Object',
generator: 'Object3D.toJSON'
};
} // standard Object3D serialization
const object = {};
object.uuid = this.uuid;
object.type = this.type;
if (this.name !== '') object.name = this.name;
if (this.castShadow === true) object.castShadow = true;
if (this.receiveShadow === true) object.receiveShadow = true;
if (this.visible === false) object.visible = false;
if (this.frustumCulled === false) object.frustumCulled = false;
if (this.renderOrder !== 0) object.renderOrder = this.renderOrder;
if (JSON.stringify(this.userData) !== '{}') object.userData = this.userData;
object.layers = this.layers.mask;
object.matrix = this.matrix.toArray();
if (this.matrixAutoUpdate === false) object.matrixAutoUpdate = false; // object specific properties
if (this.isInstancedMesh) {
object.type = 'InstancedMesh';
object.count = this.count;
object.instanceMatrix = this.instanceMatrix.toJSON();
if (this.instanceColor !== null) object.instanceColor = this.instanceColor.toJSON();
} //
function serialize(library, element) {
if (library[element.uuid] === undefined) {
library[element.uuid] = element.toJSON(meta);
}
return element.uuid;
}
if (this.isScene) {
if (this.background) {
if (this.background.isColor) {
object.background = this.background.toJSON();
} else if (this.background.isTexture) {
object.background = this.background.toJSON(meta).uuid;
}
}
if (this.environment && this.environment.isTexture) {
object.environment = this.environment.toJSON(meta).uuid;
}
} else if (this.isMesh || this.isLine || this.isPoints) {
object.geometry = serialize(meta.geometries, this.geometry);
const parameters = this.geometry.parameters;
if (parameters !== undefined && parameters.shapes !== undefined) {
const shapes = parameters.shapes;
if (Array.isArray(shapes)) {
for (let i = 0, l = shapes.length; i < l; i++) {
const shape = shapes[i];
serialize(meta.shapes, shape);
}
} else {
serialize(meta.shapes, shapes);
}
}
}
if (this.isSkinnedMesh) {
object.bindMode = this.bindMode;
object.bindMatrix = this.bindMatrix.toArray();
if (this.skeleton !== undefined) {
serialize(meta.skeletons, this.skeleton);
object.skeleton = this.skeleton.uuid;
}
}
if (this.material !== undefined) {
if (Array.isArray(this.material)) {
const uuids = [];
for (let i = 0, l = this.material.length; i < l; i++) {
uuids.push(serialize(meta.materials, this.material[i]));
}
object.material = uuids;
} else {
object.material = serialize(meta.materials, this.material);
}
} //
if (this.children.length > 0) {
object.children = [];
for (let i = 0; i < this.children.length; i++) {
object.children.push(this.children[i].toJSON(meta).object);
}
} //
if (this.animations.length > 0) {
object.animations = [];
for (let i = 0; i < this.animations.length; i++) {
const animation = this.animations[i];
object.animations.push(serialize(meta.animations, animation));
}
}
if (isRootObject) {
const geometries = extractFromCache(meta.geometries);
const materials = extractFromCache(meta.materials);
const textures = extractFromCache(meta.textures);
const images = extractFromCache(meta.images);
const shapes = extractFromCache(meta.shapes);
const skeletons = extractFromCache(meta.skeletons);
const animations = extractFromCache(meta.animations);
if (geometries.length > 0) output.geometries = geometries;
if (materials.length > 0) output.materials = materials;
if (textures.length > 0) output.textures = textures;
if (images.length > 0) output.images = images;
if (shapes.length > 0) output.shapes = shapes;
if (skeletons.length > 0) output.skeletons = skeletons;
if (animations.length > 0) output.animations = animations;
}
output.object = object;
return output; // extract data from the cache hash
// remove metadata on each item
// and return as array
function extractFromCache(cache) {
const values = [];
for (const key in cache) {
const data = cache[key];
delete data.metadata;
values.push(data);
}
return values;
}
}
clone(recursive) {
return new this.constructor().copy(this, recursive);
}
copy(source, recursive = true) {
this.name = source.name;
this.up.copy(source.up);
this.position.copy(source.position);
this.rotation.order = source.rotation.order;
this.quaternion.copy(source.quaternion);
this.scale.copy(source.scale);
this.matrix.copy(source.matrix);
this.matrixWorld.copy(source.matrixWorld);
this.matrixAutoUpdate = source.matrixAutoUpdate;
this.matrixWorldNeedsUpdate = source.matrixWorldNeedsUpdate;
this.layers.mask = source.layers.mask;
this.visible = source.visible;
this.castShadow = source.castShadow;
this.receiveShadow = source.receiveShadow;
this.frustumCulled = source.frustumCulled;
this.renderOrder = source.renderOrder;
this.userData = JSON.parse(JSON.stringify(source.userData));
if (recursive === true) {
for (let i = 0; i < source.children.length; i++) {
const child = source.children[i];
this.add(child.clone());
}
}
return this;
}
}
Object3D.DefaultUp = new Vector3(0, 1, 0);
Object3D.DefaultMatrixAutoUpdate = true;
Object3D.prototype.isObject3D = true;
const _v0$1 = /*@__PURE__*/new Vector3();
const _v1$3 = /*@__PURE__*/new Vector3();
const _v2$2 = /*@__PURE__*/new Vector3();
const _v3$1 = /*@__PURE__*/new Vector3();
const _vab = /*@__PURE__*/new Vector3();
const _vac = /*@__PURE__*/new Vector3();
const _vbc = /*@__PURE__*/new Vector3();
const _vap = /*@__PURE__*/new Vector3();
const _vbp = /*@__PURE__*/new Vector3();
const _vcp = /*@__PURE__*/new Vector3();
class Triangle {
constructor(a = new Vector3(), b = new Vector3(), c = new Vector3()) {
this.a = a;
this.b = b;
this.c = c;
}
static getNormal(a, b, c, target) {
target.subVectors(c, b);
_v0$1.subVectors(a, b);
target.cross(_v0$1);
const targetLengthSq = target.lengthSq();
if (targetLengthSq > 0) {
return target.multiplyScalar(1 / Math.sqrt(targetLengthSq));
}
return target.set(0, 0, 0);
} // static/instance method to calculate barycentric coordinates
// based on: http://www.blackpawn.com/texts/pointinpoly/default.html
static getBarycoord(point, a, b, c, target) {
_v0$1.subVectors(c, a);
_v1$3.subVectors(b, a);
_v2$2.subVectors(point, a);
const dot00 = _v0$1.dot(_v0$1);
const dot01 = _v0$1.dot(_v1$3);
const dot02 = _v0$1.dot(_v2$2);
const dot11 = _v1$3.dot(_v1$3);
const dot12 = _v1$3.dot(_v2$2);
const denom = dot00 * dot11 - dot01 * dot01; // collinear or singular triangle
if (denom === 0) {
// arbitrary location outside of triangle?
// not sure if this is the best idea, maybe should be returning undefined
return target.set(-2, -1, -1);
}
const invDenom = 1 / denom;
const u = (dot11 * dot02 - dot01 * dot12) * invDenom;
const v = (dot00 * dot12 - dot01 * dot02) * invDenom; // barycentric coordinates must always sum to 1
return target.set(1 - u - v, v, u);
}
static containsPoint(point, a, b, c) {
this.getBarycoord(point, a, b, c, _v3$1);
return _v3$1.x >= 0 && _v3$1.y >= 0 && _v3$1.x + _v3$1.y <= 1;
}
static getUV(point, p1, p2, p3, uv1, uv2, uv3, target) {
this.getBarycoord(point, p1, p2, p3, _v3$1);
target.set(0, 0);
target.addScaledVector(uv1, _v3$1.x);
target.addScaledVector(uv2, _v3$1.y);
target.addScaledVector(uv3, _v3$1.z);
return target;
}
static isFrontFacing(a, b, c, direction) {
_v0$1.subVectors(c, b);
_v1$3.subVectors(a, b); // strictly front facing
return _v0$1.cross(_v1$3).dot(direction) < 0 ? true : false;
}
set(a, b, c) {
this.a.copy(a);
this.b.copy(b);
this.c.copy(c);
return this;
}
setFromPointsAndIndices(points, i0, i1, i2) {
this.a.copy(points[i0]);
this.b.copy(points[i1]);
this.c.copy(points[i2]);
return this;
}
setFromAttributeAndIndices(attribute, i0, i1, i2) {
this.a.fromBufferAttribute(attribute, i0);
this.b.fromBufferAttribute(attribute, i1);
this.c.fromBufferAttribute(attribute, i2);
return this;
}
clone() {
return new this.constructor().copy(this);
}
copy(triangle) {
this.a.copy(triangle.a);
this.b.copy(triangle.b);
this.c.copy(triangle.c);
return this;
}
getArea() {
_v0$1.subVectors(this.c, this.b);
_v1$3.subVectors(this.a, this.b);
return _v0$1.cross(_v1$3).length() * 0.5;
}
getMidpoint(target) {
return target.addVectors(this.a, this.b).add(this.c).multiplyScalar(1 / 3);
}
getNormal(target) {
return Triangle.getNormal(this.a, this.b, this.c, target);
}
getPlane(target) {
return target.setFromCoplanarPoints(this.a, this.b, this.c);
}
getBarycoord(point, target) {
return Triangle.getBarycoord(point, this.a, this.b, this.c, target);
}
getUV(point, uv1, uv2, uv3, target) {
return Triangle.getUV(point, this.a, this.b, this.c, uv1, uv2, uv3, target);
}
containsPoint(point) {
return Triangle.containsPoint(point, this.a, this.b, this.c);
}
isFrontFacing(direction) {
return Triangle.isFrontFacing(this.a, this.b, this.c, direction);
}
intersectsBox(box) {
return box.intersectsTriangle(this);
}
closestPointToPoint(p, target) {
const a = this.a,
b = this.b,
c = this.c;
let v, w; // algorithm thanks to Real-Time Collision Detection by Christer Ericson,
// published by Morgan Kaufmann Publishers, (c) 2005 Elsevier Inc.,
// under the accompanying license; see chapter 5.1.5 for detailed explanation.
// basically, we're distinguishing which of the voronoi regions of the triangle
// the point lies in with the minimum amount of redundant computation.
_vab.subVectors(b, a);
_vac.subVectors(c, a);
_vap.subVectors(p, a);
const d1 = _vab.dot(_vap);
const d2 = _vac.dot(_vap);
if (d1 <= 0 && d2 <= 0) {
// vertex region of A; barycentric coords (1, 0, 0)
return target.copy(a);
}
_vbp.subVectors(p, b);
const d3 = _vab.dot(_vbp);
const d4 = _vac.dot(_vbp);
if (d3 >= 0 && d4 <= d3) {
// vertex region of B; barycentric coords (0, 1, 0)
return target.copy(b);
}
const vc = d1 * d4 - d3 * d2;
if (vc <= 0 && d1 >= 0 && d3 <= 0) {
v = d1 / (d1 - d3); // edge region of AB; barycentric coords (1-v, v, 0)
return target.copy(a).addScaledVector(_vab, v);
}
_vcp.subVectors(p, c);
const d5 = _vab.dot(_vcp);
const d6 = _vac.dot(_vcp);
if (d6 >= 0 && d5 <= d6) {
// vertex region of C; barycentric coords (0, 0, 1)
return target.copy(c);
}
const vb = d5 * d2 - d1 * d6;
if (vb <= 0 && d2 >= 0 && d6 <= 0) {
w = d2 / (d2 - d6); // edge region of AC; barycentric coords (1-w, 0, w)
return target.copy(a).addScaledVector(_vac, w);
}
const va = d3 * d6 - d5 * d4;
if (va <= 0 && d4 - d3 >= 0 && d5 - d6 >= 0) {
_vbc.subVectors(c, b);
w = (d4 - d3) / (d4 - d3 + (d5 - d6)); // edge region of BC; barycentric coords (0, 1-w, w)
return target.copy(b).addScaledVector(_vbc, w); // edge region of BC
} // face region
const denom = 1 / (va + vb + vc); // u = va * denom
v = vb * denom;
w = vc * denom;
return target.copy(a).addScaledVector(_vab, v).addScaledVector(_vac, w);
}
equals(triangle) {
return triangle.a.equals(this.a) && triangle.b.equals(this.b) && triangle.c.equals(this.c);
}
}
let materialId = 0;
class Material extends EventDispatcher {
constructor() {
super();
Object.defineProperty(this, 'id', {
value: materialId++
});
this.uuid = generateUUID();
this.name = '';
this.type = 'Material';
this.fog = true;
this.blending = NormalBlending;
this.side = FrontSide;
this.vertexColors = false;
this.opacity = 1;
this.format = RGBAFormat;
this.transparent = false;
this.blendSrc = SrcAlphaFactor;
this.blendDst = OneMinusSrcAlphaFactor;
this.blendEquation = AddEquation;
this.blendSrcAlpha = null;
this.blendDstAlpha = null;
this.blendEquationAlpha = null;
this.depthFunc = LessEqualDepth;
this.depthTest = true;
this.depthWrite = true;
this.stencilWriteMask = 0xff;
this.stencilFunc = AlwaysStencilFunc;
this.stencilRef = 0;
this.stencilFuncMask = 0xff;
this.stencilFail = KeepStencilOp;
this.stencilZFail = KeepStencilOp;
this.stencilZPass = KeepStencilOp;
this.stencilWrite = false;
this.clippingPlanes = null;
this.clipIntersection = false;
this.clipShadows = false;
this.shadowSide = null;
this.colorWrite = true;
this.precision = null; // override the renderer's default precision for this material
this.polygonOffset = false;
this.polygonOffsetFactor = 0;
this.polygonOffsetUnits = 0;
this.dithering = false;
this.alphaToCoverage = false;
this.premultipliedAlpha = false;
this.visible = true;
this.toneMapped = true;
this.userData = {};
this.version = 0;
this._alphaTest = 0;
}
get alphaTest() {
return this._alphaTest;
}
set alphaTest(value) {
if (this._alphaTest > 0 !== value > 0) {
this.version++;
}
this._alphaTest = value;
}
onBuild() {}
onBeforeRender() {}
onBeforeCompile() {}
customProgramCacheKey() {
return this.onBeforeCompile.toString();
}
setValues(values) {
if (values === undefined) return;
for (const key in values) {
const newValue = values[key];
if (newValue === undefined) {
console.warn('THREE.Material: \'' + key + '\' parameter is undefined.');
continue;
} // for backward compatability if shading is set in the constructor
if (key === 'shading') {
console.warn('THREE.' + this.type + ': .shading has been removed. Use the boolean .flatShading instead.');
this.flatShading = newValue === FlatShading ? true : false;
continue;
}
const currentValue = this[key];
if (currentValue === undefined) {
console.warn('THREE.' + this.type + ': \'' + key + '\' is not a property of this material.');
continue;
}
if (currentValue && currentValue.isColor) {
currentValue.set(newValue);
} else if (currentValue && currentValue.isVector3 && newValue && newValue.isVector3) {
currentValue.copy(newValue);
} else {
this[key] = newValue;
}
}
}
toJSON(meta) {
const isRoot = meta === undefined || typeof meta === 'string';
if (isRoot) {
meta = {
textures: {},
images: {}
};
}
const data = {
metadata: {
version: 4.5,
type: 'Material',
generator: 'Material.toJSON'
}
}; // standard Material serialization
data.uuid = this.uuid;
data.type = this.type;
if (this.name !== '') data.name = this.name;
if (this.color && this.color.isColor) data.color = this.color.getHex();
if (this.roughness !== undefined) data.roughness = this.roughness;
if (this.metalness !== undefined) data.metalness = this.metalness;
if (this.sheen !== undefined) data.sheen = this.sheen;
if (this.sheenTint && this.sheenTint.isColor) data.sheenTint = this.sheenTint.getHex();
if (this.sheenRoughness !== undefined) data.sheenRoughness = this.sheenRoughness;
if (this.emissive && this.emissive.isColor) data.emissive = this.emissive.getHex();
if (this.emissiveIntensity && this.emissiveIntensity !== 1) data.emissiveIntensity = this.emissiveIntensity;
if (this.specular && this.specular.isColor) data.specular = this.specular.getHex();
if (this.specularIntensity !== undefined) data.specularIntensity = this.specularIntensity;
if (this.specularTint && this.specularTint.isColor) data.specularTint = this.specularTint.getHex();
if (this.shininess !== undefined) data.shininess = this.shininess;
if (this.clearcoat !== undefined) data.clearcoat = this.clearcoat;
if (this.clearcoatRoughness !== undefined) data.clearcoatRoughness = this.clearcoatRoughness;
if (this.clearcoatMap && this.clearcoatMap.isTexture) {
data.clearcoatMap = this.clearcoatMap.toJSON(meta).uuid;
}
if (this.clearcoatRoughnessMap && this.clearcoatRoughnessMap.isTexture) {
data.clearcoatRoughnessMap = this.clearcoatRoughnessMap.toJSON(meta).uuid;
}
if (this.clearcoatNormalMap && this.clearcoatNormalMap.isTexture) {
data.clearcoatNormalMap = this.clearcoatNormalMap.toJSON(meta).uuid;
data.clearcoatNormalScale = this.clearcoatNormalScale.toArray();
}
if (this.map && this.map.isTexture) data.map = this.map.toJSON(meta).uuid;
if (this.matcap && this.matcap.isTexture) data.matcap = this.matcap.toJSON(meta).uuid;
if (this.alphaMap && this.alphaMap.isTexture) data.alphaMap = this.alphaMap.toJSON(meta).uuid;
if (this.lightMap && this.lightMap.isTexture) {
data.lightMap = this.lightMap.toJSON(meta).uuid;
data.lightMapIntensity = this.lightMapIntensity;
}
if (this.aoMap && this.aoMap.isTexture) {
data.aoMap = this.aoMap.toJSON(meta).uuid;
data.aoMapIntensity = this.aoMapIntensity;
}
if (this.bumpMap && this.bumpMap.isTexture) {
data.bumpMap = this.bumpMap.toJSON(meta).uuid;
data.bumpScale = this.bumpScale;
}
if (this.normalMap && this.normalMap.isTexture) {
data.normalMap = this.normalMap.toJSON(meta).uuid;
data.normalMapType = this.normalMapType;
data.normalScale = this.normalScale.toArray();
}
if (this.displacementMap && this.displacementMap.isTexture) {
data.displacementMap = this.displacementMap.toJSON(meta).uuid;
data.displacementScale = this.displacementScale;
data.displacementBias = this.displacementBias;
}
if (this.roughnessMap && this.roughnessMap.isTexture) data.roughnessMap = this.roughnessMap.toJSON(meta).uuid;
if (this.metalnessMap && this.metalnessMap.isTexture) data.metalnessMap = this.metalnessMap.toJSON(meta).uuid;
if (this.emissiveMap && this.emissiveMap.isTexture) data.emissiveMap = this.emissiveMap.toJSON(meta).uuid;
if (this.specularMap && this.specularMap.isTexture) data.specularMap = this.specularMap.toJSON(meta).uuid;
if (this.specularIntensityMap && this.specularIntensityMap.isTexture) data.specularIntensityMap = this.specularIntensityMap.toJSON(meta).uuid;
if (this.specularTintMap && this.specularTintMap.isTexture) data.specularTintMap = this.specularTintMap.toJSON(meta).uuid;
if (this.envMap && this.envMap.isTexture) {
data.envMap = this.envMap.toJSON(meta).uuid;
if (this.combine !== undefined) data.combine = this.combine;
}
if (this.envMapIntensity !== undefined) data.envMapIntensity = this.envMapIntensity;
if (this.reflectivity !== undefined) data.reflectivity = this.reflectivity;
if (this.refractionRatio !== undefined) data.refractionRatio = this.refractionRatio;
if (this.gradientMap && this.gradientMap.isTexture) {
data.gradientMap = this.gradientMap.toJSON(meta).uuid;
}
if (this.transmission !== undefined) data.transmission = this.transmission;
if (this.transmissionMap && this.transmissionMap.isTexture) data.transmissionMap = this.transmissionMap.toJSON(meta).uuid;
if (this.thickness !== undefined) data.thickness = this.thickness;
if (this.thicknessMap && this.thicknessMap.isTexture) data.thicknessMap = this.thicknessMap.toJSON(meta).uuid;
if (this.attenuationDistance !== undefined) data.attenuationDistance = this.attenuationDistance;
if (this.attenuationTint !== undefined) data.attenuationTint = this.attenuationTint.getHex();
if (this.size !== undefined) data.size = this.size;
if (this.shadowSide !== null) data.shadowSide = this.shadowSide;
if (this.sizeAttenuation !== undefined) data.sizeAttenuation = this.sizeAttenuation;
if (this.blending !== NormalBlending) data.blending = this.blending;
if (this.side !== FrontSide) data.side = this.side;
if (this.vertexColors) data.vertexColors = true;
if (this.opacity < 1) data.opacity = this.opacity;
if (this.format !== RGBAFormat) data.format = this.format;
if (this.transparent === true) data.transparent = this.transparent;
data.depthFunc = this.depthFunc;
data.depthTest = this.depthTest;
data.depthWrite = this.depthWrite;
data.colorWrite = this.colorWrite;
data.stencilWrite = this.stencilWrite;
data.stencilWriteMask = this.stencilWriteMask;
data.stencilFunc = this.stencilFunc;
data.stencilRef = this.stencilRef;
data.stencilFuncMask = this.stencilFuncMask;
data.stencilFail = this.stencilFail;
data.stencilZFail = this.stencilZFail;
data.stencilZPass = this.stencilZPass; // rotation (SpriteMaterial)
if (this.rotation && this.rotation !== 0) data.rotation = this.rotation;
if (this.polygonOffset === true) data.polygonOffset = true;
if (this.polygonOffsetFactor !== 0) data.polygonOffsetFactor = this.polygonOffsetFactor;
if (this.polygonOffsetUnits !== 0) data.polygonOffsetUnits = this.polygonOffsetUnits;
if (this.linewidth && this.linewidth !== 1) data.linewidth = this.linewidth;
if (this.dashSize !== undefined) data.dashSize = this.dashSize;
if (this.gapSize !== undefined) data.gapSize = this.gapSize;
if (this.scale !== undefined) data.scale = this.scale;
if (this.dithering === true) data.dithering = true;
if (this.alphaTest > 0) data.alphaTest = this.alphaTest;
if (this.alphaToCoverage === true) data.alphaToCoverage = this.alphaToCoverage;
if (this.premultipliedAlpha === true) data.premultipliedAlpha = this.premultipliedAlpha;
if (this.wireframe === true) data.wireframe = this.wireframe;
if (this.wireframeLinewidth > 1) data.wireframeLinewidth = this.wireframeLinewidth;
if (this.wireframeLinecap !== 'round') data.wireframeLinecap = this.wireframeLinecap;
if (this.wireframeLinejoin !== 'round') data.wireframeLinejoin = this.wireframeLinejoin;
if (this.flatShading === true) data.flatShading = this.flatShading;
if (this.visible === false) data.visible = false;
if (this.toneMapped === false) data.toneMapped = false;
if (JSON.stringify(this.userData) !== '{}') data.userData = this.userData; // TODO: Copied from Object3D.toJSON
function extractFromCache(cache) {
const values = [];
for (const key in cache) {
const data = cache[key];
delete data.metadata;
values.push(data);
}
return values;
}
if (isRoot) {
const textures = extractFromCache(meta.textures);
const images = extractFromCache(meta.images);
if (textures.length > 0) data.textures = textures;
if (images.length > 0) data.images = images;
}
return data;
}
clone() {
return new this.constructor().copy(this);
}
copy(source) {
this.name = source.name;
this.fog = source.fog;
this.blending = source.blending;
this.side = source.side;
this.vertexColors = source.vertexColors;
this.opacity = source.opacity;
this.format = source.format;
this.transparent = source.transparent;
this.blendSrc = source.blendSrc;
this.blendDst = source.blendDst;
this.blendEquation = source.blendEquation;
this.blendSrcAlpha = source.blendSrcAlpha;
this.blendDstAlpha = source.blendDstAlpha;
this.blendEquationAlpha = source.blendEquationAlpha;
this.depthFunc = source.depthFunc;
this.depthTest = source.depthTest;
this.depthWrite = source.depthWrite;
this.stencilWriteMask = source.stencilWriteMask;
this.stencilFunc = source.stencilFunc;
this.stencilRef = source.stencilRef;
this.stencilFuncMask = source.stencilFuncMask;
this.stencilFail = source.stencilFail;
this.stencilZFail = source.stencilZFail;
this.stencilZPass = source.stencilZPass;
this.stencilWrite = source.stencilWrite;
const srcPlanes = source.clippingPlanes;
let dstPlanes = null;
if (srcPlanes !== null) {
const n = srcPlanes.length;
dstPlanes = new Array(n);
for (let i = 0; i !== n; ++i) {
dstPlanes[i] = srcPlanes[i].clone();
}
}
this.clippingPlanes = dstPlanes;
this.clipIntersection = source.clipIntersection;
this.clipShadows = source.clipShadows;
this.shadowSide = source.shadowSide;
this.colorWrite = source.colorWrite;
this.precision = source.precision;
this.polygonOffset = source.polygonOffset;
this.polygonOffsetFactor = source.polygonOffsetFactor;
this.polygonOffsetUnits = source.polygonOffsetUnits;
this.dithering = source.dithering;
this.alphaTest = source.alphaTest;
this.alphaToCoverage = source.alphaToCoverage;
this.premultipliedAlpha = source.premultipliedAlpha;
this.visible = source.visible;
this.toneMapped = source.toneMapped;
this.userData = JSON.parse(JSON.stringify(source.userData));
return this;
}
dispose() {
this.dispatchEvent({
type: 'dispose'
});
}
set needsUpdate(value) {
if (value === true) this.version++;
}
}
Material.prototype.isMaterial = true;
const _colorKeywords = {
'aliceblue': 0xF0F8FF,
'antiquewhite': 0xFAEBD7,
'aqua': 0x00FFFF,
'aquamarine': 0x7FFFD4,
'azure': 0xF0FFFF,
'beige': 0xF5F5DC,
'bisque': 0xFFE4C4,
'black': 0x000000,
'blanchedalmond': 0xFFEBCD,
'blue': 0x0000FF,
'blueviolet': 0x8A2BE2,
'brown': 0xA52A2A,
'burlywood': 0xDEB887,
'cadetblue': 0x5F9EA0,
'chartreuse': 0x7FFF00,
'chocolate': 0xD2691E,
'coral': 0xFF7F50,
'cornflowerblue': 0x6495ED,
'cornsilk': 0xFFF8DC,
'crimson': 0xDC143C,
'cyan': 0x00FFFF,
'darkblue': 0x00008B,
'darkcyan': 0x008B8B,
'darkgoldenrod': 0xB8860B,
'darkgray': 0xA9A9A9,
'darkgreen': 0x006400,
'darkgrey': 0xA9A9A9,
'darkkhaki': 0xBDB76B,
'darkmagenta': 0x8B008B,
'darkolivegreen': 0x556B2F,
'darkorange': 0xFF8C00,
'darkorchid': 0x9932CC,
'darkred': 0x8B0000,
'darksalmon': 0xE9967A,
'darkseagreen': 0x8FBC8F,
'darkslateblue': 0x483D8B,
'darkslategray': 0x2F4F4F,
'darkslategrey': 0x2F4F4F,
'darkturquoise': 0x00CED1,
'darkviolet': 0x9400D3,
'deeppink': 0xFF1493,
'deepskyblue': 0x00BFFF,
'dimgray': 0x696969,
'dimgrey': 0x696969,
'dodgerblue': 0x1E90FF,
'firebrick': 0xB22222,
'floralwhite': 0xFFFAF0,
'forestgreen': 0x228B22,
'fuchsia': 0xFF00FF,
'gainsboro': 0xDCDCDC,
'ghostwhite': 0xF8F8FF,
'gold': 0xFFD700,
'goldenrod': 0xDAA520,
'gray': 0x808080,
'green': 0x008000,
'greenyellow': 0xADFF2F,
'grey': 0x808080,
'honeydew': 0xF0FFF0,
'hotpink': 0xFF69B4,
'indianred': 0xCD5C5C,
'indigo': 0x4B0082,
'ivory': 0xFFFFF0,
'khaki': 0xF0E68C,
'lavender': 0xE6E6FA,
'lavenderblush': 0xFFF0F5,
'lawngreen': 0x7CFC00,
'lemonchiffon': 0xFFFACD,
'lightblue': 0xADD8E6,
'lightcoral': 0xF08080,
'lightcyan': 0xE0FFFF,
'lightgoldenrodyellow': 0xFAFAD2,
'lightgray': 0xD3D3D3,
'lightgreen': 0x90EE90,
'lightgrey': 0xD3D3D3,
'lightpink': 0xFFB6C1,
'lightsalmon': 0xFFA07A,
'lightseagreen': 0x20B2AA,
'lightskyblue': 0x87CEFA,
'lightslategray': 0x778899,
'lightslategrey': 0x778899,
'lightsteelblue': 0xB0C4DE,
'lightyellow': 0xFFFFE0,
'lime': 0x00FF00,
'limegreen': 0x32CD32,
'linen': 0xFAF0E6,
'magenta': 0xFF00FF,
'maroon': 0x800000,
'mediumaquamarine': 0x66CDAA,
'mediumblue': 0x0000CD,
'mediumorchid': 0xBA55D3,
'mediumpurple': 0x9370DB,
'mediumseagreen': 0x3CB371,
'mediumslateblue': 0x7B68EE,
'mediumspringgreen': 0x00FA9A,
'mediumturquoise': 0x48D1CC,
'mediumvioletred': 0xC71585,
'midnightblue': 0x191970,
'mintcream': 0xF5FFFA,
'mistyrose': 0xFFE4E1,
'moccasin': 0xFFE4B5,
'navajowhite': 0xFFDEAD,
'navy': 0x000080,
'oldlace': 0xFDF5E6,
'olive': 0x808000,
'olivedrab': 0x6B8E23,
'orange': 0xFFA500,
'orangered': 0xFF4500,
'orchid': 0xDA70D6,
'palegoldenrod': 0xEEE8AA,
'palegreen': 0x98FB98,
'paleturquoise': 0xAFEEEE,
'palevioletred': 0xDB7093,
'papayawhip': 0xFFEFD5,
'peachpuff': 0xFFDAB9,
'peru': 0xCD853F,
'pink': 0xFFC0CB,
'plum': 0xDDA0DD,
'powderblue': 0xB0E0E6,
'purple': 0x800080,
'rebeccapurple': 0x663399,
'red': 0xFF0000,
'rosybrown': 0xBC8F8F,
'royalblue': 0x4169E1,
'saddlebrown': 0x8B4513,
'salmon': 0xFA8072,
'sandybrown': 0xF4A460,
'seagreen': 0x2E8B57,
'seashell': 0xFFF5EE,
'sienna': 0xA0522D,
'silver': 0xC0C0C0,
'skyblue': 0x87CEEB,
'slateblue': 0x6A5ACD,
'slategray': 0x708090,
'slategrey': 0x708090,
'snow': 0xFFFAFA,
'springgreen': 0x00FF7F,
'steelblue': 0x4682B4,
'tan': 0xD2B48C,
'teal': 0x008080,
'thistle': 0xD8BFD8,
'tomato': 0xFF6347,
'turquoise': 0x40E0D0,
'violet': 0xEE82EE,
'wheat': 0xF5DEB3,
'white': 0xFFFFFF,
'whitesmoke': 0xF5F5F5,
'yellow': 0xFFFF00,
'yellowgreen': 0x9ACD32
};
const _hslA = {
h: 0,
s: 0,
l: 0
};
const _hslB = {
h: 0,
s: 0,
l: 0
};
function hue2rgb(p, q, t) {
if (t < 0) t += 1;
if (t > 1) t -= 1;
if (t < 1 / 6) return p + (q - p) * 6 * t;
if (t < 1 / 2) return q;
if (t < 2 / 3) return p + (q - p) * 6 * (2 / 3 - t);
return p;
}
function SRGBToLinear(c) {
return c < 0.04045 ? c * 0.0773993808 : Math.pow(c * 0.9478672986 + 0.0521327014, 2.4);
}
function LinearToSRGB(c) {
return c < 0.0031308 ? c * 12.92 : 1.055 * Math.pow(c, 0.41666) - 0.055;
}
class Color {
constructor(r, g, b) {
if (g === undefined && b === undefined) {
// r is THREE.Color, hex or string
return this.set(r);
}
return this.setRGB(r, g, b);
}
set(value) {
if (value && value.isColor) {
this.copy(value);
} else if (typeof value === 'number') {
this.setHex(value);
} else if (typeof value === 'string') {
this.setStyle(value);
}
return this;
}
setScalar(scalar) {
this.r = scalar;
this.g = scalar;
this.b = scalar;
return this;
}
setHex(hex) {
hex = Math.floor(hex);
this.r = (hex >> 16 & 255) / 255;
this.g = (hex >> 8 & 255) / 255;
this.b = (hex & 255) / 255;
return this;
}
setRGB(r, g, b) {
this.r = r;
this.g = g;
this.b = b;
return this;
}
setHSL(h, s, l) {
// h,s,l ranges are in 0.0 - 1.0
h = euclideanModulo(h, 1);
s = clamp(s, 0, 1);
l = clamp(l, 0, 1);
if (s === 0) {
this.r = this.g = this.b = l;
} else {
const p = l <= 0.5 ? l * (1 + s) : l + s - l * s;
const q = 2 * l - p;
this.r = hue2rgb(q, p, h + 1 / 3);
this.g = hue2rgb(q, p, h);
this.b = hue2rgb(q, p, h - 1 / 3);
}
return this;
}
setStyle(style) {
function handleAlpha(string) {
if (string === undefined) return;
if (parseFloat(string) < 1) {
console.warn('THREE.Color: Alpha component of ' + style + ' will be ignored.');
}
}
let m;
if (m = /^((?:rgb|hsl)a?)\(([^\)]*)\)/.exec(style)) {
// rgb / hsl
let color;
const name = m[1];
const components = m[2];
switch (name) {
case 'rgb':
case 'rgba':
if (color = /^\s*(\d+)\s*,\s*(\d+)\s*,\s*(\d+)\s*(?:,\s*(\d*\.?\d+)\s*)?$/.exec(components)) {
// rgb(255,0,0) rgba(255,0,0,0.5)
this.r = Math.min(255, parseInt(color[1], 10)) / 255;
this.g = Math.min(255, parseInt(color[2], 10)) / 255;
this.b = Math.min(255, parseInt(color[3], 10)) / 255;
handleAlpha(color[4]);
return this;
}
if (color = /^\s*(\d+)\%\s*,\s*(\d+)\%\s*,\s*(\d+)\%\s*(?:,\s*(\d*\.?\d+)\s*)?$/.exec(components)) {
// rgb(100%,0%,0%) rgba(100%,0%,0%,0.5)
this.r = Math.min(100, parseInt(color[1], 10)) / 100;
this.g = Math.min(100, parseInt(color[2], 10)) / 100;
this.b = Math.min(100, parseInt(color[3], 10)) / 100;
handleAlpha(color[4]);
return this;
}
break;
case 'hsl':
case 'hsla':
if (color = /^\s*(\d*\.?\d+)\s*,\s*(\d+)\%\s*,\s*(\d+)\%\s*(?:,\s*(\d*\.?\d+)\s*)?$/.exec(components)) {
// hsl(120,50%,50%) hsla(120,50%,50%,0.5)
const h = parseFloat(color[1]) / 360;
const s = parseInt(color[2], 10) / 100;
const l = parseInt(color[3], 10) / 100;
handleAlpha(color[4]);
return this.setHSL(h, s, l);
}
break;
}
} else if (m = /^\#([A-Fa-f\d]+)$/.exec(style)) {
// hex color
const hex = m[1];
const size = hex.length;
if (size === 3) {
// #ff0
this.r = parseInt(hex.charAt(0) + hex.charAt(0), 16) / 255;
this.g = parseInt(hex.charAt(1) + hex.charAt(1), 16) / 255;
this.b = parseInt(hex.charAt(2) + hex.charAt(2), 16) / 255;
return this;
} else if (size === 6) {
// #ff0000
this.r = parseInt(hex.charAt(0) + hex.charAt(1), 16) / 255;
this.g = parseInt(hex.charAt(2) + hex.charAt(3), 16) / 255;
this.b = parseInt(hex.charAt(4) + hex.charAt(5), 16) / 255;
return this;
}
}
if (style && style.length > 0) {
return this.setColorName(style);
}
return this;
}
setColorName(style) {
// color keywords
const hex = _colorKeywords[style.toLowerCase()];
if (hex !== undefined) {
// red
this.setHex(hex);
} else {
// unknown color
console.warn('THREE.Color: Unknown color ' + style);
}
return this;
}
clone() {
return new this.constructor(this.r, this.g, this.b);
}
copy(color) {
this.r = color.r;
this.g = color.g;
this.b = color.b;
return this;
}
copyGammaToLinear(color, gammaFactor = 2.0) {
this.r = Math.pow(color.r, gammaFactor);
this.g = Math.pow(color.g, gammaFactor);
this.b = Math.pow(color.b, gammaFactor);
return this;
}
copyLinearToGamma(color, gammaFactor = 2.0) {
const safeInverse = gammaFactor > 0 ? 1.0 / gammaFactor : 1.0;
this.r = Math.pow(color.r, safeInverse);
this.g = Math.pow(color.g, safeInverse);
this.b = Math.pow(color.b, safeInverse);
return this;
}
convertGammaToLinear(gammaFactor) {
this.copyGammaToLinear(this, gammaFactor);
return this;
}
convertLinearToGamma(gammaFactor) {
this.copyLinearToGamma(this, gammaFactor);
return this;
}
copySRGBToLinear(color) {
this.r = SRGBToLinear(color.r);
this.g = SRGBToLinear(color.g);
this.b = SRGBToLinear(color.b);
return this;
}
copyLinearToSRGB(color) {
this.r = LinearToSRGB(color.r);
this.g = LinearToSRGB(color.g);
this.b = LinearToSRGB(color.b);
return this;
}
convertSRGBToLinear() {
this.copySRGBToLinear(this);
return this;
}
convertLinearToSRGB() {
this.copyLinearToSRGB(this);
return this;
}
getHex() {
return this.r * 255 << 16 ^ this.g * 255 << 8 ^ this.b * 255 << 0;
}
getHexString() {
return ('000000' + this.getHex().toString(16)).slice(-6);
}
getHSL(target) {
// h,s,l ranges are in 0.0 - 1.0
const r = this.r,
g = this.g,
b = this.b;
const max = Math.max(r, g, b);
const min = Math.min(r, g, b);
let hue, saturation;
const lightness = (min + max) / 2.0;
if (min === max) {
hue = 0;
saturation = 0;
} else {
const delta = max - min;
saturation = lightness <= 0.5 ? delta / (max + min) : delta / (2 - max - min);
switch (max) {
case r:
hue = (g - b) / delta + (g < b ? 6 : 0);
break;
case g:
hue = (b - r) / delta + 2;
break;
case b:
hue = (r - g) / delta + 4;
break;
}
hue /= 6;
}
target.h = hue;
target.s = saturation;
target.l = lightness;
return target;
}
getStyle() {
return 'rgb(' + (this.r * 255 | 0) + ',' + (this.g * 255 | 0) + ',' + (this.b * 255 | 0) + ')';
}
offsetHSL(h, s, l) {
this.getHSL(_hslA);
_hslA.h += h;
_hslA.s += s;
_hslA.l += l;
this.setHSL(_hslA.h, _hslA.s, _hslA.l);
return this;
}
add(color) {
this.r += color.r;
this.g += color.g;
this.b += color.b;
return this;
}
addColors(color1, color2) {
this.r = color1.r + color2.r;
this.g = color1.g + color2.g;
this.b = color1.b + color2.b;
return this;
}
addScalar(s) {
this.r += s;
this.g += s;
this.b += s;
return this;
}
sub(color) {
this.r = Math.max(0, this.r - color.r);
this.g = Math.max(0, this.g - color.g);
this.b = Math.max(0, this.b - color.b);
return this;
}
multiply(color) {
this.r *= color.r;
this.g *= color.g;
this.b *= color.b;
return this;
}
multiplyScalar(s) {
this.r *= s;
this.g *= s;
this.b *= s;
return this;
}
lerp(color, alpha) {
this.r += (color.r - this.r) * alpha;
this.g += (color.g - this.g) * alpha;
this.b += (color.b - this.b) * alpha;
return this;
}
lerpColors(color1, color2, alpha) {
this.r = color1.r + (color2.r - color1.r) * alpha;
this.g = color1.g + (color2.g - color1.g) * alpha;
this.b = color1.b + (color2.b - color1.b) * alpha;
return this;
}
lerpHSL(color, alpha) {
this.getHSL(_hslA);
color.getHSL(_hslB);
const h = lerp(_hslA.h, _hslB.h, alpha);
const s = lerp(_hslA.s, _hslB.s, alpha);
const l = lerp(_hslA.l, _hslB.l, alpha);
this.setHSL(h, s, l);
return this;
}
equals(c) {
return c.r === this.r && c.g === this.g && c.b === this.b;
}
fromArray(array, offset = 0) {
this.r = array[offset];
this.g = array[offset + 1];
this.b = array[offset + 2];
return this;
}
toArray(array = [], offset = 0) {
array[offset] = this.r;
array[offset + 1] = this.g;
array[offset + 2] = this.b;
return array;
}
fromBufferAttribute(attribute, index) {
this.r = attribute.getX(index);
this.g = attribute.getY(index);
this.b = attribute.getZ(index);
if (attribute.normalized === true) {
// assuming Uint8Array
this.r /= 255;
this.g /= 255;
this.b /= 255;
}
return this;
}
toJSON() {
return this.getHex();
}
}
Color.NAMES = _colorKeywords;
Color.prototype.isColor = true;
Color.prototype.r = 1;
Color.prototype.g = 1;
Color.prototype.b = 1;
/**
* parameters = {
* color: <hex>,
* opacity: <float>,
* map: new THREE.Texture( <Image> ),
*
* lightMap: new THREE.Texture( <Image> ),
* lightMapIntensity: <float>
*
* aoMap: new THREE.Texture( <Image> ),
* aoMapIntensity: <float>
*
* specularMap: new THREE.Texture( <Image> ),
*
* alphaMap: new THREE.Texture( <Image> ),
*
* envMap: new THREE.CubeTexture( [posx, negx, posy, negy, posz, negz] ),
* combine: THREE.Multiply,
* reflectivity: <float>,
* refractionRatio: <float>,
*
* depthTest: <bool>,
* depthWrite: <bool>,
*
* wireframe: <boolean>,
* wireframeLinewidth: <float>,
* }
*/
class MeshBasicMaterial extends Material {
constructor(parameters) {
super();
this.type = 'MeshBasicMaterial';
this.color = new Color(0xffffff); // emissive
this.map = null;
this.lightMap = null;
this.lightMapIntensity = 1.0;
this.aoMap = null;
this.aoMapIntensity = 1.0;
this.specularMap = null;
this.alphaMap = null;
this.envMap = null;
this.combine = MultiplyOperation;
this.reflectivity = 1;
this.refractionRatio = 0.98;
this.wireframe = false;
this.wireframeLinewidth = 1;
this.wireframeLinecap = 'round';
this.wireframeLinejoin = 'round';
this.setValues(parameters);
}
copy(source) {
super.copy(source);
this.color.copy(source.color);
this.map = source.map;
this.lightMap = source.lightMap;
this.lightMapIntensity = source.lightMapIntensity;
this.aoMap = source.aoMap;
this.aoMapIntensity = source.aoMapIntensity;
this.specularMap = source.specularMap;
this.alphaMap = source.alphaMap;
this.envMap = source.envMap;
this.combine = source.combine;
this.reflectivity = source.reflectivity;
this.refractionRatio = source.refractionRatio;
this.wireframe = source.wireframe;
this.wireframeLinewidth = source.wireframeLinewidth;
this.wireframeLinecap = source.wireframeLinecap;
this.wireframeLinejoin = source.wireframeLinejoin;
return this;
}
}
MeshBasicMaterial.prototype.isMeshBasicMaterial = true;
const _vector$9 = /*@__PURE__*/new Vector3();
const _vector2$1 = /*@__PURE__*/new Vector2();
class BufferAttribute {
constructor(array, itemSize, normalized) {
if (Array.isArray(array)) {
throw new TypeError('THREE.BufferAttribute: array should be a Typed Array.');
}
this.name = '';
this.array = array;
this.itemSize = itemSize;
this.count = array !== undefined ? array.length / itemSize : 0;
this.normalized = normalized === true;
this.usage = StaticDrawUsage;
this.updateRange = {
offset: 0,
count: -1
};
this.version = 0;
}
onUploadCallback() {}
set needsUpdate(value) {
if (value === true) this.version++;
}
setUsage(value) {
this.usage = value;
return this;
}
copy(source) {
this.name = source.name;
this.array = new source.array.constructor(source.array);
this.itemSize = source.itemSize;
this.count = source.count;
this.normalized = source.normalized;
this.usage = source.usage;
return this;
}
copyAt(index1, attribute, index2) {
index1 *= this.itemSize;
index2 *= attribute.itemSize;
for (let i = 0, l = this.itemSize; i < l; i++) {
this.array[index1 + i] = attribute.array[index2 + i];
}
return this;
}
copyArray(array) {
this.array.set(array);
return this;
}
copyColorsArray(colors) {
const array = this.array;
let offset = 0;
for (let i = 0, l = colors.length; i < l; i++) {
let color = colors[i];
if (color === undefined) {
console.warn('THREE.BufferAttribute.copyColorsArray(): color is undefined', i);
color = new Color();
}
array[offset++] = color.r;
array[offset++] = color.g;
array[offset++] = color.b;
}
return this;
}
copyVector2sArray(vectors) {
const array = this.array;
let offset = 0;
for (let i = 0, l = vectors.length; i < l; i++) {
let vector = vectors[i];
if (vector === undefined) {
console.warn('THREE.BufferAttribute.copyVector2sArray(): vector is undefined', i);
vector = new Vector2();
}
array[offset++] = vector.x;
array[offset++] = vector.y;
}
return this;
}
copyVector3sArray(vectors) {
const array = this.array;
let offset = 0;
for (let i = 0, l = vectors.length; i < l; i++) {
let vector = vectors[i];
if (vector === undefined) {
console.warn('THREE.BufferAttribute.copyVector3sArray(): vector is undefined', i);
vector = new Vector3();
}
array[offset++] = vector.x;
array[offset++] = vector.y;
array[offset++] = vector.z;
}
return this;
}
copyVector4sArray(vectors) {
const array = this.array;
let offset = 0;
for (let i = 0, l = vectors.length; i < l; i++) {
let vector = vectors[i];
if (vector === undefined) {
console.warn('THREE.BufferAttribute.copyVector4sArray(): vector is undefined', i);
vector = new Vector4();
}
array[offset++] = vector.x;
array[offset++] = vector.y;
array[offset++] = vector.z;
array[offset++] = vector.w;
}
return this;
}
applyMatrix3(m) {
if (this.itemSize === 2) {
for (let i = 0, l = this.count; i < l; i++) {
_vector2$1.fromBufferAttribute(this, i);
_vector2$1.applyMatrix3(m);
this.setXY(i, _vector2$1.x, _vector2$1.y);
}
} else if (this.itemSize === 3) {
for (let i = 0, l = this.count; i < l; i++) {
_vector$9.fromBufferAttribute(this, i);
_vector$9.applyMatrix3(m);
this.setXYZ(i, _vector$9.x, _vector$9.y, _vector$9.z);
}
}
return this;
}
applyMatrix4(m) {
for (let i = 0, l = this.count; i < l; i++) {
_vector$9.x = this.getX(i);
_vector$9.y = this.getY(i);
_vector$9.z = this.getZ(i);
_vector$9.applyMatrix4(m);
this.setXYZ(i, _vector$9.x, _vector$9.y, _vector$9.z);
}
return this;
}
applyNormalMatrix(m) {
for (let i = 0, l = this.count; i < l; i++) {
_vector$9.x = this.getX(i);
_vector$9.y = this.getY(i);
_vector$9.z = this.getZ(i);
_vector$9.applyNormalMatrix(m);
this.setXYZ(i, _vector$9.x, _vector$9.y, _vector$9.z);
}
return this;
}
transformDirection(m) {
for (let i = 0, l = this.count; i < l; i++) {
_vector$9.x = this.getX(i);
_vector$9.y = this.getY(i);
_vector$9.z = this.getZ(i);
_vector$9.transformDirection(m);
this.setXYZ(i, _vector$9.x, _vector$9.y, _vector$9.z);
}
return this;
}
set(value, offset = 0) {
this.array.set(value, offset);
return this;
}
getX(index) {
return this.array[index * this.itemSize];
}
setX(index, x) {
this.array[index * this.itemSize] = x;
return this;
}
getY(index) {
return this.array[index * this.itemSize + 1];
}
setY(index, y) {
this.array[index * this.itemSize + 1] = y;
return this;
}
getZ(index) {
return this.array[index * this.itemSize + 2];
}
setZ(index, z) {
this.array[index * this.itemSize + 2] = z;
return this;
}
getW(index) {
return this.array[index * this.itemSize + 3];
}
setW(index, w) {
this.array[index * this.itemSize + 3] = w;
return this;
}
setXY(index, x, y) {
index *= this.itemSize;
this.array[index + 0] = x;
this.array[index + 1] = y;
return this;
}
setXYZ(index, x, y, z) {
index *= this.itemSize;
this.array[index + 0] = x;
this.array[index + 1] = y;
this.array[index + 2] = z;
return this;
}
setXYZW(index, x, y, z, w) {
index *= this.itemSize;
this.array[index + 0] = x;
this.array[index + 1] = y;
this.array[index + 2] = z;
this.array[index + 3] = w;
return this;
}
onUpload(callback) {
this.onUploadCallback = callback;
return this;
}
clone() {
return new this.constructor(this.array, this.itemSize).copy(this);
}
toJSON() {
const data = {
itemSize: this.itemSize,
type: this.array.constructor.name,
array: Array.prototype.slice.call(this.array),
normalized: this.normalized
};
if (this.name !== '') data.name = this.name;
if (this.usage !== StaticDrawUsage) data.usage = this.usage;
if (this.updateRange.offset !== 0 || this.updateRange.count !== -1) data.updateRange = this.updateRange;
return data;
}
}
BufferAttribute.prototype.isBufferAttribute = true; //
class Int8BufferAttribute extends BufferAttribute {
constructor(array, itemSize, normalized) {
super(new Int8Array(array), itemSize, normalized);
}
}
class Uint8BufferAttribute extends BufferAttribute {
constructor(array, itemSize, normalized) {
super(new Uint8Array(array), itemSize, normalized);
}
}
class Uint8ClampedBufferAttribute extends BufferAttribute {
constructor(array, itemSize, normalized) {
super(new Uint8ClampedArray(array), itemSize, normalized);
}
}
class Int16BufferAttribute extends BufferAttribute {
constructor(array, itemSize, normalized) {
super(new Int16Array(array), itemSize, normalized);
}
}
class Uint16BufferAttribute extends BufferAttribute {
constructor(array, itemSize, normalized) {
super(new Uint16Array(array), itemSize, normalized);
}
}
class Int32BufferAttribute extends BufferAttribute {
constructor(array, itemSize, normalized) {
super(new Int32Array(array), itemSize, normalized);
}
}
class Uint32BufferAttribute extends BufferAttribute {
constructor(array, itemSize, normalized) {
super(new Uint32Array(array), itemSize, normalized);
}
}
class Float16BufferAttribute extends BufferAttribute {
constructor(array, itemSize, normalized) {
super(new Uint16Array(array), itemSize, normalized);
}
}
Float16BufferAttribute.prototype.isFloat16BufferAttribute = true;
class Float32BufferAttribute extends BufferAttribute {
constructor(array, itemSize, normalized) {
super(new Float32Array(array), itemSize, normalized);
}
}
class Float64BufferAttribute extends BufferAttribute {
constructor(array, itemSize, normalized) {
super(new Float64Array(array), itemSize, normalized);
}
} //
let _id = 0;
const _m1 = /*@__PURE__*/new Matrix4();
const _obj = /*@__PURE__*/new Object3D();
const _offset = /*@__PURE__*/new Vector3();
const _box$1 = /*@__PURE__*/new Box3();
const _boxMorphTargets = /*@__PURE__*/new Box3();
const _vector$8 = /*@__PURE__*/new Vector3();
class BufferGeometry extends EventDispatcher {
constructor() {
super();
Object.defineProperty(this, 'id', {
value: _id++
});
this.uuid = generateUUID();
this.name = '';
this.type = 'BufferGeometry';
this.index = null;
this.attributes = {};
this.morphAttributes = {};
this.morphTargetsRelative = false;
this.groups = [];
this.boundingBox = null;
this.boundingSphere = null;
this.drawRange = {
start: 0,
count: Infinity
};
this.userData = {};
}
getIndex() {
return this.index;
}
setIndex(index) {
if (Array.isArray(index)) {
this.index = new (arrayMax(index) > 65535 ? Uint32BufferAttribute : Uint16BufferAttribute)(index, 1);
} else {
this.index = index;
}
return this;
}
getAttribute(name) {
return this.attributes[name];
}
setAttribute(name, attribute) {
this.attributes[name] = attribute;
return this;
}
deleteAttribute(name) {
delete this.attributes[name];
return this;
}
hasAttribute(name) {
return this.attributes[name] !== undefined;
}
addGroup(start, count, materialIndex = 0) {
this.groups.push({
start: start,
count: count,
materialIndex: materialIndex
});
}
clearGroups() {
this.groups = [];
}
setDrawRange(start, count) {
this.drawRange.start = start;
this.drawRange.count = count;
}
applyMatrix4(matrix) {
const position = this.attributes.position;
if (position !== undefined) {
position.applyMatrix4(matrix);
position.needsUpdate = true;
}
const normal = this.attributes.normal;
if (normal !== undefined) {
const normalMatrix = new Matrix3().getNormalMatrix(matrix);
normal.applyNormalMatrix(normalMatrix);
normal.needsUpdate = true;
}
const tangent = this.attributes.tangent;
if (tangent !== undefined) {
tangent.transformDirection(matrix);
tangent.needsUpdate = true;
}
if (this.boundingBox !== null) {
this.computeBoundingBox();
}
if (this.boundingSphere !== null) {
this.computeBoundingSphere();
}
return this;
}
applyQuaternion(q) {
_m1.makeRotationFromQuaternion(q);
this.applyMatrix4(_m1);
return this;
}
rotateX(angle) {
// rotate geometry around world x-axis
_m1.makeRotationX(angle);
this.applyMatrix4(_m1);
return this;
}
rotateY(angle) {
// rotate geometry around world y-axis
_m1.makeRotationY(angle);
this.applyMatrix4(_m1);
return this;
}
rotateZ(angle) {
// rotate geometry around world z-axis
_m1.makeRotationZ(angle);
this.applyMatrix4(_m1);
return this;
}
translate(x, y, z) {
// translate geometry
_m1.makeTranslation(x, y, z);
this.applyMatrix4(_m1);
return this;
}
scale(x, y, z) {
// scale geometry
_m1.makeScale(x, y, z);
this.applyMatrix4(_m1);
return this;
}
lookAt(vector) {
_obj.lookAt(vector);
_obj.updateMatrix();
this.applyMatrix4(_obj.matrix);
return this;
}
center() {
this.computeBoundingBox();
this.boundingBox.getCenter(_offset).negate();
this.translate(_offset.x, _offset.y, _offset.z);
return this;
}
setFromPoints(points) {
const position = [];
for (let i = 0, l = points.length; i < l; i++) {
const point = points[i];
position.push(point.x, point.y, point.z || 0);
}
this.setAttribute('position', new Float32BufferAttribute(position, 3));
return this;
}
computeBoundingBox() {
if (this.boundingBox === null) {
this.boundingBox = new Box3();
}
const position = this.attributes.position;
const morphAttributesPosition = this.morphAttributes.position;
if (position && position.isGLBufferAttribute) {
console.error('THREE.BufferGeometry.computeBoundingBox(): GLBufferAttribute requires a manual bounding box. Alternatively set "mesh.frustumCulled" to "false".', this);
this.boundingBox.set(new Vector3(-Infinity, -Infinity, -Infinity), new Vector3(+Infinity, +Infinity, +Infinity));
return;
}
if (position !== undefined) {
this.boundingBox.setFromBufferAttribute(position); // process morph attributes if present
if (morphAttributesPosition) {
for (let i = 0, il = morphAttributesPosition.length; i < il; i++) {
const morphAttribute = morphAttributesPosition[i];
_box$1.setFromBufferAttribute(morphAttribute);
if (this.morphTargetsRelative) {
_vector$8.addVectors(this.boundingBox.min, _box$1.min);
this.boundingBox.expandByPoint(_vector$8);
_vector$8.addVectors(this.boundingBox.max, _box$1.max);
this.boundingBox.expandByPoint(_vector$8);
} else {
this.boundingBox.expandByPoint(_box$1.min);
this.boundingBox.expandByPoint(_box$1.max);
}
}
}
} else {
this.boundingBox.makeEmpty();
}
if (isNaN(this.boundingBox.min.x) || isNaN(this.boundingBox.min.y) || isNaN(this.boundingBox.min.z)) {
console.error('THREE.BufferGeometry.computeBoundingBox(): Computed min/max have NaN values. The "position" attribute is likely to have NaN values.', this);
}
}
computeBoundingSphere() {
if (this.boundingSphere === null) {
this.boundingSphere = new Sphere();
}
const position = this.attributes.position;
const morphAttributesPosition = this.morphAttributes.position;
if (position && position.isGLBufferAttribute) {
console.error('THREE.BufferGeometry.computeBoundingSphere(): GLBufferAttribute requires a manual bounding sphere. Alternatively set "mesh.frustumCulled" to "false".', this);
this.boundingSphere.set(new Vector3(), Infinity);
return;
}
if (position) {
// first, find the center of the bounding sphere
const center = this.boundingSphere.center;
_box$1.setFromBufferAttribute(position); // process morph attributes if present
if (morphAttributesPosition) {
for (let i = 0, il = morphAttributesPosition.length; i < il; i++) {
const morphAttribute = morphAttributesPosition[i];
_boxMorphTargets.setFromBufferAttribute(morphAttribute);
if (this.morphTargetsRelative) {
_vector$8.addVectors(_box$1.min, _boxMorphTargets.min);
_box$1.expandByPoint(_vector$8);
_vector$8.addVectors(_box$1.max, _boxMorphTargets.max);
_box$1.expandByPoint(_vector$8);
} else {
_box$1.expandByPoint(_boxMorphTargets.min);
_box$1.expandByPoint(_boxMorphTargets.max);
}
}
}
_box$1.getCenter(center); // second, try to find a boundingSphere with a radius smaller than the
// boundingSphere of the boundingBox: sqrt(3) smaller in the best case
let maxRadiusSq = 0;
for (let i = 0, il = position.count; i < il; i++) {
_vector$8.fromBufferAttribute(position, i);
maxRadiusSq = Math.max(maxRadiusSq, center.distanceToSquared(_vector$8));
} // process morph attributes if present
if (morphAttributesPosition) {
for (let i = 0, il = morphAttributesPosition.length; i < il; i++) {
const morphAttribute = morphAttributesPosition[i];
const morphTargetsRelative = this.morphTargetsRelative;
for (let j = 0, jl = morphAttribute.count; j < jl; j++) {
_vector$8.fromBufferAttribute(morphAttribute, j);
if (morphTargetsRelative) {
_offset.fromBufferAttribute(position, j);
_vector$8.add(_offset);
}
maxRadiusSq = Math.max(maxRadiusSq, center.distanceToSquared(_vector$8));
}
}
}
this.boundingSphere.radius = Math.sqrt(maxRadiusSq);
if (isNaN(this.boundingSphere.radius)) {
console.error('THREE.BufferGeometry.computeBoundingSphere(): Computed radius is NaN. The "position" attribute is likely to have NaN values.', this);
}
}
}
computeTangents() {
const index = this.index;
const attributes = this.attributes; // based on http://www.terathon.com/code/tangent.html
// (per vertex tangents)
if (index === null || attributes.position === undefined || attributes.normal === undefined || attributes.uv === undefined) {
console.error('THREE.BufferGeometry: .computeTangents() failed. Missing required attributes (index, position, normal or uv)');
return;
}
const indices = index.array;
const positions = attributes.position.array;
const normals = attributes.normal.array;
const uvs = attributes.uv.array;
const nVertices = positions.length / 3;
if (attributes.tangent === undefined) {
this.setAttribute('tangent', new BufferAttribute(new Float32Array(4 * nVertices), 4));
}
const tangents = attributes.tangent.array;
const tan1 = [],
tan2 = [];
for (let i = 0; i < nVertices; i++) {
tan1[i] = new Vector3();
tan2[i] = new Vector3();
}
const vA = new Vector3(),
vB = new Vector3(),
vC = new Vector3(),
uvA = new Vector2(),
uvB = new Vector2(),
uvC = new Vector2(),
sdir = new Vector3(),
tdir = new Vector3();
function handleTriangle(a, b, c) {
vA.fromArray(positions, a * 3);
vB.fromArray(positions, b * 3);
vC.fromArray(positions, c * 3);
uvA.fromArray(uvs, a * 2);
uvB.fromArray(uvs, b * 2);
uvC.fromArray(uvs, c * 2);
vB.sub(vA);
vC.sub(vA);
uvB.sub(uvA);
uvC.sub(uvA);
const r = 1.0 / (uvB.x * uvC.y - uvC.x * uvB.y); // silently ignore degenerate uv triangles having coincident or colinear vertices
if (!isFinite(r)) return;
sdir.copy(vB).multiplyScalar(uvC.y).addScaledVector(vC, -uvB.y).multiplyScalar(r);
tdir.copy(vC).multiplyScalar(uvB.x).addScaledVector(vB, -uvC.x).multiplyScalar(r);
tan1[a].add(sdir);
tan1[b].add(sdir);
tan1[c].add(sdir);
tan2[a].add(tdir);
tan2[b].add(tdir);
tan2[c].add(tdir);
}
let groups = this.groups;
if (groups.length === 0) {
groups = [{
start: 0,
count: indices.length
}];
}
for (let i = 0, il = groups.length; i < il; ++i) {
const group = groups[i];
const start = group.start;
const count = group.count;
for (let j = start, jl = start + count; j < jl; j += 3) {
handleTriangle(indices[j + 0], indices[j + 1], indices[j + 2]);
}
}
const tmp = new Vector3(),
tmp2 = new Vector3();
const n = new Vector3(),
n2 = new Vector3();
function handleVertex(v) {
n.fromArray(normals, v * 3);
n2.copy(n);
const t = tan1[v]; // Gram-Schmidt orthogonalize
tmp.copy(t);
tmp.sub(n.multiplyScalar(n.dot(t))).normalize(); // Calculate handedness
tmp2.crossVectors(n2, t);
const test = tmp2.dot(tan2[v]);
const w = test < 0.0 ? -1.0 : 1.0;
tangents[v * 4] = tmp.x;
tangents[v * 4 + 1] = tmp.y;
tangents[v * 4 + 2] = tmp.z;
tangents[v * 4 + 3] = w;
}
for (let i = 0, il = groups.length; i < il; ++i) {
const group = groups[i];
const start = group.start;
const count = group.count;
for (let j = start, jl = start + count; j < jl; j += 3) {
handleVertex(indices[j + 0]);
handleVertex(indices[j + 1]);
handleVertex(indices[j + 2]);
}
}
}
computeVertexNormals() {
const index = this.index;
const positionAttribute = this.getAttribute('position');
if (positionAttribute !== undefined) {
let normalAttribute = this.getAttribute('normal');
if (normalAttribute === undefined) {
normalAttribute = new BufferAttribute(new Float32Array(positionAttribute.count * 3), 3);
this.setAttribute('normal', normalAttribute);
} else {
// reset existing normals to zero
for (let i = 0, il = normalAttribute.count; i < il; i++) {
normalAttribute.setXYZ(i, 0, 0, 0);
}
}
const pA = new Vector3(),
pB = new Vector3(),
pC = new Vector3();
const nA = new Vector3(),
nB = new Vector3(),
nC = new Vector3();
const cb = new Vector3(),
ab = new Vector3(); // indexed elements
if (index) {
for (let i = 0, il = index.count; i < il; i += 3) {
const vA = index.getX(i + 0);
const vB = index.getX(i + 1);
const vC = index.getX(i + 2);
pA.fromBufferAttribute(positionAttribute, vA);
pB.fromBufferAttribute(positionAttribute, vB);
pC.fromBufferAttribute(positionAttribute, vC);
cb.subVectors(pC, pB);
ab.subVectors(pA, pB);
cb.cross(ab);
nA.fromBufferAttribute(normalAttribute, vA);
nB.fromBufferAttribute(normalAttribute, vB);
nC.fromBufferAttribute(normalAttribute, vC);
nA.add(cb);
nB.add(cb);
nC.add(cb);
normalAttribute.setXYZ(vA, nA.x, nA.y, nA.z);
normalAttribute.setXYZ(vB, nB.x, nB.y, nB.z);
normalAttribute.setXYZ(vC, nC.x, nC.y, nC.z);
}
} else {
// non-indexed elements (unconnected triangle soup)
for (let i = 0, il = positionAttribute.count; i < il; i += 3) {
pA.fromBufferAttribute(positionAttribute, i + 0);
pB.fromBufferAttribute(positionAttribute, i + 1);
pC.fromBufferAttribute(positionAttribute, i + 2);
cb.subVectors(pC, pB);
ab.subVectors(pA, pB);
cb.cross(ab);
normalAttribute.setXYZ(i + 0, cb.x, cb.y, cb.z);
normalAttribute.setXYZ(i + 1, cb.x, cb.y, cb.z);
normalAttribute.setXYZ(i + 2, cb.x, cb.y, cb.z);
}
}
this.normalizeNormals();
normalAttribute.needsUpdate = true;
}
}
merge(geometry, offset) {
if (!(geometry && geometry.isBufferGeometry)) {
console.error('THREE.BufferGeometry.merge(): geometry not an instance of THREE.BufferGeometry.', geometry);
return;
}
if (offset === undefined) {
offset = 0;
console.warn('THREE.BufferGeometry.merge(): Overwriting original geometry, starting at offset=0. ' + 'Use BufferGeometryUtils.mergeBufferGeometries() for lossless merge.');
}
const attributes = this.attributes;
for (const key in attributes) {
if (geometry.attributes[key] === undefined) continue;
const attribute1 = attributes[key];
const attributeArray1 = attribute1.array;
const attribute2 = geometry.attributes[key];
const attributeArray2 = attribute2.array;
const attributeOffset = attribute2.itemSize * offset;
const length = Math.min(attributeArray2.length, attributeArray1.length - attributeOffset);
for (let i = 0, j = attributeOffset; i < length; i++, j++) {
attributeArray1[j] = attributeArray2[i];
}
}
return this;
}
normalizeNormals() {
const normals = this.attributes.normal;
for (let i = 0, il = normals.count; i < il; i++) {
_vector$8.fromBufferAttribute(normals, i);
_vector$8.normalize();
normals.setXYZ(i, _vector$8.x, _vector$8.y, _vector$8.z);
}
}
toNonIndexed() {
function convertBufferAttribute(attribute, indices) {
const array = attribute.array;
const itemSize = attribute.itemSize;
const normalized = attribute.normalized;
const array2 = new array.constructor(indices.length * itemSize);
let index = 0,
index2 = 0;
for (let i = 0, l = indices.length; i < l; i++) {
if (attribute.isInterleavedBufferAttribute) {
index = indices[i] * attribute.data.stride + attribute.offset;
} else {
index = indices[i] * itemSize;
}
for (let j = 0; j < itemSize; j++) {
array2[index2++] = array[index++];
}
}
return new BufferAttribute(array2, itemSize, normalized);
} //
if (this.index === null) {
console.warn('THREE.BufferGeometry.toNonIndexed(): BufferGeometry is already non-indexed.');
return this;
}
const geometry2 = new BufferGeometry();
const indices = this.index.array;
const attributes = this.attributes; // attributes
for (const name in attributes) {
const attribute = attributes[name];
const newAttribute = convertBufferAttribute(attribute, indices);
geometry2.setAttribute(name, newAttribute);
} // morph attributes
const morphAttributes = this.morphAttributes;
for (const name in morphAttributes) {
const morphArray = [];
const morphAttribute = morphAttributes[name]; // morphAttribute: array of Float32BufferAttributes
for (let i = 0, il = morphAttribute.length; i < il; i++) {
const attribute = morphAttribute[i];
const newAttribute = convertBufferAttribute(attribute, indices);
morphArray.push(newAttribute);
}
geometry2.morphAttributes[name] = morphArray;
}
geometry2.morphTargetsRelative = this.morphTargetsRelative; // groups
const groups = this.groups;
for (let i = 0, l = groups.length; i < l; i++) {
const group = groups[i];
geometry2.addGroup(group.start, group.count, group.materialIndex);
}
return geometry2;
}
toJSON() {
const data = {
metadata: {
version: 4.5,
type: 'BufferGeometry',
generator: 'BufferGeometry.toJSON'
}
}; // standard BufferGeometry serialization
data.uuid = this.uuid;
data.type = this.type;
if (this.name !== '') data.name = this.name;
if (Object.keys(this.userData).length > 0) data.userData = this.userData;
if (this.parameters !== undefined) {
const parameters = this.parameters;
for (const key in parameters) {
if (parameters[key] !== undefined) data[key] = parameters[key];
}
return data;
} // for simplicity the code assumes attributes are not shared across geometries, see #15811
data.data = {
attributes: {}
};
const index = this.index;
if (index !== null) {
data.data.index = {
type: index.array.constructor.name,
array: Array.prototype.slice.call(index.array)
};
}
const attributes = this.attributes;
for (const key in attributes) {
const attribute = attributes[key];
data.data.attributes[key] = attribute.toJSON(data.data);
}
const morphAttributes = {};
let hasMorphAttributes = false;
for (const key in this.morphAttributes) {
const attributeArray = this.morphAttributes[key];
const array = [];
for (let i = 0, il = attributeArray.length; i < il; i++) {
const attribute = attributeArray[i];
array.push(attribute.toJSON(data.data));
}
if (array.length > 0) {
morphAttributes[key] = array;
hasMorphAttributes = true;
}
}
if (hasMorphAttributes) {
data.data.morphAttributes = morphAttributes;
data.data.morphTargetsRelative = this.morphTargetsRelative;
}
const groups = this.groups;
if (groups.length > 0) {
data.data.groups = JSON.parse(JSON.stringify(groups));
}
const boundingSphere = this.boundingSphere;
if (boundingSphere !== null) {
data.data.boundingSphere = {
center: boundingSphere.center.toArray(),
radius: boundingSphere.radius
};
}
return data;
}
clone() {
return new this.constructor().copy(this);
}
copy(source) {
// reset
this.index = null;
this.attributes = {};
this.morphAttributes = {};
this.groups = [];
this.boundingBox = null;
this.boundingSphere = null; // used for storing cloned, shared data
const data = {}; // name
this.name = source.name; // index
const index = source.index;
if (index !== null) {
this.setIndex(index.clone(data));
} // attributes
const attributes = source.attributes;
for (const name in attributes) {
const attribute = attributes[name];
this.setAttribute(name, attribute.clone(data));
} // morph attributes
const morphAttributes = source.morphAttributes;
for (const name in morphAttributes) {
const array = [];
const morphAttribute = morphAttributes[name]; // morphAttribute: array of Float32BufferAttributes
for (let i = 0, l = morphAttribute.length; i < l; i++) {
array.push(morphAttribute[i].clone(data));
}
this.morphAttributes[name] = array;
}
this.morphTargetsRelative = source.morphTargetsRelative; // groups
const groups = source.groups;
for (let i = 0, l = groups.length; i < l; i++) {
const group = groups[i];
this.addGroup(group.start, group.count, group.materialIndex);
} // bounding box
const boundingBox = source.boundingBox;
if (boundingBox !== null) {
this.boundingBox = boundingBox.clone();
} // bounding sphere
const boundingSphere = source.boundingSphere;
if (boundingSphere !== null) {
this.boundingSphere = boundingSphere.clone();
} // draw range
this.drawRange.start = source.drawRange.start;
this.drawRange.count = source.drawRange.count; // user data
this.userData = source.userData; // geometry generator parameters
if (source.parameters !== undefined) this.parameters = Object.assign({}, source.parameters);
return this;
}
dispose() {
this.dispatchEvent({
type: 'dispose'
});
}
}
BufferGeometry.prototype.isBufferGeometry = true;
const _inverseMatrix$2 = /*@__PURE__*/new Matrix4();
const _ray$2 = /*@__PURE__*/new Ray();
const _sphere$3 = /*@__PURE__*/new Sphere();
const _vA$1 = /*@__PURE__*/new Vector3();
const _vB$1 = /*@__PURE__*/new Vector3();
const _vC$1 = /*@__PURE__*/new Vector3();
const _tempA = /*@__PURE__*/new Vector3();
const _tempB = /*@__PURE__*/new Vector3();
const _tempC = /*@__PURE__*/new Vector3();
const _morphA = /*@__PURE__*/new Vector3();
const _morphB = /*@__PURE__*/new Vector3();
const _morphC = /*@__PURE__*/new Vector3();
const _uvA$1 = /*@__PURE__*/new Vector2();
const _uvB$1 = /*@__PURE__*/new Vector2();
const _uvC$1 = /*@__PURE__*/new Vector2();
const _intersectionPoint = /*@__PURE__*/new Vector3();
const _intersectionPointWorld = /*@__PURE__*/new Vector3();
class Mesh extends Object3D {
constructor(geometry = new BufferGeometry(), material = new MeshBasicMaterial()) {
super();
this.type = 'Mesh';
this.geometry = geometry;
this.material = material;
this.updateMorphTargets();
}
copy(source) {
super.copy(source);
if (source.morphTargetInfluences !== undefined) {
this.morphTargetInfluences = source.morphTargetInfluences.slice();
}
if (source.morphTargetDictionary !== undefined) {
this.morphTargetDictionary = Object.assign({}, source.morphTargetDictionary);
}
this.material = source.material;
this.geometry = source.geometry;
return this;
}
updateMorphTargets() {
const geometry = this.geometry;
if (geometry.isBufferGeometry) {
const morphAttributes = geometry.morphAttributes;
const keys = Object.keys(morphAttributes);
if (keys.length > 0) {
const morphAttribute = morphAttributes[keys[0]];
if (morphAttribute !== undefined) {
this.morphTargetInfluences = [];
this.morphTargetDictionary = {};
for (let m = 0, ml = morphAttribute.length; m < ml; m++) {
const name = morphAttribute[m].name || String(m);
this.morphTargetInfluences.push(0);
this.morphTargetDictionary[name] = m;
}
}
}
} else {
const morphTargets = geometry.morphTargets;
if (morphTargets !== undefined && morphTargets.length > 0) {
console.error('THREE.Mesh.updateMorphTargets() no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.');
}
}
}
raycast(raycaster, intersects) {
const geometry = this.geometry;
const material = this.material;
const matrixWorld = this.matrixWorld;
if (material === undefined) return; // Checking boundingSphere distance to ray
if (geometry.boundingSphere === null) geometry.computeBoundingSphere();
_sphere$3.copy(geometry.boundingSphere);
_sphere$3.applyMatrix4(matrixWorld);
if (raycaster.ray.intersectsSphere(_sphere$3) === false) return; //
_inverseMatrix$2.copy(matrixWorld).invert();
_ray$2.copy(raycaster.ray).applyMatrix4(_inverseMatrix$2); // Check boundingBox before continuing
if (geometry.boundingBox !== null) {
if (_ray$2.intersectsBox(geometry.boundingBox) === false) return;
}
let intersection;
if (geometry.isBufferGeometry) {
const index = geometry.index;
const position = geometry.attributes.position;
const morphPosition = geometry.morphAttributes.position;
const morphTargetsRelative = geometry.morphTargetsRelative;
const uv = geometry.attributes.uv;
const uv2 = geometry.attributes.uv2;
const groups = geometry.groups;
const drawRange = geometry.drawRange;
if (index !== null) {
// indexed buffer geometry
if (Array.isArray(material)) {
for (let i = 0, il = groups.length; i < il; i++) {
const group = groups[i];
const groupMaterial = material[group.materialIndex];
const start = Math.max(group.start, drawRange.start);
const end = Math.min(index.count, Math.min(group.start + group.count, drawRange.start + drawRange.count));
for (let j = start, jl = end; j < jl; j += 3) {
const a = index.getX(j);
const b = index.getX(j + 1);
const c = index.getX(j + 2);
intersection = checkBufferGeometryIntersection(this, groupMaterial, raycaster, _ray$2, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c);
if (intersection) {
intersection.faceIndex = Math.floor(j / 3); // triangle number in indexed buffer semantics
intersection.face.materialIndex = group.materialIndex;
intersects.push(intersection);
}
}
}
} else {
const start = Math.max(0, drawRange.start);
const end = Math.min(index.count, drawRange.start + drawRange.count);
for (let i = start, il = end; i < il; i += 3) {
const a = index.getX(i);
const b = index.getX(i + 1);
const c = index.getX(i + 2);
intersection = checkBufferGeometryIntersection(this, material, raycaster, _ray$2, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c);
if (intersection) {
intersection.faceIndex = Math.floor(i / 3); // triangle number in indexed buffer semantics
intersects.push(intersection);
}
}
}
} else if (position !== undefined) {
// non-indexed buffer geometry
if (Array.isArray(material)) {
for (let i = 0, il = groups.length; i < il; i++) {
const group = groups[i];
const groupMaterial = material[group.materialIndex];
const start = Math.max(group.start, drawRange.start);
const end = Math.min(position.count, Math.min(group.start + group.count, drawRange.start + drawRange.count));
for (let j = start, jl = end; j < jl; j += 3) {
const a = j;
const b = j + 1;
const c = j + 2;
intersection = checkBufferGeometryIntersection(this, groupMaterial, raycaster, _ray$2, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c);
if (intersection) {
intersection.faceIndex = Math.floor(j / 3); // triangle number in non-indexed buffer semantics
intersection.face.materialIndex = group.materialIndex;
intersects.push(intersection);
}
}
}
} else {
const start = Math.max(0, drawRange.start);
const end = Math.min(position.count, drawRange.start + drawRange.count);
for (let i = start, il = end; i < il; i += 3) {
const a = i;
const b = i + 1;
const c = i + 2;
intersection = checkBufferGeometryIntersection(this, material, raycaster, _ray$2, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c);
if (intersection) {
intersection.faceIndex = Math.floor(i / 3); // triangle number in non-indexed buffer semantics
intersects.push(intersection);
}
}
}
}
} else if (geometry.isGeometry) {
console.error('THREE.Mesh.raycast() no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.');
}
}
}
Mesh.prototype.isMesh = true;
function checkIntersection(object, material, raycaster, ray, pA, pB, pC, point) {
let intersect;
if (material.side === BackSide) {
intersect = ray.intersectTriangle(pC, pB, pA, true, point);
} else {
intersect = ray.intersectTriangle(pA, pB, pC, material.side !== DoubleSide, point);
}
if (intersect === null) return null;
_intersectionPointWorld.copy(point);
_intersectionPointWorld.applyMatrix4(object.matrixWorld);
const distance = raycaster.ray.origin.distanceTo(_intersectionPointWorld);
if (distance < raycaster.near || distance > raycaster.far) return null;
return {
distance: distance,
point: _intersectionPointWorld.clone(),
object: object
};
}
function checkBufferGeometryIntersection(object, material, raycaster, ray, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c) {
_vA$1.fromBufferAttribute(position, a);
_vB$1.fromBufferAttribute(position, b);
_vC$1.fromBufferAttribute(position, c);
const morphInfluences = object.morphTargetInfluences;
if (morphPosition && morphInfluences) {
_morphA.set(0, 0, 0);
_morphB.set(0, 0, 0);
_morphC.set(0, 0, 0);
for (let i = 0, il = morphPosition.length; i < il; i++) {
const influence = morphInfluences[i];
const morphAttribute = morphPosition[i];
if (influence === 0) continue;
_tempA.fromBufferAttribute(morphAttribute, a);
_tempB.fromBufferAttribute(morphAttribute, b);
_tempC.fromBufferAttribute(morphAttribute, c);
if (morphTargetsRelative) {
_morphA.addScaledVector(_tempA, influence);
_morphB.addScaledVector(_tempB, influence);
_morphC.addScaledVector(_tempC, influence);
} else {
_morphA.addScaledVector(_tempA.sub(_vA$1), influence);
_morphB.addScaledVector(_tempB.sub(_vB$1), influence);
_morphC.addScaledVector(_tempC.sub(_vC$1), influence);
}
}
_vA$1.add(_morphA);
_vB$1.add(_morphB);
_vC$1.add(_morphC);
}
if (object.isSkinnedMesh) {
object.boneTransform(a, _vA$1);
object.boneTransform(b, _vB$1);
object.boneTransform(c, _vC$1);
}
const intersection = checkIntersection(object, material, raycaster, ray, _vA$1, _vB$1, _vC$1, _intersectionPoint);
if (intersection) {
if (uv) {
_uvA$1.fromBufferAttribute(uv, a);
_uvB$1.fromBufferAttribute(uv, b);
_uvC$1.fromBufferAttribute(uv, c);
intersection.uv = Triangle.getUV(_intersectionPoint, _vA$1, _vB$1, _vC$1, _uvA$1, _uvB$1, _uvC$1, new Vector2());
}
if (uv2) {
_uvA$1.fromBufferAttribute(uv2, a);
_uvB$1.fromBufferAttribute(uv2, b);
_uvC$1.fromBufferAttribute(uv2, c);
intersection.uv2 = Triangle.getUV(_intersectionPoint, _vA$1, _vB$1, _vC$1, _uvA$1, _uvB$1, _uvC$1, new Vector2());
}
const face = {
a: a,
b: b,
c: c,
normal: new Vector3(),
materialIndex: 0
};
Triangle.getNormal(_vA$1, _vB$1, _vC$1, face.normal);
intersection.face = face;
}
return intersection;
}
class BoxGeometry extends BufferGeometry {
constructor(width = 1, height = 1, depth = 1, widthSegments = 1, heightSegments = 1, depthSegments = 1) {
super();
this.type = 'BoxGeometry';
this.parameters = {
width: width,
height: height,
depth: depth,
widthSegments: widthSegments,
heightSegments: heightSegments,
depthSegments: depthSegments
};
const scope = this; // segments
widthSegments = Math.floor(widthSegments);
heightSegments = Math.floor(heightSegments);
depthSegments = Math.floor(depthSegments); // buffers
const indices = [];
const vertices = [];
const normals = [];
const uvs = []; // helper variables
let numberOfVertices = 0;
let groupStart = 0; // build each side of the box geometry
buildPlane('z', 'y', 'x', -1, -1, depth, height, width, depthSegments, heightSegments, 0); // px
buildPlane('z', 'y', 'x', 1, -1, depth, height, -width, depthSegments, heightSegments, 1); // nx
buildPlane('x', 'z', 'y', 1, 1, width, depth, height, widthSegments, depthSegments, 2); // py
buildPlane('x', 'z', 'y', 1, -1, width, depth, -height, widthSegments, depthSegments, 3); // ny
buildPlane('x', 'y', 'z', 1, -1, width, height, depth, widthSegments, heightSegments, 4); // pz
buildPlane('x', 'y', 'z', -1, -1, width, height, -depth, widthSegments, heightSegments, 5); // nz
// build geometry
this.setIndex(indices);
this.setAttribute('position', new Float32BufferAttribute(vertices, 3));
this.setAttribute('normal', new Float32BufferAttribute(normals, 3));
this.setAttribute('uv', new Float32BufferAttribute(uvs, 2));
function buildPlane(u, v, w, udir, vdir, width, height, depth, gridX, gridY, materialIndex) {
const segmentWidth = width / gridX;
const segmentHeight = height / gridY;
const widthHalf = width / 2;
const heightHalf = height / 2;
const depthHalf = depth / 2;
const gridX1 = gridX + 1;
const gridY1 = gridY + 1;
let vertexCounter = 0;
let groupCount = 0;
const vector = new Vector3(); // generate vertices, normals and uvs
for (let iy = 0; iy < gridY1; iy++) {
const y = iy * segmentHeight - heightHalf;
for (let ix = 0; ix < gridX1; ix++) {
const x = ix * segmentWidth - widthHalf; // set values to correct vector component
vector[u] = x * udir;
vector[v] = y * vdir;
vector[w] = depthHalf; // now apply vector to vertex buffer
vertices.push(vector.x, vector.y, vector.z); // set values to correct vector component
vector[u] = 0;
vector[v] = 0;
vector[w] = depth > 0 ? 1 : -1; // now apply vector to normal buffer
normals.push(vector.x, vector.y, vector.z); // uvs
uvs.push(ix / gridX);
uvs.push(1 - iy / gridY); // counters
vertexCounter += 1;
}
} // indices
// 1. you need three indices to draw a single face
// 2. a single segment consists of two faces
// 3. so we need to generate six (2*3) indices per segment
for (let iy = 0; iy < gridY; iy++) {
for (let ix = 0; ix < gridX; ix++) {
const a = numberOfVertices + ix + gridX1 * iy;
const b = numberOfVertices + ix + gridX1 * (iy + 1);
const c = numberOfVertices + (ix + 1) + gridX1 * (iy + 1);
const d = numberOfVertices + (ix + 1) + gridX1 * iy; // faces
indices.push(a, b, d);
indices.push(b, c, d); // increase counter
groupCount += 6;
}
} // add a group to the geometry. this will ensure multi material support
scope.addGroup(groupStart, groupCount, materialIndex); // calculate new start value for groups
groupStart += groupCount; // update total number of vertices
numberOfVertices += vertexCounter;
}
}
static fromJSON(data) {
return new BoxGeometry(data.width, data.height, data.depth, data.widthSegments, data.heightSegments, data.depthSegments);
}
}
/**
* Uniform Utilities
*/
function cloneUniforms(src) {
const dst = {};
for (const u in src) {
dst[u] = {};
for (const p in src[u]) {
const property = src[u][p];
if (property && (property.isColor || property.isMatrix3 || property.isMatrix4 || property.isVector2 || property.isVector3 || property.isVector4 || property.isTexture || property.isQuaternion)) {
dst[u][p] = property.clone();
} else if (Array.isArray(property)) {
dst[u][p] = property.slice();
} else {
dst[u][p] = property;
}
}
}
return dst;
}
function mergeUniforms(uniforms) {
const merged = {};
for (let u = 0; u < uniforms.length; u++) {
const tmp = cloneUniforms(uniforms[u]);
for (const p in tmp) {
merged[p] = tmp[p];
}
}
return merged;
} // Legacy
const UniformsUtils = {
clone: cloneUniforms,
merge: mergeUniforms
};
var default_vertex = "void main() {\n\tgl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );\n}";
var default_fragment = "void main() {\n\tgl_FragColor = vec4( 1.0, 0.0, 0.0, 1.0 );\n}";
/**
* parameters = {
* defines: { "label" : "value" },
* uniforms: { "parameter1": { value: 1.0 }, "parameter2": { value2: 2 } },
*
* fragmentShader: <string>,
* vertexShader: <string>,
*
* wireframe: <boolean>,
* wireframeLinewidth: <float>,
*
* lights: <bool>
* }
*/
class ShaderMaterial extends Material {
constructor(parameters) {
super();
this.type = 'ShaderMaterial';
this.defines = {};
this.uniforms = {};
this.vertexShader = default_vertex;
this.fragmentShader = default_fragment;
this.linewidth = 1;
this.wireframe = false;
this.wireframeLinewidth = 1;
this.fog = false; // set to use scene fog
this.lights = false; // set to use scene lights
this.clipping = false; // set to use user-defined clipping planes
this.extensions = {
derivatives: false,
// set to use derivatives
fragDepth: false,
// set to use fragment depth values
drawBuffers: false,
// set to use draw buffers
shaderTextureLOD: false // set to use shader texture LOD
}; // When rendered geometry doesn't include these attributes but the material does,
// use these default values in WebGL. This avoids errors when buffer data is missing.
this.defaultAttributeValues = {
'color': [1, 1, 1],
'uv': [0, 0],
'uv2': [0, 0]
};
this.index0AttributeName = undefined;
this.uniformsNeedUpdate = false;
this.glslVersion = null;
if (parameters !== undefined) {
if (parameters.attributes !== undefined) {
console.error('THREE.ShaderMaterial: attributes should now be defined in THREE.BufferGeometry instead.');
}
this.setValues(parameters);
}
}
copy(source) {
super.copy(source);
this.fragmentShader = source.fragmentShader;
this.vertexShader = source.vertexShader;
this.uniforms = cloneUniforms(source.uniforms);
this.defines = Object.assign({}, source.defines);
this.wireframe = source.wireframe;
this.wireframeLinewidth = source.wireframeLinewidth;
this.lights = source.lights;
this.clipping = source.clipping;
this.extensions = Object.assign({}, source.extensions);
this.glslVersion = source.glslVersion;
return this;
}
toJSON(meta) {
const data = super.toJSON(meta);
data.glslVersion = this.glslVersion;
data.uniforms = {};
for (const name in this.uniforms) {
const uniform = this.uniforms[name];
const value = uniform.value;
if (value && value.isTexture) {
data.uniforms[name] = {
type: 't',
value: value.toJSON(meta).uuid
};
} else if (value && value.isColor) {
data.uniforms[name] = {
type: 'c',
value: value.getHex()
};
} else if (value && value.isVector2) {
data.uniforms[name] = {
type: 'v2',
value: value.toArray()
};
} else if (value && value.isVector3) {
data.uniforms[name] = {
type: 'v3',
value: value.toArray()
};
} else if (value && value.isVector4) {
data.uniforms[name] = {
type: 'v4',
value: value.toArray()
};
} else if (value && value.isMatrix3) {
data.uniforms[name] = {
type: 'm3',
value: value.toArray()
};
} else if (value && value.isMatrix4) {
data.uniforms[name] = {
type: 'm4',
value: value.toArray()
};
} else {
data.uniforms[name] = {
value: value
}; // note: the array variants v2v, v3v, v4v, m4v and tv are not supported so far
}
}
if (Object.keys(this.defines).length > 0) data.defines = this.defines;
data.vertexShader = this.vertexShader;
data.fragmentShader = this.fragmentShader;
const extensions = {};
for (const key in this.extensions) {
if (this.extensions[key] === true) extensions[key] = true;
}
if (Object.keys(extensions).length > 0) data.extensions = extensions;
return data;
}
}
ShaderMaterial.prototype.isShaderMaterial = true;
class Camera extends Object3D {
constructor() {
super();
this.type = 'Camera';
this.matrixWorldInverse = new Matrix4();
this.projectionMatrix = new Matrix4();
this.projectionMatrixInverse = new Matrix4();
}
copy(source, recursive) {
super.copy(source, recursive);
this.matrixWorldInverse.copy(source.matrixWorldInverse);
this.projectionMatrix.copy(source.projectionMatrix);
this.projectionMatrixInverse.copy(source.projectionMatrixInverse);
return this;
}
getWorldDirection(target) {
this.updateWorldMatrix(true, false);
const e = this.matrixWorld.elements;
return target.set(-e[8], -e[9], -e[10]).normalize();
}
updateMatrixWorld(force) {
super.updateMatrixWorld(force);
this.matrixWorldInverse.copy(this.matrixWorld).invert();
}
updateWorldMatrix(updateParents, updateChildren) {
super.updateWorldMatrix(updateParents, updateChildren);
this.matrixWorldInverse.copy(this.matrixWorld).invert();
}
clone() {
return new this.constructor().copy(this);
}
}
Camera.prototype.isCamera = true;
class PerspectiveCamera extends Camera {
constructor(fov = 50, aspect = 1, near = 0.1, far = 2000) {
super();
this.type = 'PerspectiveCamera';
this.fov = fov;
this.zoom = 1;
this.near = near;
this.far = far;
this.focus = 10;
this.aspect = aspect;
this.view = null;
this.filmGauge = 35; // width of the film (default in millimeters)
this.filmOffset = 0; // horizontal film offset (same unit as gauge)
this.updateProjectionMatrix();
}
copy(source, recursive) {
super.copy(source, recursive);
this.fov = source.fov;
this.zoom = source.zoom;
this.near = source.near;
this.far = source.far;
this.focus = source.focus;
this.aspect = source.aspect;
this.view = source.view === null ? null : Object.assign({}, source.view);
this.filmGauge = source.filmGauge;
this.filmOffset = source.filmOffset;
return this;
}
/**
* Sets the FOV by focal length in respect to the current .filmGauge.
*
* The default film gauge is 35, so that the focal length can be specified for
* a 35mm (full frame) camera.
*
* Values for focal length and film gauge must have the same unit.
*/
setFocalLength(focalLength) {
/** see {@link http://www.bobatkins.com/photography/technical/field_of_view.html} */
const vExtentSlope = 0.5 * this.getFilmHeight() / focalLength;
this.fov = RAD2DEG * 2 * Math.atan(vExtentSlope);
this.updateProjectionMatrix();
}
/**
* Calculates the focal length from the current .fov and .filmGauge.
*/
getFocalLength() {
const vExtentSlope = Math.tan(DEG2RAD * 0.5 * this.fov);
return 0.5 * this.getFilmHeight() / vExtentSlope;
}
getEffectiveFOV() {
return RAD2DEG * 2 * Math.atan(Math.tan(DEG2RAD * 0.5 * this.fov) / this.zoom);
}
getFilmWidth() {
// film not completely covered in portrait format (aspect < 1)
return this.filmGauge * Math.min(this.aspect, 1);
}
getFilmHeight() {
// film not completely covered in landscape format (aspect > 1)
return this.filmGauge / Math.max(this.aspect, 1);
}
/**
* Sets an offset in a larger frustum. This is useful for multi-window or
* multi-monitor/multi-machine setups.
*
* For example, if you have 3x2 monitors and each monitor is 1920x1080 and
* the monitors are in grid like this
*
* +---+---+---+
* | A | B | C |
* +---+---+---+
* | D | E | F |
* +---+---+---+
*
* then for each monitor you would call it like this
*
* const w = 1920;
* const h = 1080;
* const fullWidth = w * 3;
* const fullHeight = h * 2;
*
* --A--
* camera.setViewOffset( fullWidth, fullHeight, w * 0, h * 0, w, h );
* --B--
* camera.setViewOffset( fullWidth, fullHeight, w * 1, h * 0, w, h );
* --C--
* camera.setViewOffset( fullWidth, fullHeight, w * 2, h * 0, w, h );
* --D--
* camera.setViewOffset( fullWidth, fullHeight, w * 0, h * 1, w, h );
* --E--
* camera.setViewOffset( fullWidth, fullHeight, w * 1, h * 1, w, h );
* --F--
* camera.setViewOffset( fullWidth, fullHeight, w * 2, h * 1, w, h );
*
* Note there is no reason monitors have to be the same size or in a grid.
*/
setViewOffset(fullWidth, fullHeight, x, y, width, height) {
this.aspect = fullWidth / fullHeight;
if (this.view === null) {
this.view = {
enabled: true,
fullWidth: 1,
fullHeight: 1,
offsetX: 0,
offsetY: 0,
width: 1,
height: 1
};
}
this.view.enabled = true;
this.view.fullWidth = fullWidth;
this.view.fullHeight = fullHeight;
this.view.offsetX = x;
this.view.offsetY = y;
this.view.width = width;
this.view.height = height;
this.updateProjectionMatrix();
}
clearViewOffset() {
if (this.view !== null) {
this.view.enabled = false;
}
this.updateProjectionMatrix();
}
updateProjectionMatrix() {
const near = this.near;
let top = near * Math.tan(DEG2RAD * 0.5 * this.fov) / this.zoom;
let height = 2 * top;
let width = this.aspect * height;
let left = -0.5 * width;
const view = this.view;
if (this.view !== null && this.view.enabled) {
const fullWidth = view.fullWidth,
fullHeight = view.fullHeight;
left += view.offsetX * width / fullWidth;
top -= view.offsetY * height / fullHeight;
width *= view.width / fullWidth;
height *= view.height / fullHeight;
}
const skew = this.filmOffset;
if (skew !== 0) left += near * skew / this.getFilmWidth();
this.projectionMatrix.makePerspective(left, left + width, top, top - height, near, this.far);
this.projectionMatrixInverse.copy(this.projectionMatrix).invert();
}
toJSON(meta) {
const data = super.toJSON(meta);
data.object.fov = this.fov;
data.object.zoom = this.zoom;
data.object.near = this.near;
data.object.far = this.far;
data.object.focus = this.focus;
data.object.aspect = this.aspect;
if (this.view !== null) data.object.view = Object.assign({}, this.view);
data.object.filmGauge = this.filmGauge;
data.object.filmOffset = this.filmOffset;
return data;
}
}
PerspectiveCamera.prototype.isPerspectiveCamera = true;
const fov = 90,
aspect = 1;
class CubeCamera extends Object3D {
constructor(near, far, renderTarget) {
super();
this.type = 'CubeCamera';
if (renderTarget.isWebGLCubeRenderTarget !== true) {
console.error('THREE.CubeCamera: The constructor now expects an instance of WebGLCubeRenderTarget as third parameter.');
return;
}
this.renderTarget = renderTarget;
const cameraPX = new PerspectiveCamera(fov, aspect, near, far);
cameraPX.layers = this.layers;
cameraPX.up.set(0, -1, 0);
cameraPX.lookAt(new Vector3(1, 0, 0));
this.add(cameraPX);
const cameraNX = new PerspectiveCamera(fov, aspect, near, far);
cameraNX.layers = this.layers;
cameraNX.up.set(0, -1, 0);
cameraNX.lookAt(new Vector3(-1, 0, 0));
this.add(cameraNX);
const cameraPY = new PerspectiveCamera(fov, aspect, near, far);
cameraPY.layers = this.layers;
cameraPY.up.set(0, 0, 1);
cameraPY.lookAt(new Vector3(0, 1, 0));
this.add(cameraPY);
const cameraNY = new PerspectiveCamera(fov, aspect, near, far);
cameraNY.layers = this.layers;
cameraNY.up.set(0, 0, -1);
cameraNY.lookAt(new Vector3(0, -1, 0));
this.add(cameraNY);
const cameraPZ = new PerspectiveCamera(fov, aspect, near, far);
cameraPZ.layers = this.layers;
cameraPZ.up.set(0, -1, 0);
cameraPZ.lookAt(new Vector3(0, 0, 1));
this.add(cameraPZ);
const cameraNZ = new PerspectiveCamera(fov, aspect, near, far);
cameraNZ.layers = this.layers;
cameraNZ.up.set(0, -1, 0);
cameraNZ.lookAt(new Vector3(0, 0, -1));
this.add(cameraNZ);
}
update(renderer, scene) {
if (this.parent === null) this.updateMatrixWorld();
const renderTarget = this.renderTarget;
const [cameraPX, cameraNX, cameraPY, cameraNY, cameraPZ, cameraNZ] = this.children;
const currentXrEnabled = renderer.xr.enabled;
const currentRenderTarget = renderer.getRenderTarget();
renderer.xr.enabled = false;
const generateMipmaps = renderTarget.texture.generateMipmaps;
renderTarget.texture.generateMipmaps = false;
renderer.setRenderTarget(renderTarget, 0);
renderer.render(scene, cameraPX);
renderer.setRenderTarget(renderTarget, 1);
renderer.render(scene, cameraNX);
renderer.setRenderTarget(renderTarget, 2);
renderer.render(scene, cameraPY);
renderer.setRenderTarget(renderTarget, 3);
renderer.render(scene, cameraNY);
renderer.setRenderTarget(renderTarget, 4);
renderer.render(scene, cameraPZ);
renderTarget.texture.generateMipmaps = generateMipmaps;
renderer.setRenderTarget(renderTarget, 5);
renderer.render(scene, cameraNZ);
renderer.setRenderTarget(currentRenderTarget);
renderer.xr.enabled = currentXrEnabled;
}
}
class CubeTexture extends Texture {
constructor(images, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding) {
images = images !== undefined ? images : [];
mapping = mapping !== undefined ? mapping : CubeReflectionMapping;
super(images, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding);
this.flipY = false;
}
get images() {
return this.image;
}
set images(value) {
this.image = value;
}
}
CubeTexture.prototype.isCubeTexture = true;
class WebGLCubeRenderTarget extends WebGLRenderTarget {
constructor(size, options, dummy) {
if (Number.isInteger(options)) {
console.warn('THREE.WebGLCubeRenderTarget: constructor signature is now WebGLCubeRenderTarget( size, options )');
options = dummy;
}
super(size, size, options);
options = options || {}; // By convention -- likely based on the RenderMan spec from the 1990's -- cube maps are specified by WebGL (and three.js)
// in a coordinate system in which positive-x is to the right when looking up the positive-z axis -- in other words,
// in a left-handed coordinate system. By continuing this convention, preexisting cube maps continued to render correctly.
// three.js uses a right-handed coordinate system. So environment maps used in three.js appear to have px and nx swapped
// and the flag isRenderTargetTexture controls this conversion. The flip is not required when using WebGLCubeRenderTarget.texture
// as a cube texture (this is detected when isRenderTargetTexture is set to true for cube textures).
this.texture = new CubeTexture(undefined, options.mapping, options.wrapS, options.wrapT, options.magFilter, options.minFilter, options.format, options.type, options.anisotropy, options.encoding);
this.texture.isRenderTargetTexture = true;
this.texture.generateMipmaps = options.generateMipmaps !== undefined ? options.generateMipmaps : false;
this.texture.minFilter = options.minFilter !== undefined ? options.minFilter : LinearFilter;
this.texture._needsFlipEnvMap = false;
}
fromEquirectangularTexture(renderer, texture) {
this.texture.type = texture.type;
this.texture.format = RGBAFormat; // see #18859
this.texture.encoding = texture.encoding;
this.texture.generateMipmaps = texture.generateMipmaps;
this.texture.minFilter = texture.minFilter;
this.texture.magFilter = texture.magFilter;
const shader = {
uniforms: {
tEquirect: {
value: null
}
},
vertexShader:
/* glsl */
`
varying vec3 vWorldDirection;
vec3 transformDirection( in vec3 dir, in mat4 matrix ) {
return normalize( ( matrix * vec4( dir, 0.0 ) ).xyz );
}
void main() {
vWorldDirection = transformDirection( position, modelMatrix );
#include <begin_vertex>
#include <project_vertex>
}
`,
fragmentShader:
/* glsl */
`
uniform sampler2D tEquirect;
varying vec3 vWorldDirection;
#include <common>
void main() {
vec3 direction = normalize( vWorldDirection );
vec2 sampleUV = equirectUv( direction );
gl_FragColor = texture2D( tEquirect, sampleUV );
}
`
};
const geometry = new BoxGeometry(5, 5, 5);
const material = new ShaderMaterial({
name: 'CubemapFromEquirect',
uniforms: cloneUniforms(shader.uniforms),
vertexShader: shader.vertexShader,
fragmentShader: shader.fragmentShader,
side: BackSide,
blending: NoBlending
});
material.uniforms.tEquirect.value = texture;
const mesh = new Mesh(geometry, material);
const currentMinFilter = texture.minFilter; // Avoid blurred poles
if (texture.minFilter === LinearMipmapLinearFilter) texture.minFilter = LinearFilter;
const camera = new CubeCamera(1, 10, this);
camera.update(renderer, mesh);
texture.minFilter = currentMinFilter;
mesh.geometry.dispose();
mesh.material.dispose();
return this;
}
clear(renderer, color, depth, stencil) {
const currentRenderTarget = renderer.getRenderTarget();
for (let i = 0; i < 6; i++) {
renderer.setRenderTarget(this, i);
renderer.clear(color, depth, stencil);
}
renderer.setRenderTarget(currentRenderTarget);
}
}
WebGLCubeRenderTarget.prototype.isWebGLCubeRenderTarget = true;
const _vector1 = /*@__PURE__*/new Vector3();
const _vector2 = /*@__PURE__*/new Vector3();
const _normalMatrix = /*@__PURE__*/new Matrix3();
class Plane {
constructor(normal = new Vector3(1, 0, 0), constant = 0) {
// normal is assumed to be normalized
this.normal = normal;
this.constant = constant;
}
set(normal, constant) {
this.normal.copy(normal);
this.constant = constant;
return this;
}
setComponents(x, y, z, w) {
this.normal.set(x, y, z);
this.constant = w;
return this;
}
setFromNormalAndCoplanarPoint(normal, point) {
this.normal.copy(normal);
this.constant = -point.dot(this.normal);
return this;
}
setFromCoplanarPoints(a, b, c) {
const normal = _vector1.subVectors(c, b).cross(_vector2.subVectors(a, b)).normalize(); // Q: should an error be thrown if normal is zero (e.g. degenerate plane)?
this.setFromNormalAndCoplanarPoint(normal, a);
return this;
}
copy(plane) {
this.normal.copy(plane.normal);
this.constant = plane.constant;
return this;
}
normalize() {
// Note: will lead to a divide by zero if the plane is invalid.
const inverseNormalLength = 1.0 / this.normal.length();
this.normal.multiplyScalar(inverseNormalLength);
this.constant *= inverseNormalLength;
return this;
}
negate() {
this.constant *= -1;
this.normal.negate();
return this;
}
distanceToPoint(point) {
return this.normal.dot(point) + this.constant;
}
distanceToSphere(sphere) {
return this.distanceToPoint(sphere.center) - sphere.radius;
}
projectPoint(point, target) {
return target.copy(this.normal).multiplyScalar(-this.distanceToPoint(point)).add(point);
}
intersectLine(line, target) {
const direction = line.delta(_vector1);
const denominator = this.normal.dot(direction);
if (denominator === 0) {
// line is coplanar, return origin
if (this.distanceToPoint(line.start) === 0) {
return target.copy(line.start);
} // Unsure if this is the correct method to handle this case.
return null;
}
const t = -(line.start.dot(this.normal) + this.constant) / denominator;
if (t < 0 || t > 1) {
return null;
}
return target.copy(direction).multiplyScalar(t).add(line.start);
}
intersectsLine(line) {
// Note: this tests if a line intersects the plane, not whether it (or its end-points) are coplanar with it.
const startSign = this.distanceToPoint(line.start);
const endSign = this.distanceToPoint(line.end);
return startSign < 0 && endSign > 0 || endSign < 0 && startSign > 0;
}
intersectsBox(box) {
return box.intersectsPlane(this);
}
intersectsSphere(sphere) {
return sphere.intersectsPlane(this);
}
coplanarPoint(target) {
return target.copy(this.normal).multiplyScalar(-this.constant);
}
applyMatrix4(matrix, optionalNormalMatrix) {
const normalMatrix = optionalNormalMatrix || _normalMatrix.getNormalMatrix(matrix);
const referencePoint = this.coplanarPoint(_vector1).applyMatrix4(matrix);
const normal = this.normal.applyMatrix3(normalMatrix).normalize();
this.constant = -referencePoint.dot(normal);
return this;
}
translate(offset) {
this.constant -= offset.dot(this.normal);
return this;
}
equals(plane) {
return plane.normal.equals(this.normal) && plane.constant === this.constant;
}
clone() {
return new this.constructor().copy(this);
}
}
Plane.prototype.isPlane = true;
const _sphere$2 = /*@__PURE__*/new Sphere();
const _vector$7 = /*@__PURE__*/new Vector3();
class Frustum {
constructor(p0 = new Plane(), p1 = new Plane(), p2 = new Plane(), p3 = new Plane(), p4 = new Plane(), p5 = new Plane()) {
this.planes = [p0, p1, p2, p3, p4, p5];
}
set(p0, p1, p2, p3, p4, p5) {
const planes = this.planes;
planes[0].copy(p0);
planes[1].copy(p1);
planes[2].copy(p2);
planes[3].copy(p3);
planes[4].copy(p4);
planes[5].copy(p5);
return this;
}
copy(frustum) {
const planes = this.planes;
for (let i = 0; i < 6; i++) {
planes[i].copy(frustum.planes[i]);
}
return this;
}
setFromProjectionMatrix(m) {
const planes = this.planes;
const me = m.elements;
const me0 = me[0],
me1 = me[1],
me2 = me[2],
me3 = me[3];
const me4 = me[4],
me5 = me[5],
me6 = me[6],
me7 = me[7];
const me8 = me[8],
me9 = me[9],
me10 = me[10],
me11 = me[11];
const me12 = me[12],
me13 = me[13],
me14 = me[14],
me15 = me[15];
planes[0].setComponents(me3 - me0, me7 - me4, me11 - me8, me15 - me12).normalize();
planes[1].setComponents(me3 + me0, me7 + me4, me11 + me8, me15 + me12).normalize();
planes[2].setComponents(me3 + me1, me7 + me5, me11 + me9, me15 + me13).normalize();
planes[3].setComponents(me3 - me1, me7 - me5, me11 - me9, me15 - me13).normalize();
planes[4].setComponents(me3 - me2, me7 - me6, me11 - me10, me15 - me14).normalize();
planes[5].setComponents(me3 + me2, me7 + me6, me11 + me10, me15 + me14).normalize();
return this;
}
intersectsObject(object) {
const geometry = object.geometry;
if (geometry.boundingSphere === null) geometry.computeBoundingSphere();
_sphere$2.copy(geometry.boundingSphere).applyMatrix4(object.matrixWorld);
return this.intersectsSphere(_sphere$2);
}
intersectsSprite(sprite) {
_sphere$2.center.set(0, 0, 0);
_sphere$2.radius = 0.7071067811865476;
_sphere$2.applyMatrix4(sprite.matrixWorld);
return this.intersectsSphere(_sphere$2);
}
intersectsSphere(sphere) {
const planes = this.planes;
const center = sphere.center;
const negRadius = -sphere.radius;
for (let i = 0; i < 6; i++) {
const distance = planes[i].distanceToPoint(center);
if (distance < negRadius) {
return false;
}
}
return true;
}
intersectsBox(box) {
const planes = this.planes;
for (let i = 0; i < 6; i++) {
const plane = planes[i]; // corner at max distance
_vector$7.x = plane.normal.x > 0 ? box.max.x : box.min.x;
_vector$7.y = plane.normal.y > 0 ? box.max.y : box.min.y;
_vector$7.z = plane.normal.z > 0 ? box.max.z : box.min.z;
if (plane.distanceToPoint(_vector$7) < 0) {
return false;
}
}
return true;
}
containsPoint(point) {
const planes = this.planes;
for (let i = 0; i < 6; i++) {
if (planes[i].distanceToPoint(point) < 0) {
return false;
}
}
return true;
}
clone() {
return new this.constructor().copy(this);
}
}
function WebGLAnimation() {
let context = null;
let isAnimating = false;
let animationLoop = null;
let requestId = null;
function onAnimationFrame(time, frame) {
animationLoop(time, frame);
requestId = context.requestAnimationFrame(onAnimationFrame);
}
return {
start: function () {
if (isAnimating === true) return;
if (animationLoop === null) return;
requestId = context.requestAnimationFrame(onAnimationFrame);
isAnimating = true;
},
stop: function () {
context.cancelAnimationFrame(requestId);
isAnimating = false;
},
setAnimationLoop: function (callback) {
animationLoop = callback;
},
setContext: function (value) {
context = value;
}
};
}
function WebGLAttributes(gl, capabilities) {
const isWebGL2 = capabilities.isWebGL2;
const buffers = new WeakMap();
function createBuffer(attribute, bufferType) {
const array = attribute.array;
const usage = attribute.usage;
const buffer = gl.createBuffer();
gl.bindBuffer(bufferType, buffer);
gl.bufferData(bufferType, array, usage);
attribute.onUploadCallback();
let type = gl.FLOAT;
if (array instanceof Float32Array) {
type = gl.FLOAT;
} else if (array instanceof Float64Array) {
console.warn('THREE.WebGLAttributes: Unsupported data buffer format: Float64Array.');
} else if (array instanceof Uint16Array) {
if (attribute.isFloat16BufferAttribute) {
if (isWebGL2) {
type = gl.HALF_FLOAT;
} else {
console.warn('THREE.WebGLAttributes: Usage of Float16BufferAttribute requires WebGL2.');
}
} else {
type = gl.UNSIGNED_SHORT;
}
} else if (array instanceof Int16Array) {
type = gl.SHORT;
} else if (array instanceof Uint32Array) {
type = gl.UNSIGNED_INT;
} else if (array instanceof Int32Array) {
type = gl.INT;
} else if (array instanceof Int8Array) {
type = gl.BYTE;
} else if (array instanceof Uint8Array) {
type = gl.UNSIGNED_BYTE;
} else if (array instanceof Uint8ClampedArray) {
type = gl.UNSIGNED_BYTE;
}
return {
buffer: buffer,
type: type,
bytesPerElement: array.BYTES_PER_ELEMENT,
version: attribute.version
};
}
function updateBuffer(buffer, attribute, bufferType) {
const array = attribute.array;
const updateRange = attribute.updateRange;
gl.bindBuffer(bufferType, buffer);
if (updateRange.count === -1) {
// Not using update ranges
gl.bufferSubData(bufferType, 0, array);
} else {
if (isWebGL2) {
gl.bufferSubData(bufferType, updateRange.offset * array.BYTES_PER_ELEMENT, array, updateRange.offset, updateRange.count);
} else {
gl.bufferSubData(bufferType, updateRange.offset * array.BYTES_PER_ELEMENT, array.subarray(updateRange.offset, updateRange.offset + updateRange.count));
}
updateRange.count = -1; // reset range
}
} //
function get(attribute) {
if (attribute.isInterleavedBufferAttribute) attribute = attribute.data;
return buffers.get(attribute);
}
function remove(attribute) {
if (attribute.isInterleavedBufferAttribute) attribute = attribute.data;
const data = buffers.get(attribute);
if (data) {
gl.deleteBuffer(data.buffer);
buffers.delete(attribute);
}
}
function update(attribute, bufferType) {
if (attribute.isGLBufferAttribute) {
const cached = buffers.get(attribute);
if (!cached || cached.version < attribute.version) {
buffers.set(attribute, {
buffer: attribute.buffer,
type: attribute.type,
bytesPerElement: attribute.elementSize,
version: attribute.version
});
}
return;
}
if (attribute.isInterleavedBufferAttribute) attribute = attribute.data;
const data = buffers.get(attribute);
if (data === undefined) {
buffers.set(attribute, createBuffer(attribute, bufferType));
} else if (data.version < attribute.version) {
updateBuffer(data.buffer, attribute, bufferType);
data.version = attribute.version;
}
}
return {
get: get,
remove: remove,
update: update
};
}
class PlaneGeometry extends BufferGeometry {
constructor(width = 1, height = 1, widthSegments = 1, heightSegments = 1) {
super();
this.type = 'PlaneGeometry';
this.parameters = {
width: width,
height: height,
widthSegments: widthSegments,
heightSegments: heightSegments
};
const width_half = width / 2;
const height_half = height / 2;
const gridX = Math.floor(widthSegments);
const gridY = Math.floor(heightSegments);
const gridX1 = gridX + 1;
const gridY1 = gridY + 1;
const segment_width = width / gridX;
const segment_height = height / gridY; //
const indices = [];
const vertices = [];
const normals = [];
const uvs = [];
for (let iy = 0; iy < gridY1; iy++) {
const y = iy * segment_height - height_half;
for (let ix = 0; ix < gridX1; ix++) {
const x = ix * segment_width - width_half;
vertices.push(x, -y, 0);
normals.push(0, 0, 1);
uvs.push(ix / gridX);
uvs.push(1 - iy / gridY);
}
}
for (let iy = 0; iy < gridY; iy++) {
for (let ix = 0; ix < gridX; ix++) {
const a = ix + gridX1 * iy;
const b = ix + gridX1 * (iy + 1);
const c = ix + 1 + gridX1 * (iy + 1);
const d = ix + 1 + gridX1 * iy;
indices.push(a, b, d);
indices.push(b, c, d);
}
}
this.setIndex(indices);
this.setAttribute('position', new Float32BufferAttribute(vertices, 3));
this.setAttribute('normal', new Float32BufferAttribute(normals, 3));
this.setAttribute('uv', new Float32BufferAttribute(uvs, 2));
}
static fromJSON(data) {
return new PlaneGeometry(data.width, data.height, data.widthSegments, data.heightSegments);
}
}
var alphamap_fragment = "#ifdef USE_ALPHAMAP\n\tdiffuseColor.a *= texture2D( alphaMap, vUv ).g;\n#endif";
var alphamap_pars_fragment = "#ifdef USE_ALPHAMAP\n\tuniform sampler2D alphaMap;\n#endif";
var alphatest_fragment = "#ifdef USE_ALPHATEST\n\tif ( diffuseColor.a < alphaTest ) discard;\n#endif";
var alphatest_pars_fragment = "#ifdef USE_ALPHATEST\n\tuniform float alphaTest;\n#endif";
var aomap_fragment = "#ifdef USE_AOMAP\n\tfloat ambientOcclusion = ( texture2D( aoMap, vUv2 ).r - 1.0 ) * aoMapIntensity + 1.0;\n\treflectedLight.indirectDiffuse *= ambientOcclusion;\n\t#if defined( USE_ENVMAP ) && defined( STANDARD )\n\t\tfloat dotNV = saturate( dot( geometry.normal, geometry.viewDir ) );\n\t\treflectedLight.indirectSpecular *= computeSpecularOcclusion( dotNV, ambientOcclusion, material.roughness );\n\t#endif\n#endif";
var aomap_pars_fragment = "#ifdef USE_AOMAP\n\tuniform sampler2D aoMap;\n\tuniform float aoMapIntensity;\n#endif";
var begin_vertex = "vec3 transformed = vec3( position );";
var beginnormal_vertex = "vec3 objectNormal = vec3( normal );\n#ifdef USE_TANGENT\n\tvec3 objectTangent = vec3( tangent.xyz );\n#endif";
var bsdfs = "vec3 BRDF_Lambert( const in vec3 diffuseColor ) {\n\treturn RECIPROCAL_PI * diffuseColor;\n}\nvec3 F_Schlick( const in vec3 f0, const in float f90, const in float dotVH ) {\n\tfloat fresnel = exp2( ( - 5.55473 * dotVH - 6.98316 ) * dotVH );\n\treturn f0 * ( 1.0 - fresnel ) + ( f90 * fresnel );\n}\nfloat V_GGX_SmithCorrelated( const in float alpha, const in float dotNL, const in float dotNV ) {\n\tfloat a2 = pow2( alpha );\n\tfloat gv = dotNL * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNV ) );\n\tfloat gl = dotNV * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNL ) );\n\treturn 0.5 / max( gv + gl, EPSILON );\n}\nfloat D_GGX( const in float alpha, const in float dotNH ) {\n\tfloat a2 = pow2( alpha );\n\tfloat denom = pow2( dotNH ) * ( a2 - 1.0 ) + 1.0;\n\treturn RECIPROCAL_PI * a2 / pow2( denom );\n}\nvec3 BRDF_GGX( const in vec3 lightDir, const in vec3 viewDir, const in vec3 normal, const in vec3 f0, const in float f90, const in float roughness ) {\n\tfloat alpha = pow2( roughness );\n\tvec3 halfDir = normalize( lightDir + viewDir );\n\tfloat dotNL = saturate( dot( normal, lightDir ) );\n\tfloat dotNV = saturate( dot( normal, viewDir ) );\n\tfloat dotNH = saturate( dot( normal, halfDir ) );\n\tfloat dotVH = saturate( dot( viewDir, halfDir ) );\n\tvec3 F = F_Schlick( f0, f90, dotVH );\n\tfloat V = V_GGX_SmithCorrelated( alpha, dotNL, dotNV );\n\tfloat D = D_GGX( alpha, dotNH );\n\treturn F * ( V * D );\n}\nvec2 LTC_Uv( const in vec3 N, const in vec3 V, const in float roughness ) {\n\tconst float LUT_SIZE = 64.0;\n\tconst float LUT_SCALE = ( LUT_SIZE - 1.0 ) / LUT_SIZE;\n\tconst float LUT_BIAS = 0.5 / LUT_SIZE;\n\tfloat dotNV = saturate( dot( N, V ) );\n\tvec2 uv = vec2( roughness, sqrt( 1.0 - dotNV ) );\n\tuv = uv * LUT_SCALE + LUT_BIAS;\n\treturn uv;\n}\nfloat LTC_ClippedSphereFormFactor( const in vec3 f ) {\n\tfloat l = length( f );\n\treturn max( ( l * l + f.z ) / ( l + 1.0 ), 0.0 );\n}\nvec3 LTC_EdgeVectorFormFactor( const in vec3 v1, const in vec3 v2 ) {\n\tfloat x = dot( v1, v2 );\n\tfloat y = abs( x );\n\tfloat a = 0.8543985 + ( 0.4965155 + 0.0145206 * y ) * y;\n\tfloat b = 3.4175940 + ( 4.1616724 + y ) * y;\n\tfloat v = a / b;\n\tfloat theta_sintheta = ( x > 0.0 ) ? v : 0.5 * inversesqrt( max( 1.0 - x * x, 1e-7 ) ) - v;\n\treturn cross( v1, v2 ) * theta_sintheta;\n}\nvec3 LTC_Evaluate( const in vec3 N, const in vec3 V, const in vec3 P, const in mat3 mInv, const in vec3 rectCoords[ 4 ] ) {\n\tvec3 v1 = rectCoords[ 1 ] - rectCoords[ 0 ];\n\tvec3 v2 = rectCoords[ 3 ] - rectCoords[ 0 ];\n\tvec3 lightNormal = cross( v1, v2 );\n\tif( dot( lightNormal, P - rectCoords[ 0 ] ) < 0.0 ) return vec3( 0.0 );\n\tvec3 T1, T2;\n\tT1 = normalize( V - N * dot( V, N ) );\n\tT2 = - cross( N, T1 );\n\tmat3 mat = mInv * transposeMat3( mat3( T1, T2, N ) );\n\tvec3 coords[ 4 ];\n\tcoords[ 0 ] = mat * ( rectCoords[ 0 ] - P );\n\tcoords[ 1 ] = mat * ( rectCoords[ 1 ] - P );\n\tcoords[ 2 ] = mat * ( rectCoords[ 2 ] - P );\n\tcoords[ 3 ] = mat * ( rectCoords[ 3 ] - P );\n\tcoords[ 0 ] = normalize( coords[ 0 ] );\n\tcoords[ 1 ] = normalize( coords[ 1 ] );\n\tcoords[ 2 ] = normalize( coords[ 2 ] );\n\tcoords[ 3 ] = normalize( coords[ 3 ] );\n\tvec3 vectorFormFactor = vec3( 0.0 );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 0 ], coords[ 1 ] );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 1 ], coords[ 2 ] );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 2 ], coords[ 3 ] );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 3 ], coords[ 0 ] );\n\tfloat result = LTC_ClippedSphereFormFactor( vectorFormFactor );\n\treturn vec3( result );\n}\nfloat G_BlinnPhong_Implicit( ) {\n\treturn 0.25;\n}\nfloat D_BlinnPhong( const in float shininess, const in float dotNH ) {\n\treturn RECIPROCAL_PI * ( shininess * 0.5 + 1.0 ) * pow( dotNH, shininess );\n}\nvec3 BRDF_BlinnPhong( const in vec3 lightDir, const in vec3 viewDir, const in vec3 normal, const in vec3 specularColor, const in float shininess ) {\n\tvec3 halfDir = normalize( lightDir + viewDir );\n\tfloat dotNH = saturate( dot( normal, halfDir ) );\n\tfloat dotVH = saturate( dot( viewDir, halfDir ) );\n\tvec3 F = F_Schlick( specularColor, 1.0, dotVH );\n\tfloat G = G_BlinnPhong_Implicit( );\n\tfloat D = D_BlinnPhong( shininess, dotNH );\n\treturn F * ( G * D );\n}\n#if defined( USE_SHEEN )\nfloat D_Charlie( float roughness, float dotNH ) {\n\tfloat alpha = pow2( roughness );\n\tfloat invAlpha = 1.0 / alpha;\n\tfloat cos2h = dotNH * dotNH;\n\tfloat sin2h = max( 1.0 - cos2h, 0.0078125 );\n\treturn ( 2.0 + invAlpha ) * pow( sin2h, invAlpha * 0.5 ) / ( 2.0 * PI );\n}\nfloat V_Neubelt( float dotNV, float dotNL ) {\n\treturn saturate( 1.0 / ( 4.0 * ( dotNL + dotNV - dotNL * dotNV ) ) );\n}\nvec3 BRDF_Sheen( const in vec3 lightDir, const in vec3 viewDir, const in vec3 normal, vec3 sheenTint, const in float sheenRoughness ) {\n\tvec3 halfDir = normalize( lightDir + viewDir );\n\tfloat dotNL = saturate( dot( normal, lightDir ) );\n\tfloat dotNV = saturate( dot( normal, viewDir ) );\n\tfloat dotNH = saturate( dot( normal, halfDir ) );\n\tfloat D = D_Charlie( sheenRoughness, dotNH );\n\tfloat V = V_Neubelt( dotNV, dotNL );\n\treturn sheenTint * ( D * V );\n}\n#endif";
var bumpmap_pars_fragment = "#ifdef USE_BUMPMAP\n\tuniform sampler2D bumpMap;\n\tuniform float bumpScale;\n\tvec2 dHdxy_fwd() {\n\t\tvec2 dSTdx = dFdx( vUv );\n\t\tvec2 dSTdy = dFdy( vUv );\n\t\tfloat Hll = bumpScale * texture2D( bumpMap, vUv ).x;\n\t\tfloat dBx = bumpScale * texture2D( bumpMap, vUv + dSTdx ).x - Hll;\n\t\tfloat dBy = bumpScale * texture2D( bumpMap, vUv + dSTdy ).x - Hll;\n\t\treturn vec2( dBx, dBy );\n\t}\n\tvec3 perturbNormalArb( vec3 surf_pos, vec3 surf_norm, vec2 dHdxy, float faceDirection ) {\n\t\tvec3 vSigmaX = vec3( dFdx( surf_pos.x ), dFdx( surf_pos.y ), dFdx( surf_pos.z ) );\n\t\tvec3 vSigmaY = vec3( dFdy( surf_pos.x ), dFdy( surf_pos.y ), dFdy( surf_pos.z ) );\n\t\tvec3 vN = surf_norm;\n\t\tvec3 R1 = cross( vSigmaY, vN );\n\t\tvec3 R2 = cross( vN, vSigmaX );\n\t\tfloat fDet = dot( vSigmaX, R1 ) * faceDirection;\n\t\tvec3 vGrad = sign( fDet ) * ( dHdxy.x * R1 + dHdxy.y * R2 );\n\t\treturn normalize( abs( fDet ) * surf_norm - vGrad );\n\t}\n#endif";
var clipping_planes_fragment = "#if NUM_CLIPPING_PLANES > 0\n\tvec4 plane;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < UNION_CLIPPING_PLANES; i ++ ) {\n\t\tplane = clippingPlanes[ i ];\n\t\tif ( dot( vClipPosition, plane.xyz ) > plane.w ) discard;\n\t}\n\t#pragma unroll_loop_end\n\t#if UNION_CLIPPING_PLANES < NUM_CLIPPING_PLANES\n\t\tbool clipped = true;\n\t\t#pragma unroll_loop_start\n\t\tfor ( int i = UNION_CLIPPING_PLANES; i < NUM_CLIPPING_PLANES; i ++ ) {\n\t\t\tplane = clippingPlanes[ i ];\n\t\t\tclipped = ( dot( vClipPosition, plane.xyz ) > plane.w ) && clipped;\n\t\t}\n\t\t#pragma unroll_loop_end\n\t\tif ( clipped ) discard;\n\t#endif\n#endif";
var clipping_planes_pars_fragment = "#if NUM_CLIPPING_PLANES > 0\n\tvarying vec3 vClipPosition;\n\tuniform vec4 clippingPlanes[ NUM_CLIPPING_PLANES ];\n#endif";
var clipping_planes_pars_vertex = "#if NUM_CLIPPING_PLANES > 0\n\tvarying vec3 vClipPosition;\n#endif";
var clipping_planes_vertex = "#if NUM_CLIPPING_PLANES > 0\n\tvClipPosition = - mvPosition.xyz;\n#endif";
var color_fragment = "#if defined( USE_COLOR_ALPHA )\n\tdiffuseColor *= vColor;\n#elif defined( USE_COLOR )\n\tdiffuseColor.rgb *= vColor;\n#endif";
var color_pars_fragment = "#if defined( USE_COLOR_ALPHA )\n\tvarying vec4 vColor;\n#elif defined( USE_COLOR )\n\tvarying vec3 vColor;\n#endif";
var color_pars_vertex = "#if defined( USE_COLOR_ALPHA )\n\tvarying vec4 vColor;\n#elif defined( USE_COLOR ) || defined( USE_INSTANCING_COLOR )\n\tvarying vec3 vColor;\n#endif";
var color_vertex = "#if defined( USE_COLOR_ALPHA )\n\tvColor = vec4( 1.0 );\n#elif defined( USE_COLOR ) || defined( USE_INSTANCING_COLOR )\n\tvColor = vec3( 1.0 );\n#endif\n#ifdef USE_COLOR\n\tvColor *= color;\n#endif\n#ifdef USE_INSTANCING_COLOR\n\tvColor.xyz *= instanceColor.xyz;\n#endif";
var common = "#define PI 3.141592653589793\n#define PI2 6.283185307179586\n#define PI_HALF 1.5707963267948966\n#define RECIPROCAL_PI 0.3183098861837907\n#define RECIPROCAL_PI2 0.15915494309189535\n#define EPSILON 1e-6\n#ifndef saturate\n#define saturate( a ) clamp( a, 0.0, 1.0 )\n#endif\n#define whiteComplement( a ) ( 1.0 - saturate( a ) )\nfloat pow2( const in float x ) { return x*x; }\nfloat pow3( const in float x ) { return x*x*x; }\nfloat pow4( const in float x ) { float x2 = x*x; return x2*x2; }\nfloat max3( const in vec3 v ) { return max( max( v.x, v.y ), v.z ); }\nfloat average( const in vec3 color ) { return dot( color, vec3( 0.3333 ) ); }\nhighp float rand( const in vec2 uv ) {\n\tconst highp float a = 12.9898, b = 78.233, c = 43758.5453;\n\thighp float dt = dot( uv.xy, vec2( a,b ) ), sn = mod( dt, PI );\n\treturn fract( sin( sn ) * c );\n}\n#ifdef HIGH_PRECISION\n\tfloat precisionSafeLength( vec3 v ) { return length( v ); }\n#else\n\tfloat precisionSafeLength( vec3 v ) {\n\t\tfloat maxComponent = max3( abs( v ) );\n\t\treturn length( v / maxComponent ) * maxComponent;\n\t}\n#endif\nstruct IncidentLight {\n\tvec3 color;\n\tvec3 direction;\n\tbool visible;\n};\nstruct ReflectedLight {\n\tvec3 directDiffuse;\n\tvec3 directSpecular;\n\tvec3 indirectDiffuse;\n\tvec3 indirectSpecular;\n};\nstruct GeometricContext {\n\tvec3 position;\n\tvec3 normal;\n\tvec3 viewDir;\n#ifdef USE_CLEARCOAT\n\tvec3 clearcoatNormal;\n#endif\n};\nvec3 transformDirection( in vec3 dir, in mat4 matrix ) {\n\treturn normalize( ( matrix * vec4( dir, 0.0 ) ).xyz );\n}\nvec3 inverseTransformDirection( in vec3 dir, in mat4 matrix ) {\n\treturn normalize( ( vec4( dir, 0.0 ) * matrix ).xyz );\n}\nmat3 transposeMat3( const in mat3 m ) {\n\tmat3 tmp;\n\ttmp[ 0 ] = vec3( m[ 0 ].x, m[ 1 ].x, m[ 2 ].x );\n\ttmp[ 1 ] = vec3( m[ 0 ].y, m[ 1 ].y, m[ 2 ].y );\n\ttmp[ 2 ] = vec3( m[ 0 ].z, m[ 1 ].z, m[ 2 ].z );\n\treturn tmp;\n}\nfloat linearToRelativeLuminance( const in vec3 color ) {\n\tvec3 weights = vec3( 0.2126, 0.7152, 0.0722 );\n\treturn dot( weights, color.rgb );\n}\nbool isPerspectiveMatrix( mat4 m ) {\n\treturn m[ 2 ][ 3 ] == - 1.0;\n}\nvec2 equirectUv( in vec3 dir ) {\n\tfloat u = atan( dir.z, dir.x ) * RECIPROCAL_PI2 + 0.5;\n\tfloat v = asin( clamp( dir.y, - 1.0, 1.0 ) ) * RECIPROCAL_PI + 0.5;\n\treturn vec2( u, v );\n}";
var cube_uv_reflection_fragment = "#ifdef ENVMAP_TYPE_CUBE_UV\n\t#define cubeUV_maxMipLevel 8.0\n\t#define cubeUV_minMipLevel 4.0\n\t#define cubeUV_maxTileSize 256.0\n\t#define cubeUV_minTileSize 16.0\n\tfloat getFace( vec3 direction ) {\n\t\tvec3 absDirection = abs( direction );\n\t\tfloat face = - 1.0;\n\t\tif ( absDirection.x > absDirection.z ) {\n\t\t\tif ( absDirection.x > absDirection.y )\n\t\t\t\tface = direction.x > 0.0 ? 0.0 : 3.0;\n\t\t\telse\n\t\t\t\tface = direction.y > 0.0 ? 1.0 : 4.0;\n\t\t} else {\n\t\t\tif ( absDirection.z > absDirection.y )\n\t\t\t\tface = direction.z > 0.0 ? 2.0 : 5.0;\n\t\t\telse\n\t\t\t\tface = direction.y > 0.0 ? 1.0 : 4.0;\n\t\t}\n\t\treturn face;\n\t}\n\tvec2 getUV( vec3 direction, float face ) {\n\t\tvec2 uv;\n\t\tif ( face == 0.0 ) {\n\t\t\tuv = vec2( direction.z, direction.y ) / abs( direction.x );\n\t\t} else if ( face == 1.0 ) {\n\t\t\tuv = vec2( - direction.x, - direction.z ) / abs( direction.y );\n\t\t} else if ( face == 2.0 ) {\n\t\t\tuv = vec2( - direction.x, direction.y ) / abs( direction.z );\n\t\t} else if ( face == 3.0 ) {\n\t\t\tuv = vec2( - direction.z, direction.y ) / abs( direction.x );\n\t\t} else if ( face == 4.0 ) {\n\t\t\tuv = vec2( - direction.x, direction.z ) / abs( direction.y );\n\t\t} else {\n\t\t\tuv = vec2( direction.x, direction.y ) / abs( direction.z );\n\t\t}\n\t\treturn 0.5 * ( uv + 1.0 );\n\t}\n\tvec3 bilinearCubeUV( sampler2D envMap, vec3 direction, float mipInt ) {\n\t\tfloat face = getFace( direction );\n\t\tfloat filterInt = max( cubeUV_minMipLevel - mipInt, 0.0 );\n\t\tmipInt = max( mipInt, cubeUV_minMipLevel );\n\t\tfloat faceSize = exp2( mipInt );\n\t\tfloat texelSize = 1.0 / ( 3.0 * cubeUV_maxTileSize );\n\t\tvec2 uv = getUV( direction, face ) * ( faceSize - 1.0 );\n\t\tvec2 f = fract( uv );\n\t\tuv += 0.5 - f;\n\t\tif ( face > 2.0 ) {\n\t\t\tuv.y += faceSize;\n\t\t\tface -= 3.0;\n\t\t}\n\t\tuv.x += face * faceSize;\n\t\tif ( mipInt < cubeUV_maxMipLevel ) {\n\t\t\tuv.y += 2.0 * cubeUV_maxTileSize;\n\t\t}\n\t\tuv.y += filterInt * 2.0 * cubeUV_minTileSize;\n\t\tuv.x += 3.0 * max( 0.0, cubeUV_maxTileSize - 2.0 * faceSize );\n\t\tuv *= texelSize;\n\t\tvec3 tl = envMapTexelToLinear( texture2D( envMap, uv ) ).rgb;\n\t\tuv.x += texelSize;\n\t\tvec3 tr = envMapTexelToLinear( texture2D( envMap, uv ) ).rgb;\n\t\tuv.y += texelSize;\n\t\tvec3 br = envMapTexelToLinear( texture2D( envMap, uv ) ).rgb;\n\t\tuv.x -= texelSize;\n\t\tvec3 bl = envMapTexelToLinear( texture2D( envMap, uv ) ).rgb;\n\t\tvec3 tm = mix( tl, tr, f.x );\n\t\tvec3 bm = mix( bl, br, f.x );\n\t\treturn mix( tm, bm, f.y );\n\t}\n\t#define r0 1.0\n\t#define v0 0.339\n\t#define m0 - 2.0\n\t#define r1 0.8\n\t#define v1 0.276\n\t#define m1 - 1.0\n\t#define r4 0.4\n\t#define v4 0.046\n\t#define m4 2.0\n\t#define r5 0.305\n\t#define v5 0.016\n\t#define m5 3.0\n\t#define r6 0.21\n\t#define v6 0.0038\n\t#define m6 4.0\n\tfloat roughnessToMip( float roughness ) {\n\t\tfloat mip = 0.0;\n\t\tif ( roughness >= r1 ) {\n\t\t\tmip = ( r0 - roughness ) * ( m1 - m0 ) / ( r0 - r1 ) + m0;\n\t\t} else if ( roughness >= r4 ) {\n\t\t\tmip = ( r1 - roughness ) * ( m4 - m1 ) / ( r1 - r4 ) + m1;\n\t\t} else if ( roughness >= r5 ) {\n\t\t\tmip = ( r4 - roughness ) * ( m5 - m4 ) / ( r4 - r5 ) + m4;\n\t\t} else if ( roughness >= r6 ) {\n\t\t\tmip = ( r5 - roughness ) * ( m6 - m5 ) / ( r5 - r6 ) + m5;\n\t\t} else {\n\t\t\tmip = - 2.0 * log2( 1.16 * roughness );\t\t}\n\t\treturn mip;\n\t}\n\tvec4 textureCubeUV( sampler2D envMap, vec3 sampleDir, float roughness ) {\n\t\tfloat mip = clamp( roughnessToMip( roughness ), m0, cubeUV_maxMipLevel );\n\t\tfloat mipF = fract( mip );\n\t\tfloat mipInt = floor( mip );\n\t\tvec3 color0 = bilinearCubeUV( envMap, sampleDir, mipInt );\n\t\tif ( mipF == 0.0 ) {\n\t\t\treturn vec4( color0, 1.0 );\n\t\t} else {\n\t\t\tvec3 color1 = bilinearCubeUV( envMap, sampleDir, mipInt + 1.0 );\n\t\t\treturn vec4( mix( color0, color1, mipF ), 1.0 );\n\t\t}\n\t}\n#endif";
var defaultnormal_vertex = "vec3 transformedNormal = objectNormal;\n#ifdef USE_INSTANCING\n\tmat3 m = mat3( instanceMatrix );\n\ttransformedNormal /= vec3( dot( m[ 0 ], m[ 0 ] ), dot( m[ 1 ], m[ 1 ] ), dot( m[ 2 ], m[ 2 ] ) );\n\ttransformedNormal = m * transformedNormal;\n#endif\ntransformedNormal = normalMatrix * transformedNormal;\n#ifdef FLIP_SIDED\n\ttransformedNormal = - transformedNormal;\n#endif\n#ifdef USE_TANGENT\n\tvec3 transformedTangent = ( modelViewMatrix * vec4( objectTangent, 0.0 ) ).xyz;\n\t#ifdef FLIP_SIDED\n\t\ttransformedTangent = - transformedTangent;\n\t#endif\n#endif";
var displacementmap_pars_vertex = "#ifdef USE_DISPLACEMENTMAP\n\tuniform sampler2D displacementMap;\n\tuniform float displacementScale;\n\tuniform float displacementBias;\n#endif";
var displacementmap_vertex = "#ifdef USE_DISPLACEMENTMAP\n\ttransformed += normalize( objectNormal ) * ( texture2D( displacementMap, vUv ).x * displacementScale + displacementBias );\n#endif";
var emissivemap_fragment = "#ifdef USE_EMISSIVEMAP\n\tvec4 emissiveColor = texture2D( emissiveMap, vUv );\n\temissiveColor.rgb = emissiveMapTexelToLinear( emissiveColor ).rgb;\n\ttotalEmissiveRadiance *= emissiveColor.rgb;\n#endif";
var emissivemap_pars_fragment = "#ifdef USE_EMISSIVEMAP\n\tuniform sampler2D emissiveMap;\n#endif";
var encodings_fragment = "gl_FragColor = linearToOutputTexel( gl_FragColor );";
var encodings_pars_fragment = "\nvec4 LinearToLinear( in vec4 value ) {\n\treturn value;\n}\nvec4 GammaToLinear( in vec4 value, in float gammaFactor ) {\n\treturn vec4( pow( value.rgb, vec3( gammaFactor ) ), value.a );\n}\nvec4 LinearToGamma( in vec4 value, in float gammaFactor ) {\n\treturn vec4( pow( value.rgb, vec3( 1.0 / gammaFactor ) ), value.a );\n}\nvec4 sRGBToLinear( in vec4 value ) {\n\treturn vec4( mix( pow( value.rgb * 0.9478672986 + vec3( 0.0521327014 ), vec3( 2.4 ) ), value.rgb * 0.0773993808, vec3( lessThanEqual( value.rgb, vec3( 0.04045 ) ) ) ), value.a );\n}\nvec4 LinearTosRGB( in vec4 value ) {\n\treturn vec4( mix( pow( value.rgb, vec3( 0.41666 ) ) * 1.055 - vec3( 0.055 ), value.rgb * 12.92, vec3( lessThanEqual( value.rgb, vec3( 0.0031308 ) ) ) ), value.a );\n}\nvec4 RGBEToLinear( in vec4 value ) {\n\treturn vec4( value.rgb * exp2( value.a * 255.0 - 128.0 ), 1.0 );\n}\nvec4 LinearToRGBE( in vec4 value ) {\n\tfloat maxComponent = max( max( value.r, value.g ), value.b );\n\tfloat fExp = clamp( ceil( log2( maxComponent ) ), -128.0, 127.0 );\n\treturn vec4( value.rgb / exp2( fExp ), ( fExp + 128.0 ) / 255.0 );\n}\nvec4 RGBMToLinear( in vec4 value, in float maxRange ) {\n\treturn vec4( value.rgb * value.a * maxRange, 1.0 );\n}\nvec4 LinearToRGBM( in vec4 value, in float maxRange ) {\n\tfloat maxRGB = max( value.r, max( value.g, value.b ) );\n\tfloat M = clamp( maxRGB / maxRange, 0.0, 1.0 );\n\tM = ceil( M * 255.0 ) / 255.0;\n\treturn vec4( value.rgb / ( M * maxRange ), M );\n}\nvec4 RGBDToLinear( in vec4 value, in float maxRange ) {\n\treturn vec4( value.rgb * ( ( maxRange / 255.0 ) / value.a ), 1.0 );\n}\nvec4 LinearToRGBD( in vec4 value, in float maxRange ) {\n\tfloat maxRGB = max( value.r, max( value.g, value.b ) );\n\tfloat D = max( maxRange / maxRGB, 1.0 );\n\tD = clamp( floor( D ) / 255.0, 0.0, 1.0 );\n\treturn vec4( value.rgb * ( D * ( 255.0 / maxRange ) ), D );\n}\nconst mat3 cLogLuvM = mat3( 0.2209, 0.3390, 0.4184, 0.1138, 0.6780, 0.7319, 0.0102, 0.1130, 0.2969 );\nvec4 LinearToLogLuv( in vec4 value ) {\n\tvec3 Xp_Y_XYZp = cLogLuvM * value.rgb;\n\tXp_Y_XYZp = max( Xp_Y_XYZp, vec3( 1e-6, 1e-6, 1e-6 ) );\n\tvec4 vResult;\n\tvResult.xy = Xp_Y_XYZp.xy / Xp_Y_XYZp.z;\n\tfloat Le = 2.0 * log2(Xp_Y_XYZp.y) + 127.0;\n\tvResult.w = fract( Le );\n\tvResult.z = ( Le - ( floor( vResult.w * 255.0 ) ) / 255.0 ) / 255.0;\n\treturn vResult;\n}\nconst mat3 cLogLuvInverseM = mat3( 6.0014, -2.7008, -1.7996, -1.3320, 3.1029, -5.7721, 0.3008, -1.0882, 5.6268 );\nvec4 LogLuvToLinear( in vec4 value ) {\n\tfloat Le = value.z * 255.0 + value.w;\n\tvec3 Xp_Y_XYZp;\n\tXp_Y_XYZp.y = exp2( ( Le - 127.0 ) / 2.0 );\n\tXp_Y_XYZp.z = Xp_Y_XYZp.y / value.y;\n\tXp_Y_XYZp.x = value.x * Xp_Y_XYZp.z;\n\tvec3 vRGB = cLogLuvInverseM * Xp_Y_XYZp.rgb;\n\treturn vec4( max( vRGB, 0.0 ), 1.0 );\n}";
var envmap_fragment = "#ifdef USE_ENVMAP\n\t#ifdef ENV_WORLDPOS\n\t\tvec3 cameraToFrag;\n\t\tif ( isOrthographic ) {\n\t\t\tcameraToFrag = normalize( vec3( - viewMatrix[ 0 ][ 2 ], - viewMatrix[ 1 ][ 2 ], - viewMatrix[ 2 ][ 2 ] ) );\n\t\t} else {\n\t\t\tcameraToFrag = normalize( vWorldPosition - cameraPosition );\n\t\t}\n\t\tvec3 worldNormal = inverseTransformDirection( normal, viewMatrix );\n\t\t#ifdef ENVMAP_MODE_REFLECTION\n\t\t\tvec3 reflectVec = reflect( cameraToFrag, worldNormal );\n\t\t#else\n\t\t\tvec3 reflectVec = refract( cameraToFrag, worldNormal, refractionRatio );\n\t\t#endif\n\t#else\n\t\tvec3 reflectVec = vReflect;\n\t#endif\n\t#ifdef ENVMAP_TYPE_CUBE\n\t\tvec4 envColor = textureCube( envMap, vec3( flipEnvMap * reflectVec.x, reflectVec.yz ) );\n\t\tenvColor = envMapTexelToLinear( envColor );\n\t#elif defined( ENVMAP_TYPE_CUBE_UV )\n\t\tvec4 envColor = textureCubeUV( envMap, reflectVec, 0.0 );\n\t#else\n\t\tvec4 envColor = vec4( 0.0 );\n\t#endif\n\t#ifdef ENVMAP_BLENDING_MULTIPLY\n\t\toutgoingLight = mix( outgoingLight, outgoingLight * envColor.xyz, specularStrength * reflectivity );\n\t#elif defined( ENVMAP_BLENDING_MIX )\n\t\toutgoingLight = mix( outgoingLight, envColor.xyz, specularStrength * reflectivity );\n\t#elif defined( ENVMAP_BLENDING_ADD )\n\t\toutgoingLight += envColor.xyz * specularStrength * reflectivity;\n\t#endif\n#endif";
var envmap_common_pars_fragment = "#ifdef USE_ENVMAP\n\tuniform float envMapIntensity;\n\tuniform float flipEnvMap;\n\tuniform int maxMipLevel;\n\t#ifdef ENVMAP_TYPE_CUBE\n\t\tuniform samplerCube envMap;\n\t#else\n\t\tuniform sampler2D envMap;\n\t#endif\n\t\n#endif";
var envmap_pars_fragment = "#ifdef USE_ENVMAP\n\tuniform float reflectivity;\n\t#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG )\n\t\t#define ENV_WORLDPOS\n\t#endif\n\t#ifdef ENV_WORLDPOS\n\t\tvarying vec3 vWorldPosition;\n\t\tuniform float refractionRatio;\n\t#else\n\t\tvarying vec3 vReflect;\n\t#endif\n#endif";
var envmap_pars_vertex = "#ifdef USE_ENVMAP\n\t#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) ||defined( PHONG )\n\t\t#define ENV_WORLDPOS\n\t#endif\n\t#ifdef ENV_WORLDPOS\n\t\t\n\t\tvarying vec3 vWorldPosition;\n\t#else\n\t\tvarying vec3 vReflect;\n\t\tuniform float refractionRatio;\n\t#endif\n#endif";
var envmap_vertex = "#ifdef USE_ENVMAP\n\t#ifdef ENV_WORLDPOS\n\t\tvWorldPosition = worldPosition.xyz;\n\t#else\n\t\tvec3 cameraToVertex;\n\t\tif ( isOrthographic ) {\n\t\t\tcameraToVertex = normalize( vec3( - viewMatrix[ 0 ][ 2 ], - viewMatrix[ 1 ][ 2 ], - viewMatrix[ 2 ][ 2 ] ) );\n\t\t} else {\n\t\t\tcameraToVertex = normalize( worldPosition.xyz - cameraPosition );\n\t\t}\n\t\tvec3 worldNormal = inverseTransformDirection( transformedNormal, viewMatrix );\n\t\t#ifdef ENVMAP_MODE_REFLECTION\n\t\t\tvReflect = reflect( cameraToVertex, worldNormal );\n\t\t#else\n\t\t\tvReflect = refract( cameraToVertex, worldNormal, refractionRatio );\n\t\t#endif\n\t#endif\n#endif";
var fog_vertex = "#ifdef USE_FOG\n\tvFogDepth = - mvPosition.z;\n#endif";
var fog_pars_vertex = "#ifdef USE_FOG\n\tvarying float vFogDepth;\n#endif";
var fog_fragment = "#ifdef USE_FOG\n\t#ifdef FOG_EXP2\n\t\tfloat fogFactor = 1.0 - exp( - fogDensity * fogDensity * vFogDepth * vFogDepth );\n\t#else\n\t\tfloat fogFactor = smoothstep( fogNear, fogFar, vFogDepth );\n\t#endif\n\tgl_FragColor.rgb = mix( gl_FragColor.rgb, fogColor, fogFactor );\n#endif";
var fog_pars_fragment = "#ifdef USE_FOG\n\tuniform vec3 fogColor;\n\tvarying float vFogDepth;\n\t#ifdef FOG_EXP2\n\t\tuniform float fogDensity;\n\t#else\n\t\tuniform float fogNear;\n\t\tuniform float fogFar;\n\t#endif\n#endif";
var gradientmap_pars_fragment = "#ifdef USE_GRADIENTMAP\n\tuniform sampler2D gradientMap;\n#endif\nvec3 getGradientIrradiance( vec3 normal, vec3 lightDirection ) {\n\tfloat dotNL = dot( normal, lightDirection );\n\tvec2 coord = vec2( dotNL * 0.5 + 0.5, 0.0 );\n\t#ifdef USE_GRADIENTMAP\n\t\treturn texture2D( gradientMap, coord ).rgb;\n\t#else\n\t\treturn ( coord.x < 0.7 ) ? vec3( 0.7 ) : vec3( 1.0 );\n\t#endif\n}";
var lightmap_fragment = "#ifdef USE_LIGHTMAP\n\tvec4 lightMapTexel = texture2D( lightMap, vUv2 );\n\tvec3 lightMapIrradiance = lightMapTexelToLinear( lightMapTexel ).rgb * lightMapIntensity;\n\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\tlightMapIrradiance *= PI;\n\t#endif\n\treflectedLight.indirectDiffuse += lightMapIrradiance;\n#endif";
var lightmap_pars_fragment = "#ifdef USE_LIGHTMAP\n\tuniform sampler2D lightMap;\n\tuniform float lightMapIntensity;\n#endif";
var lights_lambert_vertex = "vec3 diffuse = vec3( 1.0 );\nGeometricContext geometry;\ngeometry.position = mvPosition.xyz;\ngeometry.normal = normalize( transformedNormal );\ngeometry.viewDir = ( isOrthographic ) ? vec3( 0, 0, 1 ) : normalize( -mvPosition.xyz );\nGeometricContext backGeometry;\nbackGeometry.position = geometry.position;\nbackGeometry.normal = -geometry.normal;\nbackGeometry.viewDir = geometry.viewDir;\nvLightFront = vec3( 0.0 );\nvIndirectFront = vec3( 0.0 );\n#ifdef DOUBLE_SIDED\n\tvLightBack = vec3( 0.0 );\n\tvIndirectBack = vec3( 0.0 );\n#endif\nIncidentLight directLight;\nfloat dotNL;\nvec3 directLightColor_Diffuse;\nvIndirectFront += getAmbientLightIrradiance( ambientLightColor );\nvIndirectFront += getLightProbeIrradiance( lightProbe, geometry.normal );\n#ifdef DOUBLE_SIDED\n\tvIndirectBack += getAmbientLightIrradiance( ambientLightColor );\n\tvIndirectBack += getLightProbeIrradiance( lightProbe, backGeometry.normal );\n#endif\n#if NUM_POINT_LIGHTS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\n\t\tgetPointLightInfo( pointLights[ i ], geometry, directLight );\n\t\tdotNL = dot( geometry.normal, directLight.direction );\n\t\tdirectLightColor_Diffuse = directLight.color;\n\t\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvLightBack += saturate( - dotNL ) * directLightColor_Diffuse;\n\t\t#endif\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if NUM_SPOT_LIGHTS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\n\t\tgetSpotLightInfo( spotLights[ i ], geometry, directLight );\n\t\tdotNL = dot( geometry.normal, directLight.direction );\n\t\tdirectLightColor_Diffuse = directLight.color;\n\t\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvLightBack += saturate( - dotNL ) * directLightColor_Diffuse;\n\t\t#endif\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if NUM_DIR_LIGHTS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\n\t\tgetDirectionalLightInfo( directionalLights[ i ], geometry, directLight );\n\t\tdotNL = dot( geometry.normal, directLight.direction );\n\t\tdirectLightColor_Diffuse = directLight.color;\n\t\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvLightBack += saturate( - dotNL ) * directLightColor_Diffuse;\n\t\t#endif\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if NUM_HEMI_LIGHTS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_HEMI_LIGHTS; i ++ ) {\n\t\tvIndirectFront += getHemisphereLightIrradiance( hemisphereLights[ i ], geometry.normal );\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvIndirectBack += getHemisphereLightIrradiance( hemisphereLights[ i ], backGeometry.normal );\n\t\t#endif\n\t}\n\t#pragma unroll_loop_end\n#endif";
var lights_pars_begin = "uniform bool receiveShadow;\nuniform vec3 ambientLightColor;\nuniform vec3 lightProbe[ 9 ];\nvec3 shGetIrradianceAt( in vec3 normal, in vec3 shCoefficients[ 9 ] ) {\n\tfloat x = normal.x, y = normal.y, z = normal.z;\n\tvec3 result = shCoefficients[ 0 ] * 0.886227;\n\tresult += shCoefficients[ 1 ] * 2.0 * 0.511664 * y;\n\tresult += shCoefficients[ 2 ] * 2.0 * 0.511664 * z;\n\tresult += shCoefficients[ 3 ] * 2.0 * 0.511664 * x;\n\tresult += shCoefficients[ 4 ] * 2.0 * 0.429043 * x * y;\n\tresult += shCoefficients[ 5 ] * 2.0 * 0.429043 * y * z;\n\tresult += shCoefficients[ 6 ] * ( 0.743125 * z * z - 0.247708 );\n\tresult += shCoefficients[ 7 ] * 2.0 * 0.429043 * x * z;\n\tresult += shCoefficients[ 8 ] * 0.429043 * ( x * x - y * y );\n\treturn result;\n}\nvec3 getLightProbeIrradiance( const in vec3 lightProbe[ 9 ], const in vec3 normal ) {\n\tvec3 worldNormal = inverseTransformDirection( normal, viewMatrix );\n\tvec3 irradiance = shGetIrradianceAt( worldNormal, lightProbe );\n\treturn irradiance;\n}\nvec3 getAmbientLightIrradiance( const in vec3 ambientLightColor ) {\n\tvec3 irradiance = ambientLightColor;\n\treturn irradiance;\n}\nfloat getDistanceAttenuation( const in float lightDistance, const in float cutoffDistance, const in float decayExponent ) {\n\t#if defined ( PHYSICALLY_CORRECT_LIGHTS )\n\t\tfloat distanceFalloff = 1.0 / max( pow( lightDistance, decayExponent ), 0.01 );\n\t\tif ( cutoffDistance > 0.0 ) {\n\t\t\tdistanceFalloff *= pow2( saturate( 1.0 - pow4( lightDistance / cutoffDistance ) ) );\n\t\t}\n\t\treturn distanceFalloff;\n\t#else\n\t\tif ( cutoffDistance > 0.0 && decayExponent > 0.0 ) {\n\t\t\treturn pow( saturate( - lightDistance / cutoffDistance + 1.0 ), decayExponent );\n\t\t}\n\t\treturn 1.0;\n\t#endif\n}\nfloat getSpotAttenuation( const in float coneCosine, const in float penumbraCosine, const in float angleCosine ) {\n\treturn smoothstep( coneCosine, penumbraCosine, angleCosine );\n}\n#if NUM_DIR_LIGHTS > 0\n\tstruct DirectionalLight {\n\t\tvec3 direction;\n\t\tvec3 color;\n\t};\n\tuniform DirectionalLight directionalLights[ NUM_DIR_LIGHTS ];\n\tvoid getDirectionalLightInfo( const in DirectionalLight directionalLight, const in GeometricContext geometry, out IncidentLight light ) {\n\t\tlight.color = directionalLight.color;\n\t\tlight.direction = directionalLight.direction;\n\t\tlight.visible = true;\n\t}\n#endif\n#if NUM_POINT_LIGHTS > 0\n\tstruct PointLight {\n\t\tvec3 position;\n\t\tvec3 color;\n\t\tfloat distance;\n\t\tfloat decay;\n\t};\n\tuniform PointLight pointLights[ NUM_POINT_LIGHTS ];\n\tvoid getPointLightInfo( const in PointLight pointLight, const in GeometricContext geometry, out IncidentLight light ) {\n\t\tvec3 lVector = pointLight.position - geometry.position;\n\t\tlight.direction = normalize( lVector );\n\t\tfloat lightDistance = length( lVector );\n\t\tlight.color = pointLight.color;\n\t\tlight.color *= getDistanceAttenuation( lightDistance, pointLight.distance, pointLight.decay );\n\t\tlight.visible = ( light.color != vec3( 0.0 ) );\n\t}\n#endif\n#if NUM_SPOT_LIGHTS > 0\n\tstruct SpotLight {\n\t\tvec3 position;\n\t\tvec3 direction;\n\t\tvec3 color;\n\t\tfloat distance;\n\t\tfloat decay;\n\t\tfloat coneCos;\n\t\tfloat penumbraCos;\n\t};\n\tuniform SpotLight spotLights[ NUM_SPOT_LIGHTS ];\n\tvoid getSpotLightInfo( const in SpotLight spotLight, const in GeometricContext geometry, out IncidentLight light ) {\n\t\tvec3 lVector = spotLight.position - geometry.position;\n\t\tlight.direction = normalize( lVector );\n\t\tfloat angleCos = dot( light.direction, spotLight.direction );\n\t\tfloat spotAttenuation = getSpotAttenuation( spotLight.coneCos, spotLight.penumbraCos, angleCos );\n\t\tif ( spotAttenuation > 0.0 ) {\n\t\t\tfloat lightDistance = length( lVector );\n\t\t\tlight.color = spotLight.color * spotAttenuation;\n\t\t\tlight.color *= getDistanceAttenuation( lightDistance, spotLight.distance, spotLight.decay );\n\t\t\tlight.visible = ( light.color != vec3( 0.0 ) );\n\t\t} else {\n\t\t\tlight.color = vec3( 0.0 );\n\t\t\tlight.visible = false;\n\t\t}\n\t}\n#endif\n#if NUM_RECT_AREA_LIGHTS > 0\n\tstruct RectAreaLight {\n\t\tvec3 color;\n\t\tvec3 position;\n\t\tvec3 halfWidth;\n\t\tvec3 halfHeight;\n\t};\n\tuniform sampler2D ltc_1;\tuniform sampler2D ltc_2;\n\tuniform RectAreaLight rectAreaLights[ NUM_RECT_AREA_LIGHTS ];\n#endif\n#if NUM_HEMI_LIGHTS > 0\n\tstruct HemisphereLight {\n\t\tvec3 direction;\n\t\tvec3 skyColor;\n\t\tvec3 groundColor;\n\t};\n\tuniform HemisphereLight hemisphereLights[ NUM_HEMI_LIGHTS ];\n\tvec3 getHemisphereLightIrradiance( const in HemisphereLight hemiLight, const in vec3 normal ) {\n\t\tfloat dotNL = dot( normal, hemiLight.direction );\n\t\tfloat hemiDiffuseWeight = 0.5 * dotNL + 0.5;\n\t\tvec3 irradiance = mix( hemiLight.groundColor, hemiLight.skyColor, hemiDiffuseWeight );\n\t\treturn irradiance;\n\t}\n#endif";
var envmap_physical_pars_fragment = "#if defined( USE_ENVMAP )\n\t#ifdef ENVMAP_MODE_REFRACTION\n\t\tuniform float refractionRatio;\n\t#endif\n\tvec3 getIBLIrradiance( const in vec3 normal ) {\n\t\t#if defined( ENVMAP_TYPE_CUBE_UV )\n\t\t\tvec3 worldNormal = inverseTransformDirection( normal, viewMatrix );\n\t\t\tvec4 envMapColor = textureCubeUV( envMap, worldNormal, 1.0 );\n\t\t\treturn PI * envMapColor.rgb * envMapIntensity;\n\t\t#else\n\t\t\treturn vec3( 0.0 );\n\t\t#endif\n\t}\n\tvec3 getIBLRadiance( const in vec3 viewDir, const in vec3 normal, const in float roughness ) {\n\t\t#if defined( ENVMAP_TYPE_CUBE_UV )\n\t\t\tvec3 reflectVec;\n\t\t\t#ifdef ENVMAP_MODE_REFLECTION\n\t\t\t\treflectVec = reflect( - viewDir, normal );\n\t\t\t\treflectVec = normalize( mix( reflectVec, normal, roughness * roughness) );\n\t\t\t#else\n\t\t\t\treflectVec = refract( - viewDir, normal, refractionRatio );\n\t\t\t#endif\n\t\t\treflectVec = inverseTransformDirection( reflectVec, viewMatrix );\n\t\t\tvec4 envMapColor = textureCubeUV( envMap, reflectVec, roughness );\n\t\t\treturn envMapColor.rgb * envMapIntensity;\n\t\t#else\n\t\t\treturn vec3( 0.0 );\n\t\t#endif\n\t}\n#endif";
var lights_toon_fragment = "ToonMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb;";
var lights_toon_pars_fragment = "varying vec3 vViewPosition;\nstruct ToonMaterial {\n\tvec3 diffuseColor;\n};\nvoid RE_Direct_Toon( const in IncidentLight directLight, const in GeometricContext geometry, const in ToonMaterial material, inout ReflectedLight reflectedLight ) {\n\tvec3 irradiance = getGradientIrradiance( geometry.normal, directLight.direction ) * directLight.color;\n\treflectedLight.directDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectDiffuse_Toon( const in vec3 irradiance, const in GeometricContext geometry, const in ToonMaterial material, inout ReflectedLight reflectedLight ) {\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\n#define RE_Direct\t\t\t\tRE_Direct_Toon\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_Toon\n#define Material_LightProbeLOD( material )\t(0)";
var lights_phong_fragment = "BlinnPhongMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb;\nmaterial.specularColor = specular;\nmaterial.specularShininess = shininess;\nmaterial.specularStrength = specularStrength;";
var lights_phong_pars_fragment = "varying vec3 vViewPosition;\nstruct BlinnPhongMaterial {\n\tvec3 diffuseColor;\n\tvec3 specularColor;\n\tfloat specularShininess;\n\tfloat specularStrength;\n};\nvoid RE_Direct_BlinnPhong( const in IncidentLight directLight, const in GeometricContext geometry, const in BlinnPhongMaterial material, inout ReflectedLight reflectedLight ) {\n\tfloat dotNL = saturate( dot( geometry.normal, directLight.direction ) );\n\tvec3 irradiance = dotNL * directLight.color;\n\treflectedLight.directDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n\treflectedLight.directSpecular += irradiance * BRDF_BlinnPhong( directLight.direction, geometry.viewDir, geometry.normal, material.specularColor, material.specularShininess ) * material.specularStrength;\n}\nvoid RE_IndirectDiffuse_BlinnPhong( const in vec3 irradiance, const in GeometricContext geometry, const in BlinnPhongMaterial material, inout ReflectedLight reflectedLight ) {\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\n#define RE_Direct\t\t\t\tRE_Direct_BlinnPhong\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_BlinnPhong\n#define Material_LightProbeLOD( material )\t(0)";
var lights_physical_fragment = "PhysicalMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb * ( 1.0 - metalnessFactor );\nvec3 dxy = max( abs( dFdx( geometryNormal ) ), abs( dFdy( geometryNormal ) ) );\nfloat geometryRoughness = max( max( dxy.x, dxy.y ), dxy.z );\nmaterial.roughness = max( roughnessFactor, 0.0525 );material.roughness += geometryRoughness;\nmaterial.roughness = min( material.roughness, 1.0 );\n#ifdef IOR\n\t#ifdef SPECULAR\n\t\tfloat specularIntensityFactor = specularIntensity;\n\t\tvec3 specularTintFactor = specularTint;\n\t\t#ifdef USE_SPECULARINTENSITYMAP\n\t\t\tspecularIntensityFactor *= texture2D( specularIntensityMap, vUv ).a;\n\t\t#endif\n\t\t#ifdef USE_SPECULARTINTMAP\n\t\t\tspecularTintFactor *= specularTintMapTexelToLinear( texture2D( specularTintMap, vUv ) ).rgb;\n\t\t#endif\n\t\tmaterial.specularF90 = mix( specularIntensityFactor, 1.0, metalnessFactor );\n\t#else\n\t\tfloat specularIntensityFactor = 1.0;\n\t\tvec3 specularTintFactor = vec3( 1.0 );\n\t\tmaterial.specularF90 = 1.0;\n\t#endif\n\tmaterial.specularColor = mix( min( pow2( ( ior - 1.0 ) / ( ior + 1.0 ) ) * specularTintFactor, vec3( 1.0 ) ) * specularIntensityFactor, diffuseColor.rgb, metalnessFactor );\n#else\n\tmaterial.specularColor = mix( vec3( 0.04 ), diffuseColor.rgb, metalnessFactor );\n\tmaterial.specularF90 = 1.0;\n#endif\n#ifdef USE_CLEARCOAT\n\tmaterial.clearcoat = clearcoat;\n\tmaterial.clearcoatRoughness = clearcoatRoughness;\n\tmaterial.clearcoatF0 = vec3( 0.04 );\n\tmaterial.clearcoatF90 = 1.0;\n\t#ifdef USE_CLEARCOATMAP\n\t\tmaterial.clearcoat *= texture2D( clearcoatMap, vUv ).x;\n\t#endif\n\t#ifdef USE_CLEARCOAT_ROUGHNESSMAP\n\t\tmaterial.clearcoatRoughness *= texture2D( clearcoatRoughnessMap, vUv ).y;\n\t#endif\n\tmaterial.clearcoat = saturate( material.clearcoat );\tmaterial.clearcoatRoughness = max( material.clearcoatRoughness, 0.0525 );\n\tmaterial.clearcoatRoughness += geometryRoughness;\n\tmaterial.clearcoatRoughness = min( material.clearcoatRoughness, 1.0 );\n#endif\n#ifdef USE_SHEEN\n\tmaterial.sheenTint = sheenTint;\n\tmaterial.sheenRoughness = clamp( sheenRoughness, 0.07, 1.0 );\n#endif";
var lights_physical_pars_fragment = "struct PhysicalMaterial {\n\tvec3 diffuseColor;\n\tfloat roughness;\n\tvec3 specularColor;\n\tfloat specularF90;\n\t#ifdef USE_CLEARCOAT\n\t\tfloat clearcoat;\n\t\tfloat clearcoatRoughness;\n\t\tvec3 clearcoatF0;\n\t\tfloat clearcoatF90;\n\t#endif\n\t#ifdef USE_SHEEN\n\t\tvec3 sheenTint;\n\t\tfloat sheenRoughness;\n\t#endif\n};\nvec3 clearcoatSpecular = vec3( 0.0 );\nvec2 DFGApprox( const in vec3 normal, const in vec3 viewDir, const in float roughness ) {\n\tfloat dotNV = saturate( dot( normal, viewDir ) );\n\tconst vec4 c0 = vec4( - 1, - 0.0275, - 0.572, 0.022 );\n\tconst vec4 c1 = vec4( 1, 0.0425, 1.04, - 0.04 );\n\tvec4 r = roughness * c0 + c1;\n\tfloat a004 = min( r.x * r.x, exp2( - 9.28 * dotNV ) ) * r.x + r.y;\n\tvec2 fab = vec2( - 1.04, 1.04 ) * a004 + r.zw;\n\treturn fab;\n}\nvec3 EnvironmentBRDF( const in vec3 normal, const in vec3 viewDir, const in vec3 specularColor, const in float specularF90, const in float roughness ) {\n\tvec2 fab = DFGApprox( normal, viewDir, roughness );\n\treturn specularColor * fab.x + specularF90 * fab.y;\n}\nvoid computeMultiscattering( const in vec3 normal, const in vec3 viewDir, const in vec3 specularColor, const in float specularF90, const in float roughness, inout vec3 singleScatter, inout vec3 multiScatter ) {\n\tvec2 fab = DFGApprox( normal, viewDir, roughness );\n\tvec3 FssEss = specularColor * fab.x + specularF90 * fab.y;\n\tfloat Ess = fab.x + fab.y;\n\tfloat Ems = 1.0 - Ess;\n\tvec3 Favg = specularColor + ( 1.0 - specularColor ) * 0.047619;\tvec3 Fms = FssEss * Favg / ( 1.0 - Ems * Favg );\n\tsingleScatter += FssEss;\n\tmultiScatter += Fms * Ems;\n}\n#if NUM_RECT_AREA_LIGHTS > 0\n\tvoid RE_Direct_RectArea_Physical( const in RectAreaLight rectAreaLight, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\t\tvec3 normal = geometry.normal;\n\t\tvec3 viewDir = geometry.viewDir;\n\t\tvec3 position = geometry.position;\n\t\tvec3 lightPos = rectAreaLight.position;\n\t\tvec3 halfWidth = rectAreaLight.halfWidth;\n\t\tvec3 halfHeight = rectAreaLight.halfHeight;\n\t\tvec3 lightColor = rectAreaLight.color;\n\t\tfloat roughness = material.roughness;\n\t\tvec3 rectCoords[ 4 ];\n\t\trectCoords[ 0 ] = lightPos + halfWidth - halfHeight;\t\trectCoords[ 1 ] = lightPos - halfWidth - halfHeight;\n\t\trectCoords[ 2 ] = lightPos - halfWidth + halfHeight;\n\t\trectCoords[ 3 ] = lightPos + halfWidth + halfHeight;\n\t\tvec2 uv = LTC_Uv( normal, viewDir, roughness );\n\t\tvec4 t1 = texture2D( ltc_1, uv );\n\t\tvec4 t2 = texture2D( ltc_2, uv );\n\t\tmat3 mInv = mat3(\n\t\t\tvec3( t1.x, 0, t1.y ),\n\t\t\tvec3( 0, 1, 0 ),\n\t\t\tvec3( t1.z, 0, t1.w )\n\t\t);\n\t\tvec3 fresnel = ( material.specularColor * t2.x + ( vec3( 1.0 ) - material.specularColor ) * t2.y );\n\t\treflectedLight.directSpecular += lightColor * fresnel * LTC_Evaluate( normal, viewDir, position, mInv, rectCoords );\n\t\treflectedLight.directDiffuse += lightColor * material.diffuseColor * LTC_Evaluate( normal, viewDir, position, mat3( 1.0 ), rectCoords );\n\t}\n#endif\nvoid RE_Direct_Physical( const in IncidentLight directLight, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\tfloat dotNL = saturate( dot( geometry.normal, directLight.direction ) );\n\tvec3 irradiance = dotNL * directLight.color;\n\t#ifdef USE_CLEARCOAT\n\t\tfloat dotNLcc = saturate( dot( geometry.clearcoatNormal, directLight.direction ) );\n\t\tvec3 ccIrradiance = dotNLcc * directLight.color;\n\t\tclearcoatSpecular += ccIrradiance * BRDF_GGX( directLight.direction, geometry.viewDir, geometry.clearcoatNormal, material.clearcoatF0, material.clearcoatF90, material.clearcoatRoughness );\n\t#endif\n\t#ifdef USE_SHEEN\n\t\treflectedLight.directSpecular += irradiance * BRDF_Sheen( directLight.direction, geometry.viewDir, geometry.normal, material.sheenTint, material.sheenRoughness );\n\t#endif\n\treflectedLight.directSpecular += irradiance * BRDF_GGX( directLight.direction, geometry.viewDir, geometry.normal, material.specularColor, material.specularF90, material.roughness );\n\treflectedLight.directDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectDiffuse_Physical( const in vec3 irradiance, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectSpecular_Physical( const in vec3 radiance, const in vec3 irradiance, const in vec3 clearcoatRadiance, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight) {\n\t#ifdef USE_CLEARCOAT\n\t\tclearcoatSpecular += clearcoatRadiance * EnvironmentBRDF( geometry.clearcoatNormal, geometry.viewDir, material.clearcoatF0, material.clearcoatF90, material.clearcoatRoughness );\n\t#endif\n\tvec3 singleScattering = vec3( 0.0 );\n\tvec3 multiScattering = vec3( 0.0 );\n\tvec3 cosineWeightedIrradiance = irradiance * RECIPROCAL_PI;\n\tcomputeMultiscattering( geometry.normal, geometry.viewDir, material.specularColor, material.specularF90, material.roughness, singleScattering, multiScattering );\n\tvec3 diffuse = material.diffuseColor * ( 1.0 - ( singleScattering + multiScattering ) );\n\treflectedLight.indirectSpecular += radiance * singleScattering;\n\treflectedLight.indirectSpecular += multiScattering * cosineWeightedIrradiance;\n\treflectedLight.indirectDiffuse += diffuse * cosineWeightedIrradiance;\n}\n#define RE_Direct\t\t\t\tRE_Direct_Physical\n#define RE_Direct_RectArea\t\tRE_Direct_RectArea_Physical\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_Physical\n#define RE_IndirectSpecular\t\tRE_IndirectSpecular_Physical\nfloat computeSpecularOcclusion( const in float dotNV, const in float ambientOcclusion, const in float roughness ) {\n\treturn saturate( pow( dotNV + ambientOcclusion, exp2( - 16.0 * roughness - 1.0 ) ) - 1.0 + ambientOcclusion );\n}";
var lights_fragment_begin = "\nGeometricContext geometry;\ngeometry.position = - vViewPosition;\ngeometry.normal = normal;\ngeometry.viewDir = ( isOrthographic ) ? vec3( 0, 0, 1 ) : normalize( vViewPosition );\n#ifdef USE_CLEARCOAT\n\tgeometry.clearcoatNormal = clearcoatNormal;\n#endif\nIncidentLight directLight;\n#if ( NUM_POINT_LIGHTS > 0 ) && defined( RE_Direct )\n\tPointLight pointLight;\n\t#if defined( USE_SHADOWMAP ) && NUM_POINT_LIGHT_SHADOWS > 0\n\tPointLightShadow pointLightShadow;\n\t#endif\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\n\t\tpointLight = pointLights[ i ];\n\t\tgetPointLightInfo( pointLight, geometry, directLight );\n\t\t#if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_POINT_LIGHT_SHADOWS )\n\t\tpointLightShadow = pointLightShadows[ i ];\n\t\tdirectLight.color *= all( bvec2( directLight.visible, receiveShadow ) ) ? getPointShadow( pointShadowMap[ i ], pointLightShadow.shadowMapSize, pointLightShadow.shadowBias, pointLightShadow.shadowRadius, vPointShadowCoord[ i ], pointLightShadow.shadowCameraNear, pointLightShadow.shadowCameraFar ) : 1.0;\n\t\t#endif\n\t\tRE_Direct( directLight, geometry, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if ( NUM_SPOT_LIGHTS > 0 ) && defined( RE_Direct )\n\tSpotLight spotLight;\n\t#if defined( USE_SHADOWMAP ) && NUM_SPOT_LIGHT_SHADOWS > 0\n\tSpotLightShadow spotLightShadow;\n\t#endif\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\n\t\tspotLight = spotLights[ i ];\n\t\tgetSpotLightInfo( spotLight, geometry, directLight );\n\t\t#if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_SPOT_LIGHT_SHADOWS )\n\t\tspotLightShadow = spotLightShadows[ i ];\n\t\tdirectLight.color *= all( bvec2( directLight.visible, receiveShadow ) ) ? getShadow( spotShadowMap[ i ], spotLightShadow.shadowMapSize, spotLightShadow.shadowBias, spotLightShadow.shadowRadius, vSpotShadowCoord[ i ] ) : 1.0;\n\t\t#endif\n\t\tRE_Direct( directLight, geometry, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if ( NUM_DIR_LIGHTS > 0 ) && defined( RE_Direct )\n\tDirectionalLight directionalLight;\n\t#if defined( USE_SHADOWMAP ) && NUM_DIR_LIGHT_SHADOWS > 0\n\tDirectionalLightShadow directionalLightShadow;\n\t#endif\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\n\t\tdirectionalLight = directionalLights[ i ];\n\t\tgetDirectionalLightInfo( directionalLight, geometry, directLight );\n\t\t#if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_DIR_LIGHT_SHADOWS )\n\t\tdirectionalLightShadow = directionalLightShadows[ i ];\n\t\tdirectLight.color *= all( bvec2( directLight.visible, receiveShadow ) ) ? getShadow( directionalShadowMap[ i ], directionalLightShadow.shadowMapSize, directionalLightShadow.shadowBias, directionalLightShadow.shadowRadius, vDirectionalShadowCoord[ i ] ) : 1.0;\n\t\t#endif\n\t\tRE_Direct( directLight, geometry, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if ( NUM_RECT_AREA_LIGHTS > 0 ) && defined( RE_Direct_RectArea )\n\tRectAreaLight rectAreaLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_RECT_AREA_LIGHTS; i ++ ) {\n\t\trectAreaLight = rectAreaLights[ i ];\n\t\tRE_Direct_RectArea( rectAreaLight, geometry, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if defined( RE_IndirectDiffuse )\n\tvec3 iblIrradiance = vec3( 0.0 );\n\tvec3 irradiance = getAmbientLightIrradiance( ambientLightColor );\n\tirradiance += getLightProbeIrradiance( lightProbe, geometry.normal );\n\t#if ( NUM_HEMI_LIGHTS > 0 )\n\t\t#pragma unroll_loop_start\n\t\tfor ( int i = 0; i < NUM_HEMI_LIGHTS; i ++ ) {\n\t\t\tirradiance += getHemisphereLightIrradiance( hemisphereLights[ i ], geometry.normal );\n\t\t}\n\t\t#pragma unroll_loop_end\n\t#endif\n#endif\n#if defined( RE_IndirectSpecular )\n\tvec3 radiance = vec3( 0.0 );\n\tvec3 clearcoatRadiance = vec3( 0.0 );\n#endif";
var lights_fragment_maps = "#if defined( RE_IndirectDiffuse )\n\t#ifdef USE_LIGHTMAP\n\t\tvec4 lightMapTexel = texture2D( lightMap, vUv2 );\n\t\tvec3 lightMapIrradiance = lightMapTexelToLinear( lightMapTexel ).rgb * lightMapIntensity;\n\t\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\t\tlightMapIrradiance *= PI;\n\t\t#endif\n\t\tirradiance += lightMapIrradiance;\n\t#endif\n\t#if defined( USE_ENVMAP ) && defined( STANDARD ) && defined( ENVMAP_TYPE_CUBE_UV )\n\t\tiblIrradiance += getIBLIrradiance( geometry.normal );\n\t#endif\n#endif\n#if defined( USE_ENVMAP ) && defined( RE_IndirectSpecular )\n\tradiance += getIBLRadiance( geometry.viewDir, geometry.normal, material.roughness );\n\t#ifdef USE_CLEARCOAT\n\t\tclearcoatRadiance += getIBLRadiance( geometry.viewDir, geometry.clearcoatNormal, material.clearcoatRoughness );\n\t#endif\n#endif";
var lights_fragment_end = "#if defined( RE_IndirectDiffuse )\n\tRE_IndirectDiffuse( irradiance, geometry, material, reflectedLight );\n#endif\n#if defined( RE_IndirectSpecular )\n\tRE_IndirectSpecular( radiance, iblIrradiance, clearcoatRadiance, geometry, material, reflectedLight );\n#endif";
var logdepthbuf_fragment = "#if defined( USE_LOGDEPTHBUF ) && defined( USE_LOGDEPTHBUF_EXT )\n\tgl_FragDepthEXT = vIsPerspective == 0.0 ? gl_FragCoord.z : log2( vFragDepth ) * logDepthBufFC * 0.5;\n#endif";
var logdepthbuf_pars_fragment = "#if defined( USE_LOGDEPTHBUF ) && defined( USE_LOGDEPTHBUF_EXT )\n\tuniform float logDepthBufFC;\n\tvarying float vFragDepth;\n\tvarying float vIsPerspective;\n#endif";
var logdepthbuf_pars_vertex = "#ifdef USE_LOGDEPTHBUF\n\t#ifdef USE_LOGDEPTHBUF_EXT\n\t\tvarying float vFragDepth;\n\t\tvarying float vIsPerspective;\n\t#else\n\t\tuniform float logDepthBufFC;\n\t#endif\n#endif";
var logdepthbuf_vertex = "#ifdef USE_LOGDEPTHBUF\n\t#ifdef USE_LOGDEPTHBUF_EXT\n\t\tvFragDepth = 1.0 + gl_Position.w;\n\t\tvIsPerspective = float( isPerspectiveMatrix( projectionMatrix ) );\n\t#else\n\t\tif ( isPerspectiveMatrix( projectionMatrix ) ) {\n\t\t\tgl_Position.z = log2( max( EPSILON, gl_Position.w + 1.0 ) ) * logDepthBufFC - 1.0;\n\t\t\tgl_Position.z *= gl_Position.w;\n\t\t}\n\t#endif\n#endif";
var map_fragment = "#ifdef USE_MAP\n\tvec4 texelColor = texture2D( map, vUv );\n\ttexelColor = mapTexelToLinear( texelColor );\n\tdiffuseColor *= texelColor;\n#endif";
var map_pars_fragment = "#ifdef USE_MAP\n\tuniform sampler2D map;\n#endif";
var map_particle_fragment = "#if defined( USE_MAP ) || defined( USE_ALPHAMAP )\n\tvec2 uv = ( uvTransform * vec3( gl_PointCoord.x, 1.0 - gl_PointCoord.y, 1 ) ).xy;\n#endif\n#ifdef USE_MAP\n\tvec4 mapTexel = texture2D( map, uv );\n\tdiffuseColor *= mapTexelToLinear( mapTexel );\n#endif\n#ifdef USE_ALPHAMAP\n\tdiffuseColor.a *= texture2D( alphaMap, uv ).g;\n#endif";
var map_particle_pars_fragment = "#if defined( USE_MAP ) || defined( USE_ALPHAMAP )\n\tuniform mat3 uvTransform;\n#endif\n#ifdef USE_MAP\n\tuniform sampler2D map;\n#endif\n#ifdef USE_ALPHAMAP\n\tuniform sampler2D alphaMap;\n#endif";
var metalnessmap_fragment = "float metalnessFactor = metalness;\n#ifdef USE_METALNESSMAP\n\tvec4 texelMetalness = texture2D( metalnessMap, vUv );\n\tmetalnessFactor *= texelMetalness.b;\n#endif";
var metalnessmap_pars_fragment = "#ifdef USE_METALNESSMAP\n\tuniform sampler2D metalnessMap;\n#endif";
var morphnormal_vertex = "#ifdef USE_MORPHNORMALS\n\tobjectNormal *= morphTargetBaseInfluence;\n\t#ifdef MORPHTARGETS_TEXTURE\n\t\tfor ( int i = 0; i < MORPHTARGETS_COUNT; i ++ ) {\n\t\t\tif ( morphTargetInfluences[ i ] > 0.0 ) objectNormal += getMorph( gl_VertexID, i, 1, 2 ) * morphTargetInfluences[ i ];\n\t\t}\n\t#else\n\t\tobjectNormal += morphNormal0 * morphTargetInfluences[ 0 ];\n\t\tobjectNormal += morphNormal1 * morphTargetInfluences[ 1 ];\n\t\tobjectNormal += morphNormal2 * morphTargetInfluences[ 2 ];\n\t\tobjectNormal += morphNormal3 * morphTargetInfluences[ 3 ];\n\t#endif\n#endif";
var morphtarget_pars_vertex = "#ifdef USE_MORPHTARGETS\n\tuniform float morphTargetBaseInfluence;\n\t#ifdef MORPHTARGETS_TEXTURE\n\t\tuniform float morphTargetInfluences[ MORPHTARGETS_COUNT ];\n\t\tuniform sampler2DArray morphTargetsTexture;\n\t\tuniform vec2 morphTargetsTextureSize;\n\t\tvec3 getMorph( const in int vertexIndex, const in int morphTargetIndex, const in int offset, const in int stride ) {\n\t\t\tfloat texelIndex = float( vertexIndex * stride + offset );\n\t\t\tfloat y = floor( texelIndex / morphTargetsTextureSize.x );\n\t\t\tfloat x = texelIndex - y * morphTargetsTextureSize.x;\n\t\t\tvec3 morphUV = vec3( ( x + 0.5 ) / morphTargetsTextureSize.x, y / morphTargetsTextureSize.y, morphTargetIndex );\n\t\t\treturn texture( morphTargetsTexture, morphUV ).xyz;\n\t\t}\n\t#else\n\t\t#ifndef USE_MORPHNORMALS\n\t\t\tuniform float morphTargetInfluences[ 8 ];\n\t\t#else\n\t\t\tuniform float morphTargetInfluences[ 4 ];\n\t\t#endif\n\t#endif\n#endif";
var morphtarget_vertex = "#ifdef USE_MORPHTARGETS\n\ttransformed *= morphTargetBaseInfluence;\n\t#ifdef MORPHTARGETS_TEXTURE\n\t\tfor ( int i = 0; i < MORPHTARGETS_COUNT; i ++ ) {\n\t\t\t#ifndef USE_MORPHNORMALS\n\t\t\t\tif ( morphTargetInfluences[ i ] > 0.0 ) transformed += getMorph( gl_VertexID, i, 0, 1 ) * morphTargetInfluences[ i ];\n\t\t\t#else\n\t\t\t\tif ( morphTargetInfluences[ i ] > 0.0 ) transformed += getMorph( gl_VertexID, i, 0, 2 ) * morphTargetInfluences[ i ];\n\t\t\t#endif\n\t\t}\n\t#else\n\t\ttransformed += morphTarget0 * morphTargetInfluences[ 0 ];\n\t\ttransformed += morphTarget1 * morphTargetInfluences[ 1 ];\n\t\ttransformed += morphTarget2 * morphTargetInfluences[ 2 ];\n\t\ttransformed += morphTarget3 * morphTargetInfluences[ 3 ];\n\t\t#ifndef USE_MORPHNORMALS\n\t\t\ttransformed += morphTarget4 * morphTargetInfluences[ 4 ];\n\t\t\ttransformed += morphTarget5 * morphTargetInfluences[ 5 ];\n\t\t\ttransformed += morphTarget6 * morphTargetInfluences[ 6 ];\n\t\t\ttransformed += morphTarget7 * morphTargetInfluences[ 7 ];\n\t\t#endif\n\t#endif\n#endif";
var normal_fragment_begin = "float faceDirection = gl_FrontFacing ? 1.0 : - 1.0;\n#ifdef FLAT_SHADED\n\tvec3 fdx = vec3( dFdx( vViewPosition.x ), dFdx( vViewPosition.y ), dFdx( vViewPosition.z ) );\n\tvec3 fdy = vec3( dFdy( vViewPosition.x ), dFdy( vViewPosition.y ), dFdy( vViewPosition.z ) );\n\tvec3 normal = normalize( cross( fdx, fdy ) );\n#else\n\tvec3 normal = normalize( vNormal );\n\t#ifdef DOUBLE_SIDED\n\t\tnormal = normal * faceDirection;\n\t#endif\n\t#ifdef USE_TANGENT\n\t\tvec3 tangent = normalize( vTangent );\n\t\tvec3 bitangent = normalize( vBitangent );\n\t\t#ifdef DOUBLE_SIDED\n\t\t\ttangent = tangent * faceDirection;\n\t\t\tbitangent = bitangent * faceDirection;\n\t\t#endif\n\t\t#if defined( TANGENTSPACE_NORMALMAP ) || defined( USE_CLEARCOAT_NORMALMAP )\n\t\t\tmat3 vTBN = mat3( tangent, bitangent, normal );\n\t\t#endif\n\t#endif\n#endif\nvec3 geometryNormal = normal;";
var normal_fragment_maps = "#ifdef OBJECTSPACE_NORMALMAP\n\tnormal = texture2D( normalMap, vUv ).xyz * 2.0 - 1.0;\n\t#ifdef FLIP_SIDED\n\t\tnormal = - normal;\n\t#endif\n\t#ifdef DOUBLE_SIDED\n\t\tnormal = normal * faceDirection;\n\t#endif\n\tnormal = normalize( normalMatrix * normal );\n#elif defined( TANGENTSPACE_NORMALMAP )\n\tvec3 mapN = texture2D( normalMap, vUv ).xyz * 2.0 - 1.0;\n\tmapN.xy *= normalScale;\n\t#ifdef USE_TANGENT\n\t\tnormal = normalize( vTBN * mapN );\n\t#else\n\t\tnormal = perturbNormal2Arb( - vViewPosition, normal, mapN, faceDirection );\n\t#endif\n#elif defined( USE_BUMPMAP )\n\tnormal = perturbNormalArb( - vViewPosition, normal, dHdxy_fwd(), faceDirection );\n#endif";
var normal_pars_fragment = "#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n\t#ifdef USE_TANGENT\n\t\tvarying vec3 vTangent;\n\t\tvarying vec3 vBitangent;\n\t#endif\n#endif";
var normal_pars_vertex = "#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n\t#ifdef USE_TANGENT\n\t\tvarying vec3 vTangent;\n\t\tvarying vec3 vBitangent;\n\t#endif\n#endif";
var normal_vertex = "#ifndef FLAT_SHADED\n\tvNormal = normalize( transformedNormal );\n\t#ifdef USE_TANGENT\n\t\tvTangent = normalize( transformedTangent );\n\t\tvBitangent = normalize( cross( vNormal, vTangent ) * tangent.w );\n\t#endif\n#endif";
var normalmap_pars_fragment = "#ifdef USE_NORMALMAP\n\tuniform sampler2D normalMap;\n\tuniform vec2 normalScale;\n#endif\n#ifdef OBJECTSPACE_NORMALMAP\n\tuniform mat3 normalMatrix;\n#endif\n#if ! defined ( USE_TANGENT ) && ( defined ( TANGENTSPACE_NORMALMAP ) || defined ( USE_CLEARCOAT_NORMALMAP ) )\n\tvec3 perturbNormal2Arb( vec3 eye_pos, vec3 surf_norm, vec3 mapN, float faceDirection ) {\n\t\tvec3 q0 = vec3( dFdx( eye_pos.x ), dFdx( eye_pos.y ), dFdx( eye_pos.z ) );\n\t\tvec3 q1 = vec3( dFdy( eye_pos.x ), dFdy( eye_pos.y ), dFdy( eye_pos.z ) );\n\t\tvec2 st0 = dFdx( vUv.st );\n\t\tvec2 st1 = dFdy( vUv.st );\n\t\tvec3 N = surf_norm;\n\t\tvec3 q1perp = cross( q1, N );\n\t\tvec3 q0perp = cross( N, q0 );\n\t\tvec3 T = q1perp * st0.x + q0perp * st1.x;\n\t\tvec3 B = q1perp * st0.y + q0perp * st1.y;\n\t\tfloat det = max( dot( T, T ), dot( B, B ) );\n\t\tfloat scale = ( det == 0.0 ) ? 0.0 : faceDirection * inversesqrt( det );\n\t\treturn normalize( T * ( mapN.x * scale ) + B * ( mapN.y * scale ) + N * mapN.z );\n\t}\n#endif";
var clearcoat_normal_fragment_begin = "#ifdef USE_CLEARCOAT\n\tvec3 clearcoatNormal = geometryNormal;\n#endif";
var clearcoat_normal_fragment_maps = "#ifdef USE_CLEARCOAT_NORMALMAP\n\tvec3 clearcoatMapN = texture2D( clearcoatNormalMap, vUv ).xyz * 2.0 - 1.0;\n\tclearcoatMapN.xy *= clearcoatNormalScale;\n\t#ifdef USE_TANGENT\n\t\tclearcoatNormal = normalize( vTBN * clearcoatMapN );\n\t#else\n\t\tclearcoatNormal = perturbNormal2Arb( - vViewPosition, clearcoatNormal, clearcoatMapN, faceDirection );\n\t#endif\n#endif";
var clearcoat_pars_fragment = "#ifdef USE_CLEARCOATMAP\n\tuniform sampler2D clearcoatMap;\n#endif\n#ifdef USE_CLEARCOAT_ROUGHNESSMAP\n\tuniform sampler2D clearcoatRoughnessMap;\n#endif\n#ifdef USE_CLEARCOAT_NORMALMAP\n\tuniform sampler2D clearcoatNormalMap;\n\tuniform vec2 clearcoatNormalScale;\n#endif";
var output_fragment = "#ifdef OPAQUE\ndiffuseColor.a = 1.0;\n#endif\n#ifdef USE_TRANSMISSION\ndiffuseColor.a *= transmissionAlpha + 0.1;\n#endif\ngl_FragColor = vec4( outgoingLight, diffuseColor.a );";
var packing = "vec3 packNormalToRGB( const in vec3 normal ) {\n\treturn normalize( normal ) * 0.5 + 0.5;\n}\nvec3 unpackRGBToNormal( const in vec3 rgb ) {\n\treturn 2.0 * rgb.xyz - 1.0;\n}\nconst float PackUpscale = 256. / 255.;const float UnpackDownscale = 255. / 256.;\nconst vec3 PackFactors = vec3( 256. * 256. * 256., 256. * 256., 256. );\nconst vec4 UnpackFactors = UnpackDownscale / vec4( PackFactors, 1. );\nconst float ShiftRight8 = 1. / 256.;\nvec4 packDepthToRGBA( const in float v ) {\n\tvec4 r = vec4( fract( v * PackFactors ), v );\n\tr.yzw -= r.xyz * ShiftRight8;\treturn r * PackUpscale;\n}\nfloat unpackRGBAToDepth( const in vec4 v ) {\n\treturn dot( v, UnpackFactors );\n}\nvec4 pack2HalfToRGBA( vec2 v ) {\n\tvec4 r = vec4( v.x, fract( v.x * 255.0 ), v.y, fract( v.y * 255.0 ) );\n\treturn vec4( r.x - r.y / 255.0, r.y, r.z - r.w / 255.0, r.w );\n}\nvec2 unpackRGBATo2Half( vec4 v ) {\n\treturn vec2( v.x + ( v.y / 255.0 ), v.z + ( v.w / 255.0 ) );\n}\nfloat viewZToOrthographicDepth( const in float viewZ, const in float near, const in float far ) {\n\treturn ( viewZ + near ) / ( near - far );\n}\nfloat orthographicDepthToViewZ( const in float linearClipZ, const in float near, const in float far ) {\n\treturn linearClipZ * ( near - far ) - near;\n}\nfloat viewZToPerspectiveDepth( const in float viewZ, const in float near, const in float far ) {\n\treturn ( ( near + viewZ ) * far ) / ( ( far - near ) * viewZ );\n}\nfloat perspectiveDepthToViewZ( const in float invClipZ, const in float near, const in float far ) {\n\treturn ( near * far ) / ( ( far - near ) * invClipZ - far );\n}";
var premultiplied_alpha_fragment = "#ifdef PREMULTIPLIED_ALPHA\n\tgl_FragColor.rgb *= gl_FragColor.a;\n#endif";
var project_vertex = "vec4 mvPosition = vec4( transformed, 1.0 );\n#ifdef USE_INSTANCING\n\tmvPosition = instanceMatrix * mvPosition;\n#endif\nmvPosition = modelViewMatrix * mvPosition;\ngl_Position = projectionMatrix * mvPosition;";
var dithering_fragment = "#ifdef DITHERING\n\tgl_FragColor.rgb = dithering( gl_FragColor.rgb );\n#endif";
var dithering_pars_fragment = "#ifdef DITHERING\n\tvec3 dithering( vec3 color ) {\n\t\tfloat grid_position = rand( gl_FragCoord.xy );\n\t\tvec3 dither_shift_RGB = vec3( 0.25 / 255.0, -0.25 / 255.0, 0.25 / 255.0 );\n\t\tdither_shift_RGB = mix( 2.0 * dither_shift_RGB, -2.0 * dither_shift_RGB, grid_position );\n\t\treturn color + dither_shift_RGB;\n\t}\n#endif";
var roughnessmap_fragment = "float roughnessFactor = roughness;\n#ifdef USE_ROUGHNESSMAP\n\tvec4 texelRoughness = texture2D( roughnessMap, vUv );\n\troughnessFactor *= texelRoughness.g;\n#endif";
var roughnessmap_pars_fragment = "#ifdef USE_ROUGHNESSMAP\n\tuniform sampler2D roughnessMap;\n#endif";
var shadowmap_pars_fragment = "#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\t\tuniform sampler2D directionalShadowMap[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tvarying vec4 vDirectionalShadowCoord[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tstruct DirectionalLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform DirectionalLightShadow directionalLightShadows[ NUM_DIR_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\t\tuniform sampler2D spotShadowMap[ NUM_SPOT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vSpotShadowCoord[ NUM_SPOT_LIGHT_SHADOWS ];\n\t\tstruct SpotLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform SpotLightShadow spotLightShadows[ NUM_SPOT_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\t\tuniform sampler2D pointShadowMap[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vPointShadowCoord[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tstruct PointLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t\tfloat shadowCameraNear;\n\t\t\tfloat shadowCameraFar;\n\t\t};\n\t\tuniform PointLightShadow pointLightShadows[ NUM_POINT_LIGHT_SHADOWS ];\n\t#endif\n\tfloat texture2DCompare( sampler2D depths, vec2 uv, float compare ) {\n\t\treturn step( compare, unpackRGBAToDepth( texture2D( depths, uv ) ) );\n\t}\n\tvec2 texture2DDistribution( sampler2D shadow, vec2 uv ) {\n\t\treturn unpackRGBATo2Half( texture2D( shadow, uv ) );\n\t}\n\tfloat VSMShadow (sampler2D shadow, vec2 uv, float compare ){\n\t\tfloat occlusion = 1.0;\n\t\tvec2 distribution = texture2DDistribution( shadow, uv );\n\t\tfloat hard_shadow = step( compare , distribution.x );\n\t\tif (hard_shadow != 1.0 ) {\n\t\t\tfloat distance = compare - distribution.x ;\n\t\t\tfloat variance = max( 0.00000, distribution.y * distribution.y );\n\t\t\tfloat softness_probability = variance / (variance + distance * distance );\t\t\tsoftness_probability = clamp( ( softness_probability - 0.3 ) / ( 0.95 - 0.3 ), 0.0, 1.0 );\t\t\tocclusion = clamp( max( hard_shadow, softness_probability ), 0.0, 1.0 );\n\t\t}\n\t\treturn occlusion;\n\t}\n\tfloat getShadow( sampler2D shadowMap, vec2 shadowMapSize, float shadowBias, float shadowRadius, vec4 shadowCoord ) {\n\t\tfloat shadow = 1.0;\n\t\tshadowCoord.xyz /= shadowCoord.w;\n\t\tshadowCoord.z += shadowBias;\n\t\tbvec4 inFrustumVec = bvec4 ( shadowCoord.x >= 0.0, shadowCoord.x <= 1.0, shadowCoord.y >= 0.0, shadowCoord.y <= 1.0 );\n\t\tbool inFrustum = all( inFrustumVec );\n\t\tbvec2 frustumTestVec = bvec2( inFrustum, shadowCoord.z <= 1.0 );\n\t\tbool frustumTest = all( frustumTestVec );\n\t\tif ( frustumTest ) {\n\t\t#if defined( SHADOWMAP_TYPE_PCF )\n\t\t\tvec2 texelSize = vec2( 1.0 ) / shadowMapSize;\n\t\t\tfloat dx0 = - texelSize.x * shadowRadius;\n\t\t\tfloat dy0 = - texelSize.y * shadowRadius;\n\t\t\tfloat dx1 = + texelSize.x * shadowRadius;\n\t\t\tfloat dy1 = + texelSize.y * shadowRadius;\n\t\t\tfloat dx2 = dx0 / 2.0;\n\t\t\tfloat dy2 = dy0 / 2.0;\n\t\t\tfloat dx3 = dx1 / 2.0;\n\t\t\tfloat dy3 = dy1 / 2.0;\n\t\t\tshadow = (\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, dy2 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy2 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, dy2 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy, shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, dy3 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy3 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, dy3 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy1 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy1 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy1 ), shadowCoord.z )\n\t\t\t) * ( 1.0 / 17.0 );\n\t\t#elif defined( SHADOWMAP_TYPE_PCF_SOFT )\n\t\t\tvec2 texelSize = vec2( 1.0 ) / shadowMapSize;\n\t\t\tfloat dx = texelSize.x;\n\t\t\tfloat dy = texelSize.y;\n\t\t\tvec2 uv = shadowCoord.xy;\n\t\t\tvec2 f = fract( uv * shadowMapSize + 0.5 );\n\t\t\tuv -= f * texelSize;\n\t\t\tshadow = (\n\t\t\t\ttexture2DCompare( shadowMap, uv, shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, uv + vec2( dx, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, uv + vec2( 0.0, dy ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, uv + texelSize, shadowCoord.z ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( -dx, 0.0 ), shadowCoord.z ), \n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, 0.0 ), shadowCoord.z ),\n\t\t\t\t\t f.x ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( -dx, dy ), shadowCoord.z ), \n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, dy ), shadowCoord.z ),\n\t\t\t\t\t f.x ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( 0.0, -dy ), shadowCoord.z ), \n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 0.0, 2.0 * dy ), shadowCoord.z ),\n\t\t\t\t\t f.y ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( dx, -dy ), shadowCoord.z ), \n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( dx, 2.0 * dy ), shadowCoord.z ),\n\t\t\t\t\t f.y ) +\n\t\t\t\tmix( mix( texture2DCompare( shadowMap, uv + vec2( -dx, -dy ), shadowCoord.z ), \n\t\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, -dy ), shadowCoord.z ),\n\t\t\t\t\t\t f.x ),\n\t\t\t\t\t mix( texture2DCompare( shadowMap, uv + vec2( -dx, 2.0 * dy ), shadowCoord.z ), \n\t\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, 2.0 * dy ), shadowCoord.z ),\n\t\t\t\t\t\t f.x ),\n\t\t\t\t\t f.y )\n\t\t\t) * ( 1.0 / 9.0 );\n\t\t#elif defined( SHADOWMAP_TYPE_VSM )\n\t\t\tshadow = VSMShadow( shadowMap, shadowCoord.xy, shadowCoord.z );\n\t\t#else\n\t\t\tshadow = texture2DCompare( shadowMap, shadowCoord.xy, shadowCoord.z );\n\t\t#endif\n\t\t}\n\t\treturn shadow;\n\t}\n\tvec2 cubeToUV( vec3 v, float texelSizeY ) {\n\t\tvec3 absV = abs( v );\n\t\tfloat scaleToCube = 1.0 / max( absV.x, max( absV.y, absV.z ) );\n\t\tabsV *= scaleToCube;\n\t\tv *= scaleToCube * ( 1.0 - 2.0 * texelSizeY );\n\t\tvec2 planar = v.xy;\n\t\tfloat almostATexel = 1.5 * texelSizeY;\n\t\tfloat almostOne = 1.0 - almostATexel;\n\t\tif ( absV.z >= almostOne ) {\n\t\t\tif ( v.z > 0.0 )\n\t\t\t\tplanar.x = 4.0 - v.x;\n\t\t} else if ( absV.x >= almostOne ) {\n\t\t\tfloat signX = sign( v.x );\n\t\t\tplanar.x = v.z * signX + 2.0 * signX;\n\t\t} else if ( absV.y >= almostOne ) {\n\t\t\tfloat signY = sign( v.y );\n\t\t\tplanar.x = v.x + 2.0 * signY + 2.0;\n\t\t\tplanar.y = v.z * signY - 2.0;\n\t\t}\n\t\treturn vec2( 0.125, 0.25 ) * planar + vec2( 0.375, 0.75 );\n\t}\n\tfloat getPointShadow( sampler2D shadowMap, vec2 shadowMapSize, float shadowBias, float shadowRadius, vec4 shadowCoord, float shadowCameraNear, float shadowCameraFar ) {\n\t\tvec2 texelSize = vec2( 1.0 ) / ( shadowMapSize * vec2( 4.0, 2.0 ) );\n\t\tvec3 lightToPosition = shadowCoord.xyz;\n\t\tfloat dp = ( length( lightToPosition ) - shadowCameraNear ) / ( shadowCameraFar - shadowCameraNear );\t\tdp += shadowBias;\n\t\tvec3 bd3D = normalize( lightToPosition );\n\t\t#if defined( SHADOWMAP_TYPE_PCF ) || defined( SHADOWMAP_TYPE_PCF_SOFT ) || defined( SHADOWMAP_TYPE_VSM )\n\t\t\tvec2 offset = vec2( - 1, 1 ) * shadowRadius * texelSize.y;\n\t\t\treturn (\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xyy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yyy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xyx, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yyx, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xxy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yxy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xxx, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yxx, texelSize.y ), dp )\n\t\t\t) * ( 1.0 / 9.0 );\n\t\t#else\n\t\t\treturn texture2DCompare( shadowMap, cubeToUV( bd3D, texelSize.y ), dp );\n\t\t#endif\n\t}\n#endif";
var shadowmap_pars_vertex = "#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\t\tuniform mat4 directionalShadowMatrix[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tvarying vec4 vDirectionalShadowCoord[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tstruct DirectionalLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform DirectionalLightShadow directionalLightShadows[ NUM_DIR_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\t\tuniform mat4 spotShadowMatrix[ NUM_SPOT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vSpotShadowCoord[ NUM_SPOT_LIGHT_SHADOWS ];\n\t\tstruct SpotLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform SpotLightShadow spotLightShadows[ NUM_SPOT_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\t\tuniform mat4 pointShadowMatrix[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vPointShadowCoord[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tstruct PointLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t\tfloat shadowCameraNear;\n\t\t\tfloat shadowCameraFar;\n\t\t};\n\t\tuniform PointLightShadow pointLightShadows[ NUM_POINT_LIGHT_SHADOWS ];\n\t#endif\n#endif";
var shadowmap_vertex = "#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0 || NUM_SPOT_LIGHT_SHADOWS > 0 || NUM_POINT_LIGHT_SHADOWS > 0\n\t\tvec3 shadowWorldNormal = inverseTransformDirection( transformedNormal, viewMatrix );\n\t\tvec4 shadowWorldPosition;\n\t#endif\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHT_SHADOWS; i ++ ) {\n\t\tshadowWorldPosition = worldPosition + vec4( shadowWorldNormal * directionalLightShadows[ i ].shadowNormalBias, 0 );\n\t\tvDirectionalShadowCoord[ i ] = directionalShadowMatrix[ i ] * shadowWorldPosition;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHT_SHADOWS; i ++ ) {\n\t\tshadowWorldPosition = worldPosition + vec4( shadowWorldNormal * spotLightShadows[ i ].shadowNormalBias, 0 );\n\t\tvSpotShadowCoord[ i ] = spotShadowMatrix[ i ] * shadowWorldPosition;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHT_SHADOWS; i ++ ) {\n\t\tshadowWorldPosition = worldPosition + vec4( shadowWorldNormal * pointLightShadows[ i ].shadowNormalBias, 0 );\n\t\tvPointShadowCoord[ i ] = pointShadowMatrix[ i ] * shadowWorldPosition;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n#endif";
var shadowmask_pars_fragment = "float getShadowMask() {\n\tfloat shadow = 1.0;\n\t#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\tDirectionalLightShadow directionalLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHT_SHADOWS; i ++ ) {\n\t\tdirectionalLight = directionalLightShadows[ i ];\n\t\tshadow *= receiveShadow ? getShadow( directionalShadowMap[ i ], directionalLight.shadowMapSize, directionalLight.shadowBias, directionalLight.shadowRadius, vDirectionalShadowCoord[ i ] ) : 1.0;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\tSpotLightShadow spotLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHT_SHADOWS; i ++ ) {\n\t\tspotLight = spotLightShadows[ i ];\n\t\tshadow *= receiveShadow ? getShadow( spotShadowMap[ i ], spotLight.shadowMapSize, spotLight.shadowBias, spotLight.shadowRadius, vSpotShadowCoord[ i ] ) : 1.0;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\tPointLightShadow pointLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHT_SHADOWS; i ++ ) {\n\t\tpointLight = pointLightShadows[ i ];\n\t\tshadow *= receiveShadow ? getPointShadow( pointShadowMap[ i ], pointLight.shadowMapSize, pointLight.shadowBias, pointLight.shadowRadius, vPointShadowCoord[ i ], pointLight.shadowCameraNear, pointLight.shadowCameraFar ) : 1.0;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#endif\n\treturn shadow;\n}";
var skinbase_vertex = "#ifdef USE_SKINNING\n\tmat4 boneMatX = getBoneMatrix( skinIndex.x );\n\tmat4 boneMatY = getBoneMatrix( skinIndex.y );\n\tmat4 boneMatZ = getBoneMatrix( skinIndex.z );\n\tmat4 boneMatW = getBoneMatrix( skinIndex.w );\n#endif";
var skinning_pars_vertex = "#ifdef USE_SKINNING\n\tuniform mat4 bindMatrix;\n\tuniform mat4 bindMatrixInverse;\n\t#ifdef BONE_TEXTURE\n\t\tuniform highp sampler2D boneTexture;\n\t\tuniform int boneTextureSize;\n\t\tmat4 getBoneMatrix( const in float i ) {\n\t\t\tfloat j = i * 4.0;\n\t\t\tfloat x = mod( j, float( boneTextureSize ) );\n\t\t\tfloat y = floor( j / float( boneTextureSize ) );\n\t\t\tfloat dx = 1.0 / float( boneTextureSize );\n\t\t\tfloat dy = 1.0 / float( boneTextureSize );\n\t\t\ty = dy * ( y + 0.5 );\n\t\t\tvec4 v1 = texture2D( boneTexture, vec2( dx * ( x + 0.5 ), y ) );\n\t\t\tvec4 v2 = texture2D( boneTexture, vec2( dx * ( x + 1.5 ), y ) );\n\t\t\tvec4 v3 = texture2D( boneTexture, vec2( dx * ( x + 2.5 ), y ) );\n\t\t\tvec4 v4 = texture2D( boneTexture, vec2( dx * ( x + 3.5 ), y ) );\n\t\t\tmat4 bone = mat4( v1, v2, v3, v4 );\n\t\t\treturn bone;\n\t\t}\n\t#else\n\t\tuniform mat4 boneMatrices[ MAX_BONES ];\n\t\tmat4 getBoneMatrix( const in float i ) {\n\t\t\tmat4 bone = boneMatrices[ int(i) ];\n\t\t\treturn bone;\n\t\t}\n\t#endif\n#endif";
var skinning_vertex = "#ifdef USE_SKINNING\n\tvec4 skinVertex = bindMatrix * vec4( transformed, 1.0 );\n\tvec4 skinned = vec4( 0.0 );\n\tskinned += boneMatX * skinVertex * skinWeight.x;\n\tskinned += boneMatY * skinVertex * skinWeight.y;\n\tskinned += boneMatZ * skinVertex * skinWeight.z;\n\tskinned += boneMatW * skinVertex * skinWeight.w;\n\ttransformed = ( bindMatrixInverse * skinned ).xyz;\n#endif";
var skinnormal_vertex = "#ifdef USE_SKINNING\n\tmat4 skinMatrix = mat4( 0.0 );\n\tskinMatrix += skinWeight.x * boneMatX;\n\tskinMatrix += skinWeight.y * boneMatY;\n\tskinMatrix += skinWeight.z * boneMatZ;\n\tskinMatrix += skinWeight.w * boneMatW;\n\tskinMatrix = bindMatrixInverse * skinMatrix * bindMatrix;\n\tobjectNormal = vec4( skinMatrix * vec4( objectNormal, 0.0 ) ).xyz;\n\t#ifdef USE_TANGENT\n\t\tobjectTangent = vec4( skinMatrix * vec4( objectTangent, 0.0 ) ).xyz;\n\t#endif\n#endif";
var specularmap_fragment = "float specularStrength;\n#ifdef USE_SPECULARMAP\n\tvec4 texelSpecular = texture2D( specularMap, vUv );\n\tspecularStrength = texelSpecular.r;\n#else\n\tspecularStrength = 1.0;\n#endif";
var specularmap_pars_fragment = "#ifdef USE_SPECULARMAP\n\tuniform sampler2D specularMap;\n#endif";
var tonemapping_fragment = "#if defined( TONE_MAPPING )\n\tgl_FragColor.rgb = toneMapping( gl_FragColor.rgb );\n#endif";
var tonemapping_pars_fragment = "#ifndef saturate\n#define saturate( a ) clamp( a, 0.0, 1.0 )\n#endif\nuniform float toneMappingExposure;\nvec3 LinearToneMapping( vec3 color ) {\n\treturn toneMappingExposure * color;\n}\nvec3 ReinhardToneMapping( vec3 color ) {\n\tcolor *= toneMappingExposure;\n\treturn saturate( color / ( vec3( 1.0 ) + color ) );\n}\nvec3 OptimizedCineonToneMapping( vec3 color ) {\n\tcolor *= toneMappingExposure;\n\tcolor = max( vec3( 0.0 ), color - 0.004 );\n\treturn pow( ( color * ( 6.2 * color + 0.5 ) ) / ( color * ( 6.2 * color + 1.7 ) + 0.06 ), vec3( 2.2 ) );\n}\nvec3 RRTAndODTFit( vec3 v ) {\n\tvec3 a = v * ( v + 0.0245786 ) - 0.000090537;\n\tvec3 b = v * ( 0.983729 * v + 0.4329510 ) + 0.238081;\n\treturn a / b;\n}\nvec3 ACESFilmicToneMapping( vec3 color ) {\n\tconst mat3 ACESInputMat = mat3(\n\t\tvec3( 0.59719, 0.07600, 0.02840 ),\t\tvec3( 0.35458, 0.90834, 0.13383 ),\n\t\tvec3( 0.04823, 0.01566, 0.83777 )\n\t);\n\tconst mat3 ACESOutputMat = mat3(\n\t\tvec3( 1.60475, -0.10208, -0.00327 ),\t\tvec3( -0.53108, 1.10813, -0.07276 ),\n\t\tvec3( -0.07367, -0.00605, 1.07602 )\n\t);\n\tcolor *= toneMappingExposure / 0.6;\n\tcolor = ACESInputMat * color;\n\tcolor = RRTAndODTFit( color );\n\tcolor = ACESOutputMat * color;\n\treturn saturate( color );\n}\nvec3 CustomToneMapping( vec3 color ) { return color; }";
var transmission_fragment = "#ifdef USE_TRANSMISSION\n\tfloat transmissionAlpha = 1.0;\n\tfloat transmissionFactor = transmission;\n\tfloat thicknessFactor = thickness;\n\t#ifdef USE_TRANSMISSIONMAP\n\t\ttransmissionFactor *= texture2D( transmissionMap, vUv ).r;\n\t#endif\n\t#ifdef USE_THICKNESSMAP\n\t\tthicknessFactor *= texture2D( thicknessMap, vUv ).g;\n\t#endif\n\tvec3 pos = vWorldPosition;\n\tvec3 v = normalize( cameraPosition - pos );\n\tvec3 n = inverseTransformDirection( normal, viewMatrix );\n\tvec4 transmission = getIBLVolumeRefraction(\n\t\tn, v, roughnessFactor, material.diffuseColor, material.specularColor, material.specularF90,\n\t\tpos, modelMatrix, viewMatrix, projectionMatrix, ior, thicknessFactor,\n\t\tattenuationTint, attenuationDistance );\n\ttotalDiffuse = mix( totalDiffuse, transmission.rgb, transmissionFactor );\n\ttransmissionAlpha = mix( transmissionAlpha, transmission.a, transmissionFactor );\n#endif";
var transmission_pars_fragment = "#ifdef USE_TRANSMISSION\n\tuniform float transmission;\n\tuniform float thickness;\n\tuniform float attenuationDistance;\n\tuniform vec3 attenuationTint;\n\t#ifdef USE_TRANSMISSIONMAP\n\t\tuniform sampler2D transmissionMap;\n\t#endif\n\t#ifdef USE_THICKNESSMAP\n\t\tuniform sampler2D thicknessMap;\n\t#endif\n\tuniform vec2 transmissionSamplerSize;\n\tuniform sampler2D transmissionSamplerMap;\n\tuniform mat4 modelMatrix;\n\tuniform mat4 projectionMatrix;\n\tvarying vec3 vWorldPosition;\n\tvec3 getVolumeTransmissionRay( vec3 n, vec3 v, float thickness, float ior, mat4 modelMatrix ) {\n\t\tvec3 refractionVector = refract( - v, normalize( n ), 1.0 / ior );\n\t\tvec3 modelScale;\n\t\tmodelScale.x = length( vec3( modelMatrix[ 0 ].xyz ) );\n\t\tmodelScale.y = length( vec3( modelMatrix[ 1 ].xyz ) );\n\t\tmodelScale.z = length( vec3( modelMatrix[ 2 ].xyz ) );\n\t\treturn normalize( refractionVector ) * thickness * modelScale;\n\t}\n\tfloat applyIorToRoughness( float roughness, float ior ) {\n\t\treturn roughness * clamp( ior * 2.0 - 2.0, 0.0, 1.0 );\n\t}\n\tvec4 getTransmissionSample( vec2 fragCoord, float roughness, float ior ) {\n\t\tfloat framebufferLod = log2( transmissionSamplerSize.x ) * applyIorToRoughness( roughness, ior );\n\t\t#ifdef TEXTURE_LOD_EXT\n\t\t\treturn texture2DLodEXT( transmissionSamplerMap, fragCoord.xy, framebufferLod );\n\t\t#else\n\t\t\treturn texture2D( transmissionSamplerMap, fragCoord.xy, framebufferLod );\n\t\t#endif\n\t}\n\tvec3 applyVolumeAttenuation( vec3 radiance, float transmissionDistance, vec3 attenuationColor, float attenuationDistance ) {\n\t\tif ( attenuationDistance == 0.0 ) {\n\t\t\treturn radiance;\n\t\t} else {\n\t\t\tvec3 attenuationCoefficient = -log( attenuationColor ) / attenuationDistance;\n\t\t\tvec3 transmittance = exp( - attenuationCoefficient * transmissionDistance );\t\t\treturn transmittance * radiance;\n\t\t}\n\t}\n\tvec4 getIBLVolumeRefraction( vec3 n, vec3 v, float roughness, vec3 diffuseColor, vec3 specularColor, float specularF90,\n\t\tvec3 position, mat4 modelMatrix, mat4 viewMatrix, mat4 projMatrix, float ior, float thickness,\n\t\tvec3 attenuationColor, float attenuationDistance ) {\n\t\tvec3 transmissionRay = getVolumeTransmissionRay( n, v, thickness, ior, modelMatrix );\n\t\tvec3 refractedRayExit = position + transmissionRay;\n\t\tvec4 ndcPos = projMatrix * viewMatrix * vec4( refractedRayExit, 1.0 );\n\t\tvec2 refractionCoords = ndcPos.xy / ndcPos.w;\n\t\trefractionCoords += 1.0;\n\t\trefractionCoords /= 2.0;\n\t\tvec4 transmittedLight = getTransmissionSample( refractionCoords, roughness, ior );\n\t\tvec3 attenuatedColor = applyVolumeAttenuation( transmittedLight.rgb, length( transmissionRay ), attenuationColor, attenuationDistance );\n\t\tvec3 F = EnvironmentBRDF( n, v, specularColor, specularF90, roughness );\n\t\treturn vec4( ( 1.0 - F ) * attenuatedColor * diffuseColor, transmittedLight.a );\n\t}\n#endif";
var uv_pars_fragment = "#if ( defined( USE_UV ) && ! defined( UVS_VERTEX_ONLY ) )\n\tvarying vec2 vUv;\n#endif";
var uv_pars_vertex = "#ifdef USE_UV\n\t#ifdef UVS_VERTEX_ONLY\n\t\tvec2 vUv;\n\t#else\n\t\tvarying vec2 vUv;\n\t#endif\n\tuniform mat3 uvTransform;\n#endif";
var uv_vertex = "#ifdef USE_UV\n\tvUv = ( uvTransform * vec3( uv, 1 ) ).xy;\n#endif";
var uv2_pars_fragment = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n\tvarying vec2 vUv2;\n#endif";
var uv2_pars_vertex = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n\tattribute vec2 uv2;\n\tvarying vec2 vUv2;\n\tuniform mat3 uv2Transform;\n#endif";
var uv2_vertex = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n\tvUv2 = ( uv2Transform * vec3( uv2, 1 ) ).xy;\n#endif";
var worldpos_vertex = "#if defined( USE_ENVMAP ) || defined( DISTANCE ) || defined ( USE_SHADOWMAP ) || defined ( USE_TRANSMISSION )\n\tvec4 worldPosition = vec4( transformed, 1.0 );\n\t#ifdef USE_INSTANCING\n\t\tworldPosition = instanceMatrix * worldPosition;\n\t#endif\n\tworldPosition = modelMatrix * worldPosition;\n#endif";
const vertex$g = "varying vec2 vUv;\nuniform mat3 uvTransform;\nvoid main() {\n\tvUv = ( uvTransform * vec3( uv, 1 ) ).xy;\n\tgl_Position = vec4( position.xy, 1.0, 1.0 );\n}";
const fragment$g = "uniform sampler2D t2D;\nvarying vec2 vUv;\nvoid main() {\n\tvec4 texColor = texture2D( t2D, vUv );\n\tgl_FragColor = mapTexelToLinear( texColor );\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n}";
const vertex$f = "varying vec3 vWorldDirection;\n#include <common>\nvoid main() {\n\tvWorldDirection = transformDirection( position, modelMatrix );\n\t#include <begin_vertex>\n\t#include <project_vertex>\n\tgl_Position.z = gl_Position.w;\n}";
const fragment$f = "#include <envmap_common_pars_fragment>\nuniform float opacity;\nvarying vec3 vWorldDirection;\n#include <cube_uv_reflection_fragment>\nvoid main() {\n\tvec3 vReflect = vWorldDirection;\n\t#include <envmap_fragment>\n\tgl_FragColor = envColor;\n\tgl_FragColor.a *= opacity;\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n}";
const vertex$e = "#include <common>\n#include <uv_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvarying vec2 vHighPrecisionZW;\nvoid main() {\n\t#include <uv_vertex>\n\t#include <skinbase_vertex>\n\t#ifdef USE_DISPLACEMENTMAP\n\t\t#include <beginnormal_vertex>\n\t\t#include <morphnormal_vertex>\n\t\t#include <skinnormal_vertex>\n\t#endif\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\tvHighPrecisionZW = gl_Position.zw;\n}";
const fragment$e = "#if DEPTH_PACKING == 3200\n\tuniform float opacity;\n#endif\n#include <common>\n#include <packing>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvarying vec2 vHighPrecisionZW;\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( 1.0 );\n\t#if DEPTH_PACKING == 3200\n\t\tdiffuseColor.a = opacity;\n\t#endif\n\t#include <map_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\t#include <logdepthbuf_fragment>\n\tfloat fragCoordZ = 0.5 * vHighPrecisionZW[0] / vHighPrecisionZW[1] + 0.5;\n\t#if DEPTH_PACKING == 3200\n\t\tgl_FragColor = vec4( vec3( 1.0 - fragCoordZ ), opacity );\n\t#elif DEPTH_PACKING == 3201\n\t\tgl_FragColor = packDepthToRGBA( fragCoordZ );\n\t#endif\n}";
const vertex$d = "#define DISTANCE\nvarying vec3 vWorldPosition;\n#include <common>\n#include <uv_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <skinbase_vertex>\n\t#ifdef USE_DISPLACEMENTMAP\n\t\t#include <beginnormal_vertex>\n\t\t#include <morphnormal_vertex>\n\t\t#include <skinnormal_vertex>\n\t#endif\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <worldpos_vertex>\n\t#include <clipping_planes_vertex>\n\tvWorldPosition = worldPosition.xyz;\n}";
const fragment$d = "#define DISTANCE\nuniform vec3 referencePosition;\nuniform float nearDistance;\nuniform float farDistance;\nvarying vec3 vWorldPosition;\n#include <common>\n#include <packing>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main () {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( 1.0 );\n\t#include <map_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\tfloat dist = length( vWorldPosition - referencePosition );\n\tdist = ( dist - nearDistance ) / ( farDistance - nearDistance );\n\tdist = saturate( dist );\n\tgl_FragColor = packDepthToRGBA( dist );\n}";
const vertex$c = "varying vec3 vWorldDirection;\n#include <common>\nvoid main() {\n\tvWorldDirection = transformDirection( position, modelMatrix );\n\t#include <begin_vertex>\n\t#include <project_vertex>\n}";
const fragment$c = "uniform sampler2D tEquirect;\nvarying vec3 vWorldDirection;\n#include <common>\nvoid main() {\n\tvec3 direction = normalize( vWorldDirection );\n\tvec2 sampleUV = equirectUv( direction );\n\tvec4 texColor = texture2D( tEquirect, sampleUV );\n\tgl_FragColor = mapTexelToLinear( texColor );\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n}";
const vertex$b = "uniform float scale;\nattribute float lineDistance;\nvarying float vLineDistance;\n#include <common>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\tvLineDistance = scale * lineDistance;\n\t#include <color_vertex>\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\t#include <fog_vertex>\n}";
const fragment$b = "uniform vec3 diffuse;\nuniform float opacity;\nuniform float dashSize;\nuniform float totalSize;\nvarying float vLineDistance;\n#include <common>\n#include <color_pars_fragment>\n#include <fog_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tif ( mod( vLineDistance, totalSize ) > dashSize ) {\n\t\tdiscard;\n\t}\n\tvec3 outgoingLight = vec3( 0.0 );\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include <logdepthbuf_fragment>\n\t#include <color_fragment>\n\toutgoingLight = diffuseColor.rgb;\n\t#include <output_fragment>\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n}";
const vertex$a = "#include <common>\n#include <uv_pars_vertex>\n#include <uv2_pars_vertex>\n#include <envmap_pars_vertex>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <uv2_vertex>\n\t#include <color_vertex>\n\t#if defined ( USE_ENVMAP ) || defined ( USE_SKINNING )\n\t\t#include <beginnormal_vertex>\n\t\t#include <morphnormal_vertex>\n\t\t#include <skinbase_vertex>\n\t\t#include <skinnormal_vertex>\n\t\t#include <defaultnormal_vertex>\n\t#endif\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\t#include <worldpos_vertex>\n\t#include <envmap_vertex>\n\t#include <fog_vertex>\n}";
const fragment$a = "uniform vec3 diffuse;\nuniform float opacity;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\n#include <common>\n#include <dithering_pars_fragment>\n#include <color_pars_fragment>\n#include <uv_pars_fragment>\n#include <uv2_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <aomap_pars_fragment>\n#include <lightmap_pars_fragment>\n#include <envmap_common_pars_fragment>\n#include <envmap_pars_fragment>\n#include <cube_uv_reflection_fragment>\n#include <fog_pars_fragment>\n#include <specularmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <color_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\t#include <specularmap_fragment>\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\t#ifdef USE_LIGHTMAP\n\t\tvec4 lightMapTexel= texture2D( lightMap, vUv2 );\n\t\treflectedLight.indirectDiffuse += lightMapTexelToLinear( lightMapTexel ).rgb * lightMapIntensity;\n\t#else\n\t\treflectedLight.indirectDiffuse += vec3( 1.0 );\n\t#endif\n\t#include <aomap_fragment>\n\treflectedLight.indirectDiffuse *= diffuseColor.rgb;\n\tvec3 outgoingLight = reflectedLight.indirectDiffuse;\n\t#include <envmap_fragment>\n\t#include <output_fragment>\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n\t#include <dithering_fragment>\n}";
const vertex$9 = "#define LAMBERT\nvarying vec3 vLightFront;\nvarying vec3 vIndirectFront;\n#ifdef DOUBLE_SIDED\n\tvarying vec3 vLightBack;\n\tvarying vec3 vIndirectBack;\n#endif\n#include <common>\n#include <uv_pars_vertex>\n#include <uv2_pars_vertex>\n#include <envmap_pars_vertex>\n#include <bsdfs>\n#include <lights_pars_begin>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <shadowmap_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <uv2_vertex>\n\t#include <color_vertex>\n\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\t#include <worldpos_vertex>\n\t#include <envmap_vertex>\n\t#include <lights_lambert_vertex>\n\t#include <shadowmap_vertex>\n\t#include <fog_vertex>\n}";
const fragment$9 = "uniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float opacity;\nvarying vec3 vLightFront;\nvarying vec3 vIndirectFront;\n#ifdef DOUBLE_SIDED\n\tvarying vec3 vLightBack;\n\tvarying vec3 vIndirectBack;\n#endif\n#include <common>\n#include <packing>\n#include <dithering_pars_fragment>\n#include <color_pars_fragment>\n#include <uv_pars_fragment>\n#include <uv2_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <aomap_pars_fragment>\n#include <lightmap_pars_fragment>\n#include <emissivemap_pars_fragment>\n#include <envmap_common_pars_fragment>\n#include <envmap_pars_fragment>\n#include <cube_uv_reflection_fragment>\n#include <bsdfs>\n#include <lights_pars_begin>\n#include <fog_pars_fragment>\n#include <shadowmap_pars_fragment>\n#include <shadowmask_pars_fragment>\n#include <specularmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <color_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\t#include <specularmap_fragment>\n\t#include <emissivemap_fragment>\n\t#ifdef DOUBLE_SIDED\n\t\treflectedLight.indirectDiffuse += ( gl_FrontFacing ) ? vIndirectFront : vIndirectBack;\n\t#else\n\t\treflectedLight.indirectDiffuse += vIndirectFront;\n\t#endif\n\t#include <lightmap_fragment>\n\treflectedLight.indirectDiffuse *= BRDF_Lambert( diffuseColor.rgb );\n\t#ifdef DOUBLE_SIDED\n\t\treflectedLight.directDiffuse = ( gl_FrontFacing ) ? vLightFront : vLightBack;\n\t#else\n\t\treflectedLight.directDiffuse = vLightFront;\n\t#endif\n\treflectedLight.directDiffuse *= BRDF_Lambert( diffuseColor.rgb ) * getShadowMask();\n\t#include <aomap_fragment>\n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + totalEmissiveRadiance;\n\t#include <envmap_fragment>\n\t#include <output_fragment>\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n\t#include <dithering_fragment>\n}";
const vertex$8 = "#define MATCAP\nvarying vec3 vViewPosition;\n#include <common>\n#include <uv_pars_vertex>\n#include <color_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <fog_pars_vertex>\n#include <normal_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <color_vertex>\n\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n\t#include <normal_vertex>\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\t#include <fog_vertex>\n\tvViewPosition = - mvPosition.xyz;\n}";
const fragment$8 = "#define MATCAP\nuniform vec3 diffuse;\nuniform float opacity;\nuniform sampler2D matcap;\nvarying vec3 vViewPosition;\n#include <common>\n#include <dithering_pars_fragment>\n#include <color_pars_fragment>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <fog_pars_fragment>\n#include <normal_pars_fragment>\n#include <bumpmap_pars_fragment>\n#include <normalmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <color_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\t#include <normal_fragment_begin>\n\t#include <normal_fragment_maps>\n\tvec3 viewDir = normalize( vViewPosition );\n\tvec3 x = normalize( vec3( viewDir.z, 0.0, - viewDir.x ) );\n\tvec3 y = cross( viewDir, x );\n\tvec2 uv = vec2( dot( x, normal ), dot( y, normal ) ) * 0.495 + 0.5;\n\t#ifdef USE_MATCAP\n\t\tvec4 matcapColor = texture2D( matcap, uv );\n\t\tmatcapColor = matcapTexelToLinear( matcapColor );\n\t#else\n\t\tvec4 matcapColor = vec4( 1.0 );\n\t#endif\n\tvec3 outgoingLight = diffuseColor.rgb * matcapColor.rgb;\n\t#include <output_fragment>\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n\t#include <dithering_fragment>\n}";
const vertex$7 = "#define NORMAL\n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( TANGENTSPACE_NORMALMAP )\n\tvarying vec3 vViewPosition;\n#endif\n#include <common>\n#include <uv_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <normal_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n\t#include <normal_vertex>\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( TANGENTSPACE_NORMALMAP )\n\tvViewPosition = - mvPosition.xyz;\n#endif\n}";
const fragment$7 = "#define NORMAL\nuniform float opacity;\n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( TANGENTSPACE_NORMALMAP )\n\tvarying vec3 vViewPosition;\n#endif\n#include <packing>\n#include <uv_pars_fragment>\n#include <normal_pars_fragment>\n#include <bumpmap_pars_fragment>\n#include <normalmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\t#include <logdepthbuf_fragment>\n\t#include <normal_fragment_begin>\n\t#include <normal_fragment_maps>\n\tgl_FragColor = vec4( packNormalToRGB( normal ), opacity );\n}";
const vertex$6 = "#define PHONG\nvarying vec3 vViewPosition;\n#include <common>\n#include <uv_pars_vertex>\n#include <uv2_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <envmap_pars_vertex>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <normal_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <shadowmap_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <uv2_vertex>\n\t#include <color_vertex>\n\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n\t#include <normal_vertex>\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\tvViewPosition = - mvPosition.xyz;\n\t#include <worldpos_vertex>\n\t#include <envmap_vertex>\n\t#include <shadowmap_vertex>\n\t#include <fog_vertex>\n}";
const fragment$6 = "#define PHONG\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform vec3 specular;\nuniform float shininess;\nuniform float opacity;\n#include <common>\n#include <packing>\n#include <dithering_pars_fragment>\n#include <color_pars_fragment>\n#include <uv_pars_fragment>\n#include <uv2_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <aomap_pars_fragment>\n#include <lightmap_pars_fragment>\n#include <emissivemap_pars_fragment>\n#include <envmap_common_pars_fragment>\n#include <envmap_pars_fragment>\n#include <cube_uv_reflection_fragment>\n#include <fog_pars_fragment>\n#include <bsdfs>\n#include <lights_pars_begin>\n#include <normal_pars_fragment>\n#include <lights_phong_pars_fragment>\n#include <shadowmap_pars_fragment>\n#include <bumpmap_pars_fragment>\n#include <normalmap_pars_fragment>\n#include <specularmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <color_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\t#include <specularmap_fragment>\n\t#include <normal_fragment_begin>\n\t#include <normal_fragment_maps>\n\t#include <emissivemap_fragment>\n\t#include <lights_phong_fragment>\n\t#include <lights_fragment_begin>\n\t#include <lights_fragment_maps>\n\t#include <lights_fragment_end>\n\t#include <aomap_fragment>\n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + reflectedLight.directSpecular + reflectedLight.indirectSpecular + totalEmissiveRadiance;\n\t#include <envmap_fragment>\n\t#include <output_fragment>\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n\t#include <dithering_fragment>\n}";
const vertex$5 = "#define STANDARD\nvarying vec3 vViewPosition;\n#ifdef USE_TRANSMISSION\n\tvarying vec3 vWorldPosition;\n#endif\n#include <common>\n#include <uv_pars_vertex>\n#include <uv2_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <normal_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <shadowmap_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <uv2_vertex>\n\t#include <color_vertex>\n\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n\t#include <normal_vertex>\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\tvViewPosition = - mvPosition.xyz;\n\t#include <worldpos_vertex>\n\t#include <shadowmap_vertex>\n\t#include <fog_vertex>\n#ifdef USE_TRANSMISSION\n\tvWorldPosition = worldPosition.xyz;\n#endif\n}";
const fragment$5 = "#define STANDARD\n#ifdef PHYSICAL\n\t#define IOR\n\t#define SPECULAR\n#endif\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float roughness;\nuniform float metalness;\nuniform float opacity;\n#ifdef IOR\n\tuniform float ior;\n#endif\n#ifdef SPECULAR\n\tuniform float specularIntensity;\n\tuniform vec3 specularTint;\n\t#ifdef USE_SPECULARINTENSITYMAP\n\t\tuniform sampler2D specularIntensityMap;\n\t#endif\n\t#ifdef USE_SPECULARTINTMAP\n\t\tuniform sampler2D specularTintMap;\n\t#endif\n#endif\n#ifdef USE_CLEARCOAT\n\tuniform float clearcoat;\n\tuniform float clearcoatRoughness;\n#endif\n#ifdef USE_SHEEN\n\tuniform vec3 sheenTint;\n\tuniform float sheenRoughness;\n#endif\nvarying vec3 vViewPosition;\n#include <common>\n#include <packing>\n#include <dithering_pars_fragment>\n#include <color_pars_fragment>\n#include <uv_pars_fragment>\n#include <uv2_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <aomap_pars_fragment>\n#include <lightmap_pars_fragment>\n#include <emissivemap_pars_fragment>\n#include <bsdfs>\n#include <cube_uv_reflection_fragment>\n#include <envmap_common_pars_fragment>\n#include <envmap_physical_pars_fragment>\n#include <fog_pars_fragment>\n#include <lights_pars_begin>\n#include <normal_pars_fragment>\n#include <lights_physical_pars_fragment>\n#include <transmission_pars_fragment>\n#include <shadowmap_pars_fragment>\n#include <bumpmap_pars_fragment>\n#include <normalmap_pars_fragment>\n#include <clearcoat_pars_fragment>\n#include <roughnessmap_pars_fragment>\n#include <metalnessmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <color_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\t#include <roughnessmap_fragment>\n\t#include <metalnessmap_fragment>\n\t#include <normal_fragment_begin>\n\t#include <normal_fragment_maps>\n\t#include <clearcoat_normal_fragment_begin>\n\t#include <clearcoat_normal_fragment_maps>\n\t#include <emissivemap_fragment>\n\t#include <lights_physical_fragment>\n\t#include <lights_fragment_begin>\n\t#include <lights_fragment_maps>\n\t#include <lights_fragment_end>\n\t#include <aomap_fragment>\n\tvec3 totalDiffuse = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse;\n\tvec3 totalSpecular = reflectedLight.directSpecular + reflectedLight.indirectSpecular;\n\t#include <transmission_fragment>\n\tvec3 outgoingLight = totalDiffuse + totalSpecular + totalEmissiveRadiance;\n\t#ifdef USE_CLEARCOAT\n\t\tfloat dotNVcc = saturate( dot( geometry.clearcoatNormal, geometry.viewDir ) );\n\t\tvec3 Fcc = F_Schlick( material.clearcoatF0, material.clearcoatF90, dotNVcc );\n\t\toutgoingLight = outgoingLight * ( 1.0 - clearcoat * Fcc ) + clearcoatSpecular * clearcoat;\n\t#endif\n\t#include <output_fragment>\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n\t#include <dithering_fragment>\n}";
const vertex$4 = "#define TOON\nvarying vec3 vViewPosition;\n#include <common>\n#include <uv_pars_vertex>\n#include <uv2_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <normal_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <shadowmap_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <uv2_vertex>\n\t#include <color_vertex>\n\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n\t#include <normal_vertex>\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\tvViewPosition = - mvPosition.xyz;\n\t#include <worldpos_vertex>\n\t#include <shadowmap_vertex>\n\t#include <fog_vertex>\n}";
const fragment$4 = "#define TOON\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float opacity;\n#include <common>\n#include <packing>\n#include <dithering_pars_fragment>\n#include <color_pars_fragment>\n#include <uv_pars_fragment>\n#include <uv2_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <aomap_pars_fragment>\n#include <lightmap_pars_fragment>\n#include <emissivemap_pars_fragment>\n#include <gradientmap_pars_fragment>\n#include <fog_pars_fragment>\n#include <bsdfs>\n#include <lights_pars_begin>\n#include <normal_pars_fragment>\n#include <lights_toon_pars_fragment>\n#include <shadowmap_pars_fragment>\n#include <bumpmap_pars_fragment>\n#include <normalmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <color_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\t#include <normal_fragment_begin>\n\t#include <normal_fragment_maps>\n\t#include <emissivemap_fragment>\n\t#include <lights_toon_fragment>\n\t#include <lights_fragment_begin>\n\t#include <lights_fragment_maps>\n\t#include <lights_fragment_end>\n\t#include <aomap_fragment>\n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + totalEmissiveRadiance;\n\t#include <output_fragment>\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n\t#include <dithering_fragment>\n}";
const vertex$3 = "uniform float size;\nuniform float scale;\n#include <common>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <color_vertex>\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <project_vertex>\n\tgl_PointSize = size;\n\t#ifdef USE_SIZEATTENUATION\n\t\tbool isPerspective = isPerspectiveMatrix( projectionMatrix );\n\t\tif ( isPerspective ) gl_PointSize *= ( scale / - mvPosition.z );\n\t#endif\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\t#include <worldpos_vertex>\n\t#include <fog_vertex>\n}";
const fragment$3 = "uniform vec3 diffuse;\nuniform float opacity;\n#include <common>\n#include <color_pars_fragment>\n#include <map_particle_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <fog_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec3 outgoingLight = vec3( 0.0 );\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include <logdepthbuf_fragment>\n\t#include <map_particle_fragment>\n\t#include <color_fragment>\n\t#include <alphatest_fragment>\n\toutgoingLight = diffuseColor.rgb;\n\t#include <output_fragment>\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n}";
const vertex$2 = "#include <common>\n#include <fog_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <shadowmap_pars_vertex>\nvoid main() {\n\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <project_vertex>\n\t#include <worldpos_vertex>\n\t#include <shadowmap_vertex>\n\t#include <fog_vertex>\n}";
const fragment$2 = "uniform vec3 color;\nuniform float opacity;\n#include <common>\n#include <packing>\n#include <fog_pars_fragment>\n#include <bsdfs>\n#include <lights_pars_begin>\n#include <shadowmap_pars_fragment>\n#include <shadowmask_pars_fragment>\nvoid main() {\n\tgl_FragColor = vec4( color, opacity * ( 1.0 - getShadowMask() ) );\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n}";
const vertex$1 = "uniform float rotation;\nuniform vec2 center;\n#include <common>\n#include <uv_pars_vertex>\n#include <fog_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\tvec4 mvPosition = modelViewMatrix * vec4( 0.0, 0.0, 0.0, 1.0 );\n\tvec2 scale;\n\tscale.x = length( vec3( modelMatrix[ 0 ].x, modelMatrix[ 0 ].y, modelMatrix[ 0 ].z ) );\n\tscale.y = length( vec3( modelMatrix[ 1 ].x, modelMatrix[ 1 ].y, modelMatrix[ 1 ].z ) );\n\t#ifndef USE_SIZEATTENUATION\n\t\tbool isPerspective = isPerspectiveMatrix( projectionMatrix );\n\t\tif ( isPerspective ) scale *= - mvPosition.z;\n\t#endif\n\tvec2 alignedPosition = ( position.xy - ( center - vec2( 0.5 ) ) ) * scale;\n\tvec2 rotatedPosition;\n\trotatedPosition.x = cos( rotation ) * alignedPosition.x - sin( rotation ) * alignedPosition.y;\n\trotatedPosition.y = sin( rotation ) * alignedPosition.x + cos( rotation ) * alignedPosition.y;\n\tmvPosition.xy += rotatedPosition;\n\tgl_Position = projectionMatrix * mvPosition;\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\t#include <fog_vertex>\n}";
const fragment$1 = "uniform vec3 diffuse;\nuniform float opacity;\n#include <common>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <fog_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec3 outgoingLight = vec3( 0.0 );\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\toutgoingLight = diffuseColor.rgb;\n\t#include <output_fragment>\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n}";
const ShaderChunk = {
alphamap_fragment: alphamap_fragment,
alphamap_pars_fragment: alphamap_pars_fragment,
alphatest_fragment: alphatest_fragment,
alphatest_pars_fragment: alphatest_pars_fragment,
aomap_fragment: aomap_fragment,
aomap_pars_fragment: aomap_pars_fragment,
begin_vertex: begin_vertex,
beginnormal_vertex: beginnormal_vertex,
bsdfs: bsdfs,
bumpmap_pars_fragment: bumpmap_pars_fragment,
clipping_planes_fragment: clipping_planes_fragment,
clipping_planes_pars_fragment: clipping_planes_pars_fragment,
clipping_planes_pars_vertex: clipping_planes_pars_vertex,
clipping_planes_vertex: clipping_planes_vertex,
color_fragment: color_fragment,
color_pars_fragment: color_pars_fragment,
color_pars_vertex: color_pars_vertex,
color_vertex: color_vertex,
common: common,
cube_uv_reflection_fragment: cube_uv_reflection_fragment,
defaultnormal_vertex: defaultnormal_vertex,
displacementmap_pars_vertex: displacementmap_pars_vertex,
displacementmap_vertex: displacementmap_vertex,
emissivemap_fragment: emissivemap_fragment,
emissivemap_pars_fragment: emissivemap_pars_fragment,
encodings_fragment: encodings_fragment,
encodings_pars_fragment: encodings_pars_fragment,
envmap_fragment: envmap_fragment,
envmap_common_pars_fragment: envmap_common_pars_fragment,
envmap_pars_fragment: envmap_pars_fragment,
envmap_pars_vertex: envmap_pars_vertex,
envmap_physical_pars_fragment: envmap_physical_pars_fragment,
envmap_vertex: envmap_vertex,
fog_vertex: fog_vertex,
fog_pars_vertex: fog_pars_vertex,
fog_fragment: fog_fragment,
fog_pars_fragment: fog_pars_fragment,
gradientmap_pars_fragment: gradientmap_pars_fragment,
lightmap_fragment: lightmap_fragment,
lightmap_pars_fragment: lightmap_pars_fragment,
lights_lambert_vertex: lights_lambert_vertex,
lights_pars_begin: lights_pars_begin,
lights_toon_fragment: lights_toon_fragment,
lights_toon_pars_fragment: lights_toon_pars_fragment,
lights_phong_fragment: lights_phong_fragment,
lights_phong_pars_fragment: lights_phong_pars_fragment,
lights_physical_fragment: lights_physical_fragment,
lights_physical_pars_fragment: lights_physical_pars_fragment,
lights_fragment_begin: lights_fragment_begin,
lights_fragment_maps: lights_fragment_maps,
lights_fragment_end: lights_fragment_end,
logdepthbuf_fragment: logdepthbuf_fragment,
logdepthbuf_pars_fragment: logdepthbuf_pars_fragment,
logdepthbuf_pars_vertex: logdepthbuf_pars_vertex,
logdepthbuf_vertex: logdepthbuf_vertex,
map_fragment: map_fragment,
map_pars_fragment: map_pars_fragment,
map_particle_fragment: map_particle_fragment,
map_particle_pars_fragment: map_particle_pars_fragment,
metalnessmap_fragment: metalnessmap_fragment,
metalnessmap_pars_fragment: metalnessmap_pars_fragment,
morphnormal_vertex: morphnormal_vertex,
morphtarget_pars_vertex: morphtarget_pars_vertex,
morphtarget_vertex: morphtarget_vertex,
normal_fragment_begin: normal_fragment_begin,
normal_fragment_maps: normal_fragment_maps,
normal_pars_fragment: normal_pars_fragment,
normal_pars_vertex: normal_pars_vertex,
normal_vertex: normal_vertex,
normalmap_pars_fragment: normalmap_pars_fragment,
clearcoat_normal_fragment_begin: clearcoat_normal_fragment_begin,
clearcoat_normal_fragment_maps: clearcoat_normal_fragment_maps,
clearcoat_pars_fragment: clearcoat_pars_fragment,
output_fragment: output_fragment,
packing: packing,
premultiplied_alpha_fragment: premultiplied_alpha_fragment,
project_vertex: project_vertex,
dithering_fragment: dithering_fragment,
dithering_pars_fragment: dithering_pars_fragment,
roughnessmap_fragment: roughnessmap_fragment,
roughnessmap_pars_fragment: roughnessmap_pars_fragment,
shadowmap_pars_fragment: shadowmap_pars_fragment,
shadowmap_pars_vertex: shadowmap_pars_vertex,
shadowmap_vertex: shadowmap_vertex,
shadowmask_pars_fragment: shadowmask_pars_fragment,
skinbase_vertex: skinbase_vertex,
skinning_pars_vertex: skinning_pars_vertex,
skinning_vertex: skinning_vertex,
skinnormal_vertex: skinnormal_vertex,
specularmap_fragment: specularmap_fragment,
specularmap_pars_fragment: specularmap_pars_fragment,
tonemapping_fragment: tonemapping_fragment,
tonemapping_pars_fragment: tonemapping_pars_fragment,
transmission_fragment: transmission_fragment,
transmission_pars_fragment: transmission_pars_fragment,
uv_pars_fragment: uv_pars_fragment,
uv_pars_vertex: uv_pars_vertex,
uv_vertex: uv_vertex,
uv2_pars_fragment: uv2_pars_fragment,
uv2_pars_vertex: uv2_pars_vertex,
uv2_vertex: uv2_vertex,
worldpos_vertex: worldpos_vertex,
background_vert: vertex$g,
background_frag: fragment$g,
cube_vert: vertex$f,
cube_frag: fragment$f,
depth_vert: vertex$e,
depth_frag: fragment$e,
distanceRGBA_vert: vertex$d,
distanceRGBA_frag: fragment$d,
equirect_vert: vertex$c,
equirect_frag: fragment$c,
linedashed_vert: vertex$b,
linedashed_frag: fragment$b,
meshbasic_vert: vertex$a,
meshbasic_frag: fragment$a,
meshlambert_vert: vertex$9,
meshlambert_frag: fragment$9,
meshmatcap_vert: vertex$8,
meshmatcap_frag: fragment$8,
meshnormal_vert: vertex$7,
meshnormal_frag: fragment$7,
meshphong_vert: vertex$6,
meshphong_frag: fragment$6,
meshphysical_vert: vertex$5,
meshphysical_frag: fragment$5,
meshtoon_vert: vertex$4,
meshtoon_frag: fragment$4,
points_vert: vertex$3,
points_frag: fragment$3,
shadow_vert: vertex$2,
shadow_frag: fragment$2,
sprite_vert: vertex$1,
sprite_frag: fragment$1
};
/**
* Uniforms library for shared webgl shaders
*/
const UniformsLib = {
common: {
diffuse: {
value: new Color(0xffffff)
},
opacity: {
value: 1.0
},
map: {
value: null
},
uvTransform: {
value: new Matrix3()
},
uv2Transform: {
value: new Matrix3()
},
alphaMap: {
value: null
},
alphaTest: {
value: 0
}
},
specularmap: {
specularMap: {
value: null
}
},
envmap: {
envMap: {
value: null
},
flipEnvMap: {
value: -1
},
reflectivity: {
value: 1.0
},
// basic, lambert, phong
ior: {
value: 1.5
},
// standard, physical
refractionRatio: {
value: 0.98
},
maxMipLevel: {
value: 0
}
},
aomap: {
aoMap: {
value: null
},
aoMapIntensity: {
value: 1
}
},
lightmap: {
lightMap: {
value: null
},
lightMapIntensity: {
value: 1
}
},
emissivemap: {
emissiveMap: {
value: null
}
},
bumpmap: {
bumpMap: {
value: null
},
bumpScale: {
value: 1
}
},
normalmap: {
normalMap: {
value: null
},
normalScale: {
value: new Vector2(1, 1)
}
},
displacementmap: {
displacementMap: {
value: null
},
displacementScale: {
value: 1
},
displacementBias: {
value: 0
}
},
roughnessmap: {
roughnessMap: {
value: null
}
},
metalnessmap: {
metalnessMap: {
value: null
}
},
gradientmap: {
gradientMap: {
value: null
}
},
fog: {
fogDensity: {
value: 0.00025
},
fogNear: {
value: 1
},
fogFar: {
value: 2000
},
fogColor: {
value: new Color(0xffffff)
}
},
lights: {
ambientLightColor: {
value: []
},
lightProbe: {
value: []
},
directionalLights: {
value: [],
properties: {
direction: {},
color: {}
}
},
directionalLightShadows: {
value: [],
properties: {
shadowBias: {},
shadowNormalBias: {},
shadowRadius: {},
shadowMapSize: {}
}
},
directionalShadowMap: {
value: []
},
directionalShadowMatrix: {
value: []
},
spotLights: {
value: [],
properties: {
color: {},
position: {},
direction: {},
distance: {},
coneCos: {},
penumbraCos: {},
decay: {}
}
},
spotLightShadows: {
value: [],
properties: {
shadowBias: {},
shadowNormalBias: {},
shadowRadius: {},
shadowMapSize: {}
}
},
spotShadowMap: {
value: []
},
spotShadowMatrix: {
value: []
},
pointLights: {
value: [],
properties: {
color: {},
position: {},
decay: {},
distance: {}
}
},
pointLightShadows: {
value: [],
properties: {
shadowBias: {},
shadowNormalBias: {},
shadowRadius: {},
shadowMapSize: {},
shadowCameraNear: {},
shadowCameraFar: {}
}
},
pointShadowMap: {
value: []
},
pointShadowMatrix: {
value: []
},
hemisphereLights: {
value: [],
properties: {
direction: {},
skyColor: {},
groundColor: {}
}
},
// TODO (abelnation): RectAreaLight BRDF data needs to be moved from example to main src
rectAreaLights: {
value: [],
properties: {
color: {},
position: {},
width: {},
height: {}
}
},
ltc_1: {
value: null
},
ltc_2: {
value: null
}
},
points: {
diffuse: {
value: new Color(0xffffff)
},
opacity: {
value: 1.0
},
size: {
value: 1.0
},
scale: {
value: 1.0
},
map: {
value: null
},
alphaMap: {
value: null
},
alphaTest: {
value: 0
},
uvTransform: {
value: new Matrix3()
}
},
sprite: {
diffuse: {
value: new Color(0xffffff)
},
opacity: {
value: 1.0
},
center: {
value: new Vector2(0.5, 0.5)
},
rotation: {
value: 0.0
},
map: {
value: null
},
alphaMap: {
value: null
},
alphaTest: {
value: 0
},
uvTransform: {
value: new Matrix3()
}
}
};
const ShaderLib = {
basic: {
uniforms: mergeUniforms([UniformsLib.common, UniformsLib.specularmap, UniformsLib.envmap, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.fog]),
vertexShader: ShaderChunk.meshbasic_vert,
fragmentShader: ShaderChunk.meshbasic_frag
},
lambert: {
uniforms: mergeUniforms([UniformsLib.common, UniformsLib.specularmap, UniformsLib.envmap, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.emissivemap, UniformsLib.fog, UniformsLib.lights, {
emissive: {
value: new Color(0x000000)
}
}]),
vertexShader: ShaderChunk.meshlambert_vert,
fragmentShader: ShaderChunk.meshlambert_frag
},
phong: {
uniforms: mergeUniforms([UniformsLib.common, UniformsLib.specularmap, UniformsLib.envmap, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.emissivemap, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, UniformsLib.fog, UniformsLib.lights, {
emissive: {
value: new Color(0x000000)
},
specular: {
value: new Color(0x111111)
},
shininess: {
value: 30
}
}]),
vertexShader: ShaderChunk.meshphong_vert,
fragmentShader: ShaderChunk.meshphong_frag
},
standard: {
uniforms: mergeUniforms([UniformsLib.common, UniformsLib.envmap, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.emissivemap, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, UniformsLib.roughnessmap, UniformsLib.metalnessmap, UniformsLib.fog, UniformsLib.lights, {
emissive: {
value: new Color(0x000000)
},
roughness: {
value: 1.0
},
metalness: {
value: 0.0
},
envMapIntensity: {
value: 1
} // temporary
}]),
vertexShader: ShaderChunk.meshphysical_vert,
fragmentShader: ShaderChunk.meshphysical_frag
},
toon: {
uniforms: mergeUniforms([UniformsLib.common, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.emissivemap, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, UniformsLib.gradientmap, UniformsLib.fog, UniformsLib.lights, {
emissive: {
value: new Color(0x000000)
}
}]),
vertexShader: ShaderChunk.meshtoon_vert,
fragmentShader: ShaderChunk.meshtoon_frag
},
matcap: {
uniforms: mergeUniforms([UniformsLib.common, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, UniformsLib.fog, {
matcap: {
value: null
}
}]),
vertexShader: ShaderChunk.meshmatcap_vert,
fragmentShader: ShaderChunk.meshmatcap_frag
},
points: {
uniforms: mergeUniforms([UniformsLib.points, UniformsLib.fog]),
vertexShader: ShaderChunk.points_vert,
fragmentShader: ShaderChunk.points_frag
},
dashed: {
uniforms: mergeUniforms([UniformsLib.common, UniformsLib.fog, {
scale: {
value: 1
},
dashSize: {
value: 1
},
totalSize: {
value: 2
}
}]),
vertexShader: ShaderChunk.linedashed_vert,
fragmentShader: ShaderChunk.linedashed_frag
},
depth: {
uniforms: mergeUniforms([UniformsLib.common, UniformsLib.displacementmap]),
vertexShader: ShaderChunk.depth_vert,
fragmentShader: ShaderChunk.depth_frag
},
normal: {
uniforms: mergeUniforms([UniformsLib.common, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, {
opacity: {
value: 1.0
}
}]),
vertexShader: ShaderChunk.meshnormal_vert,
fragmentShader: ShaderChunk.meshnormal_frag
},
sprite: {
uniforms: mergeUniforms([UniformsLib.sprite, UniformsLib.fog]),
vertexShader: ShaderChunk.sprite_vert,
fragmentShader: ShaderChunk.sprite_frag
},
background: {
uniforms: {
uvTransform: {
value: new Matrix3()
},
t2D: {
value: null
}
},
vertexShader: ShaderChunk.background_vert,
fragmentShader: ShaderChunk.background_frag
},
/* -------------------------------------------------------------------------
// Cube map shader
------------------------------------------------------------------------- */
cube: {
uniforms: mergeUniforms([UniformsLib.envmap, {
opacity: {
value: 1.0
}
}]),
vertexShader: ShaderChunk.cube_vert,
fragmentShader: ShaderChunk.cube_frag
},
equirect: {
uniforms: {
tEquirect: {
value: null
}
},
vertexShader: ShaderChunk.equirect_vert,
fragmentShader: ShaderChunk.equirect_frag
},
distanceRGBA: {
uniforms: mergeUniforms([UniformsLib.common, UniformsLib.displacementmap, {
referencePosition: {
value: new Vector3()
},
nearDistance: {
value: 1
},
farDistance: {
value: 1000
}
}]),
vertexShader: ShaderChunk.distanceRGBA_vert,
fragmentShader: ShaderChunk.distanceRGBA_frag
},
shadow: {
uniforms: mergeUniforms([UniformsLib.lights, UniformsLib.fog, {
color: {
value: new Color(0x00000)
},
opacity: {
value: 1.0
}
}]),
vertexShader: ShaderChunk.shadow_vert,
fragmentShader: ShaderChunk.shadow_frag
}
};
ShaderLib.physical = {
uniforms: mergeUniforms([ShaderLib.standard.uniforms, {
clearcoat: {
value: 0
},
clearcoatMap: {
value: null
},
clearcoatRoughness: {
value: 0
},
clearcoatRoughnessMap: {
value: null
},
clearcoatNormalScale: {
value: new Vector2(1, 1)
},
clearcoatNormalMap: {
value: null
},
sheen: {
value: 0
},
sheenTint: {
value: new Color(0x000000)
},
sheenRoughness: {
value: 0
},
transmission: {
value: 0
},
transmissionMap: {
value: null
},
transmissionSamplerSize: {
value: new Vector2()
},
transmissionSamplerMap: {
value: null
},
thickness: {
value: 0
},
thicknessMap: {
value: null
},
attenuationDistance: {
value: 0
},
attenuationTint: {
value: new Color(0x000000)
},
specularIntensity: {
value: 0
},
specularIntensityMap: {
value: null
},
specularTint: {
value: new Color(1, 1, 1)
},
specularTintMap: {
value: null
}
}]),
vertexShader: ShaderChunk.meshphysical_vert,
fragmentShader: ShaderChunk.meshphysical_frag
};
function WebGLBackground(renderer, cubemaps, state, objects, premultipliedAlpha) {
const clearColor = new Color(0x000000);
let clearAlpha = 0;
let planeMesh;
let boxMesh;
let currentBackground = null;
let currentBackgroundVersion = 0;
let currentTonemapping = null;
function render(renderList, scene) {
let forceClear = false;
let background = scene.isScene === true ? scene.background : null;
if (background && background.isTexture) {
background = cubemaps.get(background);
} // Ignore background in AR
// TODO: Reconsider this.
const xr = renderer.xr;
const session = xr.getSession && xr.getSession();
if (session && session.environmentBlendMode === 'additive') {
background = null;
}
if (background === null) {
setClear(clearColor, clearAlpha);
} else if (background && background.isColor) {
setClear(background, 1);
forceClear = true;
}
if (renderer.autoClear || forceClear) {
renderer.clear(renderer.autoClearColor, renderer.autoClearDepth, renderer.autoClearStencil);
}
if (background && (background.isCubeTexture || background.mapping === CubeUVReflectionMapping)) {
if (boxMesh === undefined) {
boxMesh = new Mesh(new BoxGeometry(1, 1, 1), new ShaderMaterial({
name: 'BackgroundCubeMaterial',
uniforms: cloneUniforms(ShaderLib.cube.uniforms),
vertexShader: ShaderLib.cube.vertexShader,
fragmentShader: ShaderLib.cube.fragmentShader,
side: BackSide,
depthTest: false,
depthWrite: false,
fog: false
}));
boxMesh.geometry.deleteAttribute('normal');
boxMesh.geometry.deleteAttribute('uv');
boxMesh.onBeforeRender = function (renderer, scene, camera) {
this.matrixWorld.copyPosition(camera.matrixWorld);
}; // enable code injection for non-built-in material
Object.defineProperty(boxMesh.material, 'envMap', {
get: function () {
return this.uniforms.envMap.value;
}
});
objects.update(boxMesh);
}
boxMesh.material.uniforms.envMap.value = background;
boxMesh.material.uniforms.flipEnvMap.value = background.isCubeTexture && background.isRenderTargetTexture === false ? -1 : 1;
if (currentBackground !== background || currentBackgroundVersion !== background.version || currentTonemapping !== renderer.toneMapping) {
boxMesh.material.needsUpdate = true;
currentBackground = background;
currentBackgroundVersion = background.version;
currentTonemapping = renderer.toneMapping;
} // push to the pre-sorted opaque render list
renderList.unshift(boxMesh, boxMesh.geometry, boxMesh.material, 0, 0, null);
} else if (background && background.isTexture) {
if (planeMesh === undefined) {
planeMesh = new Mesh(new PlaneGeometry(2, 2), new ShaderMaterial({
name: 'BackgroundMaterial',
uniforms: cloneUniforms(ShaderLib.background.uniforms),
vertexShader: ShaderLib.background.vertexShader,
fragmentShader: ShaderLib.background.fragmentShader,
side: FrontSide,
depthTest: false,
depthWrite: false,
fog: false
}));
planeMesh.geometry.deleteAttribute('normal'); // enable code injection for non-built-in material
Object.defineProperty(planeMesh.material, 'map', {
get: function () {
return this.uniforms.t2D.value;
}
});
objects.update(planeMesh);
}
planeMesh.material.uniforms.t2D.value = background;
if (background.matrixAutoUpdate === true) {
background.updateMatrix();
}
planeMesh.material.uniforms.uvTransform.value.copy(background.matrix);
if (currentBackground !== background || currentBackgroundVersion !== background.version || currentTonemapping !== renderer.toneMapping) {
planeMesh.material.needsUpdate = true;
currentBackground = background;
currentBackgroundVersion = background.version;
currentTonemapping = renderer.toneMapping;
} // push to the pre-sorted opaque render list
renderList.unshift(planeMesh, planeMesh.geometry, planeMesh.material, 0, 0, null);
}
}
function setClear(color, alpha) {
state.buffers.color.setClear(color.r, color.g, color.b, alpha, premultipliedAlpha);
}
return {
getClearColor: function () {
return clearColor;
},
setClearColor: function (color, alpha = 1) {
clearColor.set(color);
clearAlpha = alpha;
setClear(clearColor, clearAlpha);
},
getClearAlpha: function () {
return clearAlpha;
},
setClearAlpha: function (alpha) {
clearAlpha = alpha;
setClear(clearColor, clearAlpha);
},
render: render
};
}
function WebGLBindingStates(gl, extensions, attributes, capabilities) {
const maxVertexAttributes = gl.getParameter(gl.MAX_VERTEX_ATTRIBS);
const extension = capabilities.isWebGL2 ? null : extensions.get('OES_vertex_array_object');
const vaoAvailable = capabilities.isWebGL2 || extension !== null;
const bindingStates = {};
const defaultState = createBindingState(null);
let currentState = defaultState;
function setup(object, material, program, geometry, index) {
let updateBuffers = false;
if (vaoAvailable) {
const state = getBindingState(geometry, program, material);
if (currentState !== state) {
currentState = state;
bindVertexArrayObject(currentState.object);
}
updateBuffers = needsUpdate(geometry, index);
if (updateBuffers) saveCache(geometry, index);
} else {
const wireframe = material.wireframe === true;
if (currentState.geometry !== geometry.id || currentState.program !== program.id || currentState.wireframe !== wireframe) {
currentState.geometry = geometry.id;
currentState.program = program.id;
currentState.wireframe = wireframe;
updateBuffers = true;
}
}
if (object.isInstancedMesh === true) {
updateBuffers = true;
}
if (index !== null) {
attributes.update(index, gl.ELEMENT_ARRAY_BUFFER);
}
if (updateBuffers) {
setupVertexAttributes(object, material, program, geometry);
if (index !== null) {
gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, attributes.get(index).buffer);
}
}
}
function createVertexArrayObject() {
if (capabilities.isWebGL2) return gl.createVertexArray();
return extension.createVertexArrayOES();
}
function bindVertexArrayObject(vao) {
if (capabilities.isWebGL2) return gl.bindVertexArray(vao);
return extension.bindVertexArrayOES(vao);
}
function deleteVertexArrayObject(vao) {
if (capabilities.isWebGL2) return gl.deleteVertexArray(vao);
return extension.deleteVertexArrayOES(vao);
}
function getBindingState(geometry, program, material) {
const wireframe = material.wireframe === true;
let programMap = bindingStates[geometry.id];
if (programMap === undefined) {
programMap = {};
bindingStates[geometry.id] = programMap;
}
let stateMap = programMap[program.id];
if (stateMap === undefined) {
stateMap = {};
programMap[program.id] = stateMap;
}
let state = stateMap[wireframe];
if (state === undefined) {
state = createBindingState(createVertexArrayObject());
stateMap[wireframe] = state;
}
return state;
}
function createBindingState(vao) {
const newAttributes = [];
const enabledAttributes = [];
const attributeDivisors = [];
for (let i = 0; i < maxVertexAttributes; i++) {
newAttributes[i] = 0;
enabledAttributes[i] = 0;
attributeDivisors[i] = 0;
}
return {
// for backward compatibility on non-VAO support browser
geometry: null,
program: null,
wireframe: false,
newAttributes: newAttributes,
enabledAttributes: enabledAttributes,
attributeDivisors: attributeDivisors,
object: vao,
attributes: {},
index: null
};
}
function needsUpdate(geometry, index) {
const cachedAttributes = currentState.attributes;
const geometryAttributes = geometry.attributes;
let attributesNum = 0;
for (const key in geometryAttributes) {
const cachedAttribute = cachedAttributes[key];
const geometryAttribute = geometryAttributes[key];
if (cachedAttribute === undefined) return true;
if (cachedAttribute.attribute !== geometryAttribute) return true;
if (cachedAttribute.data !== geometryAttribute.data) return true;
attributesNum++;
}
if (currentState.attributesNum !== attributesNum) return true;
if (currentState.index !== index) return true;
return false;
}
function saveCache(geometry, index) {
const cache = {};
const attributes = geometry.attributes;
let attributesNum = 0;
for (const key in attributes) {
const attribute = attributes[key];
const data = {};
data.attribute = attribute;
if (attribute.data) {
data.data = attribute.data;
}
cache[key] = data;
attributesNum++;
}
currentState.attributes = cache;
currentState.attributesNum = attributesNum;
currentState.index = index;
}
function initAttributes() {
const newAttributes = currentState.newAttributes;
for (let i = 0, il = newAttributes.length; i < il; i++) {
newAttributes[i] = 0;
}
}
function enableAttribute(attribute) {
enableAttributeAndDivisor(attribute, 0);
}
function enableAttributeAndDivisor(attribute, meshPerAttribute) {
const newAttributes = currentState.newAttributes;
const enabledAttributes = currentState.enabledAttributes;
const attributeDivisors = currentState.attributeDivisors;
newAttributes[attribute] = 1;
if (enabledAttributes[attribute] === 0) {
gl.enableVertexAttribArray(attribute);
enabledAttributes[attribute] = 1;
}
if (attributeDivisors[attribute] !== meshPerAttribute) {
const extension = capabilities.isWebGL2 ? gl : extensions.get('ANGLE_instanced_arrays');
extension[capabilities.isWebGL2 ? 'vertexAttribDivisor' : 'vertexAttribDivisorANGLE'](attribute, meshPerAttribute);
attributeDivisors[attribute] = meshPerAttribute;
}
}
function disableUnusedAttributes() {
const newAttributes = currentState.newAttributes;
const enabledAttributes = currentState.enabledAttributes;
for (let i = 0, il = enabledAttributes.length; i < il; i++) {
if (enabledAttributes[i] !== newAttributes[i]) {
gl.disableVertexAttribArray(i);
enabledAttributes[i] = 0;
}
}
}
function vertexAttribPointer(index, size, type, normalized, stride, offset) {
if (capabilities.isWebGL2 === true && (type === gl.INT || type === gl.UNSIGNED_INT)) {
gl.vertexAttribIPointer(index, size, type, stride, offset);
} else {
gl.vertexAttribPointer(index, size, type, normalized, stride, offset);
}
}
function setupVertexAttributes(object, material, program, geometry) {
if (capabilities.isWebGL2 === false && (object.isInstancedMesh || geometry.isInstancedBufferGeometry)) {
if (extensions.get('ANGLE_instanced_arrays') === null) return;
}
initAttributes();
const geometryAttributes = geometry.attributes;
const programAttributes = program.getAttributes();
const materialDefaultAttributeValues = material.defaultAttributeValues;
for (const name in programAttributes) {
const programAttribute = programAttributes[name];
if (programAttribute.location >= 0) {
let geometryAttribute = geometryAttributes[name];
if (geometryAttribute === undefined) {
if (name === 'instanceMatrix' && object.instanceMatrix) geometryAttribute = object.instanceMatrix;
if (name === 'instanceColor' && object.instanceColor) geometryAttribute = object.instanceColor;
}
if (geometryAttribute !== undefined) {
const normalized = geometryAttribute.normalized;
const size = geometryAttribute.itemSize;
const attribute = attributes.get(geometryAttribute); // TODO Attribute may not be available on context restore
if (attribute === undefined) continue;
const buffer = attribute.buffer;
const type = attribute.type;
const bytesPerElement = attribute.bytesPerElement;
if (geometryAttribute.isInterleavedBufferAttribute) {
const data = geometryAttribute.data;
const stride = data.stride;
const offset = geometryAttribute.offset;
if (data && data.isInstancedInterleavedBuffer) {
for (let i = 0; i < programAttribute.locationSize; i++) {
enableAttributeAndDivisor(programAttribute.location + i, data.meshPerAttribute);
}
if (object.isInstancedMesh !== true && geometry._maxInstanceCount === undefined) {
geometry._maxInstanceCount = data.meshPerAttribute * data.count;
}
} else {
for (let i = 0; i < programAttribute.locationSize; i++) {
enableAttribute(programAttribute.location + i);
}
}
gl.bindBuffer(gl.ARRAY_BUFFER, buffer);
for (let i = 0; i < programAttribute.locationSize; i++) {
vertexAttribPointer(programAttribute.location + i, size / programAttribute.locationSize, type, normalized, stride * bytesPerElement, (offset + size / programAttribute.locationSize * i) * bytesPerElement);
}
} else {
if (geometryAttribute.isInstancedBufferAttribute) {
for (let i = 0; i < programAttribute.locationSize; i++) {
enableAttributeAndDivisor(programAttribute.location + i, geometryAttribute.meshPerAttribute);
}
if (object.isInstancedMesh !== true && geometry._maxInstanceCount === undefined) {
geometry._maxInstanceCount = geometryAttribute.meshPerAttribute * geometryAttribute.count;
}
} else {
for (let i = 0; i < programAttribute.locationSize; i++) {
enableAttribute(programAttribute.location + i);
}
}
gl.bindBuffer(gl.ARRAY_BUFFER, buffer);
for (let i = 0; i < programAttribute.locationSize; i++) {
vertexAttribPointer(programAttribute.location + i, size / programAttribute.locationSize, type, normalized, size * bytesPerElement, size / programAttribute.locationSize * i * bytesPerElement);
}
}
} else if (materialDefaultAttributeValues !== undefined) {
const value = materialDefaultAttributeValues[name];
if (value !== undefined) {
switch (value.length) {
case 2:
gl.vertexAttrib2fv(programAttribute.location, value);
break;
case 3:
gl.vertexAttrib3fv(programAttribute.location, value);
break;
case 4:
gl.vertexAttrib4fv(programAttribute.location, value);
break;
default:
gl.vertexAttrib1fv(programAttribute.location, value);
}
}
}
}
}
disableUnusedAttributes();
}
function dispose() {
reset();
for (const geometryId in bindingStates) {
const programMap = bindingStates[geometryId];
for (const programId in programMap) {
const stateMap = programMap[programId];
for (const wireframe in stateMap) {
deleteVertexArrayObject(stateMap[wireframe].object);
delete stateMap[wireframe];
}
delete programMap[programId];
}
delete bindingStates[geometryId];
}
}
function releaseStatesOfGeometry(geometry) {
if (bindingStates[geometry.id] === undefined) return;
const programMap = bindingStates[geometry.id];
for (const programId in programMap) {
const stateMap = programMap[programId];
for (const wireframe in stateMap) {
deleteVertexArrayObject(stateMap[wireframe].object);
delete stateMap[wireframe];
}
delete programMap[programId];
}
delete bindingStates[geometry.id];
}
function releaseStatesOfProgram(program) {
for (const geometryId in bindingStates) {
const programMap = bindingStates[geometryId];
if (programMap[program.id] === undefined) continue;
const stateMap = programMap[program.id];
for (const wireframe in stateMap) {
deleteVertexArrayObject(stateMap[wireframe].object);
delete stateMap[wireframe];
}
delete programMap[program.id];
}
}
function reset() {
resetDefaultState();
if (currentState === defaultState) return;
currentState = defaultState;
bindVertexArrayObject(currentState.object);
} // for backward-compatilibity
function resetDefaultState() {
defaultState.geometry = null;
defaultState.program = null;
defaultState.wireframe = false;
}
return {
setup: setup,
reset: reset,
resetDefaultState: resetDefaultState,
dispose: dispose,
releaseStatesOfGeometry: releaseStatesOfGeometry,
releaseStatesOfProgram: releaseStatesOfProgram,
initAttributes: initAttributes,
enableAttribute: enableAttribute,
disableUnusedAttributes: disableUnusedAttributes
};
}
function WebGLBufferRenderer(gl, extensions, info, capabilities) {
const isWebGL2 = capabilities.isWebGL2;
let mode;
function setMode(value) {
mode = value;
}
function render(start, count) {
gl.drawArrays(mode, start, count);
info.update(count, mode, 1);
}
function renderInstances(start, count, primcount) {
if (primcount === 0) return;
let extension, methodName;
if (isWebGL2) {
extension = gl;
methodName = 'drawArraysInstanced';
} else {
extension = extensions.get('ANGLE_instanced_arrays');
methodName = 'drawArraysInstancedANGLE';
if (extension === null) {
console.error('THREE.WebGLBufferRenderer: using THREE.InstancedBufferGeometry but hardware does not support extension ANGLE_instanced_arrays.');
return;
}
}
extension[methodName](mode, start, count, primcount);
info.update(count, mode, primcount);
} //
this.setMode = setMode;
this.render = render;
this.renderInstances = renderInstances;
}
function WebGLCapabilities(gl, extensions, parameters) {
let maxAnisotropy;
function getMaxAnisotropy() {
if (maxAnisotropy !== undefined) return maxAnisotropy;
if (extensions.has('EXT_texture_filter_anisotropic') === true) {
const extension = extensions.get('EXT_texture_filter_anisotropic');
maxAnisotropy = gl.getParameter(extension.MAX_TEXTURE_MAX_ANISOTROPY_EXT);
} else {
maxAnisotropy = 0;
}
return maxAnisotropy;
}
function getMaxPrecision(precision) {
if (precision === 'highp') {
if (gl.getShaderPrecisionFormat(gl.VERTEX_SHADER, gl.HIGH_FLOAT).precision > 0 && gl.getShaderPrecisionFormat(gl.FRAGMENT_SHADER, gl.HIGH_FLOAT).precision > 0) {
return 'highp';
}
precision = 'mediump';
}
if (precision === 'mediump') {
if (gl.getShaderPrecisionFormat(gl.VERTEX_SHADER, gl.MEDIUM_FLOAT).precision > 0 && gl.getShaderPrecisionFormat(gl.FRAGMENT_SHADER, gl.MEDIUM_FLOAT).precision > 0) {
return 'mediump';
}
}
return 'lowp';
}
/* eslint-disable no-undef */
const isWebGL2 = typeof WebGL2RenderingContext !== 'undefined' && gl instanceof WebGL2RenderingContext || typeof WebGL2ComputeRenderingContext !== 'undefined' && gl instanceof WebGL2ComputeRenderingContext;
/* eslint-enable no-undef */
let precision = parameters.precision !== undefined ? parameters.precision : 'highp';
const maxPrecision = getMaxPrecision(precision);
if (maxPrecision !== precision) {
console.warn('THREE.WebGLRenderer:', precision, 'not supported, using', maxPrecision, 'instead.');
precision = maxPrecision;
}
const drawBuffers = isWebGL2 || extensions.has('WEBGL_draw_buffers');
const logarithmicDepthBuffer = parameters.logarithmicDepthBuffer === true;
const maxTextures = gl.getParameter(gl.MAX_TEXTURE_IMAGE_UNITS);
const maxVertexTextures = gl.getParameter(gl.MAX_VERTEX_TEXTURE_IMAGE_UNITS);
const maxTextureSize = gl.getParameter(gl.MAX_TEXTURE_SIZE);
const maxCubemapSize = gl.getParameter(gl.MAX_CUBE_MAP_TEXTURE_SIZE);
const maxAttributes = gl.getParameter(gl.MAX_VERTEX_ATTRIBS);
const maxVertexUniforms = gl.getParameter(gl.MAX_VERTEX_UNIFORM_VECTORS);
const maxVaryings = gl.getParameter(gl.MAX_VARYING_VECTORS);
const maxFragmentUniforms = gl.getParameter(gl.MAX_FRAGMENT_UNIFORM_VECTORS);
const vertexTextures = maxVertexTextures > 0;
const floatFragmentTextures = isWebGL2 || extensions.has('OES_texture_float');
const floatVertexTextures = vertexTextures && floatFragmentTextures;
const maxSamples = isWebGL2 ? gl.getParameter(gl.MAX_SAMPLES) : 0;
return {
isWebGL2: isWebGL2,
drawBuffers: drawBuffers,
getMaxAnisotropy: getMaxAnisotropy,
getMaxPrecision: getMaxPrecision,
precision: precision,
logarithmicDepthBuffer: logarithmicDepthBuffer,
maxTextures: maxTextures,
maxVertexTextures: maxVertexTextures,
maxTextureSize: maxTextureSize,
maxCubemapSize: maxCubemapSize,
maxAttributes: maxAttributes,
maxVertexUniforms: maxVertexUniforms,
maxVaryings: maxVaryings,
maxFragmentUniforms: maxFragmentUniforms,
vertexTextures: vertexTextures,
floatFragmentTextures: floatFragmentTextures,
floatVertexTextures: floatVertexTextures,
maxSamples: maxSamples
};
}
function WebGLClipping(properties) {
const scope = this;
let globalState = null,
numGlobalPlanes = 0,
localClippingEnabled = false,
renderingShadows = false;
const plane = new Plane(),
viewNormalMatrix = new Matrix3(),
uniform = {
value: null,
needsUpdate: false
};
this.uniform = uniform;
this.numPlanes = 0;
this.numIntersection = 0;
this.init = function (planes, enableLocalClipping, camera) {
const enabled = planes.length !== 0 || enableLocalClipping || // enable state of previous frame - the clipping code has to
// run another frame in order to reset the state:
numGlobalPlanes !== 0 || localClippingEnabled;
localClippingEnabled = enableLocalClipping;
globalState = projectPlanes(planes, camera, 0);
numGlobalPlanes = planes.length;
return enabled;
};
this.beginShadows = function () {
renderingShadows = true;
projectPlanes(null);
};
this.endShadows = function () {
renderingShadows = false;
resetGlobalState();
};
this.setState = function (material, camera, useCache) {
const planes = material.clippingPlanes,
clipIntersection = material.clipIntersection,
clipShadows = material.clipShadows;
const materialProperties = properties.get(material);
if (!localClippingEnabled || planes === null || planes.length === 0 || renderingShadows && !clipShadows) {
// there's no local clipping
if (renderingShadows) {
// there's no global clipping
projectPlanes(null);
} else {
resetGlobalState();
}
} else {
const nGlobal = renderingShadows ? 0 : numGlobalPlanes,
lGlobal = nGlobal * 4;
let dstArray = materialProperties.clippingState || null;
uniform.value = dstArray; // ensure unique state
dstArray = projectPlanes(planes, camera, lGlobal, useCache);
for (let i = 0; i !== lGlobal; ++i) {
dstArray[i] = globalState[i];
}
materialProperties.clippingState = dstArray;
this.numIntersection = clipIntersection ? this.numPlanes : 0;
this.numPlanes += nGlobal;
}
};
function resetGlobalState() {
if (uniform.value !== globalState) {
uniform.value = globalState;
uniform.needsUpdate = numGlobalPlanes > 0;
}
scope.numPlanes = numGlobalPlanes;
scope.numIntersection = 0;
}
function projectPlanes(planes, camera, dstOffset, skipTransform) {
const nPlanes = planes !== null ? planes.length : 0;
let dstArray = null;
if (nPlanes !== 0) {
dstArray = uniform.value;
if (skipTransform !== true || dstArray === null) {
const flatSize = dstOffset + nPlanes * 4,
viewMatrix = camera.matrixWorldInverse;
viewNormalMatrix.getNormalMatrix(viewMatrix);
if (dstArray === null || dstArray.length < flatSize) {
dstArray = new Float32Array(flatSize);
}
for (let i = 0, i4 = dstOffset; i !== nPlanes; ++i, i4 += 4) {
plane.copy(planes[i]).applyMatrix4(viewMatrix, viewNormalMatrix);
plane.normal.toArray(dstArray, i4);
dstArray[i4 + 3] = plane.constant;
}
}
uniform.value = dstArray;
uniform.needsUpdate = true;
}
scope.numPlanes = nPlanes;
scope.numIntersection = 0;
return dstArray;
}
}
function WebGLCubeMaps(renderer) {
let cubemaps = new WeakMap();
function mapTextureMapping(texture, mapping) {
if (mapping === EquirectangularReflectionMapping) {
texture.mapping = CubeReflectionMapping;
} else if (mapping === EquirectangularRefractionMapping) {
texture.mapping = CubeRefractionMapping;
}
return texture;
}
function get(texture) {
if (texture && texture.isTexture && texture.isRenderTargetTexture === false) {
const mapping = texture.mapping;
if (mapping === EquirectangularReflectionMapping || mapping === EquirectangularRefractionMapping) {
if (cubemaps.has(texture)) {
const cubemap = cubemaps.get(texture).texture;
return mapTextureMapping(cubemap, texture.mapping);
} else {
const image = texture.image;
if (image && image.height > 0) {
const currentRenderTarget = renderer.getRenderTarget();
const renderTarget = new WebGLCubeRenderTarget(image.height / 2);
renderTarget.fromEquirectangularTexture(renderer, texture);
cubemaps.set(texture, renderTarget);
renderer.setRenderTarget(currentRenderTarget);
texture.addEventListener('dispose', onTextureDispose);
return mapTextureMapping(renderTarget.texture, texture.mapping);
} else {
// image not yet ready. try the conversion next frame
return null;
}
}
}
}
return texture;
}
function onTextureDispose(event) {
const texture = event.target;
texture.removeEventListener('dispose', onTextureDispose);
const cubemap = cubemaps.get(texture);
if (cubemap !== undefined) {
cubemaps.delete(texture);
cubemap.dispose();
}
}
function dispose() {
cubemaps = new WeakMap();
}
return {
get: get,
dispose: dispose
};
}
class OrthographicCamera extends Camera {
constructor(left = -1, right = 1, top = 1, bottom = -1, near = 0.1, far = 2000) {
super();
this.type = 'OrthographicCamera';
this.zoom = 1;
this.view = null;
this.left = left;
this.right = right;
this.top = top;
this.bottom = bottom;
this.near = near;
this.far = far;
this.updateProjectionMatrix();
}
copy(source, recursive) {
super.copy(source, recursive);
this.left = source.left;
this.right = source.right;
this.top = source.top;
this.bottom = source.bottom;
this.near = source.near;
this.far = source.far;
this.zoom = source.zoom;
this.view = source.view === null ? null : Object.assign({}, source.view);
return this;
}
setViewOffset(fullWidth, fullHeight, x, y, width, height) {
if (this.view === null) {
this.view = {
enabled: true,
fullWidth: 1,
fullHeight: 1,
offsetX: 0,
offsetY: 0,
width: 1,
height: 1
};
}
this.view.enabled = true;
this.view.fullWidth = fullWidth;
this.view.fullHeight = fullHeight;
this.view.offsetX = x;
this.view.offsetY = y;
this.view.width = width;
this.view.height = height;
this.updateProjectionMatrix();
}
clearViewOffset() {
if (this.view !== null) {
this.view.enabled = false;
}
this.updateProjectionMatrix();
}
updateProjectionMatrix() {
const dx = (this.right - this.left) / (2 * this.zoom);
const dy = (this.top - this.bottom) / (2 * this.zoom);
const cx = (this.right + this.left) / 2;
const cy = (this.top + this.bottom) / 2;
let left = cx - dx;
let right = cx + dx;
let top = cy + dy;
let bottom = cy - dy;
if (this.view !== null && this.view.enabled) {
const scaleW = (this.right - this.left) / this.view.fullWidth / this.zoom;
const scaleH = (this.top - this.bottom) / this.view.fullHeight / this.zoom;
left += scaleW * this.view.offsetX;
right = left + scaleW * this.view.width;
top -= scaleH * this.view.offsetY;
bottom = top - scaleH * this.view.height;
}
this.projectionMatrix.makeOrthographic(left, right, top, bottom, this.near, this.far);
this.projectionMatrixInverse.copy(this.projectionMatrix).invert();
}
toJSON(meta) {
const data = super.toJSON(meta);
data.object.zoom = this.zoom;
data.object.left = this.left;
data.object.right = this.right;
data.object.top = this.top;
data.object.bottom = this.bottom;
data.object.near = this.near;
data.object.far = this.far;
if (this.view !== null) data.object.view = Object.assign({}, this.view);
return data;
}
}
OrthographicCamera.prototype.isOrthographicCamera = true;
class RawShaderMaterial extends ShaderMaterial {
constructor(parameters) {
super(parameters);
this.type = 'RawShaderMaterial';
}
}
RawShaderMaterial.prototype.isRawShaderMaterial = true;
const LOD_MIN = 4;
const LOD_MAX = 8;
const SIZE_MAX = Math.pow(2, LOD_MAX); // The standard deviations (radians) associated with the extra mips. These are
// chosen to approximate a Trowbridge-Reitz distribution function times the
// geometric shadowing function. These sigma values squared must match the
// variance #defines in cube_uv_reflection_fragment.glsl.js.
const EXTRA_LOD_SIGMA = [0.125, 0.215, 0.35, 0.446, 0.526, 0.582];
const TOTAL_LODS = LOD_MAX - LOD_MIN + 1 + EXTRA_LOD_SIGMA.length; // The maximum length of the blur for loop. Smaller sigmas will use fewer
// samples and exit early, but not recompile the shader.
const MAX_SAMPLES = 20;
const ENCODINGS = {
[LinearEncoding]: 0,
[sRGBEncoding]: 1,
[RGBEEncoding]: 2,
[RGBM7Encoding]: 3,
[RGBM16Encoding]: 4,
[RGBDEncoding]: 5,
[GammaEncoding]: 6
};
const _flatCamera = /*@__PURE__*/new OrthographicCamera();
const {
_lodPlanes,
_sizeLods,
_sigmas
} = /*@__PURE__*/_createPlanes();
const _clearColor = /*@__PURE__*/new Color();
let _oldTarget = null; // Golden Ratio
const PHI = (1 + Math.sqrt(5)) / 2;
const INV_PHI = 1 / PHI; // Vertices of a dodecahedron (except the opposites, which represent the
// same axis), used as axis directions evenly spread on a sphere.
const _axisDirections = [/*@__PURE__*/new Vector3(1, 1, 1), /*@__PURE__*/new Vector3(-1, 1, 1), /*@__PURE__*/new Vector3(1, 1, -1), /*@__PURE__*/new Vector3(-1, 1, -1), /*@__PURE__*/new Vector3(0, PHI, INV_PHI), /*@__PURE__*/new Vector3(0, PHI, -INV_PHI), /*@__PURE__*/new Vector3(INV_PHI, 0, PHI), /*@__PURE__*/new Vector3(-INV_PHI, 0, PHI), /*@__PURE__*/new Vector3(PHI, INV_PHI, 0), /*@__PURE__*/new Vector3(-PHI, INV_PHI, 0)];
/**
* This class generates a Prefiltered, Mipmapped Radiance Environment Map
* (PMREM) from a cubeMap environment texture. This allows different levels of
* blur to be quickly accessed based on material roughness. It is packed into a
* special CubeUV format that allows us to perform custom interpolation so that
* we can support nonlinear formats such as RGBE. Unlike a traditional mipmap
* chain, it only goes down to the LOD_MIN level (above), and then creates extra
* even more filtered 'mips' at the same LOD_MIN resolution, associated with
* higher roughness levels. In this way we maintain resolution to smoothly
* interpolate diffuse lighting while limiting sampling computation.
*
* Paper: Fast, Accurate Image-Based Lighting
* https://drive.google.com/file/d/15y8r_UpKlU9SvV4ILb0C3qCPecS8pvLz/view
*/
class PMREMGenerator {
constructor(renderer) {
this._renderer = renderer;
this._pingPongRenderTarget = null;
this._blurMaterial = _getBlurShader(MAX_SAMPLES);
this._equirectShader = null;
this._cubemapShader = null;
this._compileMaterial(this._blurMaterial);
}
/**
* Generates a PMREM from a supplied Scene, which can be faster than using an
* image if networking bandwidth is low. Optional sigma specifies a blur radius
* in radians to be applied to the scene before PMREM generation. Optional near
* and far planes ensure the scene is rendered in its entirety (the cubeCamera
* is placed at the origin).
*/
fromScene(scene, sigma = 0, near = 0.1, far = 100) {
_oldTarget = this._renderer.getRenderTarget();
const cubeUVRenderTarget = this._allocateTargets();
this._sceneToCubeUV(scene, near, far, cubeUVRenderTarget);
if (sigma > 0) {
this._blur(cubeUVRenderTarget, 0, 0, sigma);
}
this._applyPMREM(cubeUVRenderTarget);
this._cleanup(cubeUVRenderTarget);
return cubeUVRenderTarget;
}
/**
* Generates a PMREM from an equirectangular texture, which can be either LDR
* (RGBFormat) or HDR (RGBEFormat). The ideal input image size is 1k (1024 x 512),
* as this matches best with the 256 x 256 cubemap output.
*/
fromEquirectangular(equirectangular) {
return this._fromTexture(equirectangular);
}
/**
* Generates a PMREM from an cubemap texture, which can be either LDR
* (RGBFormat) or HDR (RGBEFormat). The ideal input cube size is 256 x 256,
* as this matches best with the 256 x 256 cubemap output.
*/
fromCubemap(cubemap) {
return this._fromTexture(cubemap);
}
/**
* Pre-compiles the cubemap shader. You can get faster start-up by invoking this method during
* your texture's network fetch for increased concurrency.
*/
compileCubemapShader() {
if (this._cubemapShader === null) {
this._cubemapShader = _getCubemapShader();
this._compileMaterial(this._cubemapShader);
}
}
/**
* Pre-compiles the equirectangular shader. You can get faster start-up by invoking this method during
* your texture's network fetch for increased concurrency.
*/
compileEquirectangularShader() {
if (this._equirectShader === null) {
this._equirectShader = _getEquirectShader();
this._compileMaterial(this._equirectShader);
}
}
/**
* Disposes of the PMREMGenerator's internal memory. Note that PMREMGenerator is a static class,
* so you should not need more than one PMREMGenerator object. If you do, calling dispose() on
* one of them will cause any others to also become unusable.
*/
dispose() {
this._blurMaterial.dispose();
if (this._cubemapShader !== null) this._cubemapShader.dispose();
if (this._equirectShader !== null) this._equirectShader.dispose();
for (let i = 0; i < _lodPlanes.length; i++) {
_lodPlanes[i].dispose();
}
} // private interface
_cleanup(outputTarget) {
this._pingPongRenderTarget.dispose();
this._renderer.setRenderTarget(_oldTarget);
outputTarget.scissorTest = false;
_setViewport(outputTarget, 0, 0, outputTarget.width, outputTarget.height);
}
_fromTexture(texture) {
_oldTarget = this._renderer.getRenderTarget();
const cubeUVRenderTarget = this._allocateTargets(texture);
this._textureToCubeUV(texture, cubeUVRenderTarget);
this._applyPMREM(cubeUVRenderTarget);
this._cleanup(cubeUVRenderTarget);
return cubeUVRenderTarget;
}
_allocateTargets(texture) {
// warning: null texture is valid
const params = {
magFilter: NearestFilter,
minFilter: NearestFilter,
generateMipmaps: false,
type: UnsignedByteType,
format: RGBEFormat,
encoding: _isLDR(texture) ? texture.encoding : RGBEEncoding,
depthBuffer: false
};
const cubeUVRenderTarget = _createRenderTarget(params);
cubeUVRenderTarget.depthBuffer = texture ? false : true;
this._pingPongRenderTarget = _createRenderTarget(params);
return cubeUVRenderTarget;
}
_compileMaterial(material) {
const tmpMesh = new Mesh(_lodPlanes[0], material);
this._renderer.compile(tmpMesh, _flatCamera);
}
_sceneToCubeUV(scene, near, far, cubeUVRenderTarget) {
const fov = 90;
const aspect = 1;
const cubeCamera = new PerspectiveCamera(fov, aspect, near, far);
const upSign = [1, -1, 1, 1, 1, 1];
const forwardSign = [1, 1, 1, -1, -1, -1];
const renderer = this._renderer;
const originalAutoClear = renderer.autoClear;
const outputEncoding = renderer.outputEncoding;
const toneMapping = renderer.toneMapping;
renderer.getClearColor(_clearColor);
renderer.toneMapping = NoToneMapping;
renderer.outputEncoding = LinearEncoding;
renderer.autoClear = false;
const backgroundMaterial = new MeshBasicMaterial({
name: 'PMREM.Background',
side: BackSide,
depthWrite: false,
depthTest: false
});
const backgroundBox = new Mesh(new BoxGeometry(), backgroundMaterial);
let useSolidColor = false;
const background = scene.background;
if (background) {
if (background.isColor) {
backgroundMaterial.color.copy(background);
scene.background = null;
useSolidColor = true;
}
} else {
backgroundMaterial.color.copy(_clearColor);
useSolidColor = true;
}
for (let i = 0; i < 6; i++) {
const col = i % 3;
if (col == 0) {
cubeCamera.up.set(0, upSign[i], 0);
cubeCamera.lookAt(forwardSign[i], 0, 0);
} else if (col == 1) {
cubeCamera.up.set(0, 0, upSign[i]);
cubeCamera.lookAt(0, forwardSign[i], 0);
} else {
cubeCamera.up.set(0, upSign[i], 0);
cubeCamera.lookAt(0, 0, forwardSign[i]);
}
_setViewport(cubeUVRenderTarget, col * SIZE_MAX, i > 2 ? SIZE_MAX : 0, SIZE_MAX, SIZE_MAX);
renderer.setRenderTarget(cubeUVRenderTarget);
if (useSolidColor) {
renderer.render(backgroundBox, cubeCamera);
}
renderer.render(scene, cubeCamera);
}
backgroundBox.geometry.dispose();
backgroundBox.material.dispose();
renderer.toneMapping = toneMapping;
renderer.outputEncoding = outputEncoding;
renderer.autoClear = originalAutoClear;
scene.background = background;
}
_setEncoding(uniform, texture) {
if (this._renderer.capabilities.isWebGL2 === true && texture.format === RGBAFormat && texture.type === UnsignedByteType && texture.encoding === sRGBEncoding) {
uniform.value = ENCODINGS[LinearEncoding];
} else {
uniform.value = ENCODINGS[texture.encoding];
}
}
_textureToCubeUV(texture, cubeUVRenderTarget) {
const renderer = this._renderer;
if (texture.isCubeTexture) {
if (this._cubemapShader == null) {
this._cubemapShader = _getCubemapShader();
}
} else {
if (this._equirectShader == null) {
this._equirectShader = _getEquirectShader();
}
}
const material = texture.isCubeTexture ? this._cubemapShader : this._equirectShader;
const mesh = new Mesh(_lodPlanes[0], material);
const uniforms = material.uniforms;
uniforms['envMap'].value = texture;
if (!texture.isCubeTexture) {
uniforms['texelSize'].value.set(1.0 / texture.image.width, 1.0 / texture.image.height);
}
this._setEncoding(uniforms['inputEncoding'], texture);
this._setEncoding(uniforms['outputEncoding'], cubeUVRenderTarget.texture);
_setViewport(cubeUVRenderTarget, 0, 0, 3 * SIZE_MAX, 2 * SIZE_MAX);
renderer.setRenderTarget(cubeUVRenderTarget);
renderer.render(mesh, _flatCamera);
}
_applyPMREM(cubeUVRenderTarget) {
const renderer = this._renderer;
const autoClear = renderer.autoClear;
renderer.autoClear = false;
for (let i = 1; i < TOTAL_LODS; i++) {
const sigma = Math.sqrt(_sigmas[i] * _sigmas[i] - _sigmas[i - 1] * _sigmas[i - 1]);
const poleAxis = _axisDirections[(i - 1) % _axisDirections.length];
this._blur(cubeUVRenderTarget, i - 1, i, sigma, poleAxis);
}
renderer.autoClear = autoClear;
}
/**
* This is a two-pass Gaussian blur for a cubemap. Normally this is done
* vertically and horizontally, but this breaks down on a cube. Here we apply
* the blur latitudinally (around the poles), and then longitudinally (towards
* the poles) to approximate the orthogonally-separable blur. It is least
* accurate at the poles, but still does a decent job.
*/
_blur(cubeUVRenderTarget, lodIn, lodOut, sigma, poleAxis) {
const pingPongRenderTarget = this._pingPongRenderTarget;
this._halfBlur(cubeUVRenderTarget, pingPongRenderTarget, lodIn, lodOut, sigma, 'latitudinal', poleAxis);
this._halfBlur(pingPongRenderTarget, cubeUVRenderTarget, lodOut, lodOut, sigma, 'longitudinal', poleAxis);
}
_halfBlur(targetIn, targetOut, lodIn, lodOut, sigmaRadians, direction, poleAxis) {
const renderer = this._renderer;
const blurMaterial = this._blurMaterial;
if (direction !== 'latitudinal' && direction !== 'longitudinal') {
console.error('blur direction must be either latitudinal or longitudinal!');
} // Number of standard deviations at which to cut off the discrete approximation.
const STANDARD_DEVIATIONS = 3;
const blurMesh = new Mesh(_lodPlanes[lodOut], blurMaterial);
const blurUniforms = blurMaterial.uniforms;
const pixels = _sizeLods[lodIn] - 1;
const radiansPerPixel = isFinite(sigmaRadians) ? Math.PI / (2 * pixels) : 2 * Math.PI / (2 * MAX_SAMPLES - 1);
const sigmaPixels = sigmaRadians / radiansPerPixel;
const samples = isFinite(sigmaRadians) ? 1 + Math.floor(STANDARD_DEVIATIONS * sigmaPixels) : MAX_SAMPLES;
if (samples > MAX_SAMPLES) {
console.warn(`sigmaRadians, ${sigmaRadians}, is too large and will clip, as it requested ${samples} samples when the maximum is set to ${MAX_SAMPLES}`);
}
const weights = [];
let sum = 0;
for (let i = 0; i < MAX_SAMPLES; ++i) {
const x = i / sigmaPixels;
const weight = Math.exp(-x * x / 2);
weights.push(weight);
if (i == 0) {
sum += weight;
} else if (i < samples) {
sum += 2 * weight;
}
}
for (let i = 0; i < weights.length; i++) {
weights[i] = weights[i] / sum;
}
blurUniforms['envMap'].value = targetIn.texture;
blurUniforms['samples'].value = samples;
blurUniforms['weights'].value = weights;
blurUniforms['latitudinal'].value = direction === 'latitudinal';
if (poleAxis) {
blurUniforms['poleAxis'].value = poleAxis;
}
blurUniforms['dTheta'].value = radiansPerPixel;
blurUniforms['mipInt'].value = LOD_MAX - lodIn;
this._setEncoding(blurUniforms['inputEncoding'], targetIn.texture);
this._setEncoding(blurUniforms['outputEncoding'], targetIn.texture);
const outputSize = _sizeLods[lodOut];
const x = 3 * Math.max(0, SIZE_MAX - 2 * outputSize);
const y = (lodOut === 0 ? 0 : 2 * SIZE_MAX) + 2 * outputSize * (lodOut > LOD_MAX - LOD_MIN ? lodOut - LOD_MAX + LOD_MIN : 0);
_setViewport(targetOut, x, y, 3 * outputSize, 2 * outputSize);
renderer.setRenderTarget(targetOut);
renderer.render(blurMesh, _flatCamera);
}
}
function _isLDR(texture) {
if (texture === undefined || texture.type !== UnsignedByteType) return false;
return texture.encoding === LinearEncoding || texture.encoding === sRGBEncoding || texture.encoding === GammaEncoding;
}
function _createPlanes() {
const _lodPlanes = [];
const _sizeLods = [];
const _sigmas = [];
let lod = LOD_MAX;
for (let i = 0; i < TOTAL_LODS; i++) {
const sizeLod = Math.pow(2, lod);
_sizeLods.push(sizeLod);
let sigma = 1.0 / sizeLod;
if (i > LOD_MAX - LOD_MIN) {
sigma = EXTRA_LOD_SIGMA[i - LOD_MAX + LOD_MIN - 1];
} else if (i == 0) {
sigma = 0;
}
_sigmas.push(sigma);
const texelSize = 1.0 / (sizeLod - 1);
const min = -texelSize / 2;
const max = 1 + texelSize / 2;
const uv1 = [min, min, max, min, max, max, min, min, max, max, min, max];
const cubeFaces = 6;
const vertices = 6;
const positionSize = 3;
const uvSize = 2;
const faceIndexSize = 1;
const position = new Float32Array(positionSize * vertices * cubeFaces);
const uv = new Float32Array(uvSize * vertices * cubeFaces);
const faceIndex = new Float32Array(faceIndexSize * vertices * cubeFaces);
for (let face = 0; face < cubeFaces; face++) {
const x = face % 3 * 2 / 3 - 1;
const y = face > 2 ? 0 : -1;
const coordinates = [x, y, 0, x + 2 / 3, y, 0, x + 2 / 3, y + 1, 0, x, y, 0, x + 2 / 3, y + 1, 0, x, y + 1, 0];
position.set(coordinates, positionSize * vertices * face);
uv.set(uv1, uvSize * vertices * face);
const fill = [face, face, face, face, face, face];
faceIndex.set(fill, faceIndexSize * vertices * face);
}
const planes = new BufferGeometry();
planes.setAttribute('position', new BufferAttribute(position, positionSize));
planes.setAttribute('uv', new BufferAttribute(uv, uvSize));
planes.setAttribute('faceIndex', new BufferAttribute(faceIndex, faceIndexSize));
_lodPlanes.push(planes);
if (lod > LOD_MIN) {
lod--;
}
}
return {
_lodPlanes,
_sizeLods,
_sigmas
};
}
function _createRenderTarget(params) {
const cubeUVRenderTarget = new WebGLRenderTarget(3 * SIZE_MAX, 3 * SIZE_MAX, params);
cubeUVRenderTarget.texture.mapping = CubeUVReflectionMapping;
cubeUVRenderTarget.texture.name = 'PMREM.cubeUv';
cubeUVRenderTarget.scissorTest = true;
return cubeUVRenderTarget;
}
function _setViewport(target, x, y, width, height) {
target.viewport.set(x, y, width, height);
target.scissor.set(x, y, width, height);
}
function _getBlurShader(maxSamples) {
const weights = new Float32Array(maxSamples);
const poleAxis = new Vector3(0, 1, 0);
const shaderMaterial = new RawShaderMaterial({
name: 'SphericalGaussianBlur',
defines: {
'n': maxSamples
},
uniforms: {
'envMap': {
value: null
},
'samples': {
value: 1
},
'weights': {
value: weights
},
'latitudinal': {
value: false
},
'dTheta': {
value: 0
},
'mipInt': {
value: 0
},
'poleAxis': {
value: poleAxis
},
'inputEncoding': {
value: ENCODINGS[LinearEncoding]
},
'outputEncoding': {
value: ENCODINGS[LinearEncoding]
}
},
vertexShader: _getCommonVertexShader(),
fragmentShader:
/* glsl */
`
precision mediump float;
precision mediump int;
varying vec3 vOutputDirection;
uniform sampler2D envMap;
uniform int samples;
uniform float weights[ n ];
uniform bool latitudinal;
uniform float dTheta;
uniform float mipInt;
uniform vec3 poleAxis;
${_getEncodings()}
#define ENVMAP_TYPE_CUBE_UV
#include <cube_uv_reflection_fragment>
vec3 getSample( float theta, vec3 axis ) {
float cosTheta = cos( theta );
// Rodrigues' axis-angle rotation
vec3 sampleDirection = vOutputDirection * cosTheta
+ cross( axis, vOutputDirection ) * sin( theta )
+ axis * dot( axis, vOutputDirection ) * ( 1.0 - cosTheta );
return bilinearCubeUV( envMap, sampleDirection, mipInt );
}
void main() {
vec3 axis = latitudinal ? poleAxis : cross( poleAxis, vOutputDirection );
if ( all( equal( axis, vec3( 0.0 ) ) ) ) {
axis = vec3( vOutputDirection.z, 0.0, - vOutputDirection.x );
}
axis = normalize( axis );
gl_FragColor = vec4( 0.0, 0.0, 0.0, 1.0 );
gl_FragColor.rgb += weights[ 0 ] * getSample( 0.0, axis );
for ( int i = 1; i < n; i++ ) {
if ( i >= samples ) {
break;
}
float theta = dTheta * float( i );
gl_FragColor.rgb += weights[ i ] * getSample( -1.0 * theta, axis );
gl_FragColor.rgb += weights[ i ] * getSample( theta, axis );
}
gl_FragColor = linearToOutputTexel( gl_FragColor );
}
`,
blending: NoBlending,
depthTest: false,
depthWrite: false
});
return shaderMaterial;
}
function _getEquirectShader() {
const texelSize = new Vector2(1, 1);
const shaderMaterial = new RawShaderMaterial({
name: 'EquirectangularToCubeUV',
uniforms: {
'envMap': {
value: null
},
'texelSize': {
value: texelSize
},
'inputEncoding': {
value: ENCODINGS[LinearEncoding]
},
'outputEncoding': {
value: ENCODINGS[LinearEncoding]
}
},
vertexShader: _getCommonVertexShader(),
fragmentShader:
/* glsl */
`
precision mediump float;
precision mediump int;
varying vec3 vOutputDirection;
uniform sampler2D envMap;
uniform vec2 texelSize;
${_getEncodings()}
#include <common>
void main() {
gl_FragColor = vec4( 0.0, 0.0, 0.0, 1.0 );
vec3 outputDirection = normalize( vOutputDirection );
vec2 uv = equirectUv( outputDirection );
vec2 f = fract( uv / texelSize - 0.5 );
uv -= f * texelSize;
vec3 tl = envMapTexelToLinear( texture2D ( envMap, uv ) ).rgb;
uv.x += texelSize.x;
vec3 tr = envMapTexelToLinear( texture2D ( envMap, uv ) ).rgb;
uv.y += texelSize.y;
vec3 br = envMapTexelToLinear( texture2D ( envMap, uv ) ).rgb;
uv.x -= texelSize.x;
vec3 bl = envMapTexelToLinear( texture2D ( envMap, uv ) ).rgb;
vec3 tm = mix( tl, tr, f.x );
vec3 bm = mix( bl, br, f.x );
gl_FragColor.rgb = mix( tm, bm, f.y );
gl_FragColor = linearToOutputTexel( gl_FragColor );
}
`,
blending: NoBlending,
depthTest: false,
depthWrite: false
});
return shaderMaterial;
}
function _getCubemapShader() {
const shaderMaterial = new RawShaderMaterial({
name: 'CubemapToCubeUV',
uniforms: {
'envMap': {
value: null
},
'inputEncoding': {
value: ENCODINGS[LinearEncoding]
},
'outputEncoding': {
value: ENCODINGS[LinearEncoding]
}
},
vertexShader: _getCommonVertexShader(),
fragmentShader:
/* glsl */
`
precision mediump float;
precision mediump int;
varying vec3 vOutputDirection;
uniform samplerCube envMap;
${_getEncodings()}
void main() {
gl_FragColor = vec4( 0.0, 0.0, 0.0, 1.0 );
gl_FragColor.rgb = envMapTexelToLinear( textureCube( envMap, vec3( - vOutputDirection.x, vOutputDirection.yz ) ) ).rgb;
gl_FragColor = linearToOutputTexel( gl_FragColor );
}
`,
blending: NoBlending,
depthTest: false,
depthWrite: false
});
return shaderMaterial;
}
function _getCommonVertexShader() {
return (
/* glsl */
`
precision mediump float;
precision mediump int;
attribute vec3 position;
attribute vec2 uv;
attribute float faceIndex;
varying vec3 vOutputDirection;
// RH coordinate system; PMREM face-indexing convention
vec3 getDirection( vec2 uv, float face ) {
uv = 2.0 * uv - 1.0;
vec3 direction = vec3( uv, 1.0 );
if ( face == 0.0 ) {
direction = direction.zyx; // ( 1, v, u ) pos x
} else if ( face == 1.0 ) {
direction = direction.xzy;
direction.xz *= -1.0; // ( -u, 1, -v ) pos y
} else if ( face == 2.0 ) {
direction.x *= -1.0; // ( -u, v, 1 ) pos z
} else if ( face == 3.0 ) {
direction = direction.zyx;
direction.xz *= -1.0; // ( -1, v, -u ) neg x
} else if ( face == 4.0 ) {
direction = direction.xzy;
direction.xy *= -1.0; // ( -u, -1, v ) neg y
} else if ( face == 5.0 ) {
direction.z *= -1.0; // ( u, v, -1 ) neg z
}
return direction;
}
void main() {
vOutputDirection = getDirection( uv, faceIndex );
gl_Position = vec4( position, 1.0 );
}
`
);
}
function _getEncodings() {
return (
/* glsl */
`
uniform int inputEncoding;
uniform int outputEncoding;
#include <encodings_pars_fragment>
vec4 inputTexelToLinear( vec4 value ) {
if ( inputEncoding == 0 ) {
return value;
} else if ( inputEncoding == 1 ) {
return sRGBToLinear( value );
} else if ( inputEncoding == 2 ) {
return RGBEToLinear( value );
} else if ( inputEncoding == 3 ) {
return RGBMToLinear( value, 7.0 );
} else if ( inputEncoding == 4 ) {
return RGBMToLinear( value, 16.0 );
} else if ( inputEncoding == 5 ) {
return RGBDToLinear( value, 256.0 );
} else {
return GammaToLinear( value, 2.2 );
}
}
vec4 linearToOutputTexel( vec4 value ) {
if ( outputEncoding == 0 ) {
return value;
} else if ( outputEncoding == 1 ) {
return LinearTosRGB( value );
} else if ( outputEncoding == 2 ) {
return LinearToRGBE( value );
} else if ( outputEncoding == 3 ) {
return LinearToRGBM( value, 7.0 );
} else if ( outputEncoding == 4 ) {
return LinearToRGBM( value, 16.0 );
} else if ( outputEncoding == 5 ) {
return LinearToRGBD( value, 256.0 );
} else {
return LinearToGamma( value, 2.2 );
}
}
vec4 envMapTexelToLinear( vec4 color ) {
return inputTexelToLinear( color );
}
`
);
}
function WebGLCubeUVMaps(renderer) {
let cubeUVmaps = new WeakMap();
let pmremGenerator = null;
function get(texture) {
if (texture && texture.isTexture && texture.isRenderTargetTexture === false) {
const mapping = texture.mapping;
const isEquirectMap = mapping === EquirectangularReflectionMapping || mapping === EquirectangularRefractionMapping;
const isCubeMap = mapping === CubeReflectionMapping || mapping === CubeRefractionMapping;
if (isEquirectMap || isCubeMap) {
// equirect/cube map to cubeUV conversion
if (cubeUVmaps.has(texture)) {
return cubeUVmaps.get(texture).texture;
} else {
const image = texture.image;
if (isEquirectMap && image && image.height > 0 || isCubeMap && image && isCubeTextureComplete(image)) {
const currentRenderTarget = renderer.getRenderTarget();
if (pmremGenerator === null) pmremGenerator = new PMREMGenerator(renderer);
const renderTarget = isEquirectMap ? pmremGenerator.fromEquirectangular(texture) : pmremGenerator.fromCubemap(texture);
cubeUVmaps.set(texture, renderTarget);
renderer.setRenderTarget(currentRenderTarget);
texture.addEventListener('dispose', onTextureDispose);
return renderTarget.texture;
} else {
// image not yet ready. try the conversion next frame
return null;
}
}
}
}
return texture;
}
function isCubeTextureComplete(image) {
let count = 0;
const length = 6;
for (let i = 0; i < length; i++) {
if (image[i] !== undefined) count++;
}
return count === length;
}
function onTextureDispose(event) {
const texture = event.target;
texture.removeEventListener('dispose', onTextureDispose);
const cubemapUV = cubeUVmaps.get(texture);
if (cubemapUV !== undefined) {
cubeUVmaps.delete(texture);
cubemapUV.dispose();
}
}
function dispose() {
cubeUVmaps = new WeakMap();
if (pmremGenerator !== null) {
pmremGenerator.dispose();
pmremGenerator = null;
}
}
return {
get: get,
dispose: dispose
};
}
function WebGLExtensions(gl) {
const extensions = {};
function getExtension(name) {
if (extensions[name] !== undefined) {
return extensions[name];
}
let extension;
switch (name) {
case 'WEBGL_depth_texture':
extension = gl.getExtension('WEBGL_depth_texture') || gl.getExtension('MOZ_WEBGL_depth_texture') || gl.getExtension('WEBKIT_WEBGL_depth_texture');
break;
case 'EXT_texture_filter_anisotropic':
extension = gl.getExtension('EXT_texture_filter_anisotropic') || gl.getExtension('MOZ_EXT_texture_filter_anisotropic') || gl.getExtension('WEBKIT_EXT_texture_filter_anisotropic');
break;
case 'WEBGL_compressed_texture_s3tc':
extension = gl.getExtension('WEBGL_compressed_texture_s3tc') || gl.getExtension('MOZ_WEBGL_compressed_texture_s3tc') || gl.getExtension('WEBKIT_WEBGL_compressed_texture_s3tc');
break;
case 'WEBGL_compressed_texture_pvrtc':
extension = gl.getExtension('WEBGL_compressed_texture_pvrtc') || gl.getExtension('WEBKIT_WEBGL_compressed_texture_pvrtc');
break;
default:
extension = gl.getExtension(name);
}
extensions[name] = extension;
return extension;
}
return {
has: function (name) {
return getExtension(name) !== null;
},
init: function (capabilities) {
if (capabilities.isWebGL2) {
getExtension('EXT_color_buffer_float');
} else {
getExtension('WEBGL_depth_texture');
getExtension('OES_texture_float');
getExtension('OES_texture_half_float');
getExtension('OES_texture_half_float_linear');
getExtension('OES_standard_derivatives');
getExtension('OES_element_index_uint');
getExtension('OES_vertex_array_object');
getExtension('ANGLE_instanced_arrays');
}
getExtension('OES_texture_float_linear');
getExtension('EXT_color_buffer_half_float');
},
get: function (name) {
const extension = getExtension(name);
if (extension === null) {
console.warn('THREE.WebGLRenderer: ' + name + ' extension not supported.');
}
return extension;
}
};
}
function WebGLGeometries(gl, attributes, info, bindingStates) {
const geometries = {};
const wireframeAttributes = new WeakMap();
function onGeometryDispose(event) {
const geometry = event.target;
if (geometry.index !== null) {
attributes.remove(geometry.index);
}
for (const name in geometry.attributes) {
attributes.remove(geometry.attributes[name]);
}
geometry.removeEventListener('dispose', onGeometryDispose);
delete geometries[geometry.id];
const attribute = wireframeAttributes.get(geometry);
if (attribute) {
attributes.remove(attribute);
wireframeAttributes.delete(geometry);
}
bindingStates.releaseStatesOfGeometry(geometry);
if (geometry.isInstancedBufferGeometry === true) {
delete geometry._maxInstanceCount;
} //
info.memory.geometries--;
}
function get(object, geometry) {
if (geometries[geometry.id] === true) return geometry;
geometry.addEventListener('dispose', onGeometryDispose);
geometries[geometry.id] = true;
info.memory.geometries++;
return geometry;
}
function update(geometry) {
const geometryAttributes = geometry.attributes; // Updating index buffer in VAO now. See WebGLBindingStates.
for (const name in geometryAttributes) {
attributes.update(geometryAttributes[name], gl.ARRAY_BUFFER);
} // morph targets
const morphAttributes = geometry.morphAttributes;
for (const name in morphAttributes) {
const array = morphAttributes[name];
for (let i = 0, l = array.length; i < l; i++) {
attributes.update(array[i], gl.ARRAY_BUFFER);
}
}
}
function updateWireframeAttribute(geometry) {
const indices = [];
const geometryIndex = geometry.index;
const geometryPosition = geometry.attributes.position;
let version = 0;
if (geometryIndex !== null) {
const array = geometryIndex.array;
version = geometryIndex.version;
for (let i = 0, l = array.length; i < l; i += 3) {
const a = array[i + 0];
const b = array[i + 1];
const c = array[i + 2];
indices.push(a, b, b, c, c, a);
}
} else {
const array = geometryPosition.array;
version = geometryPosition.version;
for (let i = 0, l = array.length / 3 - 1; i < l; i += 3) {
const a = i + 0;
const b = i + 1;
const c = i + 2;
indices.push(a, b, b, c, c, a);
}
}
const attribute = new (arrayMax(indices) > 65535 ? Uint32BufferAttribute : Uint16BufferAttribute)(indices, 1);
attribute.version = version; // Updating index buffer in VAO now. See WebGLBindingStates
//
const previousAttribute = wireframeAttributes.get(geometry);
if (previousAttribute) attributes.remove(previousAttribute); //
wireframeAttributes.set(geometry, attribute);
}
function getWireframeAttribute(geometry) {
const currentAttribute = wireframeAttributes.get(geometry);
if (currentAttribute) {
const geometryIndex = geometry.index;
if (geometryIndex !== null) {
// if the attribute is obsolete, create a new one
if (currentAttribute.version < geometryIndex.version) {
updateWireframeAttribute(geometry);
}
}
} else {
updateWireframeAttribute(geometry);
}
return wireframeAttributes.get(geometry);
}
return {
get: get,
update: update,
getWireframeAttribute: getWireframeAttribute
};
}
function WebGLIndexedBufferRenderer(gl, extensions, info, capabilities) {
const isWebGL2 = capabilities.isWebGL2;
let mode;
function setMode(value) {
mode = value;
}
let type, bytesPerElement;
function setIndex(value) {
type = value.type;
bytesPerElement = value.bytesPerElement;
}
function render(start, count) {
gl.drawElements(mode, count, type, start * bytesPerElement);
info.update(count, mode, 1);
}
function renderInstances(start, count, primcount) {
if (primcount === 0) return;
let extension, methodName;
if (isWebGL2) {
extension = gl;
methodName = 'drawElementsInstanced';
} else {
extension = extensions.get('ANGLE_instanced_arrays');
methodName = 'drawElementsInstancedANGLE';
if (extension === null) {
console.error('THREE.WebGLIndexedBufferRenderer: using THREE.InstancedBufferGeometry but hardware does not support extension ANGLE_instanced_arrays.');
return;
}
}
extension[methodName](mode, count, type, start * bytesPerElement, primcount);
info.update(count, mode, primcount);
} //
this.setMode = setMode;
this.setIndex = setIndex;
this.render = render;
this.renderInstances = renderInstances;
}
function WebGLInfo(gl) {
const memory = {
geometries: 0,
textures: 0
};
const render = {
frame: 0,
calls: 0,
triangles: 0,
points: 0,
lines: 0
};
function update(count, mode, instanceCount) {
render.calls++;
switch (mode) {
case gl.TRIANGLES:
render.triangles += instanceCount * (count / 3);
break;
case gl.LINES:
render.lines += instanceCount * (count / 2);
break;
case gl.LINE_STRIP:
render.lines += instanceCount * (count - 1);
break;
case gl.LINE_LOOP:
render.lines += instanceCount * count;
break;
case gl.POINTS:
render.points += instanceCount * count;
break;
default:
console.error('THREE.WebGLInfo: Unknown draw mode:', mode);
break;
}
}
function reset() {
render.frame++;
render.calls = 0;
render.triangles = 0;
render.points = 0;
render.lines = 0;
}
return {
memory: memory,
render: render,
programs: null,
autoReset: true,
reset: reset,
update: update
};
}
class DataTexture2DArray extends Texture {
constructor(data = null, width = 1, height = 1, depth = 1) {
super(null);
this.image = {
data,
width,
height,
depth
};
this.magFilter = NearestFilter;
this.minFilter = NearestFilter;
this.wrapR = ClampToEdgeWrapping;
this.generateMipmaps = false;
this.flipY = false;
this.unpackAlignment = 1;
this.needsUpdate = true;
}
}
DataTexture2DArray.prototype.isDataTexture2DArray = true;
function numericalSort(a, b) {
return a[0] - b[0];
}
function absNumericalSort(a, b) {
return Math.abs(b[1]) - Math.abs(a[1]);
}
function denormalize(morph, attribute) {
let denominator = 1;
const array = attribute.isInterleavedBufferAttribute ? attribute.data.array : attribute.array;
if (array instanceof Int8Array) denominator = 127;else if (array instanceof Int16Array) denominator = 32767;else if (array instanceof Int32Array) denominator = 2147483647;else console.error('THREE.WebGLMorphtargets: Unsupported morph attribute data type: ', array);
morph.divideScalar(denominator);
}
function WebGLMorphtargets(gl, capabilities, textures) {
const influencesList = {};
const morphInfluences = new Float32Array(8);
const morphTextures = new WeakMap();
const morph = new Vector3();
const workInfluences = [];
for (let i = 0; i < 8; i++) {
workInfluences[i] = [i, 0];
}
function update(object, geometry, material, program) {
const objectInfluences = object.morphTargetInfluences;
if (capabilities.isWebGL2 === true) {
// instead of using attributes, the WebGL 2 code path encodes morph targets
// into an array of data textures. Each layer represents a single morph target.
const numberOfMorphTargets = geometry.morphAttributes.position.length;
let entry = morphTextures.get(geometry);
if (entry === undefined || entry.count !== numberOfMorphTargets) {
if (entry !== undefined) entry.texture.dispose();
const hasMorphNormals = geometry.morphAttributes.normal !== undefined;
const morphTargets = geometry.morphAttributes.position;
const morphNormals = geometry.morphAttributes.normal || [];
const numberOfVertices = geometry.attributes.position.count;
const numberOfVertexData = hasMorphNormals === true ? 2 : 1; // (v,n) vs. (v)
let width = numberOfVertices * numberOfVertexData;
let height = 1;
if (width > capabilities.maxTextureSize) {
height = Math.ceil(width / capabilities.maxTextureSize);
width = capabilities.maxTextureSize;
}
const buffer = new Float32Array(width * height * 4 * numberOfMorphTargets);
const texture = new DataTexture2DArray(buffer, width, height, numberOfMorphTargets);
texture.format = RGBAFormat; // using RGBA since RGB might be emulated (and is thus slower)
texture.type = FloatType; // fill buffer
const vertexDataStride = numberOfVertexData * 4;
for (let i = 0; i < numberOfMorphTargets; i++) {
const morphTarget = morphTargets[i];
const morphNormal = morphNormals[i];
const offset = width * height * 4 * i;
for (let j = 0; j < morphTarget.count; j++) {
morph.fromBufferAttribute(morphTarget, j);
if (morphTarget.normalized === true) denormalize(morph, morphTarget);
const stride = j * vertexDataStride;
buffer[offset + stride + 0] = morph.x;
buffer[offset + stride + 1] = morph.y;
buffer[offset + stride + 2] = morph.z;
buffer[offset + stride + 3] = 0;
if (hasMorphNormals === true) {
morph.fromBufferAttribute(morphNormal, j);
if (morphNormal.normalized === true) denormalize(morph, morphNormal);
buffer[offset + stride + 4] = morph.x;
buffer[offset + stride + 5] = morph.y;
buffer[offset + stride + 6] = morph.z;
buffer[offset + stride + 7] = 0;
}
}
}
entry = {
count: numberOfMorphTargets,
texture: texture,
size: new Vector2(width, height)
};
morphTextures.set(geometry, entry);
} //
let morphInfluencesSum = 0;
for (let i = 0; i < objectInfluences.length; i++) {
morphInfluencesSum += objectInfluences[i];
}
const morphBaseInfluence = geometry.morphTargetsRelative ? 1 : 1 - morphInfluencesSum;
program.getUniforms().setValue(gl, 'morphTargetBaseInfluence', morphBaseInfluence);
program.getUniforms().setValue(gl, 'morphTargetInfluences', objectInfluences);
program.getUniforms().setValue(gl, 'morphTargetsTexture', entry.texture, textures);
program.getUniforms().setValue(gl, 'morphTargetsTextureSize', entry.size);
} else {
// When object doesn't have morph target influences defined, we treat it as a 0-length array
// This is important to make sure we set up morphTargetBaseInfluence / morphTargetInfluences
const length = objectInfluences === undefined ? 0 : objectInfluences.length;
let influences = influencesList[geometry.id];
if (influences === undefined || influences.length !== length) {
// initialise list
influences = [];
for (let i = 0; i < length; i++) {
influences[i] = [i, 0];
}
influencesList[geometry.id] = influences;
} // Collect influences
for (let i = 0; i < length; i++) {
const influence = influences[i];
influence[0] = i;
influence[1] = objectInfluences[i];
}
influences.sort(absNumericalSort);
for (let i = 0; i < 8; i++) {
if (i < length && influences[i][1]) {
workInfluences[i][0] = influences[i][0];
workInfluences[i][1] = influences[i][1];
} else {
workInfluences[i][0] = Number.MAX_SAFE_INTEGER;
workInfluences[i][1] = 0;
}
}
workInfluences.sort(numericalSort);
const morphTargets = geometry.morphAttributes.position;
const morphNormals = geometry.morphAttributes.normal;
let morphInfluencesSum = 0;
for (let i = 0; i < 8; i++) {
const influence = workInfluences[i];
const index = influence[0];
const value = influence[1];
if (index !== Number.MAX_SAFE_INTEGER && value) {
if (morphTargets && geometry.getAttribute('morphTarget' + i) !== morphTargets[index]) {
geometry.setAttribute('morphTarget' + i, morphTargets[index]);
}
if (morphNormals && geometry.getAttribute('morphNormal' + i) !== morphNormals[index]) {
geometry.setAttribute('morphNormal' + i, morphNormals[index]);
}
morphInfluences[i] = value;
morphInfluencesSum += value;
} else {
if (morphTargets && geometry.hasAttribute('morphTarget' + i) === true) {
geometry.deleteAttribute('morphTarget' + i);
}
if (morphNormals && geometry.hasAttribute('morphNormal' + i) === true) {
geometry.deleteAttribute('morphNormal' + i);
}
morphInfluences[i] = 0;
}
} // GLSL shader uses formula baseinfluence * base + sum(target * influence)
// This allows us to switch between absolute morphs and relative morphs without changing shader code
// When baseinfluence = 1 - sum(influence), the above is equivalent to sum((target - base) * influence)
const morphBaseInfluence = geometry.morphTargetsRelative ? 1 : 1 - morphInfluencesSum;
program.getUniforms().setValue(gl, 'morphTargetBaseInfluence', morphBaseInfluence);
program.getUniforms().setValue(gl, 'morphTargetInfluences', morphInfluences);
}
}
return {
update: update
};
}
function WebGLObjects(gl, geometries, attributes, info) {
let updateMap = new WeakMap();
function update(object) {
const frame = info.render.frame;
const geometry = object.geometry;
const buffergeometry = geometries.get(object, geometry); // Update once per frame
if (updateMap.get(buffergeometry) !== frame) {
geometries.update(buffergeometry);
updateMap.set(buffergeometry, frame);
}
if (object.isInstancedMesh) {
if (object.hasEventListener('dispose', onInstancedMeshDispose) === false) {
object.addEventListener('dispose', onInstancedMeshDispose);
}
attributes.update(object.instanceMatrix, gl.ARRAY_BUFFER);
if (object.instanceColor !== null) {
attributes.update(object.instanceColor, gl.ARRAY_BUFFER);
}
}
return buffergeometry;
}
function dispose() {
updateMap = new WeakMap();
}
function onInstancedMeshDispose(event) {
const instancedMesh = event.target;
instancedMesh.removeEventListener('dispose', onInstancedMeshDispose);
attributes.remove(instancedMesh.instanceMatrix);
if (instancedMesh.instanceColor !== null) attributes.remove(instancedMesh.instanceColor);
}
return {
update: update,
dispose: dispose
};
}
class DataTexture3D extends Texture {
constructor(data = null, width = 1, height = 1, depth = 1) {
// We're going to add .setXXX() methods for setting properties later.
// Users can still set in DataTexture3D directly.
//
// const texture = new THREE.DataTexture3D( data, width, height, depth );
// texture.anisotropy = 16;
//
// See #14839
super(null);
this.image = {
data,
width,
height,
depth
};
this.magFilter = NearestFilter;
this.minFilter = NearestFilter;
this.wrapR = ClampToEdgeWrapping;
this.generateMipmaps = false;
this.flipY = false;
this.unpackAlignment = 1;
this.needsUpdate = true;
}
}
DataTexture3D.prototype.isDataTexture3D = true;
/**
* Uniforms of a program.
* Those form a tree structure with a special top-level container for the root,
* which you get by calling 'new WebGLUniforms( gl, program )'.
*
*
* Properties of inner nodes including the top-level container:
*
* .seq - array of nested uniforms
* .map - nested uniforms by name
*
*
* Methods of all nodes except the top-level container:
*
* .setValue( gl, value, [textures] )
*
* uploads a uniform value(s)
* the 'textures' parameter is needed for sampler uniforms
*
*
* Static methods of the top-level container (textures factorizations):
*
* .upload( gl, seq, values, textures )
*
* sets uniforms in 'seq' to 'values[id].value'
*
* .seqWithValue( seq, values ) : filteredSeq
*
* filters 'seq' entries with corresponding entry in values
*
*
* Methods of the top-level container (textures factorizations):
*
* .setValue( gl, name, value, textures )
*
* sets uniform with name 'name' to 'value'
*
* .setOptional( gl, obj, prop )
*
* like .set for an optional property of the object
*
*/
const emptyTexture = new Texture();
const emptyTexture2dArray = new DataTexture2DArray();
const emptyTexture3d = new DataTexture3D();
const emptyCubeTexture = new CubeTexture(); // --- Utilities ---
// Array Caches (provide typed arrays for temporary by size)
const arrayCacheF32 = [];
const arrayCacheI32 = []; // Float32Array caches used for uploading Matrix uniforms
const mat4array = new Float32Array(16);
const mat3array = new Float32Array(9);
const mat2array = new Float32Array(4); // Flattening for arrays of vectors and matrices
function flatten(array, nBlocks, blockSize) {
const firstElem = array[0];
if (firstElem <= 0 || firstElem > 0) return array; // unoptimized: ! isNaN( firstElem )
// see http://jacksondunstan.com/articles/983
const n = nBlocks * blockSize;
let r = arrayCacheF32[n];
if (r === undefined) {
r = new Float32Array(n);
arrayCacheF32[n] = r;
}
if (nBlocks !== 0) {
firstElem.toArray(r, 0);
for (let i = 1, offset = 0; i !== nBlocks; ++i) {
offset += blockSize;
array[i].toArray(r, offset);
}
}
return r;
}
function arraysEqual(a, b) {
if (a.length !== b.length) return false;
for (let i = 0, l = a.length; i < l; i++) {
if (a[i] !== b[i]) return false;
}
return true;
}
function copyArray(a, b) {
for (let i = 0, l = b.length; i < l; i++) {
a[i] = b[i];
}
} // Texture unit allocation
function allocTexUnits(textures, n) {
let r = arrayCacheI32[n];
if (r === undefined) {
r = new Int32Array(n);
arrayCacheI32[n] = r;
}
for (let i = 0; i !== n; ++i) {
r[i] = textures.allocateTextureUnit();
}
return r;
} // --- Setters ---
// Note: Defining these methods externally, because they come in a bunch
// and this way their names minify.
// Single scalar
function setValueV1f(gl, v) {
const cache = this.cache;
if (cache[0] === v) return;
gl.uniform1f(this.addr, v);
cache[0] = v;
} // Single float vector (from flat array or THREE.VectorN)
function setValueV2f(gl, v) {
const cache = this.cache;
if (v.x !== undefined) {
if (cache[0] !== v.x || cache[1] !== v.y) {
gl.uniform2f(this.addr, v.x, v.y);
cache[0] = v.x;
cache[1] = v.y;
}
} else {
if (arraysEqual(cache, v)) return;
gl.uniform2fv(this.addr, v);
copyArray(cache, v);
}
}
function setValueV3f(gl, v) {
const cache = this.cache;
if (v.x !== undefined) {
if (cache[0] !== v.x || cache[1] !== v.y || cache[2] !== v.z) {
gl.uniform3f(this.addr, v.x, v.y, v.z);
cache[0] = v.x;
cache[1] = v.y;
cache[2] = v.z;
}
} else if (v.r !== undefined) {
if (cache[0] !== v.r || cache[1] !== v.g || cache[2] !== v.b) {
gl.uniform3f(this.addr, v.r, v.g, v.b);
cache[0] = v.r;
cache[1] = v.g;
cache[2] = v.b;
}
} else {
if (arraysEqual(cache, v)) return;
gl.uniform3fv(this.addr, v);
copyArray(cache, v);
}
}
function setValueV4f(gl, v) {
const cache = this.cache;
if (v.x !== undefined) {
if (cache[0] !== v.x || cache[1] !== v.y || cache[2] !== v.z || cache[3] !== v.w) {
gl.uniform4f(this.addr, v.x, v.y, v.z, v.w);
cache[0] = v.x;
cache[1] = v.y;
cache[2] = v.z;
cache[3] = v.w;
}
} else {
if (arraysEqual(cache, v)) return;
gl.uniform4fv(this.addr, v);
copyArray(cache, v);
}
} // Single matrix (from flat array or THREE.MatrixN)
function setValueM2(gl, v) {
const cache = this.cache;
const elements = v.elements;
if (elements === undefined) {
if (arraysEqual(cache, v)) return;
gl.uniformMatrix2fv(this.addr, false, v);
copyArray(cache, v);
} else {
if (arraysEqual(cache, elements)) return;
mat2array.set(elements);
gl.uniformMatrix2fv(this.addr, false, mat2array);
copyArray(cache, elements);
}
}
function setValueM3(gl, v) {
const cache = this.cache;
const elements = v.elements;
if (elements === undefined) {
if (arraysEqual(cache, v)) return;
gl.uniformMatrix3fv(this.addr, false, v);
copyArray(cache, v);
} else {
if (arraysEqual(cache, elements)) return;
mat3array.set(elements);
gl.uniformMatrix3fv(this.addr, false, mat3array);
copyArray(cache, elements);
}
}
function setValueM4(gl, v) {
const cache = this.cache;
const elements = v.elements;
if (elements === undefined) {
if (arraysEqual(cache, v)) return;
gl.uniformMatrix4fv(this.addr, false, v);
copyArray(cache, v);
} else {
if (arraysEqual(cache, elements)) return;
mat4array.set(elements);
gl.uniformMatrix4fv(this.addr, false, mat4array);
copyArray(cache, elements);
}
} // Single integer / boolean
function setValueV1i(gl, v) {
const cache = this.cache;
if (cache[0] === v) return;
gl.uniform1i(this.addr, v);
cache[0] = v;
} // Single integer / boolean vector (from flat array)
function setValueV2i(gl, v) {
const cache = this.cache;
if (arraysEqual(cache, v)) return;
gl.uniform2iv(this.addr, v);
copyArray(cache, v);
}
function setValueV3i(gl, v) {
const cache = this.cache;
if (arraysEqual(cache, v)) return;
gl.uniform3iv(this.addr, v);
copyArray(cache, v);
}
function setValueV4i(gl, v) {
const cache = this.cache;
if (arraysEqual(cache, v)) return;
gl.uniform4iv(this.addr, v);
copyArray(cache, v);
} // Single unsigned integer
function setValueV1ui(gl, v) {
const cache = this.cache;
if (cache[0] === v) return;
gl.uniform1ui(this.addr, v);
cache[0] = v;
} // Single unsigned integer vector (from flat array)
function setValueV2ui(gl, v) {
const cache = this.cache;
if (arraysEqual(cache, v)) return;
gl.uniform2uiv(this.addr, v);
copyArray(cache, v);
}
function setValueV3ui(gl, v) {
const cache = this.cache;
if (arraysEqual(cache, v)) return;
gl.uniform3uiv(this.addr, v);
copyArray(cache, v);
}
function setValueV4ui(gl, v) {
const cache = this.cache;
if (arraysEqual(cache, v)) return;
gl.uniform4uiv(this.addr, v);
copyArray(cache, v);
} // Single texture (2D / Cube)
function setValueT1(gl, v, textures) {
const cache = this.cache;
const unit = textures.allocateTextureUnit();
if (cache[0] !== unit) {
gl.uniform1i(this.addr, unit);
cache[0] = unit;
}
textures.safeSetTexture2D(v || emptyTexture, unit);
}
function setValueT3D1(gl, v, textures) {
const cache = this.cache;
const unit = textures.allocateTextureUnit();
if (cache[0] !== unit) {
gl.uniform1i(this.addr, unit);
cache[0] = unit;
}
textures.setTexture3D(v || emptyTexture3d, unit);
}
function setValueT6(gl, v, textures) {
const cache = this.cache;
const unit = textures.allocateTextureUnit();
if (cache[0] !== unit) {
gl.uniform1i(this.addr, unit);
cache[0] = unit;
}
textures.safeSetTextureCube(v || emptyCubeTexture, unit);
}
function setValueT2DArray1(gl, v, textures) {
const cache = this.cache;
const unit = textures.allocateTextureUnit();
if (cache[0] !== unit) {
gl.uniform1i(this.addr, unit);
cache[0] = unit;
}
textures.setTexture2DArray(v || emptyTexture2dArray, unit);
} // Helper to pick the right setter for the singular case
function getSingularSetter(type) {
switch (type) {
case 0x1406:
return setValueV1f;
// FLOAT
case 0x8b50:
return setValueV2f;
// _VEC2
case 0x8b51:
return setValueV3f;
// _VEC3
case 0x8b52:
return setValueV4f;
// _VEC4
case 0x8b5a:
return setValueM2;
// _MAT2
case 0x8b5b:
return setValueM3;
// _MAT3
case 0x8b5c:
return setValueM4;
// _MAT4
case 0x1404:
case 0x8b56:
return setValueV1i;
// INT, BOOL
case 0x8b53:
case 0x8b57:
return setValueV2i;
// _VEC2
case 0x8b54:
case 0x8b58:
return setValueV3i;
// _VEC3
case 0x8b55:
case 0x8b59:
return setValueV4i;
// _VEC4
case 0x1405:
return setValueV1ui;
// UINT
case 0x8dc6:
return setValueV2ui;
// _VEC2
case 0x8dc7:
return setValueV3ui;
// _VEC3
case 0x8dc8:
return setValueV4ui;
// _VEC4
case 0x8b5e: // SAMPLER_2D
case 0x8d66: // SAMPLER_EXTERNAL_OES
case 0x8dca: // INT_SAMPLER_2D
case 0x8dd2: // UNSIGNED_INT_SAMPLER_2D
case 0x8b62:
// SAMPLER_2D_SHADOW
return setValueT1;
case 0x8b5f: // SAMPLER_3D
case 0x8dcb: // INT_SAMPLER_3D
case 0x8dd3:
// UNSIGNED_INT_SAMPLER_3D
return setValueT3D1;
case 0x8b60: // SAMPLER_CUBE
case 0x8dcc: // INT_SAMPLER_CUBE
case 0x8dd4: // UNSIGNED_INT_SAMPLER_CUBE
case 0x8dc5:
// SAMPLER_CUBE_SHADOW
return setValueT6;
case 0x8dc1: // SAMPLER_2D_ARRAY
case 0x8dcf: // INT_SAMPLER_2D_ARRAY
case 0x8dd7: // UNSIGNED_INT_SAMPLER_2D_ARRAY
case 0x8dc4:
// SAMPLER_2D_ARRAY_SHADOW
return setValueT2DArray1;
}
} // Array of scalars
function setValueV1fArray(gl, v) {
gl.uniform1fv(this.addr, v);
} // Array of vectors (from flat array or array of THREE.VectorN)
function setValueV2fArray(gl, v) {
const data = flatten(v, this.size, 2);
gl.uniform2fv(this.addr, data);
}
function setValueV3fArray(gl, v) {
const data = flatten(v, this.size, 3);
gl.uniform3fv(this.addr, data);
}
function setValueV4fArray(gl, v) {
const data = flatten(v, this.size, 4);
gl.uniform4fv(this.addr, data);
} // Array of matrices (from flat array or array of THREE.MatrixN)
function setValueM2Array(gl, v) {
const data = flatten(v, this.size, 4);
gl.uniformMatrix2fv(this.addr, false, data);
}
function setValueM3Array(gl, v) {
const data = flatten(v, this.size, 9);
gl.uniformMatrix3fv(this.addr, false, data);
}
function setValueM4Array(gl, v) {
const data = flatten(v, this.size, 16);
gl.uniformMatrix4fv(this.addr, false, data);
} // Array of integer / boolean
function setValueV1iArray(gl, v) {
gl.uniform1iv(this.addr, v);
} // Array of integer / boolean vectors (from flat array)
function setValueV2iArray(gl, v) {
gl.uniform2iv(this.addr, v);
}
function setValueV3iArray(gl, v) {
gl.uniform3iv(this.addr, v);
}
function setValueV4iArray(gl, v) {
gl.uniform4iv(this.addr, v);
} // Array of unsigned integer
function setValueV1uiArray(gl, v) {
gl.uniform1uiv(this.addr, v);
} // Array of unsigned integer vectors (from flat array)
function setValueV2uiArray(gl, v) {
gl.uniform2uiv(this.addr, v);
}
function setValueV3uiArray(gl, v) {
gl.uniform3uiv(this.addr, v);
}
function setValueV4uiArray(gl, v) {
gl.uniform4uiv(this.addr, v);
} // Array of textures (2D / Cube)
function setValueT1Array(gl, v, textures) {
const n = v.length;
const units = allocTexUnits(textures, n);
gl.uniform1iv(this.addr, units);
for (let i = 0; i !== n; ++i) {
textures.safeSetTexture2D(v[i] || emptyTexture, units[i]);
}
}
function setValueT6Array(gl, v, textures) {
const n = v.length;
const units = allocTexUnits(textures, n);
gl.uniform1iv(this.addr, units);
for (let i = 0; i !== n; ++i) {
textures.safeSetTextureCube(v[i] || emptyCubeTexture, units[i]);
}
} // Helper to pick the right setter for a pure (bottom-level) array
function getPureArraySetter(type) {
switch (type) {
case 0x1406:
return setValueV1fArray;
// FLOAT
case 0x8b50:
return setValueV2fArray;
// _VEC2
case 0x8b51:
return setValueV3fArray;
// _VEC3
case 0x8b52:
return setValueV4fArray;
// _VEC4
case 0x8b5a:
return setValueM2Array;
// _MAT2
case 0x8b5b:
return setValueM3Array;
// _MAT3
case 0x8b5c:
return setValueM4Array;
// _MAT4
case 0x1404:
case 0x8b56:
return setValueV1iArray;
// INT, BOOL
case 0x8b53:
case 0x8b57:
return setValueV2iArray;
// _VEC2
case 0x8b54:
case 0x8b58:
return setValueV3iArray;
// _VEC3
case 0x8b55:
case 0x8b59:
return setValueV4iArray;
// _VEC4
case 0x1405:
return setValueV1uiArray;
// UINT
case 0x8dc6:
return setValueV2uiArray;
// _VEC2
case 0x8dc7:
return setValueV3uiArray;
// _VEC3
case 0x8dc8:
return setValueV4uiArray;
// _VEC4
case 0x8b5e: // SAMPLER_2D
case 0x8d66: // SAMPLER_EXTERNAL_OES
case 0x8dca: // INT_SAMPLER_2D
case 0x8dd2: // UNSIGNED_INT_SAMPLER_2D
case 0x8b62:
// SAMPLER_2D_SHADOW
return setValueT1Array;
case 0x8b60: // SAMPLER_CUBE
case 0x8dcc: // INT_SAMPLER_CUBE
case 0x8dd4: // UNSIGNED_INT_SAMPLER_CUBE
case 0x8dc5:
// SAMPLER_CUBE_SHADOW
return setValueT6Array;
}
} // --- Uniform Classes ---
function SingleUniform(id, activeInfo, addr) {
this.id = id;
this.addr = addr;
this.cache = [];
this.setValue = getSingularSetter(activeInfo.type); // this.path = activeInfo.name; // DEBUG
}
function PureArrayUniform(id, activeInfo, addr) {
this.id = id;
this.addr = addr;
this.cache = [];
this.size = activeInfo.size;
this.setValue = getPureArraySetter(activeInfo.type); // this.path = activeInfo.name; // DEBUG
}
PureArrayUniform.prototype.updateCache = function (data) {
const cache = this.cache;
if (data instanceof Float32Array && cache.length !== data.length) {
this.cache = new Float32Array(data.length);
}
copyArray(cache, data);
};
function StructuredUniform(id) {
this.id = id;
this.seq = [];
this.map = {};
}
StructuredUniform.prototype.setValue = function (gl, value, textures) {
const seq = this.seq;
for (let i = 0, n = seq.length; i !== n; ++i) {
const u = seq[i];
u.setValue(gl, value[u.id], textures);
}
}; // --- Top-level ---
// Parser - builds up the property tree from the path strings
const RePathPart = /(\w+)(\])?(\[|\.)?/g; // extracts
// - the identifier (member name or array index)
// - followed by an optional right bracket (found when array index)
// - followed by an optional left bracket or dot (type of subscript)
//
// Note: These portions can be read in a non-overlapping fashion and
// allow straightforward parsing of the hierarchy that WebGL encodes
// in the uniform names.
function addUniform(container, uniformObject) {
container.seq.push(uniformObject);
container.map[uniformObject.id] = uniformObject;
}
function parseUniform(activeInfo, addr, container) {
const path = activeInfo.name,
pathLength = path.length; // reset RegExp object, because of the early exit of a previous run
RePathPart.lastIndex = 0;
while (true) {
const match = RePathPart.exec(path),
matchEnd = RePathPart.lastIndex;
let id = match[1];
const idIsIndex = match[2] === ']',
subscript = match[3];
if (idIsIndex) id = id | 0; // convert to integer
if (subscript === undefined || subscript === '[' && matchEnd + 2 === pathLength) {
// bare name or "pure" bottom-level array "[0]" suffix
addUniform(container, subscript === undefined ? new SingleUniform(id, activeInfo, addr) : new PureArrayUniform(id, activeInfo, addr));
break;
} else {
// step into inner node / create it in case it doesn't exist
const map = container.map;
let next = map[id];
if (next === undefined) {
next = new StructuredUniform(id);
addUniform(container, next);
}
container = next;
}
}
} // Root Container
function WebGLUniforms(gl, program) {
this.seq = [];
this.map = {};
const n = gl.getProgramParameter(program, gl.ACTIVE_UNIFORMS);
for (let i = 0; i < n; ++i) {
const info = gl.getActiveUniform(program, i),
addr = gl.getUniformLocation(program, info.name);
parseUniform(info, addr, this);
}
}
WebGLUniforms.prototype.setValue = function (gl, name, value, textures) {
const u = this.map[name];
if (u !== undefined) u.setValue(gl, value, textures);
};
WebGLUniforms.prototype.setOptional = function (gl, object, name) {
const v = object[name];
if (v !== undefined) this.setValue(gl, name, v);
}; // Static interface
WebGLUniforms.upload = function (gl, seq, values, textures) {
for (let i = 0, n = seq.length; i !== n; ++i) {
const u = seq[i],
v = values[u.id];
if (v.needsUpdate !== false) {
// note: always updating when .needsUpdate is undefined
u.setValue(gl, v.value, textures);
}
}
};
WebGLUniforms.seqWithValue = function (seq, values) {
const r = [];
for (let i = 0, n = seq.length; i !== n; ++i) {
const u = seq[i];
if (u.id in values) r.push(u);
}
return r;
};
function WebGLShader(gl, type, string) {
const shader = gl.createShader(type);
gl.shaderSource(shader, string);
gl.compileShader(shader);
return shader;
}
let programIdCount = 0;
function addLineNumbers(string) {
const lines = string.split('\n');
for (let i = 0; i < lines.length; i++) {
lines[i] = i + 1 + ': ' + lines[i];
}
return lines.join('\n');
}
function getEncodingComponents(encoding) {
switch (encoding) {
case LinearEncoding:
return ['Linear', '( value )'];
case sRGBEncoding:
return ['sRGB', '( value )'];
case RGBEEncoding:
return ['RGBE', '( value )'];
case RGBM7Encoding:
return ['RGBM', '( value, 7.0 )'];
case RGBM16Encoding:
return ['RGBM', '( value, 16.0 )'];
case RGBDEncoding:
return ['RGBD', '( value, 256.0 )'];
case GammaEncoding:
return ['Gamma', '( value, float( GAMMA_FACTOR ) )'];
case LogLuvEncoding:
return ['LogLuv', '( value )'];
default:
console.warn('THREE.WebGLProgram: Unsupported encoding:', encoding);
return ['Linear', '( value )'];
}
}
function getShaderErrors(gl, shader, type) {
const status = gl.getShaderParameter(shader, gl.COMPILE_STATUS);
const errors = gl.getShaderInfoLog(shader).trim();
if (status && errors === '') return ''; // --enable-privileged-webgl-extension
// console.log( '**' + type + '**', gl.getExtension( 'WEBGL_debug_shaders' ).getTranslatedShaderSource( shader ) );
return type.toUpperCase() + '\n\n' + errors + '\n\n' + addLineNumbers(gl.getShaderSource(shader));
}
function getTexelDecodingFunction(functionName, encoding) {
const components = getEncodingComponents(encoding);
return 'vec4 ' + functionName + '( vec4 value ) { return ' + components[0] + 'ToLinear' + components[1] + '; }';
}
function getTexelEncodingFunction(functionName, encoding) {
const components = getEncodingComponents(encoding);
return 'vec4 ' + functionName + '( vec4 value ) { return LinearTo' + components[0] + components[1] + '; }';
}
function getToneMappingFunction(functionName, toneMapping) {
let toneMappingName;
switch (toneMapping) {
case LinearToneMapping:
toneMappingName = 'Linear';
break;
case ReinhardToneMapping:
toneMappingName = 'Reinhard';
break;
case CineonToneMapping:
toneMappingName = 'OptimizedCineon';
break;
case ACESFilmicToneMapping:
toneMappingName = 'ACESFilmic';
break;
case CustomToneMapping:
toneMappingName = 'Custom';
break;
default:
console.warn('THREE.WebGLProgram: Unsupported toneMapping:', toneMapping);
toneMappingName = 'Linear';
}
return 'vec3 ' + functionName + '( vec3 color ) { return ' + toneMappingName + 'ToneMapping( color ); }';
}
function generateExtensions(parameters) {
const chunks = [parameters.extensionDerivatives || parameters.envMapCubeUV || parameters.bumpMap || parameters.tangentSpaceNormalMap || parameters.clearcoatNormalMap || parameters.flatShading || parameters.shaderID === 'physical' ? '#extension GL_OES_standard_derivatives : enable' : '', (parameters.extensionFragDepth || parameters.logarithmicDepthBuffer) && parameters.rendererExtensionFragDepth ? '#extension GL_EXT_frag_depth : enable' : '', parameters.extensionDrawBuffers && parameters.rendererExtensionDrawBuffers ? '#extension GL_EXT_draw_buffers : require' : '', (parameters.extensionShaderTextureLOD || parameters.envMap || parameters.transmission) && parameters.rendererExtensionShaderTextureLod ? '#extension GL_EXT_shader_texture_lod : enable' : ''];
return chunks.filter(filterEmptyLine).join('\n');
}
function generateDefines(defines) {
const chunks = [];
for (const name in defines) {
const value = defines[name];
if (value === false) continue;
chunks.push('#define ' + name + ' ' + value);
}
return chunks.join('\n');
}
function fetchAttributeLocations(gl, program) {
const attributes = {};
const n = gl.getProgramParameter(program, gl.ACTIVE_ATTRIBUTES);
for (let i = 0; i < n; i++) {
const info = gl.getActiveAttrib(program, i);
const name = info.name;
let locationSize = 1;
if (info.type === gl.FLOAT_MAT2) locationSize = 2;
if (info.type === gl.FLOAT_MAT3) locationSize = 3;
if (info.type === gl.FLOAT_MAT4) locationSize = 4; // console.log( 'THREE.WebGLProgram: ACTIVE VERTEX ATTRIBUTE:', name, i );
attributes[name] = {
type: info.type,
location: gl.getAttribLocation(program, name),
locationSize: locationSize
};
}
return attributes;
}
function filterEmptyLine(string) {
return string !== '';
}
function replaceLightNums(string, parameters) {
return string.replace(/NUM_DIR_LIGHTS/g, parameters.numDirLights).replace(/NUM_SPOT_LIGHTS/g, parameters.numSpotLights).replace(/NUM_RECT_AREA_LIGHTS/g, parameters.numRectAreaLights).replace(/NUM_POINT_LIGHTS/g, parameters.numPointLights).replace(/NUM_HEMI_LIGHTS/g, parameters.numHemiLights).replace(/NUM_DIR_LIGHT_SHADOWS/g, parameters.numDirLightShadows).replace(/NUM_SPOT_LIGHT_SHADOWS/g, parameters.numSpotLightShadows).replace(/NUM_POINT_LIGHT_SHADOWS/g, parameters.numPointLightShadows);
}
function replaceClippingPlaneNums(string, parameters) {
return string.replace(/NUM_CLIPPING_PLANES/g, parameters.numClippingPlanes).replace(/UNION_CLIPPING_PLANES/g, parameters.numClippingPlanes - parameters.numClipIntersection);
} // Resolve Includes
const includePattern = /^[ \t]*#include +<([\w\d./]+)>/gm;
function resolveIncludes(string) {
return string.replace(includePattern, includeReplacer);
}
function includeReplacer(match, include) {
const string = ShaderChunk[include];
if (string === undefined) {
throw new Error('Can not resolve #include <' + include + '>');
}
return resolveIncludes(string);
} // Unroll Loops
const deprecatedUnrollLoopPattern = /#pragma unroll_loop[\s]+?for \( int i \= (\d+)\; i < (\d+)\; i \+\+ \) \{([\s\S]+?)(?=\})\}/g;
const unrollLoopPattern = /#pragma unroll_loop_start\s+for\s*\(\s*int\s+i\s*=\s*(\d+)\s*;\s*i\s*<\s*(\d+)\s*;\s*i\s*\+\+\s*\)\s*{([\s\S]+?)}\s+#pragma unroll_loop_end/g;
function unrollLoops(string) {
return string.replace(unrollLoopPattern, loopReplacer).replace(deprecatedUnrollLoopPattern, deprecatedLoopReplacer);
}
function deprecatedLoopReplacer(match, start, end, snippet) {
console.warn('WebGLProgram: #pragma unroll_loop shader syntax is deprecated. Please use #pragma unroll_loop_start syntax instead.');
return loopReplacer(match, start, end, snippet);
}
function loopReplacer(match, start, end, snippet) {
let string = '';
for (let i = parseInt(start); i < parseInt(end); i++) {
string += snippet.replace(/\[\s*i\s*\]/g, '[ ' + i + ' ]').replace(/UNROLLED_LOOP_INDEX/g, i);
}
return string;
} //
function generatePrecision(parameters) {
let precisionstring = 'precision ' + parameters.precision + ' float;\nprecision ' + parameters.precision + ' int;';
if (parameters.precision === 'highp') {
precisionstring += '\n#define HIGH_PRECISION';
} else if (parameters.precision === 'mediump') {
precisionstring += '\n#define MEDIUM_PRECISION';
} else if (parameters.precision === 'lowp') {
precisionstring += '\n#define LOW_PRECISION';
}
return precisionstring;
}
function generateShadowMapTypeDefine(parameters) {
let shadowMapTypeDefine = 'SHADOWMAP_TYPE_BASIC';
if (parameters.shadowMapType === PCFShadowMap) {
shadowMapTypeDefine = 'SHADOWMAP_TYPE_PCF';
} else if (parameters.shadowMapType === PCFSoftShadowMap) {
shadowMapTypeDefine = 'SHADOWMAP_TYPE_PCF_SOFT';
} else if (parameters.shadowMapType === VSMShadowMap) {
shadowMapTypeDefine = 'SHADOWMAP_TYPE_VSM';
}
return shadowMapTypeDefine;
}
function generateEnvMapTypeDefine(parameters) {
let envMapTypeDefine = 'ENVMAP_TYPE_CUBE';
if (parameters.envMap) {
switch (parameters.envMapMode) {
case CubeReflectionMapping:
case CubeRefractionMapping:
envMapTypeDefine = 'ENVMAP_TYPE_CUBE';
break;
case CubeUVReflectionMapping:
case CubeUVRefractionMapping:
envMapTypeDefine = 'ENVMAP_TYPE_CUBE_UV';
break;
}
}
return envMapTypeDefine;
}
function generateEnvMapModeDefine(parameters) {
let envMapModeDefine = 'ENVMAP_MODE_REFLECTION';
if (parameters.envMap) {
switch (parameters.envMapMode) {
case CubeRefractionMapping:
case CubeUVRefractionMapping:
envMapModeDefine = 'ENVMAP_MODE_REFRACTION';
break;
}
}
return envMapModeDefine;
}
function generateEnvMapBlendingDefine(parameters) {
let envMapBlendingDefine = 'ENVMAP_BLENDING_NONE';
if (parameters.envMap) {
switch (parameters.combine) {
case MultiplyOperation:
envMapBlendingDefine = 'ENVMAP_BLENDING_MULTIPLY';
break;
case MixOperation:
envMapBlendingDefine = 'ENVMAP_BLENDING_MIX';
break;
case AddOperation:
envMapBlendingDefine = 'ENVMAP_BLENDING_ADD';
break;
}
}
return envMapBlendingDefine;
}
function WebGLProgram(renderer, cacheKey, parameters, bindingStates) {
// TODO Send this event to Three.js DevTools
// console.log( 'WebGLProgram', cacheKey );
const gl = renderer.getContext();
const defines = parameters.defines;
let vertexShader = parameters.vertexShader;
let fragmentShader = parameters.fragmentShader;
const shadowMapTypeDefine = generateShadowMapTypeDefine(parameters);
const envMapTypeDefine = generateEnvMapTypeDefine(parameters);
const envMapModeDefine = generateEnvMapModeDefine(parameters);
const envMapBlendingDefine = generateEnvMapBlendingDefine(parameters);
const gammaFactorDefine = renderer.gammaFactor > 0 ? renderer.gammaFactor : 1.0;
const customExtensions = parameters.isWebGL2 ? '' : generateExtensions(parameters);
const customDefines = generateDefines(defines);
const program = gl.createProgram();
let prefixVertex, prefixFragment;
let versionString = parameters.glslVersion ? '#version ' + parameters.glslVersion + '\n' : '';
if (parameters.isRawShaderMaterial) {
prefixVertex = [customDefines].filter(filterEmptyLine).join('\n');
if (prefixVertex.length > 0) {
prefixVertex += '\n';
}
prefixFragment = [customExtensions, customDefines].filter(filterEmptyLine).join('\n');
if (prefixFragment.length > 0) {
prefixFragment += '\n';
}
} else {
prefixVertex = [generatePrecision(parameters), '#define SHADER_NAME ' + parameters.shaderName, customDefines, parameters.instancing ? '#define USE_INSTANCING' : '', parameters.instancingColor ? '#define USE_INSTANCING_COLOR' : '', parameters.supportsVertexTextures ? '#define VERTEX_TEXTURES' : '', '#define GAMMA_FACTOR ' + gammaFactorDefine, '#define MAX_BONES ' + parameters.maxBones, parameters.useFog && parameters.fog ? '#define USE_FOG' : '', parameters.useFog && parameters.fogExp2 ? '#define FOG_EXP2' : '', parameters.map ? '#define USE_MAP' : '', parameters.envMap ? '#define USE_ENVMAP' : '', parameters.envMap ? '#define ' + envMapModeDefine : '', parameters.lightMap ? '#define USE_LIGHTMAP' : '', parameters.aoMap ? '#define USE_AOMAP' : '', parameters.emissiveMap ? '#define USE_EMISSIVEMAP' : '', parameters.bumpMap ? '#define USE_BUMPMAP' : '', parameters.normalMap ? '#define USE_NORMALMAP' : '', parameters.normalMap && parameters.objectSpaceNormalMap ? '#define OBJECTSPACE_NORMALMAP' : '', parameters.normalMap && parameters.tangentSpaceNormalMap ? '#define TANGENTSPACE_NORMALMAP' : '', parameters.clearcoatMap ? '#define USE_CLEARCOATMAP' : '', parameters.clearcoatRoughnessMap ? '#define USE_CLEARCOAT_ROUGHNESSMAP' : '', parameters.clearcoatNormalMap ? '#define USE_CLEARCOAT_NORMALMAP' : '', parameters.displacementMap && parameters.supportsVertexTextures ? '#define USE_DISPLACEMENTMAP' : '', parameters.specularMap ? '#define USE_SPECULARMAP' : '', parameters.specularIntensityMap ? '#define USE_SPECULARINTENSITYMAP' : '', parameters.specularTintMap ? '#define USE_SPECULARTINTMAP' : '', parameters.roughnessMap ? '#define USE_ROUGHNESSMAP' : '', parameters.metalnessMap ? '#define USE_METALNESSMAP' : '', parameters.alphaMap ? '#define USE_ALPHAMAP' : '', parameters.transmission ? '#define USE_TRANSMISSION' : '', parameters.transmissionMap ? '#define USE_TRANSMISSIONMAP' : '', parameters.thicknessMap ? '#define USE_THICKNESSMAP' : '', parameters.vertexTangents ? '#define USE_TANGENT' : '', parameters.vertexColors ? '#define USE_COLOR' : '', parameters.vertexAlphas ? '#define USE_COLOR_ALPHA' : '', parameters.vertexUvs ? '#define USE_UV' : '', parameters.uvsVertexOnly ? '#define UVS_VERTEX_ONLY' : '', parameters.flatShading ? '#define FLAT_SHADED' : '', parameters.skinning ? '#define USE_SKINNING' : '', parameters.useVertexTexture ? '#define BONE_TEXTURE' : '', parameters.morphTargets ? '#define USE_MORPHTARGETS' : '', parameters.morphNormals && parameters.flatShading === false ? '#define USE_MORPHNORMALS' : '', parameters.morphTargets && parameters.isWebGL2 ? '#define MORPHTARGETS_TEXTURE' : '', parameters.morphTargets && parameters.isWebGL2 ? '#define MORPHTARGETS_COUNT ' + parameters.morphTargetsCount : '', parameters.doubleSided ? '#define DOUBLE_SIDED' : '', parameters.flipSided ? '#define FLIP_SIDED' : '', parameters.shadowMapEnabled ? '#define USE_SHADOWMAP' : '', parameters.shadowMapEnabled ? '#define ' + shadowMapTypeDefine : '', parameters.sizeAttenuation ? '#define USE_SIZEATTENUATION' : '', parameters.logarithmicDepthBuffer ? '#define USE_LOGDEPTHBUF' : '', parameters.logarithmicDepthBuffer && parameters.rendererExtensionFragDepth ? '#define USE_LOGDEPTHBUF_EXT' : '', 'uniform mat4 modelMatrix;', 'uniform mat4 modelViewMatrix;', 'uniform mat4 projectionMatrix;', 'uniform mat4 viewMatrix;', 'uniform mat3 normalMatrix;', 'uniform vec3 cameraPosition;', 'uniform bool isOrthographic;', '#ifdef USE_INSTANCING', ' attribute mat4 instanceMatrix;', '#endif', '#ifdef USE_INSTANCING_COLOR', ' attribute vec3 instanceColor;', '#endif', 'attribute vec3 position;', 'attribute vec3 normal;', 'attribute vec2 uv;', '#ifdef USE_TANGENT', ' attribute vec4 tangent;', '#endif', '#if defined( USE_COLOR_ALPHA )', ' attribute vec4 color;', '#elif defined( USE_COLOR )', ' attribute vec3 color;', '#endif', '#if ( defined( USE_MORPHTARGETS ) && ! defined( MORPHTARGETS_TEXTURE ) )', ' attribute vec3 morphTarget0;', ' attribute vec3 morphTarget1;', ' attribute vec3 morphTarget2;', ' attribute vec3 morphTarget3;', ' #ifdef USE_MORPHNORMALS', ' attribute vec3 morphNormal0;', ' attribute vec3 morphNormal1;', ' attribute vec3 morphNormal2;', ' attribute vec3 morphNormal3;', ' #else', ' attribute vec3 morphTarget4;', ' attribute vec3 morphTarget5;', ' attribute vec3 morphTarget6;', ' attribute vec3 morphTarget7;', ' #endif', '#endif', '#ifdef USE_SKINNING', ' attribute vec4 skinIndex;', ' attribute vec4 skinWeight;', '#endif', '\n'].filter(filterEmptyLine).join('\n');
prefixFragment = [customExtensions, generatePrecision(parameters), '#define SHADER_NAME ' + parameters.shaderName, customDefines, '#define GAMMA_FACTOR ' + gammaFactorDefine, parameters.useFog && parameters.fog ? '#define USE_FOG' : '', parameters.useFog && parameters.fogExp2 ? '#define FOG_EXP2' : '', parameters.map ? '#define USE_MAP' : '', parameters.matcap ? '#define USE_MATCAP' : '', parameters.envMap ? '#define USE_ENVMAP' : '', parameters.envMap ? '#define ' + envMapTypeDefine : '', parameters.envMap ? '#define ' + envMapModeDefine : '', parameters.envMap ? '#define ' + envMapBlendingDefine : '', parameters.lightMap ? '#define USE_LIGHTMAP' : '', parameters.aoMap ? '#define USE_AOMAP' : '', parameters.emissiveMap ? '#define USE_EMISSIVEMAP' : '', parameters.bumpMap ? '#define USE_BUMPMAP' : '', parameters.normalMap ? '#define USE_NORMALMAP' : '', parameters.normalMap && parameters.objectSpaceNormalMap ? '#define OBJECTSPACE_NORMALMAP' : '', parameters.normalMap && parameters.tangentSpaceNormalMap ? '#define TANGENTSPACE_NORMALMAP' : '', parameters.clearcoat ? '#define USE_CLEARCOAT' : '', parameters.clearcoatMap ? '#define USE_CLEARCOATMAP' : '', parameters.clearcoatRoughnessMap ? '#define USE_CLEARCOAT_ROUGHNESSMAP' : '', parameters.clearcoatNormalMap ? '#define USE_CLEARCOAT_NORMALMAP' : '', parameters.specularMap ? '#define USE_SPECULARMAP' : '', parameters.specularIntensityMap ? '#define USE_SPECULARINTENSITYMAP' : '', parameters.specularTintMap ? '#define USE_SPECULARTINTMAP' : '', parameters.roughnessMap ? '#define USE_ROUGHNESSMAP' : '', parameters.metalnessMap ? '#define USE_METALNESSMAP' : '', parameters.alphaMap ? '#define USE_ALPHAMAP' : '', parameters.alphaTest ? '#define USE_ALPHATEST' : '', parameters.sheen ? '#define USE_SHEEN' : '', parameters.transmission ? '#define USE_TRANSMISSION' : '', parameters.transmissionMap ? '#define USE_TRANSMISSIONMAP' : '', parameters.thicknessMap ? '#define USE_THICKNESSMAP' : '', parameters.vertexTangents ? '#define USE_TANGENT' : '', parameters.vertexColors || parameters.instancingColor ? '#define USE_COLOR' : '', parameters.vertexAlphas ? '#define USE_COLOR_ALPHA' : '', parameters.vertexUvs ? '#define USE_UV' : '', parameters.uvsVertexOnly ? '#define UVS_VERTEX_ONLY' : '', parameters.gradientMap ? '#define USE_GRADIENTMAP' : '', parameters.flatShading ? '#define FLAT_SHADED' : '', parameters.doubleSided ? '#define DOUBLE_SIDED' : '', parameters.flipSided ? '#define FLIP_SIDED' : '', parameters.shadowMapEnabled ? '#define USE_SHADOWMAP' : '', parameters.shadowMapEnabled ? '#define ' + shadowMapTypeDefine : '', parameters.premultipliedAlpha ? '#define PREMULTIPLIED_ALPHA' : '', parameters.physicallyCorrectLights ? '#define PHYSICALLY_CORRECT_LIGHTS' : '', parameters.logarithmicDepthBuffer ? '#define USE_LOGDEPTHBUF' : '', parameters.logarithmicDepthBuffer && parameters.rendererExtensionFragDepth ? '#define USE_LOGDEPTHBUF_EXT' : '', (parameters.extensionShaderTextureLOD || parameters.envMap) && parameters.rendererExtensionShaderTextureLod ? '#define TEXTURE_LOD_EXT' : '', 'uniform mat4 viewMatrix;', 'uniform vec3 cameraPosition;', 'uniform bool isOrthographic;', parameters.toneMapping !== NoToneMapping ? '#define TONE_MAPPING' : '', parameters.toneMapping !== NoToneMapping ? ShaderChunk['tonemapping_pars_fragment'] : '', // this code is required here because it is used by the toneMapping() function defined below
parameters.toneMapping !== NoToneMapping ? getToneMappingFunction('toneMapping', parameters.toneMapping) : '', parameters.dithering ? '#define DITHERING' : '', parameters.format === RGBFormat ? '#define OPAQUE' : '', ShaderChunk['encodings_pars_fragment'], // this code is required here because it is used by the various encoding/decoding function defined below
parameters.map ? getTexelDecodingFunction('mapTexelToLinear', parameters.mapEncoding) : '', parameters.matcap ? getTexelDecodingFunction('matcapTexelToLinear', parameters.matcapEncoding) : '', parameters.envMap ? getTexelDecodingFunction('envMapTexelToLinear', parameters.envMapEncoding) : '', parameters.emissiveMap ? getTexelDecodingFunction('emissiveMapTexelToLinear', parameters.emissiveMapEncoding) : '', parameters.specularTintMap ? getTexelDecodingFunction('specularTintMapTexelToLinear', parameters.specularTintMapEncoding) : '', parameters.lightMap ? getTexelDecodingFunction('lightMapTexelToLinear', parameters.lightMapEncoding) : '', getTexelEncodingFunction('linearToOutputTexel', parameters.outputEncoding), parameters.depthPacking ? '#define DEPTH_PACKING ' + parameters.depthPacking : '', '\n'].filter(filterEmptyLine).join('\n');
}
vertexShader = resolveIncludes(vertexShader);
vertexShader = replaceLightNums(vertexShader, parameters);
vertexShader = replaceClippingPlaneNums(vertexShader, parameters);
fragmentShader = resolveIncludes(fragmentShader);
fragmentShader = replaceLightNums(fragmentShader, parameters);
fragmentShader = replaceClippingPlaneNums(fragmentShader, parameters);
vertexShader = unrollLoops(vertexShader);
fragmentShader = unrollLoops(fragmentShader);
if (parameters.isWebGL2 && parameters.isRawShaderMaterial !== true) {
// GLSL 3.0 conversion for built-in materials and ShaderMaterial
versionString = '#version 300 es\n';
prefixVertex = ['precision mediump sampler2DArray;', '#define attribute in', '#define varying out', '#define texture2D texture'].join('\n') + '\n' + prefixVertex;
prefixFragment = ['#define varying in', parameters.glslVersion === GLSL3 ? '' : 'out highp vec4 pc_fragColor;', parameters.glslVersion === GLSL3 ? '' : '#define gl_FragColor pc_fragColor', '#define gl_FragDepthEXT gl_FragDepth', '#define texture2D texture', '#define textureCube texture', '#define texture2DProj textureProj', '#define texture2DLodEXT textureLod', '#define texture2DProjLodEXT textureProjLod', '#define textureCubeLodEXT textureLod', '#define texture2DGradEXT textureGrad', '#define texture2DProjGradEXT textureProjGrad', '#define textureCubeGradEXT textureGrad'].join('\n') + '\n' + prefixFragment;
}
const vertexGlsl = versionString + prefixVertex + vertexShader;
const fragmentGlsl = versionString + prefixFragment + fragmentShader; // console.log( '*VERTEX*', vertexGlsl );
// console.log( '*FRAGMENT*', fragmentGlsl );
const glVertexShader = WebGLShader(gl, gl.VERTEX_SHADER, vertexGlsl);
const glFragmentShader = WebGLShader(gl, gl.FRAGMENT_SHADER, fragmentGlsl);
gl.attachShader(program, glVertexShader);
gl.attachShader(program, glFragmentShader); // Force a particular attribute to index 0.
if (parameters.index0AttributeName !== undefined) {
gl.bindAttribLocation(program, 0, parameters.index0AttributeName);
} else if (parameters.morphTargets === true) {
// programs with morphTargets displace position out of attribute 0
gl.bindAttribLocation(program, 0, 'position');
}
gl.linkProgram(program); // check for link errors
if (renderer.debug.checkShaderErrors) {
const programLog = gl.getProgramInfoLog(program).trim();
const vertexLog = gl.getShaderInfoLog(glVertexShader).trim();
const fragmentLog = gl.getShaderInfoLog(glFragmentShader).trim();
let runnable = true;
let haveDiagnostics = true;
if (gl.getProgramParameter(program, gl.LINK_STATUS) === false) {
runnable = false;
const vertexErrors = getShaderErrors(gl, glVertexShader, 'vertex');
const fragmentErrors = getShaderErrors(gl, glFragmentShader, 'fragment');
console.error('THREE.WebGLProgram: Shader Error ' + gl.getError() + ' - ' + 'VALIDATE_STATUS ' + gl.getProgramParameter(program, gl.VALIDATE_STATUS) + '\n\n' + 'Program Info Log: ' + programLog + '\n' + vertexErrors + '\n' + fragmentErrors);
} else if (programLog !== '') {
console.warn('THREE.WebGLProgram: Program Info Log:', programLog);
} else if (vertexLog === '' || fragmentLog === '') {
haveDiagnostics = false;
}
if (haveDiagnostics) {
this.diagnostics = {
runnable: runnable,
programLog: programLog,
vertexShader: {
log: vertexLog,
prefix: prefixVertex
},
fragmentShader: {
log: fragmentLog,
prefix: prefixFragment
}
};
}
} // Clean up
// Crashes in iOS9 and iOS10. #18402
// gl.detachShader( program, glVertexShader );
// gl.detachShader( program, glFragmentShader );
gl.deleteShader(glVertexShader);
gl.deleteShader(glFragmentShader); // set up caching for uniform locations
let cachedUniforms;
this.getUniforms = function () {
if (cachedUniforms === undefined) {
cachedUniforms = new WebGLUniforms(gl, program);
}
return cachedUniforms;
}; // set up caching for attribute locations
let cachedAttributes;
this.getAttributes = function () {
if (cachedAttributes === undefined) {
cachedAttributes = fetchAttributeLocations(gl, program);
}
return cachedAttributes;
}; // free resource
this.destroy = function () {
bindingStates.releaseStatesOfProgram(this);
gl.deleteProgram(program);
this.program = undefined;
}; //
this.name = parameters.shaderName;
this.id = programIdCount++;
this.cacheKey = cacheKey;
this.usedTimes = 1;
this.program = program;
this.vertexShader = glVertexShader;
this.fragmentShader = glFragmentShader;
return this;
}
function WebGLPrograms(renderer, cubemaps, cubeuvmaps, extensions, capabilities, bindingStates, clipping) {
const programs = [];
const isWebGL2 = capabilities.isWebGL2;
const logarithmicDepthBuffer = capabilities.logarithmicDepthBuffer;
const floatVertexTextures = capabilities.floatVertexTextures;
const maxVertexUniforms = capabilities.maxVertexUniforms;
const vertexTextures = capabilities.vertexTextures;
let precision = capabilities.precision;
const shaderIDs = {
MeshDepthMaterial: 'depth',
MeshDistanceMaterial: 'distanceRGBA',
MeshNormalMaterial: 'normal',
MeshBasicMaterial: 'basic',
MeshLambertMaterial: 'lambert',
MeshPhongMaterial: 'phong',
MeshToonMaterial: 'toon',
MeshStandardMaterial: 'physical',
MeshPhysicalMaterial: 'physical',
MeshMatcapMaterial: 'matcap',
LineBasicMaterial: 'basic',
LineDashedMaterial: 'dashed',
PointsMaterial: 'points',
ShadowMaterial: 'shadow',
SpriteMaterial: 'sprite'
};
const parameterNames = ['precision', 'isWebGL2', 'supportsVertexTextures', 'outputEncoding', 'instancing', 'instancingColor', 'map', 'mapEncoding', 'matcap', 'matcapEncoding', 'envMap', 'envMapMode', 'envMapEncoding', 'envMapCubeUV', 'lightMap', 'lightMapEncoding', 'aoMap', 'emissiveMap', 'emissiveMapEncoding', 'bumpMap', 'normalMap', 'objectSpaceNormalMap', 'tangentSpaceNormalMap', 'clearcoat', 'clearcoatMap', 'clearcoatRoughnessMap', 'clearcoatNormalMap', 'displacementMap', 'specularMap', 'specularIntensityMap', 'specularTintMap', 'specularTintMapEncoding', 'roughnessMap', 'metalnessMap', 'gradientMap', 'alphaMap', 'alphaTest', 'combine', 'vertexColors', 'vertexAlphas', 'vertexTangents', 'vertexUvs', 'uvsVertexOnly', 'fog', 'useFog', 'fogExp2', 'flatShading', 'sizeAttenuation', 'logarithmicDepthBuffer', 'skinning', 'maxBones', 'useVertexTexture', 'morphTargets', 'morphNormals', 'morphTargetsCount', 'premultipliedAlpha', 'numDirLights', 'numPointLights', 'numSpotLights', 'numHemiLights', 'numRectAreaLights', 'numDirLightShadows', 'numPointLightShadows', 'numSpotLightShadows', 'shadowMapEnabled', 'shadowMapType', 'toneMapping', 'physicallyCorrectLights', 'doubleSided', 'flipSided', 'numClippingPlanes', 'numClipIntersection', 'depthPacking', 'dithering', 'format', 'sheen', 'transmission', 'transmissionMap', 'thicknessMap'];
function getMaxBones(object) {
const skeleton = object.skeleton;
const bones = skeleton.bones;
if (floatVertexTextures) {
return 1024;
} else {
// default for when object is not specified
// ( for example when prebuilding shader to be used with multiple objects )
//
// - leave some extra space for other uniforms
// - limit here is ANGLE's 254 max uniform vectors
// (up to 54 should be safe)
const nVertexUniforms = maxVertexUniforms;
const nVertexMatrices = Math.floor((nVertexUniforms - 20) / 4);
const maxBones = Math.min(nVertexMatrices, bones.length);
if (maxBones < bones.length) {
console.warn('THREE.WebGLRenderer: Skeleton has ' + bones.length + ' bones. This GPU supports ' + maxBones + '.');
return 0;
}
return maxBones;
}
}
function getTextureEncodingFromMap(map) {
let encoding;
if (map && map.isTexture) {
encoding = map.encoding;
} else if (map && map.isWebGLRenderTarget) {
console.warn('THREE.WebGLPrograms.getTextureEncodingFromMap: don\'t use render targets as textures. Use their .texture property instead.');
encoding = map.texture.encoding;
} else {
encoding = LinearEncoding;
}
if (isWebGL2 && map && map.isTexture && map.format === RGBAFormat && map.type === UnsignedByteType && map.encoding === sRGBEncoding) {
encoding = LinearEncoding; // disable inline decode for sRGB textures in WebGL 2
}
return encoding;
}
function getParameters(material, lights, shadows, scene, object) {
const fog = scene.fog;
const environment = material.isMeshStandardMaterial ? scene.environment : null;
const envMap = (material.isMeshStandardMaterial ? cubeuvmaps : cubemaps).get(material.envMap || environment);
const shaderID = shaderIDs[material.type]; // heuristics to create shader parameters according to lights in the scene
// (not to blow over maxLights budget)
const maxBones = object.isSkinnedMesh ? getMaxBones(object) : 0;
if (material.precision !== null) {
precision = capabilities.getMaxPrecision(material.precision);
if (precision !== material.precision) {
console.warn('THREE.WebGLProgram.getParameters:', material.precision, 'not supported, using', precision, 'instead.');
}
}
let vertexShader, fragmentShader;
if (shaderID) {
const shader = ShaderLib[shaderID];
vertexShader = shader.vertexShader;
fragmentShader = shader.fragmentShader;
} else {
vertexShader = material.vertexShader;
fragmentShader = material.fragmentShader;
}
const currentRenderTarget = renderer.getRenderTarget();
const useAlphaTest = material.alphaTest > 0;
const useClearcoat = material.clearcoat > 0;
const parameters = {
isWebGL2: isWebGL2,
shaderID: shaderID,
shaderName: material.type,
vertexShader: vertexShader,
fragmentShader: fragmentShader,
defines: material.defines,
isRawShaderMaterial: material.isRawShaderMaterial === true,
glslVersion: material.glslVersion,
precision: precision,
instancing: object.isInstancedMesh === true,
instancingColor: object.isInstancedMesh === true && object.instanceColor !== null,
supportsVertexTextures: vertexTextures,
outputEncoding: currentRenderTarget !== null ? getTextureEncodingFromMap(currentRenderTarget.texture) : renderer.outputEncoding,
map: !!material.map,
mapEncoding: getTextureEncodingFromMap(material.map),
matcap: !!material.matcap,
matcapEncoding: getTextureEncodingFromMap(material.matcap),
envMap: !!envMap,
envMapMode: envMap && envMap.mapping,
envMapEncoding: getTextureEncodingFromMap(envMap),
envMapCubeUV: !!envMap && (envMap.mapping === CubeUVReflectionMapping || envMap.mapping === CubeUVRefractionMapping),
lightMap: !!material.lightMap,
lightMapEncoding: getTextureEncodingFromMap(material.lightMap),
aoMap: !!material.aoMap,
emissiveMap: !!material.emissiveMap,
emissiveMapEncoding: getTextureEncodingFromMap(material.emissiveMap),
bumpMap: !!material.bumpMap,
normalMap: !!material.normalMap,
objectSpaceNormalMap: material.normalMapType === ObjectSpaceNormalMap,
tangentSpaceNormalMap: material.normalMapType === TangentSpaceNormalMap,
clearcoat: useClearcoat,
clearcoatMap: useClearcoat && !!material.clearcoatMap,
clearcoatRoughnessMap: useClearcoat && !!material.clearcoatRoughnessMap,
clearcoatNormalMap: useClearcoat && !!material.clearcoatNormalMap,
displacementMap: !!material.displacementMap,
roughnessMap: !!material.roughnessMap,
metalnessMap: !!material.metalnessMap,
specularMap: !!material.specularMap,
specularIntensityMap: !!material.specularIntensityMap,
specularTintMap: !!material.specularTintMap,
specularTintMapEncoding: getTextureEncodingFromMap(material.specularTintMap),
alphaMap: !!material.alphaMap,
alphaTest: useAlphaTest,
gradientMap: !!material.gradientMap,
sheen: material.sheen > 0,
transmission: material.transmission > 0,
transmissionMap: !!material.transmissionMap,
thicknessMap: !!material.thicknessMap,
combine: material.combine,
vertexTangents: !!material.normalMap && !!object.geometry && !!object.geometry.attributes.tangent,
vertexColors: material.vertexColors,
vertexAlphas: material.vertexColors === true && !!object.geometry && !!object.geometry.attributes.color && object.geometry.attributes.color.itemSize === 4,
vertexUvs: !!material.map || !!material.bumpMap || !!material.normalMap || !!material.specularMap || !!material.alphaMap || !!material.emissiveMap || !!material.roughnessMap || !!material.metalnessMap || !!material.clearcoatMap || !!material.clearcoatRoughnessMap || !!material.clearcoatNormalMap || !!material.displacementMap || !!material.transmissionMap || !!material.thicknessMap || !!material.specularIntensityMap || !!material.specularTintMap,
uvsVertexOnly: !(!!material.map || !!material.bumpMap || !!material.normalMap || !!material.specularMap || !!material.alphaMap || !!material.emissiveMap || !!material.roughnessMap || !!material.metalnessMap || !!material.clearcoatNormalMap || material.transmission > 0 || !!material.transmissionMap || !!material.thicknessMap || !!material.specularIntensityMap || !!material.specularTintMap) && !!material.displacementMap,
fog: !!fog,
useFog: material.fog,
fogExp2: fog && fog.isFogExp2,
flatShading: !!material.flatShading,
sizeAttenuation: material.sizeAttenuation,
logarithmicDepthBuffer: logarithmicDepthBuffer,
skinning: object.isSkinnedMesh === true && maxBones > 0,
maxBones: maxBones,
useVertexTexture: floatVertexTextures,
morphTargets: !!object.geometry && !!object.geometry.morphAttributes.position,
morphNormals: !!object.geometry && !!object.geometry.morphAttributes.normal,
morphTargetsCount: !!object.geometry && !!object.geometry.morphAttributes.position ? object.geometry.morphAttributes.position.length : 0,
numDirLights: lights.directional.length,
numPointLights: lights.point.length,
numSpotLights: lights.spot.length,
numRectAreaLights: lights.rectArea.length,
numHemiLights: lights.hemi.length,
numDirLightShadows: lights.directionalShadowMap.length,
numPointLightShadows: lights.pointShadowMap.length,
numSpotLightShadows: lights.spotShadowMap.length,
numClippingPlanes: clipping.numPlanes,
numClipIntersection: clipping.numIntersection,
format: material.format,
dithering: material.dithering,
shadowMapEnabled: renderer.shadowMap.enabled && shadows.length > 0,
shadowMapType: renderer.shadowMap.type,
toneMapping: material.toneMapped ? renderer.toneMapping : NoToneMapping,
physicallyCorrectLights: renderer.physicallyCorrectLights,
premultipliedAlpha: material.premultipliedAlpha,
doubleSided: material.side === DoubleSide,
flipSided: material.side === BackSide,
depthPacking: material.depthPacking !== undefined ? material.depthPacking : false,
index0AttributeName: material.index0AttributeName,
extensionDerivatives: material.extensions && material.extensions.derivatives,
extensionFragDepth: material.extensions && material.extensions.fragDepth,
extensionDrawBuffers: material.extensions && material.extensions.drawBuffers,
extensionShaderTextureLOD: material.extensions && material.extensions.shaderTextureLOD,
rendererExtensionFragDepth: isWebGL2 || extensions.has('EXT_frag_depth'),
rendererExtensionDrawBuffers: isWebGL2 || extensions.has('WEBGL_draw_buffers'),
rendererExtensionShaderTextureLod: isWebGL2 || extensions.has('EXT_shader_texture_lod'),
customProgramCacheKey: material.customProgramCacheKey()
};
return parameters;
}
function getProgramCacheKey(parameters) {
const array = [];
if (parameters.shaderID) {
array.push(parameters.shaderID);
} else {
array.push(hashString(parameters.fragmentShader));
array.push(hashString(parameters.vertexShader));
}
if (parameters.defines !== undefined) {
for (const name in parameters.defines) {
array.push(name);
array.push(parameters.defines[name]);
}
}
if (parameters.isRawShaderMaterial === false) {
for (let i = 0; i < parameterNames.length; i++) {
array.push(parameters[parameterNames[i]]);
}
array.push(renderer.outputEncoding);
array.push(renderer.gammaFactor);
}
array.push(parameters.customProgramCacheKey);
return array.join();
}
function getUniforms(material) {
const shaderID = shaderIDs[material.type];
let uniforms;
if (shaderID) {
const shader = ShaderLib[shaderID];
uniforms = UniformsUtils.clone(shader.uniforms);
} else {
uniforms = material.uniforms;
}
return uniforms;
}
function acquireProgram(parameters, cacheKey) {
let program; // Check if code has been already compiled
for (let p = 0, pl = programs.length; p < pl; p++) {
const preexistingProgram = programs[p];
if (preexistingProgram.cacheKey === cacheKey) {
program = preexistingProgram;
++program.usedTimes;
break;
}
}
if (program === undefined) {
program = new WebGLProgram(renderer, cacheKey, parameters, bindingStates);
programs.push(program);
}
return program;
}
function releaseProgram(program) {
if (--program.usedTimes === 0) {
// Remove from unordered set
const i = programs.indexOf(program);
programs[i] = programs[programs.length - 1];
programs.pop(); // Free WebGL resources
program.destroy();
}
}
return {
getParameters: getParameters,
getProgramCacheKey: getProgramCacheKey,
getUniforms: getUniforms,
acquireProgram: acquireProgram,
releaseProgram: releaseProgram,
// Exposed for resource monitoring & error feedback via renderer.info:
programs: programs
};
}
function WebGLProperties() {
let properties = new WeakMap();
function get(object) {
let map = properties.get(object);
if (map === undefined) {
map = {};
properties.set(object, map);
}
return map;
}
function remove(object) {
properties.delete(object);
}
function update(object, key, value) {
properties.get(object)[key] = value;
}
function dispose() {
properties = new WeakMap();
}
return {
get: get,
remove: remove,
update: update,
dispose: dispose
};
}
function painterSortStable(a, b) {
if (a.groupOrder !== b.groupOrder) {
return a.groupOrder - b.groupOrder;
} else if (a.renderOrder !== b.renderOrder) {
return a.renderOrder - b.renderOrder;
} else if (a.program !== b.program) {
return a.program.id - b.program.id;
} else if (a.material.id !== b.material.id) {
return a.material.id - b.material.id;
} else if (a.z !== b.z) {
return a.z - b.z;
} else {
return a.id - b.id;
}
}
function reversePainterSortStable(a, b) {
if (a.groupOrder !== b.groupOrder) {
return a.groupOrder - b.groupOrder;
} else if (a.renderOrder !== b.renderOrder) {
return a.renderOrder - b.renderOrder;
} else if (a.z !== b.z) {
return b.z - a.z;
} else {
return a.id - b.id;
}
}
function WebGLRenderList(properties) {
const renderItems = [];
let renderItemsIndex = 0;
const opaque = [];
const transmissive = [];
const transparent = [];
const defaultProgram = {
id: -1
};
function init() {
renderItemsIndex = 0;
opaque.length = 0;
transmissive.length = 0;
transparent.length = 0;
}
function getNextRenderItem(object, geometry, material, groupOrder, z, group) {
let renderItem = renderItems[renderItemsIndex];
const materialProperties = properties.get(material);
if (renderItem === undefined) {
renderItem = {
id: object.id,
object: object,
geometry: geometry,
material: material,
program: materialProperties.program || defaultProgram,
groupOrder: groupOrder,
renderOrder: object.renderOrder,
z: z,
group: group
};
renderItems[renderItemsIndex] = renderItem;
} else {
renderItem.id = object.id;
renderItem.object = object;
renderItem.geometry = geometry;
renderItem.material = material;
renderItem.program = materialProperties.program || defaultProgram;
renderItem.groupOrder = groupOrder;
renderItem.renderOrder = object.renderOrder;
renderItem.z = z;
renderItem.group = group;
}
renderItemsIndex++;
return renderItem;
}
function push(object, geometry, material, groupOrder, z, group) {
const renderItem = getNextRenderItem(object, geometry, material, groupOrder, z, group);
if (material.transmission > 0.0) {
transmissive.push(renderItem);
} else if (material.transparent === true) {
transparent.push(renderItem);
} else {
opaque.push(renderItem);
}
}
function unshift(object, geometry, material, groupOrder, z, group) {
const renderItem = getNextRenderItem(object, geometry, material, groupOrder, z, group);
if (material.transmission > 0.0) {
transmissive.unshift(renderItem);
} else if (material.transparent === true) {
transparent.unshift(renderItem);
} else {
opaque.unshift(renderItem);
}
}
function sort(customOpaqueSort, customTransparentSort) {
if (opaque.length > 1) opaque.sort(customOpaqueSort || painterSortStable);
if (transmissive.length > 1) transmissive.sort(customTransparentSort || reversePainterSortStable);
if (transparent.length > 1) transparent.sort(customTransparentSort || reversePainterSortStable);
}
function finish() {
// Clear references from inactive renderItems in the list
for (let i = renderItemsIndex, il = renderItems.length; i < il; i++) {
const renderItem = renderItems[i];
if (renderItem.id === null) break;
renderItem.id = null;
renderItem.object = null;
renderItem.geometry = null;
renderItem.material = null;
renderItem.program = null;
renderItem.group = null;
}
}
return {
opaque: opaque,
transmissive: transmissive,
transparent: transparent,
init: init,
push: push,
unshift: unshift,
finish: finish,
sort: sort
};
}
function WebGLRenderLists(properties) {
let lists = new WeakMap();
function get(scene, renderCallDepth) {
let list;
if (lists.has(scene) === false) {
list = new WebGLRenderList(properties);
lists.set(scene, [list]);
} else {
if (renderCallDepth >= lists.get(scene).length) {
list = new WebGLRenderList(properties);
lists.get(scene).push(list);
} else {
list = lists.get(scene)[renderCallDepth];
}
}
return list;
}
function dispose() {
lists = new WeakMap();
}
return {
get: get,
dispose: dispose
};
}
function UniformsCache() {
const lights = {};
return {
get: function (light) {
if (lights[light.id] !== undefined) {
return lights[light.id];
}
let uniforms;
switch (light.type) {
case 'DirectionalLight':
uniforms = {
direction: new Vector3(),
color: new Color()
};
break;
case 'SpotLight':
uniforms = {
position: new Vector3(),
direction: new Vector3(),
color: new Color(),
distance: 0,
coneCos: 0,
penumbraCos: 0,
decay: 0
};
break;
case 'PointLight':
uniforms = {
position: new Vector3(),
color: new Color(),
distance: 0,
decay: 0
};
break;
case 'HemisphereLight':
uniforms = {
direction: new Vector3(),
skyColor: new Color(),
groundColor: new Color()
};
break;
case 'RectAreaLight':
uniforms = {
color: new Color(),
position: new Vector3(),
halfWidth: new Vector3(),
halfHeight: new Vector3()
};
break;
}
lights[light.id] = uniforms;
return uniforms;
}
};
}
function ShadowUniformsCache() {
const lights = {};
return {
get: function (light) {
if (lights[light.id] !== undefined) {
return lights[light.id];
}
let uniforms;
switch (light.type) {
case 'DirectionalLight':
uniforms = {
shadowBias: 0,
shadowNormalBias: 0,
shadowRadius: 1,
shadowMapSize: new Vector2()
};
break;
case 'SpotLight':
uniforms = {
shadowBias: 0,
shadowNormalBias: 0,
shadowRadius: 1,
shadowMapSize: new Vector2()
};
break;
case 'PointLight':
uniforms = {
shadowBias: 0,
shadowNormalBias: 0,
shadowRadius: 1,
shadowMapSize: new Vector2(),
shadowCameraNear: 1,
shadowCameraFar: 1000
};
break;
// TODO (abelnation): set RectAreaLight shadow uniforms
}
lights[light.id] = uniforms;
return uniforms;
}
};
}
let nextVersion = 0;
function shadowCastingLightsFirst(lightA, lightB) {
return (lightB.castShadow ? 1 : 0) - (lightA.castShadow ? 1 : 0);
}
function WebGLLights(extensions, capabilities) {
const cache = new UniformsCache();
const shadowCache = ShadowUniformsCache();
const state = {
version: 0,
hash: {
directionalLength: -1,
pointLength: -1,
spotLength: -1,
rectAreaLength: -1,
hemiLength: -1,
numDirectionalShadows: -1,
numPointShadows: -1,
numSpotShadows: -1
},
ambient: [0, 0, 0],
probe: [],
directional: [],
directionalShadow: [],
directionalShadowMap: [],
directionalShadowMatrix: [],
spot: [],
spotShadow: [],
spotShadowMap: [],
spotShadowMatrix: [],
rectArea: [],
rectAreaLTC1: null,
rectAreaLTC2: null,
point: [],
pointShadow: [],
pointShadowMap: [],
pointShadowMatrix: [],
hemi: []
};
for (let i = 0; i < 9; i++) state.probe.push(new Vector3());
const vector3 = new Vector3();
const matrix4 = new Matrix4();
const matrix42 = new Matrix4();
function setup(lights, physicallyCorrectLights) {
let r = 0,
g = 0,
b = 0;
for (let i = 0; i < 9; i++) state.probe[i].set(0, 0, 0);
let directionalLength = 0;
let pointLength = 0;
let spotLength = 0;
let rectAreaLength = 0;
let hemiLength = 0;
let numDirectionalShadows = 0;
let numPointShadows = 0;
let numSpotShadows = 0;
lights.sort(shadowCastingLightsFirst); // artist-friendly light intensity scaling factor
const scaleFactor = physicallyCorrectLights !== true ? Math.PI : 1;
for (let i = 0, l = lights.length; i < l; i++) {
const light = lights[i];
const color = light.color;
const intensity = light.intensity;
const distance = light.distance;
const shadowMap = light.shadow && light.shadow.map ? light.shadow.map.texture : null;
if (light.isAmbientLight) {
r += color.r * intensity * scaleFactor;
g += color.g * intensity * scaleFactor;
b += color.b * intensity * scaleFactor;
} else if (light.isLightProbe) {
for (let j = 0; j < 9; j++) {
state.probe[j].addScaledVector(light.sh.coefficients[j], intensity);
}
} else if (light.isDirectionalLight) {
const uniforms = cache.get(light);
uniforms.color.copy(light.color).multiplyScalar(light.intensity * scaleFactor);
if (light.castShadow) {
const shadow = light.shadow;
const shadowUniforms = shadowCache.get(light);
shadowUniforms.shadowBias = shadow.bias;
shadowUniforms.shadowNormalBias = shadow.normalBias;
shadowUniforms.shadowRadius = shadow.radius;
shadowUniforms.shadowMapSize = shadow.mapSize;
state.directionalShadow[directionalLength] = shadowUniforms;
state.directionalShadowMap[directionalLength] = shadowMap;
state.directionalShadowMatrix[directionalLength] = light.shadow.matrix;
numDirectionalShadows++;
}
state.directional[directionalLength] = uniforms;
directionalLength++;
} else if (light.isSpotLight) {
const uniforms = cache.get(light);
uniforms.position.setFromMatrixPosition(light.matrixWorld);
uniforms.color.copy(color).multiplyScalar(intensity * scaleFactor);
uniforms.distance = distance;
uniforms.coneCos = Math.cos(light.angle);
uniforms.penumbraCos = Math.cos(light.angle * (1 - light.penumbra));
uniforms.decay = light.decay;
if (light.castShadow) {
const shadow = light.shadow;
const shadowUniforms = shadowCache.get(light);
shadowUniforms.shadowBias = shadow.bias;
shadowUniforms.shadowNormalBias = shadow.normalBias;
shadowUniforms.shadowRadius = shadow.radius;
shadowUniforms.shadowMapSize = shadow.mapSize;
state.spotShadow[spotLength] = shadowUniforms;
state.spotShadowMap[spotLength] = shadowMap;
state.spotShadowMatrix[spotLength] = light.shadow.matrix;
numSpotShadows++;
}
state.spot[spotLength] = uniforms;
spotLength++;
} else if (light.isRectAreaLight) {
const uniforms = cache.get(light); // (a) intensity is the total visible light emitted
//uniforms.color.copy( color ).multiplyScalar( intensity / ( light.width * light.height * Math.PI ) );
// (b) intensity is the brightness of the light
uniforms.color.copy(color).multiplyScalar(intensity);
uniforms.halfWidth.set(light.width * 0.5, 0.0, 0.0);
uniforms.halfHeight.set(0.0, light.height * 0.5, 0.0);
state.rectArea[rectAreaLength] = uniforms;
rectAreaLength++;
} else if (light.isPointLight) {
const uniforms = cache.get(light);
uniforms.color.copy(light.color).multiplyScalar(light.intensity * scaleFactor);
uniforms.distance = light.distance;
uniforms.decay = light.decay;
if (light.castShadow) {
const shadow = light.shadow;
const shadowUniforms = shadowCache.get(light);
shadowUniforms.shadowBias = shadow.bias;
shadowUniforms.shadowNormalBias = shadow.normalBias;
shadowUniforms.shadowRadius = shadow.radius;
shadowUniforms.shadowMapSize = shadow.mapSize;
shadowUniforms.shadowCameraNear = shadow.camera.near;
shadowUniforms.shadowCameraFar = shadow.camera.far;
state.pointShadow[pointLength] = shadowUniforms;
state.pointShadowMap[pointLength] = shadowMap;
state.pointShadowMatrix[pointLength] = light.shadow.matrix;
numPointShadows++;
}
state.point[pointLength] = uniforms;
pointLength++;
} else if (light.isHemisphereLight) {
const uniforms = cache.get(light);
uniforms.skyColor.copy(light.color).multiplyScalar(intensity * scaleFactor);
uniforms.groundColor.copy(light.groundColor).multiplyScalar(intensity * scaleFactor);
state.hemi[hemiLength] = uniforms;
hemiLength++;
}
}
if (rectAreaLength > 0) {
if (capabilities.isWebGL2) {
// WebGL 2
state.rectAreaLTC1 = UniformsLib.LTC_FLOAT_1;
state.rectAreaLTC2 = UniformsLib.LTC_FLOAT_2;
} else {
// WebGL 1
if (extensions.has('OES_texture_float_linear') === true) {
state.rectAreaLTC1 = UniformsLib.LTC_FLOAT_1;
state.rectAreaLTC2 = UniformsLib.LTC_FLOAT_2;
} else if (extensions.has('OES_texture_half_float_linear') === true) {
state.rectAreaLTC1 = UniformsLib.LTC_HALF_1;
state.rectAreaLTC2 = UniformsLib.LTC_HALF_2;
} else {
console.error('THREE.WebGLRenderer: Unable to use RectAreaLight. Missing WebGL extensions.');
}
}
}
state.ambient[0] = r;
state.ambient[1] = g;
state.ambient[2] = b;
const hash = state.hash;
if (hash.directionalLength !== directionalLength || hash.pointLength !== pointLength || hash.spotLength !== spotLength || hash.rectAreaLength !== rectAreaLength || hash.hemiLength !== hemiLength || hash.numDirectionalShadows !== numDirectionalShadows || hash.numPointShadows !== numPointShadows || hash.numSpotShadows !== numSpotShadows) {
state.directional.length = directionalLength;
state.spot.length = spotLength;
state.rectArea.length = rectAreaLength;
state.point.length = pointLength;
state.hemi.length = hemiLength;
state.directionalShadow.length = numDirectionalShadows;
state.directionalShadowMap.length = numDirectionalShadows;
state.pointShadow.length = numPointShadows;
state.pointShadowMap.length = numPointShadows;
state.spotShadow.length = numSpotShadows;
state.spotShadowMap.length = numSpotShadows;
state.directionalShadowMatrix.length = numDirectionalShadows;
state.pointShadowMatrix.length = numPointShadows;
state.spotShadowMatrix.length = numSpotShadows;
hash.directionalLength = directionalLength;
hash.pointLength = pointLength;
hash.spotLength = spotLength;
hash.rectAreaLength = rectAreaLength;
hash.hemiLength = hemiLength;
hash.numDirectionalShadows = numDirectionalShadows;
hash.numPointShadows = numPointShadows;
hash.numSpotShadows = numSpotShadows;
state.version = nextVersion++;
}
}
function setupView(lights, camera) {
let directionalLength = 0;
let pointLength = 0;
let spotLength = 0;
let rectAreaLength = 0;
let hemiLength = 0;
const viewMatrix = camera.matrixWorldInverse;
for (let i = 0, l = lights.length; i < l; i++) {
const light = lights[i];
if (light.isDirectionalLight) {
const uniforms = state.directional[directionalLength];
uniforms.direction.setFromMatrixPosition(light.matrixWorld);
vector3.setFromMatrixPosition(light.target.matrixWorld);
uniforms.direction.sub(vector3);
uniforms.direction.transformDirection(viewMatrix);
directionalLength++;
} else if (light.isSpotLight) {
const uniforms = state.spot[spotLength];
uniforms.position.setFromMatrixPosition(light.matrixWorld);
uniforms.position.applyMatrix4(viewMatrix);
uniforms.direction.setFromMatrixPosition(light.matrixWorld);
vector3.setFromMatrixPosition(light.target.matrixWorld);
uniforms.direction.sub(vector3);
uniforms.direction.transformDirection(viewMatrix);
spotLength++;
} else if (light.isRectAreaLight) {
const uniforms = state.rectArea[rectAreaLength];
uniforms.position.setFromMatrixPosition(light.matrixWorld);
uniforms.position.applyMatrix4(viewMatrix); // extract local rotation of light to derive width/height half vectors
matrix42.identity();
matrix4.copy(light.matrixWorld);
matrix4.premultiply(viewMatrix);
matrix42.extractRotation(matrix4);
uniforms.halfWidth.set(light.width * 0.5, 0.0, 0.0);
uniforms.halfHeight.set(0.0, light.height * 0.5, 0.0);
uniforms.halfWidth.applyMatrix4(matrix42);
uniforms.halfHeight.applyMatrix4(matrix42);
rectAreaLength++;
} else if (light.isPointLight) {
const uniforms = state.point[pointLength];
uniforms.position.setFromMatrixPosition(light.matrixWorld);
uniforms.position.applyMatrix4(viewMatrix);
pointLength++;
} else if (light.isHemisphereLight) {
const uniforms = state.hemi[hemiLength];
uniforms.direction.setFromMatrixPosition(light.matrixWorld);
uniforms.direction.transformDirection(viewMatrix);
uniforms.direction.normalize();
hemiLength++;
}
}
}
return {
setup: setup,
setupView: setupView,
state: state
};
}
function WebGLRenderState(extensions, capabilities) {
const lights = new WebGLLights(extensions, capabilities);
const lightsArray = [];
const shadowsArray = [];
function init() {
lightsArray.length = 0;
shadowsArray.length = 0;
}
function pushLight(light) {
lightsArray.push(light);
}
function pushShadow(shadowLight) {
shadowsArray.push(shadowLight);
}
function setupLights(physicallyCorrectLights) {
lights.setup(lightsArray, physicallyCorrectLights);
}
function setupLightsView(camera) {
lights.setupView(lightsArray, camera);
}
const state = {
lightsArray: lightsArray,
shadowsArray: shadowsArray,
lights: lights
};
return {
init: init,
state: state,
setupLights: setupLights,
setupLightsView: setupLightsView,
pushLight: pushLight,
pushShadow: pushShadow
};
}
function WebGLRenderStates(extensions, capabilities) {
let renderStates = new WeakMap();
function get(scene, renderCallDepth = 0) {
let renderState;
if (renderStates.has(scene) === false) {
renderState = new WebGLRenderState(extensions, capabilities);
renderStates.set(scene, [renderState]);
} else {
if (renderCallDepth >= renderStates.get(scene).length) {
renderState = new WebGLRenderState(extensions, capabilities);
renderStates.get(scene).push(renderState);
} else {
renderState = renderStates.get(scene)[renderCallDepth];
}
}
return renderState;
}
function dispose() {
renderStates = new WeakMap();
}
return {
get: get,
dispose: dispose
};
}
/**
* parameters = {
*
* opacity: <float>,
*
* map: new THREE.Texture( <Image> ),
*
* alphaMap: new THREE.Texture( <Image> ),
*
* displacementMap: new THREE.Texture( <Image> ),
* displacementScale: <float>,
* displacementBias: <float>,
*
* wireframe: <boolean>,
* wireframeLinewidth: <float>
* }
*/
class MeshDepthMaterial extends Material {
constructor(parameters) {
super();
this.type = 'MeshDepthMaterial';
this.depthPacking = BasicDepthPacking;
this.map = null;
this.alphaMap = null;
this.displacementMap = null;
this.displacementScale = 1;
this.displacementBias = 0;
this.wireframe = false;
this.wireframeLinewidth = 1;
this.fog = false;
this.setValues(parameters);
}
copy(source) {
super.copy(source);
this.depthPacking = source.depthPacking;
this.map = source.map;
this.alphaMap = source.alphaMap;
this.displacementMap = source.displacementMap;
this.displacementScale = source.displacementScale;
this.displacementBias = source.displacementBias;
this.wireframe = source.wireframe;
this.wireframeLinewidth = source.wireframeLinewidth;
return this;
}
}
MeshDepthMaterial.prototype.isMeshDepthMaterial = true;
/**
* parameters = {
*
* referencePosition: <float>,
* nearDistance: <float>,
* farDistance: <float>,
*
* map: new THREE.Texture( <Image> ),
*
* alphaMap: new THREE.Texture( <Image> ),
*
* displacementMap: new THREE.Texture( <Image> ),
* displacementScale: <float>,
* displacementBias: <float>
*
* }
*/
class MeshDistanceMaterial extends Material {
constructor(parameters) {
super();
this.type = 'MeshDistanceMaterial';
this.referencePosition = new Vector3();
this.nearDistance = 1;
this.farDistance = 1000;
this.map = null;
this.alphaMap = null;
this.displacementMap = null;
this.displacementScale = 1;
this.displacementBias = 0;
this.fog = false;
this.setValues(parameters);
}
copy(source) {
super.copy(source);
this.referencePosition.copy(source.referencePosition);
this.nearDistance = source.nearDistance;
this.farDistance = source.farDistance;
this.map = source.map;
this.alphaMap = source.alphaMap;
this.displacementMap = source.displacementMap;
this.displacementScale = source.displacementScale;
this.displacementBias = source.displacementBias;
return this;
}
}
MeshDistanceMaterial.prototype.isMeshDistanceMaterial = true;
const vertex = "void main() {\n\tgl_Position = vec4( position, 1.0 );\n}";
const fragment = "uniform sampler2D shadow_pass;\nuniform vec2 resolution;\nuniform float radius;\nuniform float samples;\n#include <packing>\nvoid main() {\n\tfloat mean = 0.0;\n\tfloat squared_mean = 0.0;\n\tfloat uvStride = samples <= 1.0 ? 0.0 : 2.0 / ( samples - 1.0 );\n\tfloat uvStart = samples <= 1.0 ? 0.0 : - 1.0;\n\tfor ( float i = 0.0; i < samples; i ++ ) {\n\t\tfloat uvOffset = uvStart + i * uvStride;\n\t\t#ifdef HORIZONTAL_PASS\n\t\t\tvec2 distribution = unpackRGBATo2Half( texture2D( shadow_pass, ( gl_FragCoord.xy + vec2( uvOffset, 0.0 ) * radius ) / resolution ) );\n\t\t\tmean += distribution.x;\n\t\t\tsquared_mean += distribution.y * distribution.y + distribution.x * distribution.x;\n\t\t#else\n\t\t\tfloat depth = unpackRGBAToDepth( texture2D( shadow_pass, ( gl_FragCoord.xy + vec2( 0.0, uvOffset ) * radius ) / resolution ) );\n\t\t\tmean += depth;\n\t\t\tsquared_mean += depth * depth;\n\t\t#endif\n\t}\n\tmean = mean / samples;\n\tsquared_mean = squared_mean / samples;\n\tfloat std_dev = sqrt( squared_mean - mean * mean );\n\tgl_FragColor = pack2HalfToRGBA( vec2( mean, std_dev ) );\n}";
function WebGLShadowMap(_renderer, _objects, _capabilities) {
let _frustum = new Frustum();
const _shadowMapSize = new Vector2(),
_viewportSize = new Vector2(),
_viewport = new Vector4(),
_depthMaterial = new MeshDepthMaterial({
depthPacking: RGBADepthPacking
}),
_distanceMaterial = new MeshDistanceMaterial(),
_materialCache = {},
_maxTextureSize = _capabilities.maxTextureSize;
const shadowSide = {
0: BackSide,
1: FrontSide,
2: DoubleSide
};
const shadowMaterialVertical = new ShaderMaterial({
uniforms: {
shadow_pass: {
value: null
},
resolution: {
value: new Vector2()
},
radius: {
value: 4.0
},
samples: {
value: 8.0
}
},
vertexShader: vertex,
fragmentShader: fragment
});
const shadowMaterialHorizontal = shadowMaterialVertical.clone();
shadowMaterialHorizontal.defines.HORIZONTAL_PASS = 1;
const fullScreenTri = new BufferGeometry();
fullScreenTri.setAttribute('position', new BufferAttribute(new Float32Array([-1, -1, 0.5, 3, -1, 0.5, -1, 3, 0.5]), 3));
const fullScreenMesh = new Mesh(fullScreenTri, shadowMaterialVertical);
const scope = this;
this.enabled = false;
this.autoUpdate = true;
this.needsUpdate = false;
this.type = PCFShadowMap;
this.render = function (lights, scene, camera) {
if (scope.enabled === false) return;
if (scope.autoUpdate === false && scope.needsUpdate === false) return;
if (lights.length === 0) return;
const currentRenderTarget = _renderer.getRenderTarget();
const activeCubeFace = _renderer.getActiveCubeFace();
const activeMipmapLevel = _renderer.getActiveMipmapLevel();
const _state = _renderer.state; // Set GL state for depth map.
_state.setBlending(NoBlending);
_state.buffers.color.setClear(1, 1, 1, 1);
_state.buffers.depth.setTest(true);
_state.setScissorTest(false); // render depth map
for (let i = 0, il = lights.length; i < il; i++) {
const light = lights[i];
const shadow = light.shadow;
if (shadow === undefined) {
console.warn('THREE.WebGLShadowMap:', light, 'has no shadow.');
continue;
}
if (shadow.autoUpdate === false && shadow.needsUpdate === false) continue;
_shadowMapSize.copy(shadow.mapSize);
const shadowFrameExtents = shadow.getFrameExtents();
_shadowMapSize.multiply(shadowFrameExtents);
_viewportSize.copy(shadow.mapSize);
if (_shadowMapSize.x > _maxTextureSize || _shadowMapSize.y > _maxTextureSize) {
if (_shadowMapSize.x > _maxTextureSize) {
_viewportSize.x = Math.floor(_maxTextureSize / shadowFrameExtents.x);
_shadowMapSize.x = _viewportSize.x * shadowFrameExtents.x;
shadow.mapSize.x = _viewportSize.x;
}
if (_shadowMapSize.y > _maxTextureSize) {
_viewportSize.y = Math.floor(_maxTextureSize / shadowFrameExtents.y);
_shadowMapSize.y = _viewportSize.y * shadowFrameExtents.y;
shadow.mapSize.y = _viewportSize.y;
}
}
if (shadow.map === null && !shadow.isPointLightShadow && this.type === VSMShadowMap) {
const pars = {
minFilter: LinearFilter,
magFilter: LinearFilter,
format: RGBAFormat
};
shadow.map = new WebGLRenderTarget(_shadowMapSize.x, _shadowMapSize.y, pars);
shadow.map.texture.name = light.name + '.shadowMap';
shadow.mapPass = new WebGLRenderTarget(_shadowMapSize.x, _shadowMapSize.y, pars);
shadow.camera.updateProjectionMatrix();
}
if (shadow.map === null) {
const pars = {
minFilter: NearestFilter,
magFilter: NearestFilter,
format: RGBAFormat
};
shadow.map = new WebGLRenderTarget(_shadowMapSize.x, _shadowMapSize.y, pars);
shadow.map.texture.name = light.name + '.shadowMap';
shadow.camera.updateProjectionMatrix();
}
_renderer.setRenderTarget(shadow.map);
_renderer.clear();
const viewportCount = shadow.getViewportCount();
for (let vp = 0; vp < viewportCount; vp++) {
const viewport = shadow.getViewport(vp);
_viewport.set(_viewportSize.x * viewport.x, _viewportSize.y * viewport.y, _viewportSize.x * viewport.z, _viewportSize.y * viewport.w);
_state.viewport(_viewport);
shadow.updateMatrices(light, vp);
_frustum = shadow.getFrustum();
renderObject(scene, camera, shadow.camera, light, this.type);
} // do blur pass for VSM
if (!shadow.isPointLightShadow && this.type === VSMShadowMap) {
VSMPass(shadow, camera);
}
shadow.needsUpdate = false;
}
scope.needsUpdate = false;
_renderer.setRenderTarget(currentRenderTarget, activeCubeFace, activeMipmapLevel);
};
function VSMPass(shadow, camera) {
const geometry = _objects.update(fullScreenMesh); // vertical pass
shadowMaterialVertical.uniforms.shadow_pass.value = shadow.map.texture;
shadowMaterialVertical.uniforms.resolution.value = shadow.mapSize;
shadowMaterialVertical.uniforms.radius.value = shadow.radius;
shadowMaterialVertical.uniforms.samples.value = shadow.blurSamples;
_renderer.setRenderTarget(shadow.mapPass);
_renderer.clear();
_renderer.renderBufferDirect(camera, null, geometry, shadowMaterialVertical, fullScreenMesh, null); // horizontal pass
shadowMaterialHorizontal.uniforms.shadow_pass.value = shadow.mapPass.texture;
shadowMaterialHorizontal.uniforms.resolution.value = shadow.mapSize;
shadowMaterialHorizontal.uniforms.radius.value = shadow.radius;
shadowMaterialHorizontal.uniforms.samples.value = shadow.blurSamples;
_renderer.setRenderTarget(shadow.map);
_renderer.clear();
_renderer.renderBufferDirect(camera, null, geometry, shadowMaterialHorizontal, fullScreenMesh, null);
}
function getDepthMaterial(object, geometry, material, light, shadowCameraNear, shadowCameraFar, type) {
let result = null;
const customMaterial = light.isPointLight === true ? object.customDistanceMaterial : object.customDepthMaterial;
if (customMaterial !== undefined) {
result = customMaterial;
} else {
result = light.isPointLight === true ? _distanceMaterial : _depthMaterial;
}
if (_renderer.localClippingEnabled && material.clipShadows === true && material.clippingPlanes.length !== 0 || material.displacementMap && material.displacementScale !== 0 || material.alphaMap && material.alphaTest > 0) {
// in this case we need a unique material instance reflecting the
// appropriate state
const keyA = result.uuid,
keyB = material.uuid;
let materialsForVariant = _materialCache[keyA];
if (materialsForVariant === undefined) {
materialsForVariant = {};
_materialCache[keyA] = materialsForVariant;
}
let cachedMaterial = materialsForVariant[keyB];
if (cachedMaterial === undefined) {
cachedMaterial = result.clone();
materialsForVariant[keyB] = cachedMaterial;
}
result = cachedMaterial;
}
result.visible = material.visible;
result.wireframe = material.wireframe;
if (type === VSMShadowMap) {
result.side = material.shadowSide !== null ? material.shadowSide : material.side;
} else {
result.side = material.shadowSide !== null ? material.shadowSide : shadowSide[material.side];
}
result.alphaMap = material.alphaMap;
result.alphaTest = material.alphaTest;
result.clipShadows = material.clipShadows;
result.clippingPlanes = material.clippingPlanes;
result.clipIntersection = material.clipIntersection;
result.displacementMap = material.displacementMap;
result.displacementScale = material.displacementScale;
result.displacementBias = material.displacementBias;
result.wireframeLinewidth = material.wireframeLinewidth;
result.linewidth = material.linewidth;
if (light.isPointLight === true && result.isMeshDistanceMaterial === true) {
result.referencePosition.setFromMatrixPosition(light.matrixWorld);
result.nearDistance = shadowCameraNear;
result.farDistance = shadowCameraFar;
}
return result;
}
function renderObject(object, camera, shadowCamera, light, type) {
if (object.visible === false) return;
const visible = object.layers.test(camera.layers);
if (visible && (object.isMesh || object.isLine || object.isPoints)) {
if ((object.castShadow || object.receiveShadow && type === VSMShadowMap) && (!object.frustumCulled || _frustum.intersectsObject(object))) {
object.modelViewMatrix.multiplyMatrices(shadowCamera.matrixWorldInverse, object.matrixWorld);
const geometry = _objects.update(object);
const material = object.material;
if (Array.isArray(material)) {
const groups = geometry.groups;
for (let k = 0, kl = groups.length; k < kl; k++) {
const group = groups[k];
const groupMaterial = material[group.materialIndex];
if (groupMaterial && groupMaterial.visible) {
const depthMaterial = getDepthMaterial(object, geometry, groupMaterial, light, shadowCamera.near, shadowCamera.far, type);
_renderer.renderBufferDirect(shadowCamera, null, geometry, depthMaterial, object, group);
}
}
} else if (material.visible) {
const depthMaterial = getDepthMaterial(object, geometry, material, light, shadowCamera.near, shadowCamera.far, type);
_renderer.renderBufferDirect(shadowCamera, null, geometry, depthMaterial, object, null);
}
}
}
const children = object.children;
for (let i = 0, l = children.length; i < l; i++) {
renderObject(children[i], camera, shadowCamera, light, type);
}
}
}
function WebGLState(gl, extensions, capabilities) {
const isWebGL2 = capabilities.isWebGL2;
function ColorBuffer() {
let locked = false;
const color = new Vector4();
let currentColorMask = null;
const currentColorClear = new Vector4(0, 0, 0, 0);
return {
setMask: function (colorMask) {
if (currentColorMask !== colorMask && !locked) {
gl.colorMask(colorMask, colorMask, colorMask, colorMask);
currentColorMask = colorMask;
}
},
setLocked: function (lock) {
locked = lock;
},
setClear: function (r, g, b, a, premultipliedAlpha) {
if (premultipliedAlpha === true) {
r *= a;
g *= a;
b *= a;
}
color.set(r, g, b, a);
if (currentColorClear.equals(color) === false) {
gl.clearColor(r, g, b, a);
currentColorClear.copy(color);
}
},
reset: function () {
locked = false;
currentColorMask = null;
currentColorClear.set(-1, 0, 0, 0); // set to invalid state
}
};
}
function DepthBuffer() {
let locked = false;
let currentDepthMask = null;
let currentDepthFunc = null;
let currentDepthClear = null;
return {
setTest: function (depthTest) {
if (depthTest) {
enable(gl.DEPTH_TEST);
} else {
disable(gl.DEPTH_TEST);
}
},
setMask: function (depthMask) {
if (currentDepthMask !== depthMask && !locked) {
gl.depthMask(depthMask);
currentDepthMask = depthMask;
}
},
setFunc: function (depthFunc) {
if (currentDepthFunc !== depthFunc) {
if (depthFunc) {
switch (depthFunc) {
case NeverDepth:
gl.depthFunc(gl.NEVER);
break;
case AlwaysDepth:
gl.depthFunc(gl.ALWAYS);
break;
case LessDepth:
gl.depthFunc(gl.LESS);
break;
case LessEqualDepth:
gl.depthFunc(gl.LEQUAL);
break;
case EqualDepth:
gl.depthFunc(gl.EQUAL);
break;
case GreaterEqualDepth:
gl.depthFunc(gl.GEQUAL);
break;
case GreaterDepth:
gl.depthFunc(gl.GREATER);
break;
case NotEqualDepth:
gl.depthFunc(gl.NOTEQUAL);
break;
default:
gl.depthFunc(gl.LEQUAL);
}
} else {
gl.depthFunc(gl.LEQUAL);
}
currentDepthFunc = depthFunc;
}
},
setLocked: function (lock) {
locked = lock;
},
setClear: function (depth) {
if (currentDepthClear !== depth) {
gl.clearDepth(depth);
currentDepthClear = depth;
}
},
reset: function () {
locked = false;
currentDepthMask = null;
currentDepthFunc = null;
currentDepthClear = null;
}
};
}
function StencilBuffer() {
let locked = false;
let currentStencilMask = null;
let currentStencilFunc = null;
let currentStencilRef = null;
let currentStencilFuncMask = null;
let currentStencilFail = null;
let currentStencilZFail = null;
let currentStencilZPass = null;
let currentStencilClear = null;
return {
setTest: function (stencilTest) {
if (!locked) {
if (stencilTest) {
enable(gl.STENCIL_TEST);
} else {
disable(gl.STENCIL_TEST);
}
}
},
setMask: function (stencilMask) {
if (currentStencilMask !== stencilMask && !locked) {
gl.stencilMask(stencilMask);
currentStencilMask = stencilMask;
}
},
setFunc: function (stencilFunc, stencilRef, stencilMask) {
if (currentStencilFunc !== stencilFunc || currentStencilRef !== stencilRef || currentStencilFuncMask !== stencilMask) {
gl.stencilFunc(stencilFunc, stencilRef, stencilMask);
currentStencilFunc = stencilFunc;
currentStencilRef = stencilRef;
currentStencilFuncMask = stencilMask;
}
},
setOp: function (stencilFail, stencilZFail, stencilZPass) {
if (currentStencilFail !== stencilFail || currentStencilZFail !== stencilZFail || currentStencilZPass !== stencilZPass) {
gl.stencilOp(stencilFail, stencilZFail, stencilZPass);
currentStencilFail = stencilFail;
currentStencilZFail = stencilZFail;
currentStencilZPass = stencilZPass;
}
},
setLocked: function (lock) {
locked = lock;
},
setClear: function (stencil) {
if (currentStencilClear !== stencil) {
gl.clearStencil(stencil);
currentStencilClear = stencil;
}
},
reset: function () {
locked = false;
currentStencilMask = null;
currentStencilFunc = null;
currentStencilRef = null;
currentStencilFuncMask = null;
currentStencilFail = null;
currentStencilZFail = null;
currentStencilZPass = null;
currentStencilClear = null;
}
};
} //
const colorBuffer = new ColorBuffer();
const depthBuffer = new DepthBuffer();
const stencilBuffer = new StencilBuffer();
let enabledCapabilities = {};
let xrFramebuffer = null;
let currentBoundFramebuffers = {};
let currentProgram = null;
let currentBlendingEnabled = false;
let currentBlending = null;
let currentBlendEquation = null;
let currentBlendSrc = null;
let currentBlendDst = null;
let currentBlendEquationAlpha = null;
let currentBlendSrcAlpha = null;
let currentBlendDstAlpha = null;
let currentPremultipledAlpha = false;
let currentFlipSided = null;
let currentCullFace = null;
let currentLineWidth = null;
let currentPolygonOffsetFactor = null;
let currentPolygonOffsetUnits = null;
const maxTextures = gl.getParameter(gl.MAX_COMBINED_TEXTURE_IMAGE_UNITS);
let lineWidthAvailable = false;
let version = 0;
const glVersion = gl.getParameter(gl.VERSION);
if (glVersion.indexOf('WebGL') !== -1) {
version = parseFloat(/^WebGL (\d)/.exec(glVersion)[1]);
lineWidthAvailable = version >= 1.0;
} else if (glVersion.indexOf('OpenGL ES') !== -1) {
version = parseFloat(/^OpenGL ES (\d)/.exec(glVersion)[1]);
lineWidthAvailable = version >= 2.0;
}
let currentTextureSlot = null;
let currentBoundTextures = {};
const scissorParam = gl.getParameter(gl.SCISSOR_BOX);
const viewportParam = gl.getParameter(gl.VIEWPORT);
const currentScissor = new Vector4().fromArray(scissorParam);
const currentViewport = new Vector4().fromArray(viewportParam);
function createTexture(type, target, count) {
const data = new Uint8Array(4); // 4 is required to match default unpack alignment of 4.
const texture = gl.createTexture();
gl.bindTexture(type, texture);
gl.texParameteri(type, gl.TEXTURE_MIN_FILTER, gl.NEAREST);
gl.texParameteri(type, gl.TEXTURE_MAG_FILTER, gl.NEAREST);
for (let i = 0; i < count; i++) {
gl.texImage2D(target + i, 0, gl.RGBA, 1, 1, 0, gl.RGBA, gl.UNSIGNED_BYTE, data);
}
return texture;
}
const emptyTextures = {};
emptyTextures[gl.TEXTURE_2D] = createTexture(gl.TEXTURE_2D, gl.TEXTURE_2D, 1);
emptyTextures[gl.TEXTURE_CUBE_MAP] = createTexture(gl.TEXTURE_CUBE_MAP, gl.TEXTURE_CUBE_MAP_POSITIVE_X, 6); // init
colorBuffer.setClear(0, 0, 0, 1);
depthBuffer.setClear(1);
stencilBuffer.setClear(0);
enable(gl.DEPTH_TEST);
depthBuffer.setFunc(LessEqualDepth);
setFlipSided(false);
setCullFace(CullFaceBack);
enable(gl.CULL_FACE);
setBlending(NoBlending); //
function enable(id) {
if (enabledCapabilities[id] !== true) {
gl.enable(id);
enabledCapabilities[id] = true;
}
}
function disable(id) {
if (enabledCapabilities[id] !== false) {
gl.disable(id);
enabledCapabilities[id] = false;
}
}
function bindXRFramebuffer(framebuffer) {
if (framebuffer !== xrFramebuffer) {
gl.bindFramebuffer(gl.FRAMEBUFFER, framebuffer);
xrFramebuffer = framebuffer;
}
}
function bindFramebuffer(target, framebuffer) {
if (framebuffer === null && xrFramebuffer !== null) framebuffer = xrFramebuffer; // use active XR framebuffer if available
if (currentBoundFramebuffers[target] !== framebuffer) {
gl.bindFramebuffer(target, framebuffer);
currentBoundFramebuffers[target] = framebuffer;
if (isWebGL2) {
// gl.DRAW_FRAMEBUFFER is equivalent to gl.FRAMEBUFFER
if (target === gl.DRAW_FRAMEBUFFER) {
currentBoundFramebuffers[gl.FRAMEBUFFER] = framebuffer;
}
if (target === gl.FRAMEBUFFER) {
currentBoundFramebuffers[gl.DRAW_FRAMEBUFFER] = framebuffer;
}
}
return true;
}
return false;
}
function useProgram(program) {
if (currentProgram !== program) {
gl.useProgram(program);
currentProgram = program;
return true;
}
return false;
}
const equationToGL = {
[AddEquation]: gl.FUNC_ADD,
[SubtractEquation]: gl.FUNC_SUBTRACT,
[ReverseSubtractEquation]: gl.FUNC_REVERSE_SUBTRACT
};
if (isWebGL2) {
equationToGL[MinEquation] = gl.MIN;
equationToGL[MaxEquation] = gl.MAX;
} else {
const extension = extensions.get('EXT_blend_minmax');
if (extension !== null) {
equationToGL[MinEquation] = extension.MIN_EXT;
equationToGL[MaxEquation] = extension.MAX_EXT;
}
}
const factorToGL = {
[ZeroFactor]: gl.ZERO,
[OneFactor]: gl.ONE,
[SrcColorFactor]: gl.SRC_COLOR,
[SrcAlphaFactor]: gl.SRC_ALPHA,
[SrcAlphaSaturateFactor]: gl.SRC_ALPHA_SATURATE,
[DstColorFactor]: gl.DST_COLOR,
[DstAlphaFactor]: gl.DST_ALPHA,
[OneMinusSrcColorFactor]: gl.ONE_MINUS_SRC_COLOR,
[OneMinusSrcAlphaFactor]: gl.ONE_MINUS_SRC_ALPHA,
[OneMinusDstColorFactor]: gl.ONE_MINUS_DST_COLOR,
[OneMinusDstAlphaFactor]: gl.ONE_MINUS_DST_ALPHA
};
function setBlending(blending, blendEquation, blendSrc, blendDst, blendEquationAlpha, blendSrcAlpha, blendDstAlpha, premultipliedAlpha) {
if (blending === NoBlending) {
if (currentBlendingEnabled === true) {
disable(gl.BLEND);
currentBlendingEnabled = false;
}
return;
}
if (currentBlendingEnabled === false) {
enable(gl.BLEND);
currentBlendingEnabled = true;
}
if (blending !== CustomBlending) {
if (blending !== currentBlending || premultipliedAlpha !== currentPremultipledAlpha) {
if (currentBlendEquation !== AddEquation || currentBlendEquationAlpha !== AddEquation) {
gl.blendEquation(gl.FUNC_ADD);
currentBlendEquation = AddEquation;
currentBlendEquationAlpha = AddEquation;
}
if (premultipliedAlpha) {
switch (blending) {
case NormalBlending:
gl.blendFuncSeparate(gl.ONE, gl.ONE_MINUS_SRC_ALPHA, gl.ONE, gl.ONE_MINUS_SRC_ALPHA);
break;
case AdditiveBlending:
gl.blendFunc(gl.ONE, gl.ONE);
break;
case SubtractiveBlending:
gl.blendFuncSeparate(gl.ZERO, gl.ZERO, gl.ONE_MINUS_SRC_COLOR, gl.ONE_MINUS_SRC_ALPHA);
break;
case MultiplyBlending:
gl.blendFuncSeparate(gl.ZERO, gl.SRC_COLOR, gl.ZERO, gl.SRC_ALPHA);
break;
default:
console.error('THREE.WebGLState: Invalid blending: ', blending);
break;
}
} else {
switch (blending) {
case NormalBlending:
gl.blendFuncSeparate(gl.SRC_ALPHA, gl.ONE_MINUS_SRC_ALPHA, gl.ONE, gl.ONE_MINUS_SRC_ALPHA);
break;
case AdditiveBlending:
gl.blendFunc(gl.SRC_ALPHA, gl.ONE);
break;
case SubtractiveBlending:
gl.blendFunc(gl.ZERO, gl.ONE_MINUS_SRC_COLOR);
break;
case MultiplyBlending:
gl.blendFunc(gl.ZERO, gl.SRC_COLOR);
break;
default:
console.error('THREE.WebGLState: Invalid blending: ', blending);
break;
}
}
currentBlendSrc = null;
currentBlendDst = null;
currentBlendSrcAlpha = null;
currentBlendDstAlpha = null;
currentBlending = blending;
currentPremultipledAlpha = premultipliedAlpha;
}
return;
} // custom blending
blendEquationAlpha = blendEquationAlpha || blendEquation;
blendSrcAlpha = blendSrcAlpha || blendSrc;
blendDstAlpha = blendDstAlpha || blendDst;
if (blendEquation !== currentBlendEquation || blendEquationAlpha !== currentBlendEquationAlpha) {
gl.blendEquationSeparate(equationToGL[blendEquation], equationToGL[blendEquationAlpha]);
currentBlendEquation = blendEquation;
currentBlendEquationAlpha = blendEquationAlpha;
}
if (blendSrc !== currentBlendSrc || blendDst !== currentBlendDst || blendSrcAlpha !== currentBlendSrcAlpha || blendDstAlpha !== currentBlendDstAlpha) {
gl.blendFuncSeparate(factorToGL[blendSrc], factorToGL[blendDst], factorToGL[blendSrcAlpha], factorToGL[blendDstAlpha]);
currentBlendSrc = blendSrc;
currentBlendDst = blendDst;
currentBlendSrcAlpha = blendSrcAlpha;
currentBlendDstAlpha = blendDstAlpha;
}
currentBlending = blending;
currentPremultipledAlpha = null;
}
function setMaterial(material, frontFaceCW) {
material.side === DoubleSide ? disable(gl.CULL_FACE) : enable(gl.CULL_FACE);
let flipSided = material.side === BackSide;
if (frontFaceCW) flipSided = !flipSided;
setFlipSided(flipSided);
material.blending === NormalBlending && material.transparent === false ? setBlending(NoBlending) : setBlending(material.blending, material.blendEquation, material.blendSrc, material.blendDst, material.blendEquationAlpha, material.blendSrcAlpha, material.blendDstAlpha, material.premultipliedAlpha);
depthBuffer.setFunc(material.depthFunc);
depthBuffer.setTest(material.depthTest);
depthBuffer.setMask(material.depthWrite);
colorBuffer.setMask(material.colorWrite);
const stencilWrite = material.stencilWrite;
stencilBuffer.setTest(stencilWrite);
if (stencilWrite) {
stencilBuffer.setMask(material.stencilWriteMask);
stencilBuffer.setFunc(material.stencilFunc, material.stencilRef, material.stencilFuncMask);
stencilBuffer.setOp(material.stencilFail, material.stencilZFail, material.stencilZPass);
}
setPolygonOffset(material.polygonOffset, material.polygonOffsetFactor, material.polygonOffsetUnits);
material.alphaToCoverage === true ? enable(gl.SAMPLE_ALPHA_TO_COVERAGE) : disable(gl.SAMPLE_ALPHA_TO_COVERAGE);
} //
function setFlipSided(flipSided) {
if (currentFlipSided !== flipSided) {
if (flipSided) {
gl.frontFace(gl.CW);
} else {
gl.frontFace(gl.CCW);
}
currentFlipSided = flipSided;
}
}
function setCullFace(cullFace) {
if (cullFace !== CullFaceNone) {
enable(gl.CULL_FACE);
if (cullFace !== currentCullFace) {
if (cullFace === CullFaceBack) {
gl.cullFace(gl.BACK);
} else if (cullFace === CullFaceFront) {
gl.cullFace(gl.FRONT);
} else {
gl.cullFace(gl.FRONT_AND_BACK);
}
}
} else {
disable(gl.CULL_FACE);
}
currentCullFace = cullFace;
}
function setLineWidth(width) {
if (width !== currentLineWidth) {
if (lineWidthAvailable) gl.lineWidth(width);
currentLineWidth = width;
}
}
function setPolygonOffset(polygonOffset, factor, units) {
if (polygonOffset) {
enable(gl.POLYGON_OFFSET_FILL);
if (currentPolygonOffsetFactor !== factor || currentPolygonOffsetUnits !== units) {
gl.polygonOffset(factor, units);
currentPolygonOffsetFactor = factor;
currentPolygonOffsetUnits = units;
}
} else {
disable(gl.POLYGON_OFFSET_FILL);
}
}
function setScissorTest(scissorTest) {
if (scissorTest) {
enable(gl.SCISSOR_TEST);
} else {
disable(gl.SCISSOR_TEST);
}
} // texture
function activeTexture(webglSlot) {
if (webglSlot === undefined) webglSlot = gl.TEXTURE0 + maxTextures - 1;
if (currentTextureSlot !== webglSlot) {
gl.activeTexture(webglSlot);
currentTextureSlot = webglSlot;
}
}
function bindTexture(webglType, webglTexture) {
if (currentTextureSlot === null) {
activeTexture();
}
let boundTexture = currentBoundTextures[currentTextureSlot];
if (boundTexture === undefined) {
boundTexture = {
type: undefined,
texture: undefined
};
currentBoundTextures[currentTextureSlot] = boundTexture;
}
if (boundTexture.type !== webglType || boundTexture.texture !== webglTexture) {
gl.bindTexture(webglType, webglTexture || emptyTextures[webglType]);
boundTexture.type = webglType;
boundTexture.texture = webglTexture;
}
}
function unbindTexture() {
const boundTexture = currentBoundTextures[currentTextureSlot];
if (boundTexture !== undefined && boundTexture.type !== undefined) {
gl.bindTexture(boundTexture.type, null);
boundTexture.type = undefined;
boundTexture.texture = undefined;
}
}
function compressedTexImage2D() {
try {
gl.compressedTexImage2D.apply(gl, arguments);
} catch (error) {
console.error('THREE.WebGLState:', error);
}
}
function texImage2D() {
try {
gl.texImage2D.apply(gl, arguments);
} catch (error) {
console.error('THREE.WebGLState:', error);
}
}
function texImage3D() {
try {
gl.texImage3D.apply(gl, arguments);
} catch (error) {
console.error('THREE.WebGLState:', error);
}
} //
function scissor(scissor) {
if (currentScissor.equals(scissor) === false) {
gl.scissor(scissor.x, scissor.y, scissor.z, scissor.w);
currentScissor.copy(scissor);
}
}
function viewport(viewport) {
if (currentViewport.equals(viewport) === false) {
gl.viewport(viewport.x, viewport.y, viewport.z, viewport.w);
currentViewport.copy(viewport);
}
} //
function reset() {
// reset state
gl.disable(gl.BLEND);
gl.disable(gl.CULL_FACE);
gl.disable(gl.DEPTH_TEST);
gl.disable(gl.POLYGON_OFFSET_FILL);
gl.disable(gl.SCISSOR_TEST);
gl.disable(gl.STENCIL_TEST);
gl.disable(gl.SAMPLE_ALPHA_TO_COVERAGE);
gl.blendEquation(gl.FUNC_ADD);
gl.blendFunc(gl.ONE, gl.ZERO);
gl.blendFuncSeparate(gl.ONE, gl.ZERO, gl.ONE, gl.ZERO);
gl.colorMask(true, true, true, true);
gl.clearColor(0, 0, 0, 0);
gl.depthMask(true);
gl.depthFunc(gl.LESS);
gl.clearDepth(1);
gl.stencilMask(0xffffffff);
gl.stencilFunc(gl.ALWAYS, 0, 0xffffffff);
gl.stencilOp(gl.KEEP, gl.KEEP, gl.KEEP);
gl.clearStencil(0);
gl.cullFace(gl.BACK);
gl.frontFace(gl.CCW);
gl.polygonOffset(0, 0);
gl.activeTexture(gl.TEXTURE0);
gl.bindFramebuffer(gl.FRAMEBUFFER, null);
if (isWebGL2 === true) {
gl.bindFramebuffer(gl.DRAW_FRAMEBUFFER, null);
gl.bindFramebuffer(gl.READ_FRAMEBUFFER, null);
}
gl.useProgram(null);
gl.lineWidth(1);
gl.scissor(0, 0, gl.canvas.width, gl.canvas.height);
gl.viewport(0, 0, gl.canvas.width, gl.canvas.height); // reset internals
enabledCapabilities = {};
currentTextureSlot = null;
currentBoundTextures = {};
xrFramebuffer = null;
currentBoundFramebuffers = {};
currentProgram = null;
currentBlendingEnabled = false;
currentBlending = null;
currentBlendEquation = null;
currentBlendSrc = null;
currentBlendDst = null;
currentBlendEquationAlpha = null;
currentBlendSrcAlpha = null;
currentBlendDstAlpha = null;
currentPremultipledAlpha = false;
currentFlipSided = null;
currentCullFace = null;
currentLineWidth = null;
currentPolygonOffsetFactor = null;
currentPolygonOffsetUnits = null;
currentScissor.set(0, 0, gl.canvas.width, gl.canvas.height);
currentViewport.set(0, 0, gl.canvas.width, gl.canvas.height);
colorBuffer.reset();
depthBuffer.reset();
stencilBuffer.reset();
}
return {
buffers: {
color: colorBuffer,
depth: depthBuffer,
stencil: stencilBuffer
},
enable: enable,
disable: disable,
bindFramebuffer: bindFramebuffer,
bindXRFramebuffer: bindXRFramebuffer,
useProgram: useProgram,
setBlending: setBlending,
setMaterial: setMaterial,
setFlipSided: setFlipSided,
setCullFace: setCullFace,
setLineWidth: setLineWidth,
setPolygonOffset: setPolygonOffset,
setScissorTest: setScissorTest,
activeTexture: activeTexture,
bindTexture: bindTexture,
unbindTexture: unbindTexture,
compressedTexImage2D: compressedTexImage2D,
texImage2D: texImage2D,
texImage3D: texImage3D,
scissor: scissor,
viewport: viewport,
reset: reset
};
}
function WebGLTextures(_gl, extensions, state, properties, capabilities, utils, info) {
const isWebGL2 = capabilities.isWebGL2;
const maxTextures = capabilities.maxTextures;
const maxCubemapSize = capabilities.maxCubemapSize;
const maxTextureSize = capabilities.maxTextureSize;
const maxSamples = capabilities.maxSamples;
const _videoTextures = new WeakMap();
let _canvas; // cordova iOS (as of 5.0) still uses UIWebView, which provides OffscreenCanvas,
// also OffscreenCanvas.getContext("webgl"), but not OffscreenCanvas.getContext("2d")!
// Some implementations may only implement OffscreenCanvas partially (e.g. lacking 2d).
let useOffscreenCanvas = false;
try {
useOffscreenCanvas = typeof OffscreenCanvas !== 'undefined' && new OffscreenCanvas(1, 1).getContext('2d') !== null;
} catch (err) {// Ignore any errors
}
function createCanvas(width, height) {
// Use OffscreenCanvas when available. Specially needed in web workers
return useOffscreenCanvas ? new OffscreenCanvas(width, height) : createElementNS('canvas');
}
function resizeImage(image, needsPowerOfTwo, needsNewCanvas, maxSize) {
let scale = 1; // handle case if texture exceeds max size
if (image.width > maxSize || image.height > maxSize) {
scale = maxSize / Math.max(image.width, image.height);
} // only perform resize if necessary
if (scale < 1 || needsPowerOfTwo === true) {
// only perform resize for certain image types
if (typeof HTMLImageElement !== 'undefined' && image instanceof HTMLImageElement || typeof HTMLCanvasElement !== 'undefined' && image instanceof HTMLCanvasElement || typeof ImageBitmap !== 'undefined' && image instanceof ImageBitmap) {
const floor = needsPowerOfTwo ? floorPowerOfTwo : Math.floor;
const width = floor(scale * image.width);
const height = floor(scale * image.height);
if (_canvas === undefined) _canvas = createCanvas(width, height); // cube textures can't reuse the same canvas
const canvas = needsNewCanvas ? createCanvas(width, height) : _canvas;
canvas.width = width;
canvas.height = height;
const context = canvas.getContext('2d');
context.drawImage(image, 0, 0, width, height);
console.warn('THREE.WebGLRenderer: Texture has been resized from (' + image.width + 'x' + image.height + ') to (' + width + 'x' + height + ').');
return canvas;
} else {
if ('data' in image) {
console.warn('THREE.WebGLRenderer: Image in DataTexture is too big (' + image.width + 'x' + image.height + ').');
}
return image;
}
}
return image;
}
function isPowerOfTwo$1(image) {
return isPowerOfTwo(image.width) && isPowerOfTwo(image.height);
}
function textureNeedsPowerOfTwo(texture) {
if (isWebGL2) return false;
return texture.wrapS !== ClampToEdgeWrapping || texture.wrapT !== ClampToEdgeWrapping || texture.minFilter !== NearestFilter && texture.minFilter !== LinearFilter;
}
function textureNeedsGenerateMipmaps(texture, supportsMips) {
return texture.generateMipmaps && supportsMips && texture.minFilter !== NearestFilter && texture.minFilter !== LinearFilter;
}
function generateMipmap(target, texture, width, height, depth = 1) {
_gl.generateMipmap(target);
const textureProperties = properties.get(texture);
textureProperties.__maxMipLevel = Math.log2(Math.max(width, height, depth));
}
function getInternalFormat(internalFormatName, glFormat, glType, encoding) {
if (isWebGL2 === false) return glFormat;
if (internalFormatName !== null) {
if (_gl[internalFormatName] !== undefined) return _gl[internalFormatName];
console.warn('THREE.WebGLRenderer: Attempt to use non-existing WebGL internal format \'' + internalFormatName + '\'');
}
let internalFormat = glFormat;
if (glFormat === _gl.RED) {
if (glType === _gl.FLOAT) internalFormat = _gl.R32F;
if (glType === _gl.HALF_FLOAT) internalFormat = _gl.R16F;
if (glType === _gl.UNSIGNED_BYTE) internalFormat = _gl.R8;
}
if (glFormat === _gl.RGB) {
if (glType === _gl.FLOAT) internalFormat = _gl.RGB32F;
if (glType === _gl.HALF_FLOAT) internalFormat = _gl.RGB16F;
if (glType === _gl.UNSIGNED_BYTE) internalFormat = _gl.RGB8;
}
if (glFormat === _gl.RGBA) {
if (glType === _gl.FLOAT) internalFormat = _gl.RGBA32F;
if (glType === _gl.HALF_FLOAT) internalFormat = _gl.RGBA16F;
if (glType === _gl.UNSIGNED_BYTE) internalFormat = encoding === sRGBEncoding ? _gl.SRGB8_ALPHA8 : _gl.RGBA8;
}
if (internalFormat === _gl.R16F || internalFormat === _gl.R32F || internalFormat === _gl.RGBA16F || internalFormat === _gl.RGBA32F) {
extensions.get('EXT_color_buffer_float');
}
return internalFormat;
} // Fallback filters for non-power-of-2 textures
function filterFallback(f) {
if (f === NearestFilter || f === NearestMipmapNearestFilter || f === NearestMipmapLinearFilter) {
return _gl.NEAREST;
}
return _gl.LINEAR;
} //
function onTextureDispose(event) {
const texture = event.target;
texture.removeEventListener('dispose', onTextureDispose);
deallocateTexture(texture);
if (texture.isVideoTexture) {
_videoTextures.delete(texture);
}
info.memory.textures--;
}
function onRenderTargetDispose(event) {
const renderTarget = event.target;
renderTarget.removeEventListener('dispose', onRenderTargetDispose);
deallocateRenderTarget(renderTarget);
} //
function deallocateTexture(texture) {
const textureProperties = properties.get(texture);
if (textureProperties.__webglInit === undefined) return;
_gl.deleteTexture(textureProperties.__webglTexture);
properties.remove(texture);
}
function deallocateRenderTarget(renderTarget) {
const texture = renderTarget.texture;
const renderTargetProperties = properties.get(renderTarget);
const textureProperties = properties.get(texture);
if (!renderTarget) return;
if (textureProperties.__webglTexture !== undefined) {
_gl.deleteTexture(textureProperties.__webglTexture);
info.memory.textures--;
}
if (renderTarget.depthTexture) {
renderTarget.depthTexture.dispose();
}
if (renderTarget.isWebGLCubeRenderTarget) {
for (let i = 0; i < 6; i++) {
_gl.deleteFramebuffer(renderTargetProperties.__webglFramebuffer[i]);
if (renderTargetProperties.__webglDepthbuffer) _gl.deleteRenderbuffer(renderTargetProperties.__webglDepthbuffer[i]);
}
} else {
_gl.deleteFramebuffer(renderTargetProperties.__webglFramebuffer);
if (renderTargetProperties.__webglDepthbuffer) _gl.deleteRenderbuffer(renderTargetProperties.__webglDepthbuffer);
if (renderTargetProperties.__webglMultisampledFramebuffer) _gl.deleteFramebuffer(renderTargetProperties.__webglMultisampledFramebuffer);
if (renderTargetProperties.__webglColorRenderbuffer) _gl.deleteRenderbuffer(renderTargetProperties.__webglColorRenderbuffer);
if (renderTargetProperties.__webglDepthRenderbuffer) _gl.deleteRenderbuffer(renderTargetProperties.__webglDepthRenderbuffer);
}
if (renderTarget.isWebGLMultipleRenderTargets) {
for (let i = 0, il = texture.length; i < il; i++) {
const attachmentProperties = properties.get(texture[i]);
if (attachmentProperties.__webglTexture) {
_gl.deleteTexture(attachmentProperties.__webglTexture);
info.memory.textures--;
}
properties.remove(texture[i]);
}
}
properties.remove(texture);
properties.remove(renderTarget);
} //
let textureUnits = 0;
function resetTextureUnits() {
textureUnits = 0;
}
function allocateTextureUnit() {
const textureUnit = textureUnits;
if (textureUnit >= maxTextures) {
console.warn('THREE.WebGLTextures: Trying to use ' + textureUnit + ' texture units while this GPU supports only ' + maxTextures);
}
textureUnits += 1;
return textureUnit;
} //
function setTexture2D(texture, slot) {
const textureProperties = properties.get(texture);
if (texture.isVideoTexture) updateVideoTexture(texture);
if (texture.version > 0 && textureProperties.__version !== texture.version) {
const image = texture.image;
if (image === undefined) {
console.warn('THREE.WebGLRenderer: Texture marked for update but image is undefined');
} else if (image.complete === false) {
console.warn('THREE.WebGLRenderer: Texture marked for update but image is incomplete');
} else {
uploadTexture(textureProperties, texture, slot);
return;
}
}
state.activeTexture(_gl.TEXTURE0 + slot);
state.bindTexture(_gl.TEXTURE_2D, textureProperties.__webglTexture);
}
function setTexture2DArray(texture, slot) {
const textureProperties = properties.get(texture);
if (texture.version > 0 && textureProperties.__version !== texture.version) {
uploadTexture(textureProperties, texture, slot);
return;
}
state.activeTexture(_gl.TEXTURE0 + slot);
state.bindTexture(_gl.TEXTURE_2D_ARRAY, textureProperties.__webglTexture);
}
function setTexture3D(texture, slot) {
const textureProperties = properties.get(texture);
if (texture.version > 0 && textureProperties.__version !== texture.version) {
uploadTexture(textureProperties, texture, slot);
return;
}
state.activeTexture(_gl.TEXTURE0 + slot);
state.bindTexture(_gl.TEXTURE_3D, textureProperties.__webglTexture);
}
function setTextureCube(texture, slot) {
const textureProperties = properties.get(texture);
if (texture.version > 0 && textureProperties.__version !== texture.version) {
uploadCubeTexture(textureProperties, texture, slot);
return;
}
state.activeTexture(_gl.TEXTURE0 + slot);
state.bindTexture(_gl.TEXTURE_CUBE_MAP, textureProperties.__webglTexture);
}
const wrappingToGL = {
[RepeatWrapping]: _gl.REPEAT,
[ClampToEdgeWrapping]: _gl.CLAMP_TO_EDGE,
[MirroredRepeatWrapping]: _gl.MIRRORED_REPEAT
};
const filterToGL = {
[NearestFilter]: _gl.NEAREST,
[NearestMipmapNearestFilter]: _gl.NEAREST_MIPMAP_NEAREST,
[NearestMipmapLinearFilter]: _gl.NEAREST_MIPMAP_LINEAR,
[LinearFilter]: _gl.LINEAR,
[LinearMipmapNearestFilter]: _gl.LINEAR_MIPMAP_NEAREST,
[LinearMipmapLinearFilter]: _gl.LINEAR_MIPMAP_LINEAR
};
function setTextureParameters(textureType, texture, supportsMips) {
if (supportsMips) {
_gl.texParameteri(textureType, _gl.TEXTURE_WRAP_S, wrappingToGL[texture.wrapS]);
_gl.texParameteri(textureType, _gl.TEXTURE_WRAP_T, wrappingToGL[texture.wrapT]);
if (textureType === _gl.TEXTURE_3D || textureType === _gl.TEXTURE_2D_ARRAY) {
_gl.texParameteri(textureType, _gl.TEXTURE_WRAP_R, wrappingToGL[texture.wrapR]);
}
_gl.texParameteri(textureType, _gl.TEXTURE_MAG_FILTER, filterToGL[texture.magFilter]);
_gl.texParameteri(textureType, _gl.TEXTURE_MIN_FILTER, filterToGL[texture.minFilter]);
} else {
_gl.texParameteri(textureType, _gl.TEXTURE_WRAP_S, _gl.CLAMP_TO_EDGE);
_gl.texParameteri(textureType, _gl.TEXTURE_WRAP_T, _gl.CLAMP_TO_EDGE);
if (textureType === _gl.TEXTURE_3D || textureType === _gl.TEXTURE_2D_ARRAY) {
_gl.texParameteri(textureType, _gl.TEXTURE_WRAP_R, _gl.CLAMP_TO_EDGE);
}
if (texture.wrapS !== ClampToEdgeWrapping || texture.wrapT !== ClampToEdgeWrapping) {
console.warn('THREE.WebGLRenderer: Texture is not power of two. Texture.wrapS and Texture.wrapT should be set to THREE.ClampToEdgeWrapping.');
}
_gl.texParameteri(textureType, _gl.TEXTURE_MAG_FILTER, filterFallback(texture.magFilter));
_gl.texParameteri(textureType, _gl.TEXTURE_MIN_FILTER, filterFallback(texture.minFilter));
if (texture.minFilter !== NearestFilter && texture.minFilter !== LinearFilter) {
console.warn('THREE.WebGLRenderer: Texture is not power of two. Texture.minFilter should be set to THREE.NearestFilter or THREE.LinearFilter.');
}
}
if (extensions.has('EXT_texture_filter_anisotropic') === true) {
const extension = extensions.get('EXT_texture_filter_anisotropic');
if (texture.type === FloatType && extensions.has('OES_texture_float_linear') === false) return; // verify extension for WebGL 1 and WebGL 2
if (isWebGL2 === false && texture.type === HalfFloatType && extensions.has('OES_texture_half_float_linear') === false) return; // verify extension for WebGL 1 only
if (texture.anisotropy > 1 || properties.get(texture).__currentAnisotropy) {
_gl.texParameterf(textureType, extension.TEXTURE_MAX_ANISOTROPY_EXT, Math.min(texture.anisotropy, capabilities.getMaxAnisotropy()));
properties.get(texture).__currentAnisotropy = texture.anisotropy;
}
}
}
function initTexture(textureProperties, texture) {
if (textureProperties.__webglInit === undefined) {
textureProperties.__webglInit = true;
texture.addEventListener('dispose', onTextureDispose);
textureProperties.__webglTexture = _gl.createTexture();
info.memory.textures++;
}
}
function uploadTexture(textureProperties, texture, slot) {
let textureType = _gl.TEXTURE_2D;
if (texture.isDataTexture2DArray) textureType = _gl.TEXTURE_2D_ARRAY;
if (texture.isDataTexture3D) textureType = _gl.TEXTURE_3D;
initTexture(textureProperties, texture);
state.activeTexture(_gl.TEXTURE0 + slot);
state.bindTexture(textureType, textureProperties.__webglTexture);
_gl.pixelStorei(_gl.UNPACK_FLIP_Y_WEBGL, texture.flipY);
_gl.pixelStorei(_gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL, texture.premultiplyAlpha);
_gl.pixelStorei(_gl.UNPACK_ALIGNMENT, texture.unpackAlignment);
_gl.pixelStorei(_gl.UNPACK_COLORSPACE_CONVERSION_WEBGL, _gl.NONE);
const needsPowerOfTwo = textureNeedsPowerOfTwo(texture) && isPowerOfTwo$1(texture.image) === false;
const image = resizeImage(texture.image, needsPowerOfTwo, false, maxTextureSize);
const supportsMips = isPowerOfTwo$1(image) || isWebGL2,
glFormat = utils.convert(texture.format);
let glType = utils.convert(texture.type),
glInternalFormat = getInternalFormat(texture.internalFormat, glFormat, glType, texture.encoding);
setTextureParameters(textureType, texture, supportsMips);
let mipmap;
const mipmaps = texture.mipmaps;
if (texture.isDepthTexture) {
// populate depth texture with dummy data
glInternalFormat = _gl.DEPTH_COMPONENT;
if (isWebGL2) {
if (texture.type === FloatType) {
glInternalFormat = _gl.DEPTH_COMPONENT32F;
} else if (texture.type === UnsignedIntType) {
glInternalFormat = _gl.DEPTH_COMPONENT24;
} else if (texture.type === UnsignedInt248Type) {
glInternalFormat = _gl.DEPTH24_STENCIL8;
} else {
glInternalFormat = _gl.DEPTH_COMPONENT16; // WebGL2 requires sized internalformat for glTexImage2D
}
} else {
if (texture.type === FloatType) {
console.error('WebGLRenderer: Floating point depth texture requires WebGL2.');
}
} // validation checks for WebGL 1
if (texture.format === DepthFormat && glInternalFormat === _gl.DEPTH_COMPONENT) {
// The error INVALID_OPERATION is generated by texImage2D if format and internalformat are
// DEPTH_COMPONENT and type is not UNSIGNED_SHORT or UNSIGNED_INT
// (https://www.khronos.org/registry/webgl/extensions/WEBGL_depth_texture/)
if (texture.type !== UnsignedShortType && texture.type !== UnsignedIntType) {
console.warn('THREE.WebGLRenderer: Use UnsignedShortType or UnsignedIntType for DepthFormat DepthTexture.');
texture.type = UnsignedShortType;
glType = utils.convert(texture.type);
}
}
if (texture.format === DepthStencilFormat && glInternalFormat === _gl.DEPTH_COMPONENT) {
// Depth stencil textures need the DEPTH_STENCIL internal format
// (https://www.khronos.org/registry/webgl/extensions/WEBGL_depth_texture/)
glInternalFormat = _gl.DEPTH_STENCIL; // The error INVALID_OPERATION is generated by texImage2D if format and internalformat are
// DEPTH_STENCIL and type is not UNSIGNED_INT_24_8_WEBGL.
// (https://www.khronos.org/registry/webgl/extensions/WEBGL_depth_texture/)
if (texture.type !== UnsignedInt248Type) {
console.warn('THREE.WebGLRenderer: Use UnsignedInt248Type for DepthStencilFormat DepthTexture.');
texture.type = UnsignedInt248Type;
glType = utils.convert(texture.type);
}
} //
state.texImage2D(_gl.TEXTURE_2D, 0, glInternalFormat, image.width, image.height, 0, glFormat, glType, null);
} else if (texture.isDataTexture) {
// use manually created mipmaps if available
// if there are no manual mipmaps
// set 0 level mipmap and then use GL to generate other mipmap levels
if (mipmaps.length > 0 && supportsMips) {
for (let i = 0, il = mipmaps.length; i < il; i++) {
mipmap = mipmaps[i];
state.texImage2D(_gl.TEXTURE_2D, i, glInternalFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data);
}
texture.generateMipmaps = false;
textureProperties.__maxMipLevel = mipmaps.length - 1;
} else {
state.texImage2D(_gl.TEXTURE_2D, 0, glInternalFormat, image.width, image.height, 0, glFormat, glType, image.data);
textureProperties.__maxMipLevel = 0;
}
} else if (texture.isCompressedTexture) {
for (let i = 0, il = mipmaps.length; i < il; i++) {
mipmap = mipmaps[i];
if (texture.format !== RGBAFormat && texture.format !== RGBFormat) {
if (glFormat !== null) {
state.compressedTexImage2D(_gl.TEXTURE_2D, i, glInternalFormat, mipmap.width, mipmap.height, 0, mipmap.data);
} else {
console.warn('THREE.WebGLRenderer: Attempt to load unsupported compressed texture format in .uploadTexture()');
}
} else {
state.texImage2D(_gl.TEXTURE_2D, i, glInternalFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data);
}
}
textureProperties.__maxMipLevel = mipmaps.length - 1;
} else if (texture.isDataTexture2DArray) {
state.texImage3D(_gl.TEXTURE_2D_ARRAY, 0, glInternalFormat, image.width, image.height, image.depth, 0, glFormat, glType, image.data);
textureProperties.__maxMipLevel = 0;
} else if (texture.isDataTexture3D) {
state.texImage3D(_gl.TEXTURE_3D, 0, glInternalFormat, image.width, image.height, image.depth, 0, glFormat, glType, image.data);
textureProperties.__maxMipLevel = 0;
} else {
// regular Texture (image, video, canvas)
// use manually created mipmaps if available
// if there are no manual mipmaps
// set 0 level mipmap and then use GL to generate other mipmap levels
if (mipmaps.length > 0 && supportsMips) {
for (let i = 0, il = mipmaps.length; i < il; i++) {
mipmap = mipmaps[i];
state.texImage2D(_gl.TEXTURE_2D, i, glInternalFormat, glFormat, glType, mipmap);
}
texture.generateMipmaps = false;
textureProperties.__maxMipLevel = mipmaps.length - 1;
} else {
state.texImage2D(_gl.TEXTURE_2D, 0, glInternalFormat, glFormat, glType, image);
textureProperties.__maxMipLevel = 0;
}
}
if (textureNeedsGenerateMipmaps(texture, supportsMips)) {
generateMipmap(textureType, texture, image.width, image.height);
}
textureProperties.__version = texture.version;
if (texture.onUpdate) texture.onUpdate(texture);
}
function uploadCubeTexture(textureProperties, texture, slot) {
if (texture.image.length !== 6) return;
initTexture(textureProperties, texture);
state.activeTexture(_gl.TEXTURE0 + slot);
state.bindTexture(_gl.TEXTURE_CUBE_MAP, textureProperties.__webglTexture);
_gl.pixelStorei(_gl.UNPACK_FLIP_Y_WEBGL, texture.flipY);
_gl.pixelStorei(_gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL, texture.premultiplyAlpha);
_gl.pixelStorei(_gl.UNPACK_ALIGNMENT, texture.unpackAlignment);
_gl.pixelStorei(_gl.UNPACK_COLORSPACE_CONVERSION_WEBGL, _gl.NONE);
const isCompressed = texture && (texture.isCompressedTexture || texture.image[0].isCompressedTexture);
const isDataTexture = texture.image[0] && texture.image[0].isDataTexture;
const cubeImage = [];
for (let i = 0; i < 6; i++) {
if (!isCompressed && !isDataTexture) {
cubeImage[i] = resizeImage(texture.image[i], false, true, maxCubemapSize);
} else {
cubeImage[i] = isDataTexture ? texture.image[i].image : texture.image[i];
}
}
const image = cubeImage[0],
supportsMips = isPowerOfTwo$1(image) || isWebGL2,
glFormat = utils.convert(texture.format),
glType = utils.convert(texture.type),
glInternalFormat = getInternalFormat(texture.internalFormat, glFormat, glType, texture.encoding);
setTextureParameters(_gl.TEXTURE_CUBE_MAP, texture, supportsMips);
let mipmaps;
if (isCompressed) {
for (let i = 0; i < 6; i++) {
mipmaps = cubeImage[i].mipmaps;
for (let j = 0; j < mipmaps.length; j++) {
const mipmap = mipmaps[j];
if (texture.format !== RGBAFormat && texture.format !== RGBFormat) {
if (glFormat !== null) {
state.compressedTexImage2D(_gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, j, glInternalFormat, mipmap.width, mipmap.height, 0, mipmap.data);
} else {
console.warn('THREE.WebGLRenderer: Attempt to load unsupported compressed texture format in .setTextureCube()');
}
} else {
state.texImage2D(_gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, j, glInternalFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data);
}
}
}
textureProperties.__maxMipLevel = mipmaps.length - 1;
} else {
mipmaps = texture.mipmaps;
for (let i = 0; i < 6; i++) {
if (isDataTexture) {
state.texImage2D(_gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, glInternalFormat, cubeImage[i].width, cubeImage[i].height, 0, glFormat, glType, cubeImage[i].data);
for (let j = 0; j < mipmaps.length; j++) {
const mipmap = mipmaps[j];
const mipmapImage = mipmap.image[i].image;
state.texImage2D(_gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, j + 1, glInternalFormat, mipmapImage.width, mipmapImage.height, 0, glFormat, glType, mipmapImage.data);
}
} else {
state.texImage2D(_gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, glInternalFormat, glFormat, glType, cubeImage[i]);
for (let j = 0; j < mipmaps.length; j++) {
const mipmap = mipmaps[j];
state.texImage2D(_gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, j + 1, glInternalFormat, glFormat, glType, mipmap.image[i]);
}
}
}
textureProperties.__maxMipLevel = mipmaps.length;
}
if (textureNeedsGenerateMipmaps(texture, supportsMips)) {
// We assume images for cube map have the same size.
generateMipmap(_gl.TEXTURE_CUBE_MAP, texture, image.width, image.height);
}
textureProperties.__version = texture.version;
if (texture.onUpdate) texture.onUpdate(texture);
} // Render targets
// Setup storage for target texture and bind it to correct framebuffer
function setupFrameBufferTexture(framebuffer, renderTarget, texture, attachment, textureTarget) {
const glFormat = utils.convert(texture.format);
const glType = utils.convert(texture.type);
const glInternalFormat = getInternalFormat(texture.internalFormat, glFormat, glType, texture.encoding);
if (textureTarget === _gl.TEXTURE_3D || textureTarget === _gl.TEXTURE_2D_ARRAY) {
state.texImage3D(textureTarget, 0, glInternalFormat, renderTarget.width, renderTarget.height, renderTarget.depth, 0, glFormat, glType, null);
} else {
state.texImage2D(textureTarget, 0, glInternalFormat, renderTarget.width, renderTarget.height, 0, glFormat, glType, null);
}
state.bindFramebuffer(_gl.FRAMEBUFFER, framebuffer);
_gl.framebufferTexture2D(_gl.FRAMEBUFFER, attachment, textureTarget, properties.get(texture).__webglTexture, 0);
state.bindFramebuffer(_gl.FRAMEBUFFER, null);
} // Setup storage for internal depth/stencil buffers and bind to correct framebuffer
function setupRenderBufferStorage(renderbuffer, renderTarget, isMultisample) {
_gl.bindRenderbuffer(_gl.RENDERBUFFER, renderbuffer);
if (renderTarget.depthBuffer && !renderTarget.stencilBuffer) {
let glInternalFormat = _gl.DEPTH_COMPONENT16;
if (isMultisample) {
const depthTexture = renderTarget.depthTexture;
if (depthTexture && depthTexture.isDepthTexture) {
if (depthTexture.type === FloatType) {
glInternalFormat = _gl.DEPTH_COMPONENT32F;
} else if (depthTexture.type === UnsignedIntType) {
glInternalFormat = _gl.DEPTH_COMPONENT24;
}
}
const samples = getRenderTargetSamples(renderTarget);
_gl.renderbufferStorageMultisample(_gl.RENDERBUFFER, samples, glInternalFormat, renderTarget.width, renderTarget.height);
} else {
_gl.renderbufferStorage(_gl.RENDERBUFFER, glInternalFormat, renderTarget.width, renderTarget.height);
}
_gl.framebufferRenderbuffer(_gl.FRAMEBUFFER, _gl.DEPTH_ATTACHMENT, _gl.RENDERBUFFER, renderbuffer);
} else if (renderTarget.depthBuffer && renderTarget.stencilBuffer) {
if (isMultisample) {
const samples = getRenderTargetSamples(renderTarget);
_gl.renderbufferStorageMultisample(_gl.RENDERBUFFER, samples, _gl.DEPTH24_STENCIL8, renderTarget.width, renderTarget.height);
} else {
_gl.renderbufferStorage(_gl.RENDERBUFFER, _gl.DEPTH_STENCIL, renderTarget.width, renderTarget.height);
}
_gl.framebufferRenderbuffer(_gl.FRAMEBUFFER, _gl.DEPTH_STENCIL_ATTACHMENT, _gl.RENDERBUFFER, renderbuffer);
} else {
// Use the first texture for MRT so far
const texture = renderTarget.isWebGLMultipleRenderTargets === true ? renderTarget.texture[0] : renderTarget.texture;
const glFormat = utils.convert(texture.format);
const glType = utils.convert(texture.type);
const glInternalFormat = getInternalFormat(texture.internalFormat, glFormat, glType, texture.encoding);
if (isMultisample) {
const samples = getRenderTargetSamples(renderTarget);
_gl.renderbufferStorageMultisample(_gl.RENDERBUFFER, samples, glInternalFormat, renderTarget.width, renderTarget.height);
} else {
_gl.renderbufferStorage(_gl.RENDERBUFFER, glInternalFormat, renderTarget.width, renderTarget.height);
}
}
_gl.bindRenderbuffer(_gl.RENDERBUFFER, null);
} // Setup resources for a Depth Texture for a FBO (needs an extension)
function setupDepthTexture(framebuffer, renderTarget) {
const isCube = renderTarget && renderTarget.isWebGLCubeRenderTarget;
if (isCube) throw new Error('Depth Texture with cube render targets is not supported');
state.bindFramebuffer(_gl.FRAMEBUFFER, framebuffer);
if (!(renderTarget.depthTexture && renderTarget.depthTexture.isDepthTexture)) {
throw new Error('renderTarget.depthTexture must be an instance of THREE.DepthTexture');
} // upload an empty depth texture with framebuffer size
if (!properties.get(renderTarget.depthTexture).__webglTexture || renderTarget.depthTexture.image.width !== renderTarget.width || renderTarget.depthTexture.image.height !== renderTarget.height) {
renderTarget.depthTexture.image.width = renderTarget.width;
renderTarget.depthTexture.image.height = renderTarget.height;
renderTarget.depthTexture.needsUpdate = true;
}
setTexture2D(renderTarget.depthTexture, 0);
const webglDepthTexture = properties.get(renderTarget.depthTexture).__webglTexture;
if (renderTarget.depthTexture.format === DepthFormat) {
_gl.framebufferTexture2D(_gl.FRAMEBUFFER, _gl.DEPTH_ATTACHMENT, _gl.TEXTURE_2D, webglDepthTexture, 0);
} else if (renderTarget.depthTexture.format === DepthStencilFormat) {
_gl.framebufferTexture2D(_gl.FRAMEBUFFER, _gl.DEPTH_STENCIL_ATTACHMENT, _gl.TEXTURE_2D, webglDepthTexture, 0);
} else {
throw new Error('Unknown depthTexture format');
}
} // Setup GL resources for a non-texture depth buffer
function setupDepthRenderbuffer(renderTarget) {
const renderTargetProperties = properties.get(renderTarget);
const isCube = renderTarget.isWebGLCubeRenderTarget === true;
if (renderTarget.depthTexture) {
if (isCube) throw new Error('target.depthTexture not supported in Cube render targets');
setupDepthTexture(renderTargetProperties.__webglFramebuffer, renderTarget);
} else {
if (isCube) {
renderTargetProperties.__webglDepthbuffer = [];
for (let i = 0; i < 6; i++) {
state.bindFramebuffer(_gl.FRAMEBUFFER, renderTargetProperties.__webglFramebuffer[i]);
renderTargetProperties.__webglDepthbuffer[i] = _gl.createRenderbuffer();
setupRenderBufferStorage(renderTargetProperties.__webglDepthbuffer[i], renderTarget, false);
}
} else {
state.bindFramebuffer(_gl.FRAMEBUFFER, renderTargetProperties.__webglFramebuffer);
renderTargetProperties.__webglDepthbuffer = _gl.createRenderbuffer();
setupRenderBufferStorage(renderTargetProperties.__webglDepthbuffer, renderTarget, false);
}
}
state.bindFramebuffer(_gl.FRAMEBUFFER, null);
} // Set up GL resources for the render target
function setupRenderTarget(renderTarget) {
const texture = renderTarget.texture;
const renderTargetProperties = properties.get(renderTarget);
const textureProperties = properties.get(texture);
renderTarget.addEventListener('dispose', onRenderTargetDispose);
if (renderTarget.isWebGLMultipleRenderTargets !== true) {
textureProperties.__webglTexture = _gl.createTexture();
textureProperties.__version = texture.version;
info.memory.textures++;
}
const isCube = renderTarget.isWebGLCubeRenderTarget === true;
const isMultipleRenderTargets = renderTarget.isWebGLMultipleRenderTargets === true;
const isMultisample = renderTarget.isWebGLMultisampleRenderTarget === true;
const isRenderTarget3D = texture.isDataTexture3D || texture.isDataTexture2DArray;
const supportsMips = isPowerOfTwo$1(renderTarget) || isWebGL2; // Handles WebGL2 RGBFormat fallback - #18858
if (isWebGL2 && texture.format === RGBFormat && (texture.type === FloatType || texture.type === HalfFloatType)) {
texture.format = RGBAFormat;
console.warn('THREE.WebGLRenderer: Rendering to textures with RGB format is not supported. Using RGBA format instead.');
} // Setup framebuffer
if (isCube) {
renderTargetProperties.__webglFramebuffer = [];
for (let i = 0; i < 6; i++) {
renderTargetProperties.__webglFramebuffer[i] = _gl.createFramebuffer();
}
} else {
renderTargetProperties.__webglFramebuffer = _gl.createFramebuffer();
if (isMultipleRenderTargets) {
if (capabilities.drawBuffers) {
const textures = renderTarget.texture;
for (let i = 0, il = textures.length; i < il; i++) {
const attachmentProperties = properties.get(textures[i]);
if (attachmentProperties.__webglTexture === undefined) {
attachmentProperties.__webglTexture = _gl.createTexture();
info.memory.textures++;
}
}
} else {
console.warn('THREE.WebGLRenderer: WebGLMultipleRenderTargets can only be used with WebGL2 or WEBGL_draw_buffers extension.');
}
} else if (isMultisample) {
if (isWebGL2) {
renderTargetProperties.__webglMultisampledFramebuffer = _gl.createFramebuffer();
renderTargetProperties.__webglColorRenderbuffer = _gl.createRenderbuffer();
_gl.bindRenderbuffer(_gl.RENDERBUFFER, renderTargetProperties.__webglColorRenderbuffer);
const glFormat = utils.convert(texture.format);
const glType = utils.convert(texture.type);
const glInternalFormat = getInternalFormat(texture.internalFormat, glFormat, glType, texture.encoding);
const samples = getRenderTargetSamples(renderTarget);
_gl.renderbufferStorageMultisample(_gl.RENDERBUFFER, samples, glInternalFormat, renderTarget.width, renderTarget.height);
state.bindFramebuffer(_gl.FRAMEBUFFER, renderTargetProperties.__webglMultisampledFramebuffer);
_gl.framebufferRenderbuffer(_gl.FRAMEBUFFER, _gl.COLOR_ATTACHMENT0, _gl.RENDERBUFFER, renderTargetProperties.__webglColorRenderbuffer);
_gl.bindRenderbuffer(_gl.RENDERBUFFER, null);
if (renderTarget.depthBuffer) {
renderTargetProperties.__webglDepthRenderbuffer = _gl.createRenderbuffer();
setupRenderBufferStorage(renderTargetProperties.__webglDepthRenderbuffer, renderTarget, true);
}
state.bindFramebuffer(_gl.FRAMEBUFFER, null);
} else {
console.warn('THREE.WebGLRenderer: WebGLMultisampleRenderTarget can only be used with WebGL2.');
}
}
} // Setup color buffer
if (isCube) {
state.bindTexture(_gl.TEXTURE_CUBE_MAP, textureProperties.__webglTexture);
setTextureParameters(_gl.TEXTURE_CUBE_MAP, texture, supportsMips);
for (let i = 0; i < 6; i++) {
setupFrameBufferTexture(renderTargetProperties.__webglFramebuffer[i], renderTarget, texture, _gl.COLOR_ATTACHMENT0, _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i);
}
if (textureNeedsGenerateMipmaps(texture, supportsMips)) {
generateMipmap(_gl.TEXTURE_CUBE_MAP, texture, renderTarget.width, renderTarget.height);
}
state.unbindTexture();
} else if (isMultipleRenderTargets) {
const textures = renderTarget.texture;
for (let i = 0, il = textures.length; i < il; i++) {
const attachment = textures[i];
const attachmentProperties = properties.get(attachment);
state.bindTexture(_gl.TEXTURE_2D, attachmentProperties.__webglTexture);
setTextureParameters(_gl.TEXTURE_2D, attachment, supportsMips);
setupFrameBufferTexture(renderTargetProperties.__webglFramebuffer, renderTarget, attachment, _gl.COLOR_ATTACHMENT0 + i, _gl.TEXTURE_2D);
if (textureNeedsGenerateMipmaps(attachment, supportsMips)) {
generateMipmap(_gl.TEXTURE_2D, attachment, renderTarget.width, renderTarget.height);
}
}
state.unbindTexture();
} else {
let glTextureType = _gl.TEXTURE_2D;
if (isRenderTarget3D) {
// Render targets containing layers, i.e: Texture 3D and 2d arrays
if (isWebGL2) {
const isTexture3D = texture.isDataTexture3D;
glTextureType = isTexture3D ? _gl.TEXTURE_3D : _gl.TEXTURE_2D_ARRAY;
} else {
console.warn('THREE.DataTexture3D and THREE.DataTexture2DArray only supported with WebGL2.');
}
}
state.bindTexture(glTextureType, textureProperties.__webglTexture);
setTextureParameters(glTextureType, texture, supportsMips);
setupFrameBufferTexture(renderTargetProperties.__webglFramebuffer, renderTarget, texture, _gl.COLOR_ATTACHMENT0, glTextureType);
if (textureNeedsGenerateMipmaps(texture, supportsMips)) {
generateMipmap(glTextureType, texture, renderTarget.width, renderTarget.height, renderTarget.depth);
}
state.unbindTexture();
} // Setup depth and stencil buffers
if (renderTarget.depthBuffer) {
setupDepthRenderbuffer(renderTarget);
}
}
function updateRenderTargetMipmap(renderTarget) {
const supportsMips = isPowerOfTwo$1(renderTarget) || isWebGL2;
const textures = renderTarget.isWebGLMultipleRenderTargets === true ? renderTarget.texture : [renderTarget.texture];
for (let i = 0, il = textures.length; i < il; i++) {
const texture = textures[i];
if (textureNeedsGenerateMipmaps(texture, supportsMips)) {
const target = renderTarget.isWebGLCubeRenderTarget ? _gl.TEXTURE_CUBE_MAP : _gl.TEXTURE_2D;
const webglTexture = properties.get(texture).__webglTexture;
state.bindTexture(target, webglTexture);
generateMipmap(target, texture, renderTarget.width, renderTarget.height);
state.unbindTexture();
}
}
}
function updateMultisampleRenderTarget(renderTarget) {
if (renderTarget.isWebGLMultisampleRenderTarget) {
if (isWebGL2) {
const width = renderTarget.width;
const height = renderTarget.height;
let mask = _gl.COLOR_BUFFER_BIT;
if (renderTarget.depthBuffer) mask |= _gl.DEPTH_BUFFER_BIT;
if (renderTarget.stencilBuffer) mask |= _gl.STENCIL_BUFFER_BIT;
const renderTargetProperties = properties.get(renderTarget);
state.bindFramebuffer(_gl.READ_FRAMEBUFFER, renderTargetProperties.__webglMultisampledFramebuffer);
state.bindFramebuffer(_gl.DRAW_FRAMEBUFFER, renderTargetProperties.__webglFramebuffer);
_gl.blitFramebuffer(0, 0, width, height, 0, 0, width, height, mask, _gl.NEAREST);
state.bindFramebuffer(_gl.READ_FRAMEBUFFER, null);
state.bindFramebuffer(_gl.DRAW_FRAMEBUFFER, renderTargetProperties.__webglMultisampledFramebuffer);
} else {
console.warn('THREE.WebGLRenderer: WebGLMultisampleRenderTarget can only be used with WebGL2.');
}
}
}
function getRenderTargetSamples(renderTarget) {
return isWebGL2 && renderTarget.isWebGLMultisampleRenderTarget ? Math.min(maxSamples, renderTarget.samples) : 0;
}
function updateVideoTexture(texture) {
const frame = info.render.frame; // Check the last frame we updated the VideoTexture
if (_videoTextures.get(texture) !== frame) {
_videoTextures.set(texture, frame);
texture.update();
}
} // backwards compatibility
let warnedTexture2D = false;
let warnedTextureCube = false;
function safeSetTexture2D(texture, slot) {
if (texture && texture.isWebGLRenderTarget) {
if (warnedTexture2D === false) {
console.warn('THREE.WebGLTextures.safeSetTexture2D: don\'t use render targets as textures. Use their .texture property instead.');
warnedTexture2D = true;
}
texture = texture.texture;
}
setTexture2D(texture, slot);
}
function safeSetTextureCube(texture, slot) {
if (texture && texture.isWebGLCubeRenderTarget) {
if (warnedTextureCube === false) {
console.warn('THREE.WebGLTextures.safeSetTextureCube: don\'t use cube render targets as textures. Use their .texture property instead.');
warnedTextureCube = true;
}
texture = texture.texture;
}
setTextureCube(texture, slot);
} //
this.allocateTextureUnit = allocateTextureUnit;
this.resetTextureUnits = resetTextureUnits;
this.setTexture2D = setTexture2D;
this.setTexture2DArray = setTexture2DArray;
this.setTexture3D = setTexture3D;
this.setTextureCube = setTextureCube;
this.setupRenderTarget = setupRenderTarget;
this.updateRenderTargetMipmap = updateRenderTargetMipmap;
this.updateMultisampleRenderTarget = updateMultisampleRenderTarget;
this.safeSetTexture2D = safeSetTexture2D;
this.safeSetTextureCube = safeSetTextureCube;
}
function WebGLUtils(gl, extensions, capabilities) {
const isWebGL2 = capabilities.isWebGL2;
function convert(p) {
let extension;
if (p === UnsignedByteType) return gl.UNSIGNED_BYTE;
if (p === UnsignedShort4444Type) return gl.UNSIGNED_SHORT_4_4_4_4;
if (p === UnsignedShort5551Type) return gl.UNSIGNED_SHORT_5_5_5_1;
if (p === UnsignedShort565Type) return gl.UNSIGNED_SHORT_5_6_5;
if (p === ByteType) return gl.BYTE;
if (p === ShortType) return gl.SHORT;
if (p === UnsignedShortType) return gl.UNSIGNED_SHORT;
if (p === IntType) return gl.INT;
if (p === UnsignedIntType) return gl.UNSIGNED_INT;
if (p === FloatType) return gl.FLOAT;
if (p === HalfFloatType) {
if (isWebGL2) return gl.HALF_FLOAT;
extension = extensions.get('OES_texture_half_float');
if (extension !== null) {
return extension.HALF_FLOAT_OES;
} else {
return null;
}
}
if (p === AlphaFormat) return gl.ALPHA;
if (p === RGBFormat) return gl.RGB;
if (p === RGBAFormat) return gl.RGBA;
if (p === LuminanceFormat) return gl.LUMINANCE;
if (p === LuminanceAlphaFormat) return gl.LUMINANCE_ALPHA;
if (p === DepthFormat) return gl.DEPTH_COMPONENT;
if (p === DepthStencilFormat) return gl.DEPTH_STENCIL;
if (p === RedFormat) return gl.RED; // WebGL2 formats.
if (p === RedIntegerFormat) return gl.RED_INTEGER;
if (p === RGFormat) return gl.RG;
if (p === RGIntegerFormat) return gl.RG_INTEGER;
if (p === RGBIntegerFormat) return gl.RGB_INTEGER;
if (p === RGBAIntegerFormat) return gl.RGBA_INTEGER;
if (p === RGB_S3TC_DXT1_Format || p === RGBA_S3TC_DXT1_Format || p === RGBA_S3TC_DXT3_Format || p === RGBA_S3TC_DXT5_Format) {
extension = extensions.get('WEBGL_compressed_texture_s3tc');
if (extension !== null) {
if (p === RGB_S3TC_DXT1_Format) return extension.COMPRESSED_RGB_S3TC_DXT1_EXT;
if (p === RGBA_S3TC_DXT1_Format) return extension.COMPRESSED_RGBA_S3TC_DXT1_EXT;
if (p === RGBA_S3TC_DXT3_Format) return extension.COMPRESSED_RGBA_S3TC_DXT3_EXT;
if (p === RGBA_S3TC_DXT5_Format) return extension.COMPRESSED_RGBA_S3TC_DXT5_EXT;
} else {
return null;
}
}
if (p === RGB_PVRTC_4BPPV1_Format || p === RGB_PVRTC_2BPPV1_Format || p === RGBA_PVRTC_4BPPV1_Format || p === RGBA_PVRTC_2BPPV1_Format) {
extension = extensions.get('WEBGL_compressed_texture_pvrtc');
if (extension !== null) {
if (p === RGB_PVRTC_4BPPV1_Format) return extension.COMPRESSED_RGB_PVRTC_4BPPV1_IMG;
if (p === RGB_PVRTC_2BPPV1_Format) return extension.COMPRESSED_RGB_PVRTC_2BPPV1_IMG;
if (p === RGBA_PVRTC_4BPPV1_Format) return extension.COMPRESSED_RGBA_PVRTC_4BPPV1_IMG;
if (p === RGBA_PVRTC_2BPPV1_Format) return extension.COMPRESSED_RGBA_PVRTC_2BPPV1_IMG;
} else {
return null;
}
}
if (p === RGB_ETC1_Format) {
extension = extensions.get('WEBGL_compressed_texture_etc1');
if (extension !== null) {
return extension.COMPRESSED_RGB_ETC1_WEBGL;
} else {
return null;
}
}
if (p === RGB_ETC2_Format || p === RGBA_ETC2_EAC_Format) {
extension = extensions.get('WEBGL_compressed_texture_etc');
if (extension !== null) {
if (p === RGB_ETC2_Format) return extension.COMPRESSED_RGB8_ETC2;
if (p === RGBA_ETC2_EAC_Format) return extension.COMPRESSED_RGBA8_ETC2_EAC;
}
}
if (p === RGBA_ASTC_4x4_Format || p === RGBA_ASTC_5x4_Format || p === RGBA_ASTC_5x5_Format || p === RGBA_ASTC_6x5_Format || p === RGBA_ASTC_6x6_Format || p === RGBA_ASTC_8x5_Format || p === RGBA_ASTC_8x6_Format || p === RGBA_ASTC_8x8_Format || p === RGBA_ASTC_10x5_Format || p === RGBA_ASTC_10x6_Format || p === RGBA_ASTC_10x8_Format || p === RGBA_ASTC_10x10_Format || p === RGBA_ASTC_12x10_Format || p === RGBA_ASTC_12x12_Format || p === SRGB8_ALPHA8_ASTC_4x4_Format || p === SRGB8_ALPHA8_ASTC_5x4_Format || p === SRGB8_ALPHA8_ASTC_5x5_Format || p === SRGB8_ALPHA8_ASTC_6x5_Format || p === SRGB8_ALPHA8_ASTC_6x6_Format || p === SRGB8_ALPHA8_ASTC_8x5_Format || p === SRGB8_ALPHA8_ASTC_8x6_Format || p === SRGB8_ALPHA8_ASTC_8x8_Format || p === SRGB8_ALPHA8_ASTC_10x5_Format || p === SRGB8_ALPHA8_ASTC_10x6_Format || p === SRGB8_ALPHA8_ASTC_10x8_Format || p === SRGB8_ALPHA8_ASTC_10x10_Format || p === SRGB8_ALPHA8_ASTC_12x10_Format || p === SRGB8_ALPHA8_ASTC_12x12_Format) {
extension = extensions.get('WEBGL_compressed_texture_astc');
if (extension !== null) {
// TODO Complete?
return p;
} else {
return null;
}
}
if (p === RGBA_BPTC_Format) {
extension = extensions.get('EXT_texture_compression_bptc');
if (extension !== null) {
// TODO Complete?
return p;
} else {
return null;
}
}
if (p === UnsignedInt248Type) {
if (isWebGL2) return gl.UNSIGNED_INT_24_8;
extension = extensions.get('WEBGL_depth_texture');
if (extension !== null) {
return extension.UNSIGNED_INT_24_8_WEBGL;
} else {
return null;
}
}
}
return {
convert: convert
};
}
class ArrayCamera extends PerspectiveCamera {
constructor(array = []) {
super();
this.cameras = array;
}
}
ArrayCamera.prototype.isArrayCamera = true;
class Group extends Object3D {
constructor() {
super();
this.type = 'Group';
}
}
Group.prototype.isGroup = true;
const _moveEvent = {
type: 'move'
};
class WebXRController {
constructor() {
this._targetRay = null;
this._grip = null;
this._hand = null;
}
getHandSpace() {
if (this._hand === null) {
this._hand = new Group();
this._hand.matrixAutoUpdate = false;
this._hand.visible = false;
this._hand.joints = {};
this._hand.inputState = {
pinching: false
};
}
return this._hand;
}
getTargetRaySpace() {
if (this._targetRay === null) {
this._targetRay = new Group();
this._targetRay.matrixAutoUpdate = false;
this._targetRay.visible = false;
this._targetRay.hasLinearVelocity = false;
this._targetRay.linearVelocity = new Vector3();
this._targetRay.hasAngularVelocity = false;
this._targetRay.angularVelocity = new Vector3();
}
return this._targetRay;
}
getGripSpace() {
if (this._grip === null) {
this._grip = new Group();
this._grip.matrixAutoUpdate = false;
this._grip.visible = false;
this._grip.hasLinearVelocity = false;
this._grip.linearVelocity = new Vector3();
this._grip.hasAngularVelocity = false;
this._grip.angularVelocity = new Vector3();
}
return this._grip;
}
dispatchEvent(event) {
if (this._targetRay !== null) {
this._targetRay.dispatchEvent(event);
}
if (this._grip !== null) {
this._grip.dispatchEvent(event);
}
if (this._hand !== null) {
this._hand.dispatchEvent(event);
}
return this;
}
disconnect(inputSource) {
this.dispatchEvent({
type: 'disconnected',
data: inputSource
});
if (this._targetRay !== null) {
this._targetRay.visible = false;
}
if (this._grip !== null) {
this._grip.visible = false;
}
if (this._hand !== null) {
this._hand.visible = false;
}
return this;
}
update(inputSource, frame, referenceSpace) {
let inputPose = null;
let gripPose = null;
let handPose = null;
const targetRay = this._targetRay;
const grip = this._grip;
const hand = this._hand;
if (inputSource && frame.session.visibilityState !== 'visible-blurred') {
if (targetRay !== null) {
inputPose = frame.getPose(inputSource.targetRaySpace, referenceSpace);
if (inputPose !== null) {
targetRay.matrix.fromArray(inputPose.transform.matrix);
targetRay.matrix.decompose(targetRay.position, targetRay.rotation, targetRay.scale);
if (inputPose.linearVelocity) {
targetRay.hasLinearVelocity = true;
targetRay.linearVelocity.copy(inputPose.linearVelocity);
} else {
targetRay.hasLinearVelocity = false;
}
if (inputPose.angularVelocity) {
targetRay.hasAngularVelocity = true;
targetRay.angularVelocity.copy(inputPose.angularVelocity);
} else {
targetRay.hasAngularVelocity = false;
}
this.dispatchEvent(_moveEvent);
}
}
if (hand && inputSource.hand) {
handPose = true;
for (const inputjoint of inputSource.hand.values()) {
// Update the joints groups with the XRJoint poses
const jointPose = frame.getJointPose(inputjoint, referenceSpace);
if (hand.joints[inputjoint.jointName] === undefined) {
// The transform of this joint will be updated with the joint pose on each frame
const joint = new Group();
joint.matrixAutoUpdate = false;
joint.visible = false;
hand.joints[inputjoint.jointName] = joint; // ??
hand.add(joint);
}
const joint = hand.joints[inputjoint.jointName];
if (jointPose !== null) {
joint.matrix.fromArray(jointPose.transform.matrix);
joint.matrix.decompose(joint.position, joint.rotation, joint.scale);
joint.jointRadius = jointPose.radius;
}
joint.visible = jointPose !== null;
} // Custom events
// Check pinchz
const indexTip = hand.joints['index-finger-tip'];
const thumbTip = hand.joints['thumb-tip'];
const distance = indexTip.position.distanceTo(thumbTip.position);
const distanceToPinch = 0.02;
const threshold = 0.005;
if (hand.inputState.pinching && distance > distanceToPinch + threshold) {
hand.inputState.pinching = false;
this.dispatchEvent({
type: 'pinchend',
handedness: inputSource.handedness,
target: this
});
} else if (!hand.inputState.pinching && distance <= distanceToPinch - threshold) {
hand.inputState.pinching = true;
this.dispatchEvent({
type: 'pinchstart',
handedness: inputSource.handedness,
target: this
});
}
} else {
if (grip !== null && inputSource.gripSpace) {
gripPose = frame.getPose(inputSource.gripSpace, referenceSpace);
if (gripPose !== null) {
grip.matrix.fromArray(gripPose.transform.matrix);
grip.matrix.decompose(grip.position, grip.rotation, grip.scale);
if (gripPose.linearVelocity) {
grip.hasLinearVelocity = true;
grip.linearVelocity.copy(gripPose.linearVelocity);
} else {
grip.hasLinearVelocity = false;
}
if (gripPose.angularVelocity) {
grip.hasAngularVelocity = true;
grip.angularVelocity.copy(gripPose.angularVelocity);
} else {
grip.hasAngularVelocity = false;
}
}
}
}
}
if (targetRay !== null) {
targetRay.visible = inputPose !== null;
}
if (grip !== null) {
grip.visible = gripPose !== null;
}
if (hand !== null) {
hand.visible = handPose !== null;
}
return this;
}
}
class WebXRManager extends EventDispatcher {
constructor(renderer, gl) {
super();
const scope = this;
const state = renderer.state;
let session = null;
let framebufferScaleFactor = 1.0;
let referenceSpace = null;
let referenceSpaceType = 'local-floor';
let pose = null;
let glBinding = null;
let glFramebuffer = null;
let glProjLayer = null;
let glBaseLayer = null;
let isMultisample = false;
let glMultisampledFramebuffer = null;
let glColorRenderbuffer = null;
let glDepthRenderbuffer = null;
let xrFrame = null;
let depthStyle = null;
let clearStyle = null;
const controllers = [];
const inputSourcesMap = new Map(); //
const cameraL = new PerspectiveCamera();
cameraL.layers.enable(1);
cameraL.viewport = new Vector4();
const cameraR = new PerspectiveCamera();
cameraR.layers.enable(2);
cameraR.viewport = new Vector4();
const cameras = [cameraL, cameraR];
const cameraVR = new ArrayCamera();
cameraVR.layers.enable(1);
cameraVR.layers.enable(2);
let _currentDepthNear = null;
let _currentDepthFar = null; //
this.cameraAutoUpdate = true;
this.enabled = false;
this.isPresenting = false;
this.getController = function (index) {
let controller = controllers[index];
if (controller === undefined) {
controller = new WebXRController();
controllers[index] = controller;
}
return controller.getTargetRaySpace();
};
this.getControllerGrip = function (index) {
let controller = controllers[index];
if (controller === undefined) {
controller = new WebXRController();
controllers[index] = controller;
}
return controller.getGripSpace();
};
this.getHand = function (index) {
let controller = controllers[index];
if (controller === undefined) {
controller = new WebXRController();
controllers[index] = controller;
}
return controller.getHandSpace();
}; //
function onSessionEvent(event) {
const controller = inputSourcesMap.get(event.inputSource);
if (controller) {
controller.dispatchEvent({
type: event.type,
data: event.inputSource
});
}
}
function onSessionEnd() {
inputSourcesMap.forEach(function (controller, inputSource) {
controller.disconnect(inputSource);
});
inputSourcesMap.clear();
_currentDepthNear = null;
_currentDepthFar = null; // restore framebuffer/rendering state
state.bindXRFramebuffer(null);
renderer.setRenderTarget(renderer.getRenderTarget());
if (glFramebuffer) gl.deleteFramebuffer(glFramebuffer);
if (glMultisampledFramebuffer) gl.deleteFramebuffer(glMultisampledFramebuffer);
if (glColorRenderbuffer) gl.deleteRenderbuffer(glColorRenderbuffer);
if (glDepthRenderbuffer) gl.deleteRenderbuffer(glDepthRenderbuffer);
glFramebuffer = null;
glMultisampledFramebuffer = null;
glColorRenderbuffer = null;
glDepthRenderbuffer = null;
glBaseLayer = null;
glProjLayer = null;
glBinding = null;
session = null; //
animation.stop();
scope.isPresenting = false;
scope.dispatchEvent({
type: 'sessionend'
});
}
this.setFramebufferScaleFactor = function (value) {
framebufferScaleFactor = value;
if (scope.isPresenting === true) {
console.warn('THREE.WebXRManager: Cannot change framebuffer scale while presenting.');
}
};
this.setReferenceSpaceType = function (value) {
referenceSpaceType = value;
if (scope.isPresenting === true) {
console.warn('THREE.WebXRManager: Cannot change reference space type while presenting.');
}
};
this.getReferenceSpace = function () {
return referenceSpace;
};
this.getBaseLayer = function () {
return glProjLayer !== null ? glProjLayer : glBaseLayer;
};
this.getBinding = function () {
return glBinding;
};
this.getFrame = function () {
return xrFrame;
};
this.getSession = function () {
return session;
};
this.setSession = async function (value) {
session = value;
if (session !== null) {
session.addEventListener('select', onSessionEvent);
session.addEventListener('selectstart', onSessionEvent);
session.addEventListener('selectend', onSessionEvent);
session.addEventListener('squeeze', onSessionEvent);
session.addEventListener('squeezestart', onSessionEvent);
session.addEventListener('squeezeend', onSessionEvent);
session.addEventListener('end', onSessionEnd);
session.addEventListener('inputsourceschange', onInputSourcesChange);
const attributes = gl.getContextAttributes();
if (attributes.xrCompatible !== true) {
await gl.makeXRCompatible();
}
if (session.renderState.layers === undefined) {
const layerInit = {
antialias: attributes.antialias,
alpha: attributes.alpha,
depth: attributes.depth,
stencil: attributes.stencil,
framebufferScaleFactor: framebufferScaleFactor
};
glBaseLayer = new XRWebGLLayer(session, gl, layerInit);
session.updateRenderState({
baseLayer: glBaseLayer
});
} else if (gl instanceof WebGLRenderingContext) {
// Use old style webgl layer because we can't use MSAA
// WebGL2 support.
const layerInit = {
antialias: true,
alpha: attributes.alpha,
depth: attributes.depth,
stencil: attributes.stencil,
framebufferScaleFactor: framebufferScaleFactor
};
glBaseLayer = new XRWebGLLayer(session, gl, layerInit);
session.updateRenderState({
layers: [glBaseLayer]
});
} else {
isMultisample = attributes.antialias;
let depthFormat = null;
if (attributes.depth) {
clearStyle = gl.DEPTH_BUFFER_BIT;
if (attributes.stencil) clearStyle |= gl.STENCIL_BUFFER_BIT;
depthStyle = attributes.stencil ? gl.DEPTH_STENCIL_ATTACHMENT : gl.DEPTH_ATTACHMENT;
depthFormat = attributes.stencil ? gl.DEPTH24_STENCIL8 : gl.DEPTH_COMPONENT24;
}
const projectionlayerInit = {
colorFormat: attributes.alpha ? gl.RGBA8 : gl.RGB8,
depthFormat: depthFormat,
scaleFactor: framebufferScaleFactor
};
glBinding = new XRWebGLBinding(session, gl);
glProjLayer = glBinding.createProjectionLayer(projectionlayerInit);
glFramebuffer = gl.createFramebuffer();
session.updateRenderState({
layers: [glProjLayer]
});
if (isMultisample) {
glMultisampledFramebuffer = gl.createFramebuffer();
glColorRenderbuffer = gl.createRenderbuffer();
gl.bindRenderbuffer(gl.RENDERBUFFER, glColorRenderbuffer);
gl.renderbufferStorageMultisample(gl.RENDERBUFFER, 4, gl.RGBA8, glProjLayer.textureWidth, glProjLayer.textureHeight);
state.bindFramebuffer(gl.FRAMEBUFFER, glMultisampledFramebuffer);
gl.framebufferRenderbuffer(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0, gl.RENDERBUFFER, glColorRenderbuffer);
gl.bindRenderbuffer(gl.RENDERBUFFER, null);
if (depthFormat !== null) {
glDepthRenderbuffer = gl.createRenderbuffer();
gl.bindRenderbuffer(gl.RENDERBUFFER, glDepthRenderbuffer);
gl.renderbufferStorageMultisample(gl.RENDERBUFFER, 4, depthFormat, glProjLayer.textureWidth, glProjLayer.textureHeight);
gl.framebufferRenderbuffer(gl.FRAMEBUFFER, depthStyle, gl.RENDERBUFFER, glDepthRenderbuffer);
gl.bindRenderbuffer(gl.RENDERBUFFER, null);
}
state.bindFramebuffer(gl.FRAMEBUFFER, null);
}
}
referenceSpace = await session.requestReferenceSpace(referenceSpaceType);
animation.setContext(session);
animation.start();
scope.isPresenting = true;
scope.dispatchEvent({
type: 'sessionstart'
});
}
};
function onInputSourcesChange(event) {
const inputSources = session.inputSources; // Assign inputSources to available controllers
for (let i = 0; i < controllers.length; i++) {
inputSourcesMap.set(inputSources[i], controllers[i]);
} // Notify disconnected
for (let i = 0; i < event.removed.length; i++) {
const inputSource = event.removed[i];
const controller = inputSourcesMap.get(inputSource);
if (controller) {
controller.dispatchEvent({
type: 'disconnected',
data: inputSource
});
inputSourcesMap.delete(inputSource);
}
} // Notify connected
for (let i = 0; i < event.added.length; i++) {
const inputSource = event.added[i];
const controller = inputSourcesMap.get(inputSource);
if (controller) {
controller.dispatchEvent({
type: 'connected',
data: inputSource
});
}
}
} //
const cameraLPos = new Vector3();
const cameraRPos = new Vector3();
/**
* Assumes 2 cameras that are parallel and share an X-axis, and that
* the cameras' projection and world matrices have already been set.
* And that near and far planes are identical for both cameras.
* Visualization of this technique: https://computergraphics.stackexchange.com/a/4765
*/
function setProjectionFromUnion(camera, cameraL, cameraR) {
cameraLPos.setFromMatrixPosition(cameraL.matrixWorld);
cameraRPos.setFromMatrixPosition(cameraR.matrixWorld);
const ipd = cameraLPos.distanceTo(cameraRPos);
const projL = cameraL.projectionMatrix.elements;
const projR = cameraR.projectionMatrix.elements; // VR systems will have identical far and near planes, and
// most likely identical top and bottom frustum extents.
// Use the left camera for these values.
const near = projL[14] / (projL[10] - 1);
const far = projL[14] / (projL[10] + 1);
const topFov = (projL[9] + 1) / projL[5];
const bottomFov = (projL[9] - 1) / projL[5];
const leftFov = (projL[8] - 1) / projL[0];
const rightFov = (projR[8] + 1) / projR[0];
const left = near * leftFov;
const right = near * rightFov; // Calculate the new camera's position offset from the
// left camera. xOffset should be roughly half `ipd`.
const zOffset = ipd / (-leftFov + rightFov);
const xOffset = zOffset * -leftFov; // TODO: Better way to apply this offset?
cameraL.matrixWorld.decompose(camera.position, camera.quaternion, camera.scale);
camera.translateX(xOffset);
camera.translateZ(zOffset);
camera.matrixWorld.compose(camera.position, camera.quaternion, camera.scale);
camera.matrixWorldInverse.copy(camera.matrixWorld).invert(); // Find the union of the frustum values of the cameras and scale
// the values so that the near plane's position does not change in world space,
// although must now be relative to the new union camera.
const near2 = near + zOffset;
const far2 = far + zOffset;
const left2 = left - xOffset;
const right2 = right + (ipd - xOffset);
const top2 = topFov * far / far2 * near2;
const bottom2 = bottomFov * far / far2 * near2;
camera.projectionMatrix.makePerspective(left2, right2, top2, bottom2, near2, far2);
}
function updateCamera(camera, parent) {
if (parent === null) {
camera.matrixWorld.copy(camera.matrix);
} else {
camera.matrixWorld.multiplyMatrices(parent.matrixWorld, camera.matrix);
}
camera.matrixWorldInverse.copy(camera.matrixWorld).invert();
}
this.updateCamera = function (camera) {
if (session === null) return;
cameraVR.near = cameraR.near = cameraL.near = camera.near;
cameraVR.far = cameraR.far = cameraL.far = camera.far;
if (_currentDepthNear !== cameraVR.near || _currentDepthFar !== cameraVR.far) {
// Note that the new renderState won't apply until the next frame. See #18320
session.updateRenderState({
depthNear: cameraVR.near,
depthFar: cameraVR.far
});
_currentDepthNear = cameraVR.near;
_currentDepthFar = cameraVR.far;
}
const parent = camera.parent;
const cameras = cameraVR.cameras;
updateCamera(cameraVR, parent);
for (let i = 0; i < cameras.length; i++) {
updateCamera(cameras[i], parent);
}
cameraVR.matrixWorld.decompose(cameraVR.position, cameraVR.quaternion, cameraVR.scale); // update user camera and its children
camera.position.copy(cameraVR.position);
camera.quaternion.copy(cameraVR.quaternion);
camera.scale.copy(cameraVR.scale);
camera.matrix.copy(cameraVR.matrix);
camera.matrixWorld.copy(cameraVR.matrixWorld);
const children = camera.children;
for (let i = 0, l = children.length; i < l; i++) {
children[i].updateMatrixWorld(true);
} // update projection matrix for proper view frustum culling
if (cameras.length === 2) {
setProjectionFromUnion(cameraVR, cameraL, cameraR);
} else {
// assume single camera setup (AR)
cameraVR.projectionMatrix.copy(cameraL.projectionMatrix);
}
};
this.getCamera = function () {
return cameraVR;
};
this.getFoveation = function () {
if (glProjLayer !== null) {
return glProjLayer.fixedFoveation;
}
if (glBaseLayer !== null) {
return glBaseLayer.fixedFoveation;
}
return undefined;
};
this.setFoveation = function (foveation) {
// 0 = no foveation = full resolution
// 1 = maximum foveation = the edges render at lower resolution
if (glProjLayer !== null) {
glProjLayer.fixedFoveation = foveation;
}
if (glBaseLayer !== null && glBaseLayer.fixedFoveation !== undefined) {
glBaseLayer.fixedFoveation = foveation;
}
}; // Animation Loop
let onAnimationFrameCallback = null;
function onAnimationFrame(time, frame) {
pose = frame.getViewerPose(referenceSpace);
xrFrame = frame;
if (pose !== null) {
const views = pose.views;
if (glBaseLayer !== null) {
state.bindXRFramebuffer(glBaseLayer.framebuffer);
}
let cameraVRNeedsUpdate = false; // check if it's necessary to rebuild cameraVR's camera list
if (views.length !== cameraVR.cameras.length) {
cameraVR.cameras.length = 0;
cameraVRNeedsUpdate = true;
}
for (let i = 0; i < views.length; i++) {
const view = views[i];
let viewport = null;
if (glBaseLayer !== null) {
viewport = glBaseLayer.getViewport(view);
} else {
const glSubImage = glBinding.getViewSubImage(glProjLayer, view);
state.bindXRFramebuffer(glFramebuffer);
if (glSubImage.depthStencilTexture !== undefined) {
gl.framebufferTexture2D(gl.FRAMEBUFFER, depthStyle, gl.TEXTURE_2D, glSubImage.depthStencilTexture, 0);
}
gl.framebufferTexture2D(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0, gl.TEXTURE_2D, glSubImage.colorTexture, 0);
viewport = glSubImage.viewport;
}
const camera = cameras[i];
camera.matrix.fromArray(view.transform.matrix);
camera.projectionMatrix.fromArray(view.projectionMatrix);
camera.viewport.set(viewport.x, viewport.y, viewport.width, viewport.height);
if (i === 0) {
cameraVR.matrix.copy(camera.matrix);
}
if (cameraVRNeedsUpdate === true) {
cameraVR.cameras.push(camera);
}
}
if (isMultisample) {
state.bindXRFramebuffer(glMultisampledFramebuffer);
if (clearStyle !== null) gl.clear(clearStyle);
}
} //
const inputSources = session.inputSources;
for (let i = 0; i < controllers.length; i++) {
const controller = controllers[i];
const inputSource = inputSources[i];
controller.update(inputSource, frame, referenceSpace);
}
if (onAnimationFrameCallback) onAnimationFrameCallback(time, frame);
if (isMultisample) {
const width = glProjLayer.textureWidth;
const height = glProjLayer.textureHeight;
state.bindFramebuffer(gl.READ_FRAMEBUFFER, glMultisampledFramebuffer);
state.bindFramebuffer(gl.DRAW_FRAMEBUFFER, glFramebuffer); // Invalidate the depth here to avoid flush of the depth data to main memory.
gl.invalidateFramebuffer(gl.READ_FRAMEBUFFER, [depthStyle]);
gl.invalidateFramebuffer(gl.DRAW_FRAMEBUFFER, [depthStyle]);
gl.blitFramebuffer(0, 0, width, height, 0, 0, width, height, gl.COLOR_BUFFER_BIT, gl.NEAREST); // Invalidate the MSAA buffer because it's not needed anymore.
gl.invalidateFramebuffer(gl.READ_FRAMEBUFFER, [gl.COLOR_ATTACHMENT0]);
state.bindFramebuffer(gl.READ_FRAMEBUFFER, null);
state.bindFramebuffer(gl.DRAW_FRAMEBUFFER, null);
state.bindFramebuffer(gl.FRAMEBUFFER, glMultisampledFramebuffer);
}
xrFrame = null;
}
const animation = new WebGLAnimation();
animation.setAnimationLoop(onAnimationFrame);
this.setAnimationLoop = function (callback) {
onAnimationFrameCallback = callback;
};
this.dispose = function () {};
}
}
function WebGLMaterials(properties) {
function refreshFogUniforms(uniforms, fog) {
uniforms.fogColor.value.copy(fog.color);
if (fog.isFog) {
uniforms.fogNear.value = fog.near;
uniforms.fogFar.value = fog.far;
} else if (fog.isFogExp2) {
uniforms.fogDensity.value = fog.density;
}
}
function refreshMaterialUniforms(uniforms, material, pixelRatio, height, transmissionRenderTarget) {
if (material.isMeshBasicMaterial) {
refreshUniformsCommon(uniforms, material);
} else if (material.isMeshLambertMaterial) {
refreshUniformsCommon(uniforms, material);
refreshUniformsLambert(uniforms, material);
} else if (material.isMeshToonMaterial) {
refreshUniformsCommon(uniforms, material);
refreshUniformsToon(uniforms, material);
} else if (material.isMeshPhongMaterial) {
refreshUniformsCommon(uniforms, material);
refreshUniformsPhong(uniforms, material);
} else if (material.isMeshStandardMaterial) {
refreshUniformsCommon(uniforms, material);
if (material.isMeshPhysicalMaterial) {
refreshUniformsPhysical(uniforms, material, transmissionRenderTarget);
} else {
refreshUniformsStandard(uniforms, material);
}
} else if (material.isMeshMatcapMaterial) {
refreshUniformsCommon(uniforms, material);
refreshUniformsMatcap(uniforms, material);
} else if (material.isMeshDepthMaterial) {
refreshUniformsCommon(uniforms, material);
refreshUniformsDepth(uniforms, material);
} else if (material.isMeshDistanceMaterial) {
refreshUniformsCommon(uniforms, material);
refreshUniformsDistance(uniforms, material);
} else if (material.isMeshNormalMaterial) {
refreshUniformsCommon(uniforms, material);
refreshUniformsNormal(uniforms, material);
} else if (material.isLineBasicMaterial) {
refreshUniformsLine(uniforms, material);
if (material.isLineDashedMaterial) {
refreshUniformsDash(uniforms, material);
}
} else if (material.isPointsMaterial) {
refreshUniformsPoints(uniforms, material, pixelRatio, height);
} else if (material.isSpriteMaterial) {
refreshUniformsSprites(uniforms, material);
} else if (material.isShadowMaterial) {
uniforms.color.value.copy(material.color);
uniforms.opacity.value = material.opacity;
} else if (material.isShaderMaterial) {
material.uniformsNeedUpdate = false; // #15581
}
}
function refreshUniformsCommon(uniforms, material) {
uniforms.opacity.value = material.opacity;
if (material.color) {
uniforms.diffuse.value.copy(material.color);
}
if (material.emissive) {
uniforms.emissive.value.copy(material.emissive).multiplyScalar(material.emissiveIntensity);
}
if (material.map) {
uniforms.map.value = material.map;
}
if (material.alphaMap) {
uniforms.alphaMap.value = material.alphaMap;
}
if (material.specularMap) {
uniforms.specularMap.value = material.specularMap;
}
if (material.alphaTest > 0) {
uniforms.alphaTest.value = material.alphaTest;
}
const envMap = properties.get(material).envMap;
if (envMap) {
uniforms.envMap.value = envMap;
uniforms.flipEnvMap.value = envMap.isCubeTexture && envMap.isRenderTargetTexture === false ? -1 : 1;
uniforms.reflectivity.value = material.reflectivity;
uniforms.ior.value = material.ior;
uniforms.refractionRatio.value = material.refractionRatio;
const maxMipLevel = properties.get(envMap).__maxMipLevel;
if (maxMipLevel !== undefined) {
uniforms.maxMipLevel.value = maxMipLevel;
}
}
if (material.lightMap) {
uniforms.lightMap.value = material.lightMap;
uniforms.lightMapIntensity.value = material.lightMapIntensity;
}
if (material.aoMap) {
uniforms.aoMap.value = material.aoMap;
uniforms.aoMapIntensity.value = material.aoMapIntensity;
} // uv repeat and offset setting priorities
// 1. color map
// 2. specular map
// 3. displacementMap map
// 4. normal map
// 5. bump map
// 6. roughnessMap map
// 7. metalnessMap map
// 8. alphaMap map
// 9. emissiveMap map
// 10. clearcoat map
// 11. clearcoat normal map
// 12. clearcoat roughnessMap map
// 13. specular intensity map
// 14. specular tint map
// 15. transmission map
// 16. thickness map
let uvScaleMap;
if (material.map) {
uvScaleMap = material.map;
} else if (material.specularMap) {
uvScaleMap = material.specularMap;
} else if (material.displacementMap) {
uvScaleMap = material.displacementMap;
} else if (material.normalMap) {
uvScaleMap = material.normalMap;
} else if (material.bumpMap) {
uvScaleMap = material.bumpMap;
} else if (material.roughnessMap) {
uvScaleMap = material.roughnessMap;
} else if (material.metalnessMap) {
uvScaleMap = material.metalnessMap;
} else if (material.alphaMap) {
uvScaleMap = material.alphaMap;
} else if (material.emissiveMap) {
uvScaleMap = material.emissiveMap;
} else if (material.clearcoatMap) {
uvScaleMap = material.clearcoatMap;
} else if (material.clearcoatNormalMap) {
uvScaleMap = material.clearcoatNormalMap;
} else if (material.clearcoatRoughnessMap) {
uvScaleMap = material.clearcoatRoughnessMap;
} else if (material.specularIntensityMap) {
uvScaleMap = material.specularIntensityMap;
} else if (material.specularTintMap) {
uvScaleMap = material.specularTintMap;
} else if (material.transmissionMap) {
uvScaleMap = material.transmissionMap;
} else if (material.thicknessMap) {
uvScaleMap = material.thicknessMap;
}
if (uvScaleMap !== undefined) {
// backwards compatibility
if (uvScaleMap.isWebGLRenderTarget) {
uvScaleMap = uvScaleMap.texture;
}
if (uvScaleMap.matrixAutoUpdate === true) {
uvScaleMap.updateMatrix();
}
uniforms.uvTransform.value.copy(uvScaleMap.matrix);
} // uv repeat and offset setting priorities for uv2
// 1. ao map
// 2. light map
let uv2ScaleMap;
if (material.aoMap) {
uv2ScaleMap = material.aoMap;
} else if (material.lightMap) {
uv2ScaleMap = material.lightMap;
}
if (uv2ScaleMap !== undefined) {
// backwards compatibility
if (uv2ScaleMap.isWebGLRenderTarget) {
uv2ScaleMap = uv2ScaleMap.texture;
}
if (uv2ScaleMap.matrixAutoUpdate === true) {
uv2ScaleMap.updateMatrix();
}
uniforms.uv2Transform.value.copy(uv2ScaleMap.matrix);
}
}
function refreshUniformsLine(uniforms, material) {
uniforms.diffuse.value.copy(material.color);
uniforms.opacity.value = material.opacity;
}
function refreshUniformsDash(uniforms, material) {
uniforms.dashSize.value = material.dashSize;
uniforms.totalSize.value = material.dashSize + material.gapSize;
uniforms.scale.value = material.scale;
}
function refreshUniformsPoints(uniforms, material, pixelRatio, height) {
uniforms.diffuse.value.copy(material.color);
uniforms.opacity.value = material.opacity;
uniforms.size.value = material.size * pixelRatio;
uniforms.scale.value = height * 0.5;
if (material.map) {
uniforms.map.value = material.map;
}
if (material.alphaMap) {
uniforms.alphaMap.value = material.alphaMap;
}
if (material.alphaTest > 0) {
uniforms.alphaTest.value = material.alphaTest;
} // uv repeat and offset setting priorities
// 1. color map
// 2. alpha map
let uvScaleMap;
if (material.map) {
uvScaleMap = material.map;
} else if (material.alphaMap) {
uvScaleMap = material.alphaMap;
}
if (uvScaleMap !== undefined) {
if (uvScaleMap.matrixAutoUpdate === true) {
uvScaleMap.updateMatrix();
}
uniforms.uvTransform.value.copy(uvScaleMap.matrix);
}
}
function refreshUniformsSprites(uniforms, material) {
uniforms.diffuse.value.copy(material.color);
uniforms.opacity.value = material.opacity;
uniforms.rotation.value = material.rotation;
if (material.map) {
uniforms.map.value = material.map;
}
if (material.alphaMap) {
uniforms.alphaMap.value = material.alphaMap;
}
if (material.alphaTest > 0) {
uniforms.alphaTest.value = material.alphaTest;
} // uv repeat and offset setting priorities
// 1. color map
// 2. alpha map
let uvScaleMap;
if (material.map) {
uvScaleMap = material.map;
} else if (material.alphaMap) {
uvScaleMap = material.alphaMap;
}
if (uvScaleMap !== undefined) {
if (uvScaleMap.matrixAutoUpdate === true) {
uvScaleMap.updateMatrix();
}
uniforms.uvTransform.value.copy(uvScaleMap.matrix);
}
}
function refreshUniformsLambert(uniforms, material) {
if (material.emissiveMap) {
uniforms.emissiveMap.value = material.emissiveMap;
}
}
function refreshUniformsPhong(uniforms, material) {
uniforms.specular.value.copy(material.specular);
uniforms.shininess.value = Math.max(material.shininess, 1e-4); // to prevent pow( 0.0, 0.0 )
if (material.emissiveMap) {
uniforms.emissiveMap.value = material.emissiveMap;
}
if (material.bumpMap) {
uniforms.bumpMap.value = material.bumpMap;
uniforms.bumpScale.value = material.bumpScale;
if (material.side === BackSide) uniforms.bumpScale.value *= -1;
}
if (material.normalMap) {
uniforms.normalMap.value = material.normalMap;
uniforms.normalScale.value.copy(material.normalScale);
if (material.side === BackSide) uniforms.normalScale.value.negate();
}
if (material.displacementMap) {
uniforms.displacementMap.value = material.displacementMap;
uniforms.displacementScale.value = material.displacementScale;
uniforms.displacementBias.value = material.displacementBias;
}
}
function refreshUniformsToon(uniforms, material) {
if (material.gradientMap) {
uniforms.gradientMap.value = material.gradientMap;
}
if (material.emissiveMap) {
uniforms.emissiveMap.value = material.emissiveMap;
}
if (material.bumpMap) {
uniforms.bumpMap.value = material.bumpMap;
uniforms.bumpScale.value = material.bumpScale;
if (material.side === BackSide) uniforms.bumpScale.value *= -1;
}
if (material.normalMap) {
uniforms.normalMap.value = material.normalMap;
uniforms.normalScale.value.copy(material.normalScale);
if (material.side === BackSide) uniforms.normalScale.value.negate();
}
if (material.displacementMap) {
uniforms.displacementMap.value = material.displacementMap;
uniforms.displacementScale.value = material.displacementScale;
uniforms.displacementBias.value = material.displacementBias;
}
}
function refreshUniformsStandard(uniforms, material) {
uniforms.roughness.value = material.roughness;
uniforms.metalness.value = material.metalness;
if (material.roughnessMap) {
uniforms.roughnessMap.value = material.roughnessMap;
}
if (material.metalnessMap) {
uniforms.metalnessMap.value = material.metalnessMap;
}
if (material.emissiveMap) {
uniforms.emissiveMap.value = material.emissiveMap;
}
if (material.bumpMap) {
uniforms.bumpMap.value = material.bumpMap;
uniforms.bumpScale.value = material.bumpScale;
if (material.side === BackSide) uniforms.bumpScale.value *= -1;
}
if (material.normalMap) {
uniforms.normalMap.value = material.normalMap;
uniforms.normalScale.value.copy(material.normalScale);
if (material.side === BackSide) uniforms.normalScale.value.negate();
}
if (material.displacementMap) {
uniforms.displacementMap.value = material.displacementMap;
uniforms.displacementScale.value = material.displacementScale;
uniforms.displacementBias.value = material.displacementBias;
}
const envMap = properties.get(material).envMap;
if (envMap) {
//uniforms.envMap.value = material.envMap; // part of uniforms common
uniforms.envMapIntensity.value = material.envMapIntensity;
}
}
function refreshUniformsPhysical(uniforms, material, transmissionRenderTarget) {
refreshUniformsStandard(uniforms, material);
uniforms.ior.value = material.ior; // also part of uniforms common
if (material.sheen > 0) {
uniforms.sheenTint.value.copy(material.sheenTint).multiplyScalar(material.sheen);
uniforms.sheenRoughness.value = material.sheenRoughness;
}
if (material.clearcoat > 0) {
uniforms.clearcoat.value = material.clearcoat;
uniforms.clearcoatRoughness.value = material.clearcoatRoughness;
if (material.clearcoatMap) {
uniforms.clearcoatMap.value = material.clearcoatMap;
}
if (material.clearcoatRoughnessMap) {
uniforms.clearcoatRoughnessMap.value = material.clearcoatRoughnessMap;
}
if (material.clearcoatNormalMap) {
uniforms.clearcoatNormalScale.value.copy(material.clearcoatNormalScale);
uniforms.clearcoatNormalMap.value = material.clearcoatNormalMap;
if (material.side === BackSide) {
uniforms.clearcoatNormalScale.value.negate();
}
}
}
if (material.transmission > 0) {
uniforms.transmission.value = material.transmission;
uniforms.transmissionSamplerMap.value = transmissionRenderTarget.texture;
uniforms.transmissionSamplerSize.value.set(transmissionRenderTarget.width, transmissionRenderTarget.height);
if (material.transmissionMap) {
uniforms.transmissionMap.value = material.transmissionMap;
}
uniforms.thickness.value = material.thickness;
if (material.thicknessMap) {
uniforms.thicknessMap.value = material.thicknessMap;
}
uniforms.attenuationDistance.value = material.attenuationDistance;
uniforms.attenuationTint.value.copy(material.attenuationTint);
}
uniforms.specularIntensity.value = material.specularIntensity;
uniforms.specularTint.value.copy(material.specularTint);
if (material.specularIntensityMap) {
uniforms.specularIntensityMap.value = material.specularIntensityMap;
}
if (material.specularTintMap) {
uniforms.specularTintMap.value = material.specularTintMap;
}
}
function refreshUniformsMatcap(uniforms, material) {
if (material.matcap) {
uniforms.matcap.value = material.matcap;
}
if (material.bumpMap) {
uniforms.bumpMap.value = material.bumpMap;
uniforms.bumpScale.value = material.bumpScale;
if (material.side === BackSide) uniforms.bumpScale.value *= -1;
}
if (material.normalMap) {
uniforms.normalMap.value = material.normalMap;
uniforms.normalScale.value.copy(material.normalScale);
if (material.side === BackSide) uniforms.normalScale.value.negate();
}
if (material.displacementMap) {
uniforms.displacementMap.value = material.displacementMap;
uniforms.displacementScale.value = material.displacementScale;
uniforms.displacementBias.value = material.displacementBias;
}
}
function refreshUniformsDepth(uniforms, material) {
if (material.displacementMap) {
uniforms.displacementMap.value = material.displacementMap;
uniforms.displacementScale.value = material.displacementScale;
uniforms.displacementBias.value = material.displacementBias;
}
}
function refreshUniformsDistance(uniforms, material) {
if (material.displacementMap) {
uniforms.displacementMap.value = material.displacementMap;
uniforms.displacementScale.value = material.displacementScale;
uniforms.displacementBias.value = material.displacementBias;
}
uniforms.referencePosition.value.copy(material.referencePosition);
uniforms.nearDistance.value = material.nearDistance;
uniforms.farDistance.value = material.farDistance;
}
function refreshUniformsNormal(uniforms, material) {
if (material.bumpMap) {
uniforms.bumpMap.value = material.bumpMap;
uniforms.bumpScale.value = material.bumpScale;
if (material.side === BackSide) uniforms.bumpScale.value *= -1;
}
if (material.normalMap) {
uniforms.normalMap.value = material.normalMap;
uniforms.normalScale.value.copy(material.normalScale);
if (material.side === BackSide) uniforms.normalScale.value.negate();
}
if (material.displacementMap) {
uniforms.displacementMap.value = material.displacementMap;
uniforms.displacementScale.value = material.displacementScale;
uniforms.displacementBias.value = material.displacementBias;
}
}
return {
refreshFogUniforms: refreshFogUniforms,
refreshMaterialUniforms: refreshMaterialUniforms
};
}
function createCanvasElement() {
const canvas = createElementNS('canvas');
canvas.style.display = 'block';
return canvas;
}
function WebGLRenderer(parameters = {}) {
const _canvas = parameters.canvas !== undefined ? parameters.canvas : createCanvasElement(),
_context = parameters.context !== undefined ? parameters.context : null,
_alpha = parameters.alpha !== undefined ? parameters.alpha : false,
_depth = parameters.depth !== undefined ? parameters.depth : true,
_stencil = parameters.stencil !== undefined ? parameters.stencil : true,
_antialias = parameters.antialias !== undefined ? parameters.antialias : false,
_premultipliedAlpha = parameters.premultipliedAlpha !== undefined ? parameters.premultipliedAlpha : true,
_preserveDrawingBuffer = parameters.preserveDrawingBuffer !== undefined ? parameters.preserveDrawingBuffer : false,
_powerPreference = parameters.powerPreference !== undefined ? parameters.powerPreference : 'default',
_failIfMajorPerformanceCaveat = parameters.failIfMajorPerformanceCaveat !== undefined ? parameters.failIfMajorPerformanceCaveat : false;
let currentRenderList = null;
let currentRenderState = null; // render() can be called from within a callback triggered by another render.
// We track this so that the nested render call gets its list and state isolated from the parent render call.
const renderListStack = [];
const renderStateStack = []; // public properties
this.domElement = _canvas; // Debug configuration container
this.debug = {
/**
* Enables error checking and reporting when shader programs are being compiled
* @type {boolean}
*/
checkShaderErrors: true
}; // clearing
this.autoClear = true;
this.autoClearColor = true;
this.autoClearDepth = true;
this.autoClearStencil = true; // scene graph
this.sortObjects = true; // user-defined clipping
this.clippingPlanes = [];
this.localClippingEnabled = false; // physically based shading
this.gammaFactor = 2.0; // for backwards compatibility
this.outputEncoding = LinearEncoding; // physical lights
this.physicallyCorrectLights = false; // tone mapping
this.toneMapping = NoToneMapping;
this.toneMappingExposure = 1.0; // internal properties
const _this = this;
let _isContextLost = false; // internal state cache
let _currentActiveCubeFace = 0;
let _currentActiveMipmapLevel = 0;
let _currentRenderTarget = null;
let _currentMaterialId = -1;
let _currentCamera = null;
const _currentViewport = new Vector4();
const _currentScissor = new Vector4();
let _currentScissorTest = null; //
let _width = _canvas.width;
let _height = _canvas.height;
let _pixelRatio = 1;
let _opaqueSort = null;
let _transparentSort = null;
const _viewport = new Vector4(0, 0, _width, _height);
const _scissor = new Vector4(0, 0, _width, _height);
let _scissorTest = false; //
const _currentDrawBuffers = []; // frustum
const _frustum = new Frustum(); // clipping
let _clippingEnabled = false;
let _localClippingEnabled = false; // transmission
let _transmissionRenderTarget = null; // camera matrices cache
const _projScreenMatrix = new Matrix4();
const _vector3 = new Vector3();
const _emptyScene = {
background: null,
fog: null,
environment: null,
overrideMaterial: null,
isScene: true
};
function getTargetPixelRatio() {
return _currentRenderTarget === null ? _pixelRatio : 1;
} // initialize
let _gl = _context;
function getContext(contextNames, contextAttributes) {
for (let i = 0; i < contextNames.length; i++) {
const contextName = contextNames[i];
const context = _canvas.getContext(contextName, contextAttributes);
if (context !== null) return context;
}
return null;
}
try {
const contextAttributes = {
alpha: _alpha,
depth: _depth,
stencil: _stencil,
antialias: _antialias,
premultipliedAlpha: _premultipliedAlpha,
preserveDrawingBuffer: _preserveDrawingBuffer,
powerPreference: _powerPreference,
failIfMajorPerformanceCaveat: _failIfMajorPerformanceCaveat
}; // event listeners must be registered before WebGL context is created, see #12753
_canvas.addEventListener('webglcontextlost', onContextLost, false);
_canvas.addEventListener('webglcontextrestored', onContextRestore, false);
if (_gl === null) {
const contextNames = ['webgl2', 'webgl', 'experimental-webgl'];
if (_this.isWebGL1Renderer === true) {
contextNames.shift();
}
_gl = getContext(contextNames, contextAttributes);
if (_gl === null) {
if (getContext(contextNames)) {
throw new Error('Error creating WebGL context with your selected attributes.');
} else {
throw new Error('Error creating WebGL context.');
}
}
} // Some experimental-webgl implementations do not have getShaderPrecisionFormat
if (_gl.getShaderPrecisionFormat === undefined) {
_gl.getShaderPrecisionFormat = function () {
return {
'rangeMin': 1,
'rangeMax': 1,
'precision': 1
};
};
}
} catch (error) {
console.error('THREE.WebGLRenderer: ' + error.message);
throw error;
}
let extensions, capabilities, state, info;
let properties, textures, cubemaps, cubeuvmaps, attributes, geometries, objects;
let programCache, materials, renderLists, renderStates, clipping, shadowMap;
let background, morphtargets, bufferRenderer, indexedBufferRenderer;
let utils, bindingStates;
function initGLContext() {
extensions = new WebGLExtensions(_gl);
capabilities = new WebGLCapabilities(_gl, extensions, parameters);
extensions.init(capabilities);
utils = new WebGLUtils(_gl, extensions, capabilities);
state = new WebGLState(_gl, extensions, capabilities);
_currentDrawBuffers[0] = _gl.BACK;
info = new WebGLInfo(_gl);
properties = new WebGLProperties();
textures = new WebGLTextures(_gl, extensions, state, properties, capabilities, utils, info);
cubemaps = new WebGLCubeMaps(_this);
cubeuvmaps = new WebGLCubeUVMaps(_this);
attributes = new WebGLAttributes(_gl, capabilities);
bindingStates = new WebGLBindingStates(_gl, extensions, attributes, capabilities);
geometries = new WebGLGeometries(_gl, attributes, info, bindingStates);
objects = new WebGLObjects(_gl, geometries, attributes, info);
morphtargets = new WebGLMorphtargets(_gl, capabilities, textures);
clipping = new WebGLClipping(properties);
programCache = new WebGLPrograms(_this, cubemaps, cubeuvmaps, extensions, capabilities, bindingStates, clipping);
materials = new WebGLMaterials(properties);
renderLists = new WebGLRenderLists(properties);
renderStates = new WebGLRenderStates(extensions, capabilities);
background = new WebGLBackground(_this, cubemaps, state, objects, _premultipliedAlpha);
shadowMap = new WebGLShadowMap(_this, objects, capabilities);
bufferRenderer = new WebGLBufferRenderer(_gl, extensions, info, capabilities);
indexedBufferRenderer = new WebGLIndexedBufferRenderer(_gl, extensions, info, capabilities);
info.programs = programCache.programs;
_this.capabilities = capabilities;
_this.extensions = extensions;
_this.properties = properties;
_this.renderLists = renderLists;
_this.shadowMap = shadowMap;
_this.state = state;
_this.info = info;
}
initGLContext(); // xr
const xr = new WebXRManager(_this, _gl);
this.xr = xr; // API
this.getContext = function () {
return _gl;
};
this.getContextAttributes = function () {
return _gl.getContextAttributes();
};
this.forceContextLoss = function () {
const extension = extensions.get('WEBGL_lose_context');
if (extension) extension.loseContext();
};
this.forceContextRestore = function () {
const extension = extensions.get('WEBGL_lose_context');
if (extension) extension.restoreContext();
};
this.getPixelRatio = function () {
return _pixelRatio;
};
this.setPixelRatio = function (value) {
if (value === undefined) return;
_pixelRatio = value;
this.setSize(_width, _height, false);
};
this.getSize = function (target) {
return target.set(_width, _height);
};
this.setSize = function (width, height, updateStyle) {
if (xr.isPresenting) {
console.warn('THREE.WebGLRenderer: Can\'t change size while VR device is presenting.');
return;
}
_width = width;
_height = height;
_canvas.width = Math.floor(width * _pixelRatio);
_canvas.height = Math.floor(height * _pixelRatio);
if (updateStyle !== false) {
_canvas.style.width = width + 'px';
_canvas.style.height = height + 'px';
}
this.setViewport(0, 0, width, height);
};
this.getDrawingBufferSize = function (target) {
return target.set(_width * _pixelRatio, _height * _pixelRatio).floor();
};
this.setDrawingBufferSize = function (width, height, pixelRatio) {
_width = width;
_height = height;
_pixelRatio = pixelRatio;
_canvas.width = Math.floor(width * pixelRatio);
_canvas.height = Math.floor(height * pixelRatio);
this.setViewport(0, 0, width, height);
};
this.getCurrentViewport = function (target) {
return target.copy(_currentViewport);
};
this.getViewport = function (target) {
return target.copy(_viewport);
};
this.setViewport = function (x, y, width, height) {
if (x.isVector4) {
_viewport.set(x.x, x.y, x.z, x.w);
} else {
_viewport.set(x, y, width, height);
}
state.viewport(_currentViewport.copy(_viewport).multiplyScalar(_pixelRatio).floor());
};
this.getScissor = function (target) {
return target.copy(_scissor);
};
this.setScissor = function (x, y, width, height) {
if (x.isVector4) {
_scissor.set(x.x, x.y, x.z, x.w);
} else {
_scissor.set(x, y, width, height);
}
state.scissor(_currentScissor.copy(_scissor).multiplyScalar(_pixelRatio).floor());
};
this.getScissorTest = function () {
return _scissorTest;
};
this.setScissorTest = function (boolean) {
state.setScissorTest(_scissorTest = boolean);
};
this.setOpaqueSort = function (method) {
_opaqueSort = method;
};
this.setTransparentSort = function (method) {
_transparentSort = method;
}; // Clearing
this.getClearColor = function (target) {
return target.copy(background.getClearColor());
};
this.setClearColor = function () {
background.setClearColor.apply(background, arguments);
};
this.getClearAlpha = function () {
return background.getClearAlpha();
};
this.setClearAlpha = function () {
background.setClearAlpha.apply(background, arguments);
};
this.clear = function (color, depth, stencil) {
let bits = 0;
if (color === undefined || color) bits |= _gl.COLOR_BUFFER_BIT;
if (depth === undefined || depth) bits |= _gl.DEPTH_BUFFER_BIT;
if (stencil === undefined || stencil) bits |= _gl.STENCIL_BUFFER_BIT;
_gl.clear(bits);
};
this.clearColor = function () {
this.clear(true, false, false);
};
this.clearDepth = function () {
this.clear(false, true, false);
};
this.clearStencil = function () {
this.clear(false, false, true);
}; //
this.dispose = function () {
_canvas.removeEventListener('webglcontextlost', onContextLost, false);
_canvas.removeEventListener('webglcontextrestored', onContextRestore, false);
renderLists.dispose();
renderStates.dispose();
properties.dispose();
cubemaps.dispose();
cubeuvmaps.dispose();
objects.dispose();
bindingStates.dispose();
xr.dispose();
xr.removeEventListener('sessionstart', onXRSessionStart);
xr.removeEventListener('sessionend', onXRSessionEnd);
if (_transmissionRenderTarget) {
_transmissionRenderTarget.dispose();
_transmissionRenderTarget = null;
}
animation.stop();
}; // Events
function onContextLost(event) {
event.preventDefault();
console.log('THREE.WebGLRenderer: Context Lost.');
_isContextLost = true;
}
function onContextRestore() {
console.log('THREE.WebGLRenderer: Context Restored.');
_isContextLost = false;
const infoAutoReset = info.autoReset;
const shadowMapEnabled = shadowMap.enabled;
const shadowMapAutoUpdate = shadowMap.autoUpdate;
const shadowMapNeedsUpdate = shadowMap.needsUpdate;
const shadowMapType = shadowMap.type;
initGLContext();
info.autoReset = infoAutoReset;
shadowMap.enabled = shadowMapEnabled;
shadowMap.autoUpdate = shadowMapAutoUpdate;
shadowMap.needsUpdate = shadowMapNeedsUpdate;
shadowMap.type = shadowMapType;
}
function onMaterialDispose(event) {
const material = event.target;
material.removeEventListener('dispose', onMaterialDispose);
deallocateMaterial(material);
} // Buffer deallocation
function deallocateMaterial(material) {
releaseMaterialProgramReferences(material);
properties.remove(material);
}
function releaseMaterialProgramReferences(material) {
const programs = properties.get(material).programs;
if (programs !== undefined) {
programs.forEach(function (program) {
programCache.releaseProgram(program);
});
}
} // Buffer rendering
this.renderBufferDirect = function (camera, scene, geometry, material, object, group) {
if (scene === null) scene = _emptyScene; // renderBufferDirect second parameter used to be fog (could be null)
const frontFaceCW = object.isMesh && object.matrixWorld.determinant() < 0;
const program = setProgram(camera, scene, geometry, material, object);
state.setMaterial(material, frontFaceCW); //
let index = geometry.index;
const position = geometry.attributes.position; //
if (index === null) {
if (position === undefined || position.count === 0) return;
} else if (index.count === 0) {
return;
} //
let rangeFactor = 1;
if (material.wireframe === true) {
index = geometries.getWireframeAttribute(geometry);
rangeFactor = 2;
}
bindingStates.setup(object, material, program, geometry, index);
let attribute;
let renderer = bufferRenderer;
if (index !== null) {
attribute = attributes.get(index);
renderer = indexedBufferRenderer;
renderer.setIndex(attribute);
} //
const dataCount = index !== null ? index.count : position.count;
const rangeStart = geometry.drawRange.start * rangeFactor;
const rangeCount = geometry.drawRange.count * rangeFactor;
const groupStart = group !== null ? group.start * rangeFactor : 0;
const groupCount = group !== null ? group.count * rangeFactor : Infinity;
const drawStart = Math.max(rangeStart, groupStart);
const drawEnd = Math.min(dataCount, rangeStart + rangeCount, groupStart + groupCount) - 1;
const drawCount = Math.max(0, drawEnd - drawStart + 1);
if (drawCount === 0) return; //
if (object.isMesh) {
if (material.wireframe === true) {
state.setLineWidth(material.wireframeLinewidth * getTargetPixelRatio());
renderer.setMode(_gl.LINES);
} else {
renderer.setMode(_gl.TRIANGLES);
}
} else if (object.isLine) {
let lineWidth = material.linewidth;
if (lineWidth === undefined) lineWidth = 1; // Not using Line*Material
state.setLineWidth(lineWidth * getTargetPixelRatio());
if (object.isLineSegments) {
renderer.setMode(_gl.LINES);
} else if (object.isLineLoop) {
renderer.setMode(_gl.LINE_LOOP);
} else {
renderer.setMode(_gl.LINE_STRIP);
}
} else if (object.isPoints) {
renderer.setMode(_gl.POINTS);
} else if (object.isSprite) {
renderer.setMode(_gl.TRIANGLES);
}
if (object.isInstancedMesh) {
renderer.renderInstances(drawStart, drawCount, object.count);
} else if (geometry.isInstancedBufferGeometry) {
const instanceCount = Math.min(geometry.instanceCount, geometry._maxInstanceCount);
renderer.renderInstances(drawStart, drawCount, instanceCount);
} else {
renderer.render(drawStart, drawCount);
}
}; // Compile
this.compile = function (scene, camera) {
currentRenderState = renderStates.get(scene);
currentRenderState.init();
renderStateStack.push(currentRenderState);
scene.traverseVisible(function (object) {
if (object.isLight && object.layers.test(camera.layers)) {
currentRenderState.pushLight(object);
if (object.castShadow) {
currentRenderState.pushShadow(object);
}
}
});
currentRenderState.setupLights(_this.physicallyCorrectLights);
scene.traverse(function (object) {
const material = object.material;
if (material) {
if (Array.isArray(material)) {
for (let i = 0; i < material.length; i++) {
const material2 = material[i];
getProgram(material2, scene, object);
}
} else {
getProgram(material, scene, object);
}
}
});
renderStateStack.pop();
currentRenderState = null;
}; // Animation Loop
let onAnimationFrameCallback = null;
function onAnimationFrame(time) {
if (onAnimationFrameCallback) onAnimationFrameCallback(time);
}
function onXRSessionStart() {
animation.stop();
}
function onXRSessionEnd() {
animation.start();
}
const animation = new WebGLAnimation();
animation.setAnimationLoop(onAnimationFrame);
if (typeof window !== 'undefined') animation.setContext(window);
this.setAnimationLoop = function (callback) {
onAnimationFrameCallback = callback;
xr.setAnimationLoop(callback);
callback === null ? animation.stop() : animation.start();
};
xr.addEventListener('sessionstart', onXRSessionStart);
xr.addEventListener('sessionend', onXRSessionEnd); // Rendering
this.render = function (scene, camera) {
if (camera !== undefined && camera.isCamera !== true) {
console.error('THREE.WebGLRenderer.render: camera is not an instance of THREE.Camera.');
return;
}
if (_isContextLost === true) return; // update scene graph
if (scene.autoUpdate === true) scene.updateMatrixWorld(); // update camera matrices and frustum
if (camera.parent === null) camera.updateMatrixWorld();
if (xr.enabled === true && xr.isPresenting === true) {
if (xr.cameraAutoUpdate === true) xr.updateCamera(camera);
camera = xr.getCamera(); // use XR camera for rendering
} //
if (scene.isScene === true) scene.onBeforeRender(_this, scene, camera, _currentRenderTarget);
currentRenderState = renderStates.get(scene, renderStateStack.length);
currentRenderState.init();
renderStateStack.push(currentRenderState);
_projScreenMatrix.multiplyMatrices(camera.projectionMatrix, camera.matrixWorldInverse);
_frustum.setFromProjectionMatrix(_projScreenMatrix);
_localClippingEnabled = this.localClippingEnabled;
_clippingEnabled = clipping.init(this.clippingPlanes, _localClippingEnabled, camera);
currentRenderList = renderLists.get(scene, renderListStack.length);
currentRenderList.init();
renderListStack.push(currentRenderList);
projectObject(scene, camera, 0, _this.sortObjects);
currentRenderList.finish();
if (_this.sortObjects === true) {
currentRenderList.sort(_opaqueSort, _transparentSort);
} //
if (_clippingEnabled === true) clipping.beginShadows();
const shadowsArray = currentRenderState.state.shadowsArray;
shadowMap.render(shadowsArray, scene, camera);
if (_clippingEnabled === true) clipping.endShadows(); //
if (this.info.autoReset === true) this.info.reset(); //
background.render(currentRenderList, scene); // render scene
currentRenderState.setupLights(_this.physicallyCorrectLights);
if (camera.isArrayCamera) {
const cameras = camera.cameras;
for (let i = 0, l = cameras.length; i < l; i++) {
const camera2 = cameras[i];
renderScene(currentRenderList, scene, camera2, camera2.viewport);
}
} else {
renderScene(currentRenderList, scene, camera);
} //
if (_currentRenderTarget !== null) {
// resolve multisample renderbuffers to a single-sample texture if necessary
textures.updateMultisampleRenderTarget(_currentRenderTarget); // Generate mipmap if we're using any kind of mipmap filtering
textures.updateRenderTargetMipmap(_currentRenderTarget);
} //
if (scene.isScene === true) scene.onAfterRender(_this, scene, camera); // Ensure depth buffer writing is enabled so it can be cleared on next render
state.buffers.depth.setTest(true);
state.buffers.depth.setMask(true);
state.buffers.color.setMask(true);
state.setPolygonOffset(false); // _gl.finish();
bindingStates.resetDefaultState();
_currentMaterialId = -1;
_currentCamera = null;
renderStateStack.pop();
if (renderStateStack.length > 0) {
currentRenderState = renderStateStack[renderStateStack.length - 1];
} else {
currentRenderState = null;
}
renderListStack.pop();
if (renderListStack.length > 0) {
currentRenderList = renderListStack[renderListStack.length - 1];
} else {
currentRenderList = null;
}
};
function projectObject(object, camera, groupOrder, sortObjects) {
if (object.visible === false) return;
const visible = object.layers.test(camera.layers);
if (visible) {
if (object.isGroup) {
groupOrder = object.renderOrder;
} else if (object.isLOD) {
if (object.autoUpdate === true) object.update(camera);
} else if (object.isLight) {
currentRenderState.pushLight(object);
if (object.castShadow) {
currentRenderState.pushShadow(object);
}
} else if (object.isSprite) {
if (!object.frustumCulled || _frustum.intersectsSprite(object)) {
if (sortObjects) {
_vector3.setFromMatrixPosition(object.matrixWorld).applyMatrix4(_projScreenMatrix);
}
const geometry = objects.update(object);
const material = object.material;
if (material.visible) {
currentRenderList.push(object, geometry, material, groupOrder, _vector3.z, null);
}
}
} else if (object.isMesh || object.isLine || object.isPoints) {
if (object.isSkinnedMesh) {
// update skeleton only once in a frame
if (object.skeleton.frame !== info.render.frame) {
object.skeleton.update();
object.skeleton.frame = info.render.frame;
}
}
if (!object.frustumCulled || _frustum.intersectsObject(object)) {
if (sortObjects) {
_vector3.setFromMatrixPosition(object.matrixWorld).applyMatrix4(_projScreenMatrix);
}
const geometry = objects.update(object);
const material = object.material;
if (Array.isArray(material)) {
const groups = geometry.groups;
for (let i = 0, l = groups.length; i < l; i++) {
const group = groups[i];
const groupMaterial = material[group.materialIndex];
if (groupMaterial && groupMaterial.visible) {
currentRenderList.push(object, geometry, groupMaterial, groupOrder, _vector3.z, group);
}
}
} else if (material.visible) {
currentRenderList.push(object, geometry, material, groupOrder, _vector3.z, null);
}
}
}
}
const children = object.children;
for (let i = 0, l = children.length; i < l; i++) {
projectObject(children[i], camera, groupOrder, sortObjects);
}
}
function renderScene(currentRenderList, scene, camera, viewport) {
const opaqueObjects = currentRenderList.opaque;
const transmissiveObjects = currentRenderList.transmissive;
const transparentObjects = currentRenderList.transparent;
currentRenderState.setupLightsView(camera);
if (transmissiveObjects.length > 0) renderTransmissionPass(opaqueObjects, scene, camera);
if (viewport) state.viewport(_currentViewport.copy(viewport));
if (opaqueObjects.length > 0) renderObjects(opaqueObjects, scene, camera);
if (transmissiveObjects.length > 0) renderObjects(transmissiveObjects, scene, camera);
if (transparentObjects.length > 0) renderObjects(transparentObjects, scene, camera);
}
function renderTransmissionPass(opaqueObjects, scene, camera) {
if (_transmissionRenderTarget === null) {
const needsAntialias = _antialias === true && capabilities.isWebGL2 === true;
const renderTargetType = needsAntialias ? WebGLMultisampleRenderTarget : WebGLRenderTarget;
_transmissionRenderTarget = new renderTargetType(1024, 1024, {
generateMipmaps: true,
type: utils.convert(HalfFloatType) !== null ? HalfFloatType : UnsignedByteType,
minFilter: LinearMipmapLinearFilter,
magFilter: NearestFilter,
wrapS: ClampToEdgeWrapping,
wrapT: ClampToEdgeWrapping
});
}
const currentRenderTarget = _this.getRenderTarget();
_this.setRenderTarget(_transmissionRenderTarget);
_this.clear(); // Turn off the features which can affect the frag color for opaque objects pass.
// Otherwise they are applied twice in opaque objects pass and transmission objects pass.
const currentToneMapping = _this.toneMapping;
_this.toneMapping = NoToneMapping;
renderObjects(opaqueObjects, scene, camera);
_this.toneMapping = currentToneMapping;
textures.updateMultisampleRenderTarget(_transmissionRenderTarget);
textures.updateRenderTargetMipmap(_transmissionRenderTarget);
_this.setRenderTarget(currentRenderTarget);
}
function renderObjects(renderList, scene, camera) {
const overrideMaterial = scene.isScene === true ? scene.overrideMaterial : null;
for (let i = 0, l = renderList.length; i < l; i++) {
const renderItem = renderList[i];
const object = renderItem.object;
const geometry = renderItem.geometry;
const material = overrideMaterial === null ? renderItem.material : overrideMaterial;
const group = renderItem.group;
if (object.layers.test(camera.layers)) {
renderObject(object, scene, camera, geometry, material, group);
}
}
}
function renderObject(object, scene, camera, geometry, material, group) {
object.onBeforeRender(_this, scene, camera, geometry, material, group);
object.modelViewMatrix.multiplyMatrices(camera.matrixWorldInverse, object.matrixWorld);
object.normalMatrix.getNormalMatrix(object.modelViewMatrix);
material.onBeforeRender(_this, scene, camera, geometry, object, group);
if (material.transparent === true && material.side === DoubleSide) {
material.side = BackSide;
material.needsUpdate = true;
_this.renderBufferDirect(camera, scene, geometry, material, object, group);
material.side = FrontSide;
material.needsUpdate = true;
_this.renderBufferDirect(camera, scene, geometry, material, object, group);
material.side = DoubleSide;
} else {
_this.renderBufferDirect(camera, scene, geometry, material, object, group);
}
object.onAfterRender(_this, scene, camera, geometry, material, group);
}
function getProgram(material, scene, object) {
if (scene.isScene !== true) scene = _emptyScene; // scene could be a Mesh, Line, Points, ...
const materialProperties = properties.get(material);
const lights = currentRenderState.state.lights;
const shadowsArray = currentRenderState.state.shadowsArray;
const lightsStateVersion = lights.state.version;
const parameters = programCache.getParameters(material, lights.state, shadowsArray, scene, object);
const programCacheKey = programCache.getProgramCacheKey(parameters);
let programs = materialProperties.programs; // always update environment and fog - changing these trigger an getProgram call, but it's possible that the program doesn't change
materialProperties.environment = material.isMeshStandardMaterial ? scene.environment : null;
materialProperties.fog = scene.fog;
materialProperties.envMap = (material.isMeshStandardMaterial ? cubeuvmaps : cubemaps).get(material.envMap || materialProperties.environment);
if (programs === undefined) {
// new material
material.addEventListener('dispose', onMaterialDispose);
programs = new Map();
materialProperties.programs = programs;
}
let program = programs.get(programCacheKey);
if (program !== undefined) {
// early out if program and light state is identical
if (materialProperties.currentProgram === program && materialProperties.lightsStateVersion === lightsStateVersion) {
updateCommonMaterialProperties(material, parameters);
return program;
}
} else {
parameters.uniforms = programCache.getUniforms(material);
material.onBuild(object, parameters, _this);
material.onBeforeCompile(parameters, _this);
program = programCache.acquireProgram(parameters, programCacheKey);
programs.set(programCacheKey, program);
materialProperties.uniforms = parameters.uniforms;
}
const uniforms = materialProperties.uniforms;
if (!material.isShaderMaterial && !material.isRawShaderMaterial || material.clipping === true) {
uniforms.clippingPlanes = clipping.uniform;
}
updateCommonMaterialProperties(material, parameters); // store the light setup it was created for
materialProperties.needsLights = materialNeedsLights(material);
materialProperties.lightsStateVersion = lightsStateVersion;
if (materialProperties.needsLights) {
// wire up the material to this renderer's lighting state
uniforms.ambientLightColor.value = lights.state.ambient;
uniforms.lightProbe.value = lights.state.probe;
uniforms.directionalLights.value = lights.state.directional;
uniforms.directionalLightShadows.value = lights.state.directionalShadow;
uniforms.spotLights.value = lights.state.spot;
uniforms.spotLightShadows.value = lights.state.spotShadow;
uniforms.rectAreaLights.value = lights.state.rectArea;
uniforms.ltc_1.value = lights.state.rectAreaLTC1;
uniforms.ltc_2.value = lights.state.rectAreaLTC2;
uniforms.pointLights.value = lights.state.point;
uniforms.pointLightShadows.value = lights.state.pointShadow;
uniforms.hemisphereLights.value = lights.state.hemi;
uniforms.directionalShadowMap.value = lights.state.directionalShadowMap;
uniforms.directionalShadowMatrix.value = lights.state.directionalShadowMatrix;
uniforms.spotShadowMap.value = lights.state.spotShadowMap;
uniforms.spotShadowMatrix.value = lights.state.spotShadowMatrix;
uniforms.pointShadowMap.value = lights.state.pointShadowMap;
uniforms.pointShadowMatrix.value = lights.state.pointShadowMatrix; // TODO (abelnation): add area lights shadow info to uniforms
}
const progUniforms = program.getUniforms();
const uniformsList = WebGLUniforms.seqWithValue(progUniforms.seq, uniforms);
materialProperties.currentProgram = program;
materialProperties.uniformsList = uniformsList;
return program;
}
function updateCommonMaterialProperties(material, parameters) {
const materialProperties = properties.get(material);
materialProperties.outputEncoding = parameters.outputEncoding;
materialProperties.instancing = parameters.instancing;
materialProperties.skinning = parameters.skinning;
materialProperties.morphTargets = parameters.morphTargets;
materialProperties.morphNormals = parameters.morphNormals;
materialProperties.morphTargetsCount = parameters.morphTargetsCount;
materialProperties.numClippingPlanes = parameters.numClippingPlanes;
materialProperties.numIntersection = parameters.numClipIntersection;
materialProperties.vertexAlphas = parameters.vertexAlphas;
materialProperties.vertexTangents = parameters.vertexTangents;
}
function setProgram(camera, scene, geometry, material, object) {
if (scene.isScene !== true) scene = _emptyScene; // scene could be a Mesh, Line, Points, ...
textures.resetTextureUnits();
const fog = scene.fog;
const environment = material.isMeshStandardMaterial ? scene.environment : null;
const encoding = _currentRenderTarget === null ? _this.outputEncoding : _currentRenderTarget.texture.encoding;
const envMap = (material.isMeshStandardMaterial ? cubeuvmaps : cubemaps).get(material.envMap || environment);
const vertexAlphas = material.vertexColors === true && !!geometry.attributes.color && geometry.attributes.color.itemSize === 4;
const vertexTangents = !!material.normalMap && !!geometry.attributes.tangent;
const morphTargets = !!geometry.morphAttributes.position;
const morphNormals = !!geometry.morphAttributes.normal;
const morphTargetsCount = !!geometry.morphAttributes.position ? geometry.morphAttributes.position.length : 0;
const materialProperties = properties.get(material);
const lights = currentRenderState.state.lights;
if (_clippingEnabled === true) {
if (_localClippingEnabled === true || camera !== _currentCamera) {
const useCache = camera === _currentCamera && material.id === _currentMaterialId; // we might want to call this function with some ClippingGroup
// object instead of the material, once it becomes feasible
// (#8465, #8379)
clipping.setState(material, camera, useCache);
}
} //
let needsProgramChange = false;
if (material.version === materialProperties.__version) {
if (materialProperties.needsLights && materialProperties.lightsStateVersion !== lights.state.version) {
needsProgramChange = true;
} else if (materialProperties.outputEncoding !== encoding) {
needsProgramChange = true;
} else if (object.isInstancedMesh && materialProperties.instancing === false) {
needsProgramChange = true;
} else if (!object.isInstancedMesh && materialProperties.instancing === true) {
needsProgramChange = true;
} else if (object.isSkinnedMesh && materialProperties.skinning === false) {
needsProgramChange = true;
} else if (!object.isSkinnedMesh && materialProperties.skinning === true) {
needsProgramChange = true;
} else if (materialProperties.envMap !== envMap) {
needsProgramChange = true;
} else if (material.fog && materialProperties.fog !== fog) {
needsProgramChange = true;
} else if (materialProperties.numClippingPlanes !== undefined && (materialProperties.numClippingPlanes !== clipping.numPlanes || materialProperties.numIntersection !== clipping.numIntersection)) {
needsProgramChange = true;
} else if (materialProperties.vertexAlphas !== vertexAlphas) {
needsProgramChange = true;
} else if (materialProperties.vertexTangents !== vertexTangents) {
needsProgramChange = true;
} else if (materialProperties.morphTargets !== morphTargets) {
needsProgramChange = true;
} else if (materialProperties.morphNormals !== morphNormals) {
needsProgramChange = true;
} else if (capabilities.isWebGL2 === true && materialProperties.morphTargetsCount !== morphTargetsCount) {
needsProgramChange = true;
}
} else {
needsProgramChange = true;
materialProperties.__version = material.version;
} //
let program = materialProperties.currentProgram;
if (needsProgramChange === true) {
program = getProgram(material, scene, object);
}
let refreshProgram = false;
let refreshMaterial = false;
let refreshLights = false;
const p_uniforms = program.getUniforms(),
m_uniforms = materialProperties.uniforms;
if (state.useProgram(program.program)) {
refreshProgram = true;
refreshMaterial = true;
refreshLights = true;
}
if (material.id !== _currentMaterialId) {
_currentMaterialId = material.id;
refreshMaterial = true;
}
if (refreshProgram || _currentCamera !== camera) {
p_uniforms.setValue(_gl, 'projectionMatrix', camera.projectionMatrix);
if (capabilities.logarithmicDepthBuffer) {
p_uniforms.setValue(_gl, 'logDepthBufFC', 2.0 / (Math.log(camera.far + 1.0) / Math.LN2));
}
if (_currentCamera !== camera) {
_currentCamera = camera; // lighting uniforms depend on the camera so enforce an update
// now, in case this material supports lights - or later, when
// the next material that does gets activated:
refreshMaterial = true; // set to true on material change
refreshLights = true; // remains set until update done
} // load material specific uniforms
// (shader material also gets them for the sake of genericity)
if (material.isShaderMaterial || material.isMeshPhongMaterial || material.isMeshToonMaterial || material.isMeshStandardMaterial || material.envMap) {
const uCamPos = p_uniforms.map.cameraPosition;
if (uCamPos !== undefined) {
uCamPos.setValue(_gl, _vector3.setFromMatrixPosition(camera.matrixWorld));
}
}
if (material.isMeshPhongMaterial || material.isMeshToonMaterial || material.isMeshLambertMaterial || material.isMeshBasicMaterial || material.isMeshStandardMaterial || material.isShaderMaterial) {
p_uniforms.setValue(_gl, 'isOrthographic', camera.isOrthographicCamera === true);
}
if (material.isMeshPhongMaterial || material.isMeshToonMaterial || material.isMeshLambertMaterial || material.isMeshBasicMaterial || material.isMeshStandardMaterial || material.isShaderMaterial || material.isShadowMaterial || object.isSkinnedMesh) {
p_uniforms.setValue(_gl, 'viewMatrix', camera.matrixWorldInverse);
}
} // skinning and morph target uniforms must be set even if material didn't change
// auto-setting of texture unit for bone and morph texture must go before other textures
// otherwise textures used for skinning and morphing can take over texture units reserved for other material textures
if (object.isSkinnedMesh) {
p_uniforms.setOptional(_gl, object, 'bindMatrix');
p_uniforms.setOptional(_gl, object, 'bindMatrixInverse');
const skeleton = object.skeleton;
if (skeleton) {
if (capabilities.floatVertexTextures) {
if (skeleton.boneTexture === null) skeleton.computeBoneTexture();
p_uniforms.setValue(_gl, 'boneTexture', skeleton.boneTexture, textures);
p_uniforms.setValue(_gl, 'boneTextureSize', skeleton.boneTextureSize);
} else {
p_uniforms.setOptional(_gl, skeleton, 'boneMatrices');
}
}
}
if (!!geometry && (geometry.morphAttributes.position !== undefined || geometry.morphAttributes.normal !== undefined)) {
morphtargets.update(object, geometry, material, program);
}
if (refreshMaterial || materialProperties.receiveShadow !== object.receiveShadow) {
materialProperties.receiveShadow = object.receiveShadow;
p_uniforms.setValue(_gl, 'receiveShadow', object.receiveShadow);
}
if (refreshMaterial) {
p_uniforms.setValue(_gl, 'toneMappingExposure', _this.toneMappingExposure);
if (materialProperties.needsLights) {
// the current material requires lighting info
// note: all lighting uniforms are always set correctly
// they simply reference the renderer's state for their
// values
//
// use the current material's .needsUpdate flags to set
// the GL state when required
markUniformsLightsNeedsUpdate(m_uniforms, refreshLights);
} // refresh uniforms common to several materials
if (fog && material.fog) {
materials.refreshFogUniforms(m_uniforms, fog);
}
materials.refreshMaterialUniforms(m_uniforms, material, _pixelRatio, _height, _transmissionRenderTarget);
WebGLUniforms.upload(_gl, materialProperties.uniformsList, m_uniforms, textures);
}
if (material.isShaderMaterial && material.uniformsNeedUpdate === true) {
WebGLUniforms.upload(_gl, materialProperties.uniformsList, m_uniforms, textures);
material.uniformsNeedUpdate = false;
}
if (material.isSpriteMaterial) {
p_uniforms.setValue(_gl, 'center', object.center);
} // common matrices
p_uniforms.setValue(_gl, 'modelViewMatrix', object.modelViewMatrix);
p_uniforms.setValue(_gl, 'normalMatrix', object.normalMatrix);
p_uniforms.setValue(_gl, 'modelMatrix', object.matrixWorld);
return program;
} // If uniforms are marked as clean, they don't need to be loaded to the GPU.
function markUniformsLightsNeedsUpdate(uniforms, value) {
uniforms.ambientLightColor.needsUpdate = value;
uniforms.lightProbe.needsUpdate = value;
uniforms.directionalLights.needsUpdate = value;
uniforms.directionalLightShadows.needsUpdate = value;
uniforms.pointLights.needsUpdate = value;
uniforms.pointLightShadows.needsUpdate = value;
uniforms.spotLights.needsUpdate = value;
uniforms.spotLightShadows.needsUpdate = value;
uniforms.rectAreaLights.needsUpdate = value;
uniforms.hemisphereLights.needsUpdate = value;
}
function materialNeedsLights(material) {
return material.isMeshLambertMaterial || material.isMeshToonMaterial || material.isMeshPhongMaterial || material.isMeshStandardMaterial || material.isShadowMaterial || material.isShaderMaterial && material.lights === true;
}
this.getActiveCubeFace = function () {
return _currentActiveCubeFace;
};
this.getActiveMipmapLevel = function () {
return _currentActiveMipmapLevel;
};
this.getRenderTarget = function () {
return _currentRenderTarget;
};
this.setRenderTarget = function (renderTarget, activeCubeFace = 0, activeMipmapLevel = 0) {
_currentRenderTarget = renderTarget;
_currentActiveCubeFace = activeCubeFace;
_currentActiveMipmapLevel = activeMipmapLevel;
if (renderTarget && properties.get(renderTarget).__webglFramebuffer === undefined) {
textures.setupRenderTarget(renderTarget);
}
let framebuffer = null;
let isCube = false;
let isRenderTarget3D = false;
if (renderTarget) {
const texture = renderTarget.texture;
if (texture.isDataTexture3D || texture.isDataTexture2DArray) {
isRenderTarget3D = true;
}
const __webglFramebuffer = properties.get(renderTarget).__webglFramebuffer;
if (renderTarget.isWebGLCubeRenderTarget) {
framebuffer = __webglFramebuffer[activeCubeFace];
isCube = true;
} else if (renderTarget.isWebGLMultisampleRenderTarget) {
framebuffer = properties.get(renderTarget).__webglMultisampledFramebuffer;
} else {
framebuffer = __webglFramebuffer;
}
_currentViewport.copy(renderTarget.viewport);
_currentScissor.copy(renderTarget.scissor);
_currentScissorTest = renderTarget.scissorTest;
} else {
_currentViewport.copy(_viewport).multiplyScalar(_pixelRatio).floor();
_currentScissor.copy(_scissor).multiplyScalar(_pixelRatio).floor();
_currentScissorTest = _scissorTest;
}
const framebufferBound = state.bindFramebuffer(_gl.FRAMEBUFFER, framebuffer);
if (framebufferBound && capabilities.drawBuffers) {
let needsUpdate = false;
if (renderTarget) {
if (renderTarget.isWebGLMultipleRenderTargets) {
const textures = renderTarget.texture;
if (_currentDrawBuffers.length !== textures.length || _currentDrawBuffers[0] !== _gl.COLOR_ATTACHMENT0) {
for (let i = 0, il = textures.length; i < il; i++) {
_currentDrawBuffers[i] = _gl.COLOR_ATTACHMENT0 + i;
}
_currentDrawBuffers.length = textures.length;
needsUpdate = true;
}
} else {
if (_currentDrawBuffers.length !== 1 || _currentDrawBuffers[0] !== _gl.COLOR_ATTACHMENT0) {
_currentDrawBuffers[0] = _gl.COLOR_ATTACHMENT0;
_currentDrawBuffers.length = 1;
needsUpdate = true;
}
}
} else {
if (_currentDrawBuffers.length !== 1 || _currentDrawBuffers[0] !== _gl.BACK) {
_currentDrawBuffers[0] = _gl.BACK;
_currentDrawBuffers.length = 1;
needsUpdate = true;
}
}
if (needsUpdate) {
if (capabilities.isWebGL2) {
_gl.drawBuffers(_currentDrawBuffers);
} else {
extensions.get('WEBGL_draw_buffers').drawBuffersWEBGL(_currentDrawBuffers);
}
}
}
state.viewport(_currentViewport);
state.scissor(_currentScissor);
state.setScissorTest(_currentScissorTest);
if (isCube) {
const textureProperties = properties.get(renderTarget.texture);
_gl.framebufferTexture2D(_gl.FRAMEBUFFER, _gl.COLOR_ATTACHMENT0, _gl.TEXTURE_CUBE_MAP_POSITIVE_X + activeCubeFace, textureProperties.__webglTexture, activeMipmapLevel);
} else if (isRenderTarget3D) {
const textureProperties = properties.get(renderTarget.texture);
const layer = activeCubeFace || 0;
_gl.framebufferTextureLayer(_gl.FRAMEBUFFER, _gl.COLOR_ATTACHMENT0, textureProperties.__webglTexture, activeMipmapLevel || 0, layer);
}
_currentMaterialId = -1; // reset current material to ensure correct uniform bindings
};
this.readRenderTargetPixels = function (renderTarget, x, y, width, height, buffer, activeCubeFaceIndex) {
if (!(renderTarget && renderTarget.isWebGLRenderTarget)) {
console.error('THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not THREE.WebGLRenderTarget.');
return;
}
let framebuffer = properties.get(renderTarget).__webglFramebuffer;
if (renderTarget.isWebGLCubeRenderTarget && activeCubeFaceIndex !== undefined) {
framebuffer = framebuffer[activeCubeFaceIndex];
}
if (framebuffer) {
state.bindFramebuffer(_gl.FRAMEBUFFER, framebuffer);
try {
const texture = renderTarget.texture;
const textureFormat = texture.format;
const textureType = texture.type;
if (textureFormat !== RGBAFormat && utils.convert(textureFormat) !== _gl.getParameter(_gl.IMPLEMENTATION_COLOR_READ_FORMAT)) {
console.error('THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not in RGBA or implementation defined format.');
return;
}
const halfFloatSupportedByExt = textureType === HalfFloatType && (extensions.has('EXT_color_buffer_half_float') || capabilities.isWebGL2 && extensions.has('EXT_color_buffer_float'));
if (textureType !== UnsignedByteType && utils.convert(textureType) !== _gl.getParameter(_gl.IMPLEMENTATION_COLOR_READ_TYPE) && // Edge and Chrome Mac < 52 (#9513)
!(textureType === FloatType && (capabilities.isWebGL2 || extensions.has('OES_texture_float') || extensions.has('WEBGL_color_buffer_float'))) && // Chrome Mac >= 52 and Firefox
!halfFloatSupportedByExt) {
console.error('THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not in UnsignedByteType or implementation defined type.');
return;
}
if (_gl.checkFramebufferStatus(_gl.FRAMEBUFFER) === _gl.FRAMEBUFFER_COMPLETE) {
// the following if statement ensures valid read requests (no out-of-bounds pixels, see #8604)
if (x >= 0 && x <= renderTarget.width - width && y >= 0 && y <= renderTarget.height - height) {
_gl.readPixels(x, y, width, height, utils.convert(textureFormat), utils.convert(textureType), buffer);
}
} else {
console.error('THREE.WebGLRenderer.readRenderTargetPixels: readPixels from renderTarget failed. Framebuffer not complete.');
}
} finally {
// restore framebuffer of current render target if necessary
const framebuffer = _currentRenderTarget !== null ? properties.get(_currentRenderTarget).__webglFramebuffer : null;
state.bindFramebuffer(_gl.FRAMEBUFFER, framebuffer);
}
}
};
this.copyFramebufferToTexture = function (position, texture, level = 0) {
const levelScale = Math.pow(2, -level);
const width = Math.floor(texture.image.width * levelScale);
const height = Math.floor(texture.image.height * levelScale);
let glFormat = utils.convert(texture.format);
if (capabilities.isWebGL2) {
// Workaround for https://bugs.chromium.org/p/chromium/issues/detail?id=1120100
// Not needed in Chrome 93+
if (glFormat === _gl.RGB) glFormat = _gl.RGB8;
if (glFormat === _gl.RGBA) glFormat = _gl.RGBA8;
}
textures.setTexture2D(texture, 0);
_gl.copyTexImage2D(_gl.TEXTURE_2D, level, glFormat, position.x, position.y, width, height, 0);
state.unbindTexture();
};
this.copyTextureToTexture = function (position, srcTexture, dstTexture, level = 0) {
const width = srcTexture.image.width;
const height = srcTexture.image.height;
const glFormat = utils.convert(dstTexture.format);
const glType = utils.convert(dstTexture.type);
textures.setTexture2D(dstTexture, 0); // As another texture upload may have changed pixelStorei
// parameters, make sure they are correct for the dstTexture
_gl.pixelStorei(_gl.UNPACK_FLIP_Y_WEBGL, dstTexture.flipY);
_gl.pixelStorei(_gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL, dstTexture.premultiplyAlpha);
_gl.pixelStorei(_gl.UNPACK_ALIGNMENT, dstTexture.unpackAlignment);
if (srcTexture.isDataTexture) {
_gl.texSubImage2D(_gl.TEXTURE_2D, level, position.x, position.y, width, height, glFormat, glType, srcTexture.image.data);
} else {
if (srcTexture.isCompressedTexture) {
_gl.compressedTexSubImage2D(_gl.TEXTURE_2D, level, position.x, position.y, srcTexture.mipmaps[0].width, srcTexture.mipmaps[0].height, glFormat, srcTexture.mipmaps[0].data);
} else {
_gl.texSubImage2D(_gl.TEXTURE_2D, level, position.x, position.y, glFormat, glType, srcTexture.image);
}
} // Generate mipmaps only when copying level 0
if (level === 0 && dstTexture.generateMipmaps) _gl.generateMipmap(_gl.TEXTURE_2D);
state.unbindTexture();
};
this.copyTextureToTexture3D = function (sourceBox, position, srcTexture, dstTexture, level = 0) {
if (_this.isWebGL1Renderer) {
console.warn('THREE.WebGLRenderer.copyTextureToTexture3D: can only be used with WebGL2.');
return;
}
const width = sourceBox.max.x - sourceBox.min.x + 1;
const height = sourceBox.max.y - sourceBox.min.y + 1;
const depth = sourceBox.max.z - sourceBox.min.z + 1;
const glFormat = utils.convert(dstTexture.format);
const glType = utils.convert(dstTexture.type);
let glTarget;
if (dstTexture.isDataTexture3D) {
textures.setTexture3D(dstTexture, 0);
glTarget = _gl.TEXTURE_3D;
} else if (dstTexture.isDataTexture2DArray) {
textures.setTexture2DArray(dstTexture, 0);
glTarget = _gl.TEXTURE_2D_ARRAY;
} else {
console.warn('THREE.WebGLRenderer.copyTextureToTexture3D: only supports THREE.DataTexture3D and THREE.DataTexture2DArray.');
return;
}
_gl.pixelStorei(_gl.UNPACK_FLIP_Y_WEBGL, dstTexture.flipY);
_gl.pixelStorei(_gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL, dstTexture.premultiplyAlpha);
_gl.pixelStorei(_gl.UNPACK_ALIGNMENT, dstTexture.unpackAlignment);
const unpackRowLen = _gl.getParameter(_gl.UNPACK_ROW_LENGTH);
const unpackImageHeight = _gl.getParameter(_gl.UNPACK_IMAGE_HEIGHT);
const unpackSkipPixels = _gl.getParameter(_gl.UNPACK_SKIP_PIXELS);
const unpackSkipRows = _gl.getParameter(_gl.UNPACK_SKIP_ROWS);
const unpackSkipImages = _gl.getParameter(_gl.UNPACK_SKIP_IMAGES);
const image = srcTexture.isCompressedTexture ? srcTexture.mipmaps[0] : srcTexture.image;
_gl.pixelStorei(_gl.UNPACK_ROW_LENGTH, image.width);
_gl.pixelStorei(_gl.UNPACK_IMAGE_HEIGHT, image.height);
_gl.pixelStorei(_gl.UNPACK_SKIP_PIXELS, sourceBox.min.x);
_gl.pixelStorei(_gl.UNPACK_SKIP_ROWS, sourceBox.min.y);
_gl.pixelStorei(_gl.UNPACK_SKIP_IMAGES, sourceBox.min.z);
if (srcTexture.isDataTexture || srcTexture.isDataTexture3D) {
_gl.texSubImage3D(glTarget, level, position.x, position.y, position.z, width, height, depth, glFormat, glType, image.data);
} else {
if (srcTexture.isCompressedTexture) {
console.warn('THREE.WebGLRenderer.copyTextureToTexture3D: untested support for compressed srcTexture.');
_gl.compressedTexSubImage3D(glTarget, level, position.x, position.y, position.z, width, height, depth, glFormat, image.data);
} else {
_gl.texSubImage3D(glTarget, level, position.x, position.y, position.z, width, height, depth, glFormat, glType, image);
}
}
_gl.pixelStorei(_gl.UNPACK_ROW_LENGTH, unpackRowLen);
_gl.pixelStorei(_gl.UNPACK_IMAGE_HEIGHT, unpackImageHeight);
_gl.pixelStorei(_gl.UNPACK_SKIP_PIXELS, unpackSkipPixels);
_gl.pixelStorei(_gl.UNPACK_SKIP_ROWS, unpackSkipRows);
_gl.pixelStorei(_gl.UNPACK_SKIP_IMAGES, unpackSkipImages); // Generate mipmaps only when copying level 0
if (level === 0 && dstTexture.generateMipmaps) _gl.generateMipmap(glTarget);
state.unbindTexture();
};
this.initTexture = function (texture) {
textures.setTexture2D(texture, 0);
state.unbindTexture();
};
this.resetState = function () {
_currentActiveCubeFace = 0;
_currentActiveMipmapLevel = 0;
_currentRenderTarget = null;
state.reset();
bindingStates.reset();
};
if (typeof __THREE_DEVTOOLS__ !== 'undefined') {
__THREE_DEVTOOLS__.dispatchEvent(new CustomEvent('observe', {
detail: this
})); // eslint-disable-line no-undef
}
}
class WebGL1Renderer extends WebGLRenderer {}
WebGL1Renderer.prototype.isWebGL1Renderer = true;
class FogExp2 {
constructor(color, density = 0.00025) {
this.name = '';
this.color = new Color(color);
this.density = density;
}
clone() {
return new FogExp2(this.color, this.density);
}
toJSON() {
return {
type: 'FogExp2',
color: this.color.getHex(),
density: this.density
};
}
}
FogExp2.prototype.isFogExp2 = true;
class Fog {
constructor(color, near = 1, far = 1000) {
this.name = '';
this.color = new Color(color);
this.near = near;
this.far = far;
}
clone() {
return new Fog(this.color, this.near, this.far);
}
toJSON() {
return {
type: 'Fog',
color: this.color.getHex(),
near: this.near,
far: this.far
};
}
}
Fog.prototype.isFog = true;
class Scene extends Object3D {
constructor() {
super();
this.type = 'Scene';
this.background = null;
this.environment = null;
this.fog = null;
this.overrideMaterial = null;
this.autoUpdate = true; // checked by the renderer
if (typeof __THREE_DEVTOOLS__ !== 'undefined') {
__THREE_DEVTOOLS__.dispatchEvent(new CustomEvent('observe', {
detail: this
})); // eslint-disable-line no-undef
}
}
copy(source, recursive) {
super.copy(source, recursive);
if (source.background !== null) this.background = source.background.clone();
if (source.environment !== null) this.environment = source.environment.clone();
if (source.fog !== null) this.fog = source.fog.clone();
if (source.overrideMaterial !== null) this.overrideMaterial = source.overrideMaterial.clone();
this.autoUpdate = source.autoUpdate;
this.matrixAutoUpdate = source.matrixAutoUpdate;
return this;
}
toJSON(meta) {
const data = super.toJSON(meta);
if (this.fog !== null) data.object.fog = this.fog.toJSON();
return data;
}
}
Scene.prototype.isScene = true;
class InterleavedBuffer {
constructor(array, stride) {
this.array = array;
this.stride = stride;
this.count = array !== undefined ? array.length / stride : 0;
this.usage = StaticDrawUsage;
this.updateRange = {
offset: 0,
count: -1
};
this.version = 0;
this.uuid = generateUUID();
}
onUploadCallback() {}
set needsUpdate(value) {
if (value === true) this.version++;
}
setUsage(value) {
this.usage = value;
return this;
}
copy(source) {
this.array = new source.array.constructor(source.array);
this.count = source.count;
this.stride = source.stride;
this.usage = source.usage;
return this;
}
copyAt(index1, attribute, index2) {
index1 *= this.stride;
index2 *= attribute.stride;
for (let i = 0, l = this.stride; i < l; i++) {
this.array[index1 + i] = attribute.array[index2 + i];
}
return this;
}
set(value, offset = 0) {
this.array.set(value, offset);
return this;
}
clone(data) {
if (data.arrayBuffers === undefined) {
data.arrayBuffers = {};
}
if (this.array.buffer._uuid === undefined) {
this.array.buffer._uuid = generateUUID();
}
if (data.arrayBuffers[this.array.buffer._uuid] === undefined) {
data.arrayBuffers[this.array.buffer._uuid] = this.array.slice(0).buffer;
}
const array = new this.array.constructor(data.arrayBuffers[this.array.buffer._uuid]);
const ib = new this.constructor(array, this.stride);
ib.setUsage(this.usage);
return ib;
}
onUpload(callback) {
this.onUploadCallback = callback;
return this;
}
toJSON(data) {
if (data.arrayBuffers === undefined) {
data.arrayBuffers = {};
} // generate UUID for array buffer if necessary
if (this.array.buffer._uuid === undefined) {
this.array.buffer._uuid = generateUUID();
}
if (data.arrayBuffers[this.array.buffer._uuid] === undefined) {
data.arrayBuffers[this.array.buffer._uuid] = Array.prototype.slice.call(new Uint32Array(this.array.buffer));
} //
return {
uuid: this.uuid,
buffer: this.array.buffer._uuid,
type: this.array.constructor.name,
stride: this.stride
};
}
}
InterleavedBuffer.prototype.isInterleavedBuffer = true;
const _vector$6 = /*@__PURE__*/new Vector3();
class InterleavedBufferAttribute {
constructor(interleavedBuffer, itemSize, offset, normalized = false) {
this.name = '';
this.data = interleavedBuffer;
this.itemSize = itemSize;
this.offset = offset;
this.normalized = normalized === true;
}
get count() {
return this.data.count;
}
get array() {
return this.data.array;
}
set needsUpdate(value) {
this.data.needsUpdate = value;
}
applyMatrix4(m) {
for (let i = 0, l = this.data.count; i < l; i++) {
_vector$6.x = this.getX(i);
_vector$6.y = this.getY(i);
_vector$6.z = this.getZ(i);
_vector$6.applyMatrix4(m);
this.setXYZ(i, _vector$6.x, _vector$6.y, _vector$6.z);
}
return this;
}
applyNormalMatrix(m) {
for (let i = 0, l = this.count; i < l; i++) {
_vector$6.x = this.getX(i);
_vector$6.y = this.getY(i);
_vector$6.z = this.getZ(i);
_vector$6.applyNormalMatrix(m);
this.setXYZ(i, _vector$6.x, _vector$6.y, _vector$6.z);
}
return this;
}
transformDirection(m) {
for (let i = 0, l = this.count; i < l; i++) {
_vector$6.x = this.getX(i);
_vector$6.y = this.getY(i);
_vector$6.z = this.getZ(i);
_vector$6.transformDirection(m);
this.setXYZ(i, _vector$6.x, _vector$6.y, _vector$6.z);
}
return this;
}
setX(index, x) {
this.data.array[index * this.data.stride + this.offset] = x;
return this;
}
setY(index, y) {
this.data.array[index * this.data.stride + this.offset + 1] = y;
return this;
}
setZ(index, z) {
this.data.array[index * this.data.stride + this.offset + 2] = z;
return this;
}
setW(index, w) {
this.data.array[index * this.data.stride + this.offset + 3] = w;
return this;
}
getX(index) {
return this.data.array[index * this.data.stride + this.offset];
}
getY(index) {
return this.data.array[index * this.data.stride + this.offset + 1];
}
getZ(index) {
return this.data.array[index * this.data.stride + this.offset + 2];
}
getW(index) {
return this.data.array[index * this.data.stride + this.offset + 3];
}
setXY(index, x, y) {
index = index * this.data.stride + this.offset;
this.data.array[index + 0] = x;
this.data.array[index + 1] = y;
return this;
}
setXYZ(index, x, y, z) {
index = index * this.data.stride + this.offset;
this.data.array[index + 0] = x;
this.data.array[index + 1] = y;
this.data.array[index + 2] = z;
return this;
}
setXYZW(index, x, y, z, w) {
index = index * this.data.stride + this.offset;
this.data.array[index + 0] = x;
this.data.array[index + 1] = y;
this.data.array[index + 2] = z;
this.data.array[index + 3] = w;
return this;
}
clone(data) {
if (data === undefined) {
console.log('THREE.InterleavedBufferAttribute.clone(): Cloning an interlaved buffer attribute will deinterleave buffer data.');
const array = [];
for (let i = 0; i < this.count; i++) {
const index = i * this.data.stride + this.offset;
for (let j = 0; j < this.itemSize; j++) {
array.push(this.data.array[index + j]);
}
}
return new BufferAttribute(new this.array.constructor(array), this.itemSize, this.normalized);
} else {
if (data.interleavedBuffers === undefined) {
data.interleavedBuffers = {};
}
if (data.interleavedBuffers[this.data.uuid] === undefined) {
data.interleavedBuffers[this.data.uuid] = this.data.clone(data);
}
return new InterleavedBufferAttribute(data.interleavedBuffers[this.data.uuid], this.itemSize, this.offset, this.normalized);
}
}
toJSON(data) {
if (data === undefined) {
console.log('THREE.InterleavedBufferAttribute.toJSON(): Serializing an interlaved buffer attribute will deinterleave buffer data.');
const array = [];
for (let i = 0; i < this.count; i++) {
const index = i * this.data.stride + this.offset;
for (let j = 0; j < this.itemSize; j++) {
array.push(this.data.array[index + j]);
}
} // deinterleave data and save it as an ordinary buffer attribute for now
return {
itemSize: this.itemSize,
type: this.array.constructor.name,
array: array,
normalized: this.normalized
};
} else {
// save as true interlaved attribtue
if (data.interleavedBuffers === undefined) {
data.interleavedBuffers = {};
}
if (data.interleavedBuffers[this.data.uuid] === undefined) {
data.interleavedBuffers[this.data.uuid] = this.data.toJSON(data);
}
return {
isInterleavedBufferAttribute: true,
itemSize: this.itemSize,
data: this.data.uuid,
offset: this.offset,
normalized: this.normalized
};
}
}
}
InterleavedBufferAttribute.prototype.isInterleavedBufferAttribute = true;
/**
* parameters = {
* color: <hex>,
* map: new THREE.Texture( <Image> ),
* alphaMap: new THREE.Texture( <Image> ),
* rotation: <float>,
* sizeAttenuation: <bool>
* }
*/
class SpriteMaterial extends Material {
constructor(parameters) {
super();
this.type = 'SpriteMaterial';
this.color = new Color(0xffffff);
this.map = null;
this.alphaMap = null;
this.rotation = 0;
this.sizeAttenuation = true;
this.transparent = true;
this.setValues(parameters);
}
copy(source) {
super.copy(source);
this.color.copy(source.color);
this.map = source.map;
this.alphaMap = source.alphaMap;
this.rotation = source.rotation;
this.sizeAttenuation = source.sizeAttenuation;
return this;
}
}
SpriteMaterial.prototype.isSpriteMaterial = true;
let _geometry;
const _intersectPoint = /*@__PURE__*/new Vector3();
const _worldScale = /*@__PURE__*/new Vector3();
const _mvPosition = /*@__PURE__*/new Vector3();
const _alignedPosition = /*@__PURE__*/new Vector2();
const _rotatedPosition = /*@__PURE__*/new Vector2();
const _viewWorldMatrix = /*@__PURE__*/new Matrix4();
const _vA = /*@__PURE__*/new Vector3();
const _vB = /*@__PURE__*/new Vector3();
const _vC = /*@__PURE__*/new Vector3();
const _uvA = /*@__PURE__*/new Vector2();
const _uvB = /*@__PURE__*/new Vector2();
const _uvC = /*@__PURE__*/new Vector2();
class Sprite extends Object3D {
constructor(material) {
super();
this.type = 'Sprite';
if (_geometry === undefined) {
_geometry = new BufferGeometry();
const float32Array = new Float32Array([-0.5, -0.5, 0, 0, 0, 0.5, -0.5, 0, 1, 0, 0.5, 0.5, 0, 1, 1, -0.5, 0.5, 0, 0, 1]);
const interleavedBuffer = new InterleavedBuffer(float32Array, 5);
_geometry.setIndex([0, 1, 2, 0, 2, 3]);
_geometry.setAttribute('position', new InterleavedBufferAttribute(interleavedBuffer, 3, 0, false));
_geometry.setAttribute('uv', new InterleavedBufferAttribute(interleavedBuffer, 2, 3, false));
}
this.geometry = _geometry;
this.material = material !== undefined ? material : new SpriteMaterial();
this.center = new Vector2(0.5, 0.5);
}
raycast(raycaster, intersects) {
if (raycaster.camera === null) {
console.error('THREE.Sprite: "Raycaster.camera" needs to be set in order to raycast against sprites.');
}
_worldScale.setFromMatrixScale(this.matrixWorld);
_viewWorldMatrix.copy(raycaster.camera.matrixWorld);
this.modelViewMatrix.multiplyMatrices(raycaster.camera.matrixWorldInverse, this.matrixWorld);
_mvPosition.setFromMatrixPosition(this.modelViewMatrix);
if (raycaster.camera.isPerspectiveCamera && this.material.sizeAttenuation === false) {
_worldScale.multiplyScalar(-_mvPosition.z);
}
const rotation = this.material.rotation;
let sin, cos;
if (rotation !== 0) {
cos = Math.cos(rotation);
sin = Math.sin(rotation);
}
const center = this.center;
transformVertex(_vA.set(-0.5, -0.5, 0), _mvPosition, center, _worldScale, sin, cos);
transformVertex(_vB.set(0.5, -0.5, 0), _mvPosition, center, _worldScale, sin, cos);
transformVertex(_vC.set(0.5, 0.5, 0), _mvPosition, center, _worldScale, sin, cos);
_uvA.set(0, 0);
_uvB.set(1, 0);
_uvC.set(1, 1); // check first triangle
let intersect = raycaster.ray.intersectTriangle(_vA, _vB, _vC, false, _intersectPoint);
if (intersect === null) {
// check second triangle
transformVertex(_vB.set(-0.5, 0.5, 0), _mvPosition, center, _worldScale, sin, cos);
_uvB.set(0, 1);
intersect = raycaster.ray.intersectTriangle(_vA, _vC, _vB, false, _intersectPoint);
if (intersect === null) {
return;
}
}
const distance = raycaster.ray.origin.distanceTo(_intersectPoint);
if (distance < raycaster.near || distance > raycaster.far) return;
intersects.push({
distance: distance,
point: _intersectPoint.clone(),
uv: Triangle.getUV(_intersectPoint, _vA, _vB, _vC, _uvA, _uvB, _uvC, new Vector2()),
face: null,
object: this
});
}
copy(source) {
super.copy(source);
if (source.center !== undefined) this.center.copy(source.center);
this.material = source.material;
return this;
}
}
Sprite.prototype.isSprite = true;
function transformVertex(vertexPosition, mvPosition, center, scale, sin, cos) {
// compute position in camera space
_alignedPosition.subVectors(vertexPosition, center).addScalar(0.5).multiply(scale); // to check if rotation is not zero
if (sin !== undefined) {
_rotatedPosition.x = cos * _alignedPosition.x - sin * _alignedPosition.y;
_rotatedPosition.y = sin * _alignedPosition.x + cos * _alignedPosition.y;
} else {
_rotatedPosition.copy(_alignedPosition);
}
vertexPosition.copy(mvPosition);
vertexPosition.x += _rotatedPosition.x;
vertexPosition.y += _rotatedPosition.y; // transform to world space
vertexPosition.applyMatrix4(_viewWorldMatrix);
}
const _v1$2 = /*@__PURE__*/new Vector3();
const _v2$1 = /*@__PURE__*/new Vector3();
class LOD extends Object3D {
constructor() {
super();
this._currentLevel = 0;
this.type = 'LOD';
Object.defineProperties(this, {
levels: {
enumerable: true,
value: []
},
isLOD: {
value: true
}
});
this.autoUpdate = true;
}
copy(source) {
super.copy(source, false);
const levels = source.levels;
for (let i = 0, l = levels.length; i < l; i++) {
const level = levels[i];
this.addLevel(level.object.clone(), level.distance);
}
this.autoUpdate = source.autoUpdate;
return this;
}
addLevel(object, distance = 0) {
distance = Math.abs(distance);
const levels = this.levels;
let l;
for (l = 0; l < levels.length; l++) {
if (distance < levels[l].distance) {
break;
}
}
levels.splice(l, 0, {
distance: distance,
object: object
});
this.add(object);
return this;
}
getCurrentLevel() {
return this._currentLevel;
}
getObjectForDistance(distance) {
const levels = this.levels;
if (levels.length > 0) {
let i, l;
for (i = 1, l = levels.length; i < l; i++) {
if (distance < levels[i].distance) {
break;
}
}
return levels[i - 1].object;
}
return null;
}
raycast(raycaster, intersects) {
const levels = this.levels;
if (levels.length > 0) {
_v1$2.setFromMatrixPosition(this.matrixWorld);
const distance = raycaster.ray.origin.distanceTo(_v1$2);
this.getObjectForDistance(distance).raycast(raycaster, intersects);
}
}
update(camera) {
const levels = this.levels;
if (levels.length > 1) {
_v1$2.setFromMatrixPosition(camera.matrixWorld);
_v2$1.setFromMatrixPosition(this.matrixWorld);
const distance = _v1$2.distanceTo(_v2$1) / camera.zoom;
levels[0].object.visible = true;
let i, l;
for (i = 1, l = levels.length; i < l; i++) {
if (distance >= levels[i].distance) {
levels[i - 1].object.visible = false;
levels[i].object.visible = true;
} else {
break;
}
}
this._currentLevel = i - 1;
for (; i < l; i++) {
levels[i].object.visible = false;
}
}
}
toJSON(meta) {
const data = super.toJSON(meta);
if (this.autoUpdate === false) data.object.autoUpdate = false;
data.object.levels = [];
const levels = this.levels;
for (let i = 0, l = levels.length; i < l; i++) {
const level = levels[i];
data.object.levels.push({
object: level.object.uuid,
distance: level.distance
});
}
return data;
}
}
const _basePosition = /*@__PURE__*/new Vector3();
const _skinIndex = /*@__PURE__*/new Vector4();
const _skinWeight = /*@__PURE__*/new Vector4();
const _vector$5 = /*@__PURE__*/new Vector3();
const _matrix = /*@__PURE__*/new Matrix4();
class SkinnedMesh extends Mesh {
constructor(geometry, material) {
super(geometry, material);
this.type = 'SkinnedMesh';
this.bindMode = 'attached';
this.bindMatrix = new Matrix4();
this.bindMatrixInverse = new Matrix4();
}
copy(source) {
super.copy(source);
this.bindMode = source.bindMode;
this.bindMatrix.copy(source.bindMatrix);
this.bindMatrixInverse.copy(source.bindMatrixInverse);
this.skeleton = source.skeleton;
return this;
}
bind(skeleton, bindMatrix) {
this.skeleton = skeleton;
if (bindMatrix === undefined) {
this.updateMatrixWorld(true);
this.skeleton.calculateInverses();
bindMatrix = this.matrixWorld;
}
this.bindMatrix.copy(bindMatrix);
this.bindMatrixInverse.copy(bindMatrix).invert();
}
pose() {
this.skeleton.pose();
}
normalizeSkinWeights() {
const vector = new Vector4();
const skinWeight = this.geometry.attributes.skinWeight;
for (let i = 0, l = skinWeight.count; i < l; i++) {
vector.x = skinWeight.getX(i);
vector.y = skinWeight.getY(i);
vector.z = skinWeight.getZ(i);
vector.w = skinWeight.getW(i);
const scale = 1.0 / vector.manhattanLength();
if (scale !== Infinity) {
vector.multiplyScalar(scale);
} else {
vector.set(1, 0, 0, 0); // do something reasonable
}
skinWeight.setXYZW(i, vector.x, vector.y, vector.z, vector.w);
}
}
updateMatrixWorld(force) {
super.updateMatrixWorld(force);
if (this.bindMode === 'attached') {
this.bindMatrixInverse.copy(this.matrixWorld).invert();
} else if (this.bindMode === 'detached') {
this.bindMatrixInverse.copy(this.bindMatrix).invert();
} else {
console.warn('THREE.SkinnedMesh: Unrecognized bindMode: ' + this.bindMode);
}
}
boneTransform(index, target) {
const skeleton = this.skeleton;
const geometry = this.geometry;
_skinIndex.fromBufferAttribute(geometry.attributes.skinIndex, index);
_skinWeight.fromBufferAttribute(geometry.attributes.skinWeight, index);
_basePosition.copy(target).applyMatrix4(this.bindMatrix);
target.set(0, 0, 0);
for (let i = 0; i < 4; i++) {
const weight = _skinWeight.getComponent(i);
if (weight !== 0) {
const boneIndex = _skinIndex.getComponent(i);
_matrix.multiplyMatrices(skeleton.bones[boneIndex].matrixWorld, skeleton.boneInverses[boneIndex]);
target.addScaledVector(_vector$5.copy(_basePosition).applyMatrix4(_matrix), weight);
}
}
return target.applyMatrix4(this.bindMatrixInverse);
}
}
SkinnedMesh.prototype.isSkinnedMesh = true;
class Bone extends Object3D {
constructor() {
super();
this.type = 'Bone';
}
}
Bone.prototype.isBone = true;
class DataTexture extends Texture {
constructor(data = null, width = 1, height = 1, format, type, mapping, wrapS, wrapT, magFilter = NearestFilter, minFilter = NearestFilter, anisotropy, encoding) {
super(null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding);
this.image = {
data: data,
width: width,
height: height
};
this.magFilter = magFilter;
this.minFilter = minFilter;
this.generateMipmaps = false;
this.flipY = false;
this.unpackAlignment = 1;
this.needsUpdate = true;
}
}
DataTexture.prototype.isDataTexture = true;
const _offsetMatrix = /*@__PURE__*/new Matrix4();
const _identityMatrix = /*@__PURE__*/new Matrix4();
class Skeleton {
constructor(bones = [], boneInverses = []) {
this.uuid = generateUUID();
this.bones = bones.slice(0);
this.boneInverses = boneInverses;
this.boneMatrices = null;
this.boneTexture = null;
this.boneTextureSize = 0;
this.frame = -1;
this.init();
}
init() {
const bones = this.bones;
const boneInverses = this.boneInverses;
this.boneMatrices = new Float32Array(bones.length * 16); // calculate inverse bone matrices if necessary
if (boneInverses.length === 0) {
this.calculateInverses();
} else {
// handle special case
if (bones.length !== boneInverses.length) {
console.warn('THREE.Skeleton: Number of inverse bone matrices does not match amount of bones.');
this.boneInverses = [];
for (let i = 0, il = this.bones.length; i < il; i++) {
this.boneInverses.push(new Matrix4());
}
}
}
}
calculateInverses() {
this.boneInverses.length = 0;
for (let i = 0, il = this.bones.length; i < il; i++) {
const inverse = new Matrix4();
if (this.bones[i]) {
inverse.copy(this.bones[i].matrixWorld).invert();
}
this.boneInverses.push(inverse);
}
}
pose() {
// recover the bind-time world matrices
for (let i = 0, il = this.bones.length; i < il; i++) {
const bone = this.bones[i];
if (bone) {
bone.matrixWorld.copy(this.boneInverses[i]).invert();
}
} // compute the local matrices, positions, rotations and scales
for (let i = 0, il = this.bones.length; i < il; i++) {
const bone = this.bones[i];
if (bone) {
if (bone.parent && bone.parent.isBone) {
bone.matrix.copy(bone.parent.matrixWorld).invert();
bone.matrix.multiply(bone.matrixWorld);
} else {
bone.matrix.copy(bone.matrixWorld);
}
bone.matrix.decompose(bone.position, bone.quaternion, bone.scale);
}
}
}
update() {
const bones = this.bones;
const boneInverses = this.boneInverses;
const boneMatrices = this.boneMatrices;
const boneTexture = this.boneTexture; // flatten bone matrices to array
for (let i = 0, il = bones.length; i < il; i++) {
// compute the offset between the current and the original transform
const matrix = bones[i] ? bones[i].matrixWorld : _identityMatrix;
_offsetMatrix.multiplyMatrices(matrix, boneInverses[i]);
_offsetMatrix.toArray(boneMatrices, i * 16);
}
if (boneTexture !== null) {
boneTexture.needsUpdate = true;
}
}
clone() {
return new Skeleton(this.bones, this.boneInverses);
}
computeBoneTexture() {
// layout (1 matrix = 4 pixels)
// RGBA RGBA RGBA RGBA (=> column1, column2, column3, column4)
// with 8x8 pixel texture max 16 bones * 4 pixels = (8 * 8)
// 16x16 pixel texture max 64 bones * 4 pixels = (16 * 16)
// 32x32 pixel texture max 256 bones * 4 pixels = (32 * 32)
// 64x64 pixel texture max 1024 bones * 4 pixels = (64 * 64)
let size = Math.sqrt(this.bones.length * 4); // 4 pixels needed for 1 matrix
size = ceilPowerOfTwo(size);
size = Math.max(size, 4);
const boneMatrices = new Float32Array(size * size * 4); // 4 floats per RGBA pixel
boneMatrices.set(this.boneMatrices); // copy current values
const boneTexture = new DataTexture(boneMatrices, size, size, RGBAFormat, FloatType);
this.boneMatrices = boneMatrices;
this.boneTexture = boneTexture;
this.boneTextureSize = size;
return this;
}
getBoneByName(name) {
for (let i = 0, il = this.bones.length; i < il; i++) {
const bone = this.bones[i];
if (bone.name === name) {
return bone;
}
}
return undefined;
}
dispose() {
if (this.boneTexture !== null) {
this.boneTexture.dispose();
this.boneTexture = null;
}
}
fromJSON(json, bones) {
this.uuid = json.uuid;
for (let i = 0, l = json.bones.length; i < l; i++) {
const uuid = json.bones[i];
let bone = bones[uuid];
if (bone === undefined) {
console.warn('THREE.Skeleton: No bone found with UUID:', uuid);
bone = new Bone();
}
this.bones.push(bone);
this.boneInverses.push(new Matrix4().fromArray(json.boneInverses[i]));
}
this.init();
return this;
}
toJSON() {
const data = {
metadata: {
version: 4.5,
type: 'Skeleton',
generator: 'Skeleton.toJSON'
},
bones: [],
boneInverses: []
};
data.uuid = this.uuid;
const bones = this.bones;
const boneInverses = this.boneInverses;
for (let i = 0, l = bones.length; i < l; i++) {
const bone = bones[i];
data.bones.push(bone.uuid);
const boneInverse = boneInverses[i];
data.boneInverses.push(boneInverse.toArray());
}
return data;
}
}
class InstancedBufferAttribute extends BufferAttribute {
constructor(array, itemSize, normalized, meshPerAttribute = 1) {
if (typeof normalized === 'number') {
meshPerAttribute = normalized;
normalized = false;
console.error('THREE.InstancedBufferAttribute: The constructor now expects normalized as the third argument.');
}
super(array, itemSize, normalized);
this.meshPerAttribute = meshPerAttribute;
}
copy(source) {
super.copy(source);
this.meshPerAttribute = source.meshPerAttribute;
return this;
}
toJSON() {
const data = super.toJSON();
data.meshPerAttribute = this.meshPerAttribute;
data.isInstancedBufferAttribute = true;
return data;
}
}
InstancedBufferAttribute.prototype.isInstancedBufferAttribute = true;
const _instanceLocalMatrix = /*@__PURE__*/new Matrix4();
const _instanceWorldMatrix = /*@__PURE__*/new Matrix4();
const _instanceIntersects = [];
const _mesh = /*@__PURE__*/new Mesh();
class InstancedMesh extends Mesh {
constructor(geometry, material, count) {
super(geometry, material);
this.instanceMatrix = new InstancedBufferAttribute(new Float32Array(count * 16), 16);
this.instanceColor = null;
this.count = count;
this.frustumCulled = false;
}
copy(source) {
super.copy(source);
this.instanceMatrix.copy(source.instanceMatrix);
if (source.instanceColor !== null) this.instanceColor = source.instanceColor.clone();
this.count = source.count;
return this;
}
getColorAt(index, color) {
color.fromArray(this.instanceColor.array, index * 3);
}
getMatrixAt(index, matrix) {
matrix.fromArray(this.instanceMatrix.array, index * 16);
}
raycast(raycaster, intersects) {
const matrixWorld = this.matrixWorld;
const raycastTimes = this.count;
_mesh.geometry = this.geometry;
_mesh.material = this.material;
if (_mesh.material === undefined) return;
for (let instanceId = 0; instanceId < raycastTimes; instanceId++) {
// calculate the world matrix for each instance
this.getMatrixAt(instanceId, _instanceLocalMatrix);
_instanceWorldMatrix.multiplyMatrices(matrixWorld, _instanceLocalMatrix); // the mesh represents this single instance
_mesh.matrixWorld = _instanceWorldMatrix;
_mesh.raycast(raycaster, _instanceIntersects); // process the result of raycast
for (let i = 0, l = _instanceIntersects.length; i < l; i++) {
const intersect = _instanceIntersects[i];
intersect.instanceId = instanceId;
intersect.object = this;
intersects.push(intersect);
}
_instanceIntersects.length = 0;
}
}
setColorAt(index, color) {
if (this.instanceColor === null) {
this.instanceColor = new InstancedBufferAttribute(new Float32Array(this.instanceMatrix.count * 3), 3);
}
color.toArray(this.instanceColor.array, index * 3);
}
setMatrixAt(index, matrix) {
matrix.toArray(this.instanceMatrix.array, index * 16);
}
updateMorphTargets() {}
dispose() {
this.dispatchEvent({
type: 'dispose'
});
}
}
InstancedMesh.prototype.isInstancedMesh = true;
/**
* parameters = {
* color: <hex>,
* opacity: <float>,
*
* linewidth: <float>,
* linecap: "round",
* linejoin: "round"
* }
*/
class LineBasicMaterial extends Material {
constructor(parameters) {
super();
this.type = 'LineBasicMaterial';
this.color = new Color(0xffffff);
this.linewidth = 1;
this.linecap = 'round';
this.linejoin = 'round';
this.setValues(parameters);
}
copy(source) {
super.copy(source);
this.color.copy(source.color);
this.linewidth = source.linewidth;
this.linecap = source.linecap;
this.linejoin = source.linejoin;
return this;
}
}
LineBasicMaterial.prototype.isLineBasicMaterial = true;
const _start$1 = /*@__PURE__*/new Vector3();
const _end$1 = /*@__PURE__*/new Vector3();
const _inverseMatrix$1 = /*@__PURE__*/new Matrix4();
const _ray$1 = /*@__PURE__*/new Ray();
const _sphere$1 = /*@__PURE__*/new Sphere();
class Line extends Object3D {
constructor(geometry = new BufferGeometry(), material = new LineBasicMaterial()) {
super();
this.type = 'Line';
this.geometry = geometry;
this.material = material;
this.updateMorphTargets();
}
copy(source) {
super.copy(source);
this.material = source.material;
this.geometry = source.geometry;
return this;
}
computeLineDistances() {
const geometry = this.geometry;
if (geometry.isBufferGeometry) {
// we assume non-indexed geometry
if (geometry.index === null) {
const positionAttribute = geometry.attributes.position;
const lineDistances = [0];
for (let i = 1, l = positionAttribute.count; i < l; i++) {
_start$1.fromBufferAttribute(positionAttribute, i - 1);
_end$1.fromBufferAttribute(positionAttribute, i);
lineDistances[i] = lineDistances[i - 1];
lineDistances[i] += _start$1.distanceTo(_end$1);
}
geometry.setAttribute('lineDistance', new Float32BufferAttribute(lineDistances, 1));
} else {
console.warn('THREE.Line.computeLineDistances(): Computation only possible with non-indexed BufferGeometry.');
}
} else if (geometry.isGeometry) {
console.error('THREE.Line.computeLineDistances() no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.');
}
return this;
}
raycast(raycaster, intersects) {
const geometry = this.geometry;
const matrixWorld = this.matrixWorld;
const threshold = raycaster.params.Line.threshold;
const drawRange = geometry.drawRange; // Checking boundingSphere distance to ray
if (geometry.boundingSphere === null) geometry.computeBoundingSphere();
_sphere$1.copy(geometry.boundingSphere);
_sphere$1.applyMatrix4(matrixWorld);
_sphere$1.radius += threshold;
if (raycaster.ray.intersectsSphere(_sphere$1) === false) return; //
_inverseMatrix$1.copy(matrixWorld).invert();
_ray$1.copy(raycaster.ray).applyMatrix4(_inverseMatrix$1);
const localThreshold = threshold / ((this.scale.x + this.scale.y + this.scale.z) / 3);
const localThresholdSq = localThreshold * localThreshold;
const vStart = new Vector3();
const vEnd = new Vector3();
const interSegment = new Vector3();
const interRay = new Vector3();
const step = this.isLineSegments ? 2 : 1;
if (geometry.isBufferGeometry) {
const index = geometry.index;
const attributes = geometry.attributes;
const positionAttribute = attributes.position;
if (index !== null) {
const start = Math.max(0, drawRange.start);
const end = Math.min(index.count, drawRange.start + drawRange.count);
for (let i = start, l = end - 1; i < l; i += step) {
const a = index.getX(i);
const b = index.getX(i + 1);
vStart.fromBufferAttribute(positionAttribute, a);
vEnd.fromBufferAttribute(positionAttribute, b);
const distSq = _ray$1.distanceSqToSegment(vStart, vEnd, interRay, interSegment);
if (distSq > localThresholdSq) continue;
interRay.applyMatrix4(this.matrixWorld); //Move back to world space for distance calculation
const distance = raycaster.ray.origin.distanceTo(interRay);
if (distance < raycaster.near || distance > raycaster.far) continue;
intersects.push({
distance: distance,
// What do we want? intersection point on the ray or on the segment??
// point: raycaster.ray.at( distance ),
point: interSegment.clone().applyMatrix4(this.matrixWorld),
index: i,
face: null,
faceIndex: null,
object: this
});
}
} else {
const start = Math.max(0, drawRange.start);
const end = Math.min(positionAttribute.count, drawRange.start + drawRange.count);
for (let i = start, l = end - 1; i < l; i += step) {
vStart.fromBufferAttribute(positionAttribute, i);
vEnd.fromBufferAttribute(positionAttribute, i + 1);
const distSq = _ray$1.distanceSqToSegment(vStart, vEnd, interRay, interSegment);
if (distSq > localThresholdSq) continue;
interRay.applyMatrix4(this.matrixWorld); //Move back to world space for distance calculation
const distance = raycaster.ray.origin.distanceTo(interRay);
if (distance < raycaster.near || distance > raycaster.far) continue;
intersects.push({
distance: distance,
// What do we want? intersection point on the ray or on the segment??
// point: raycaster.ray.at( distance ),
point: interSegment.clone().applyMatrix4(this.matrixWorld),
index: i,
face: null,
faceIndex: null,
object: this
});
}
}
} else if (geometry.isGeometry) {
console.error('THREE.Line.raycast() no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.');
}
}
updateMorphTargets() {
const geometry = this.geometry;
if (geometry.isBufferGeometry) {
const morphAttributes = geometry.morphAttributes;
const keys = Object.keys(morphAttributes);
if (keys.length > 0) {
const morphAttribute = morphAttributes[keys[0]];
if (morphAttribute !== undefined) {
this.morphTargetInfluences = [];
this.morphTargetDictionary = {};
for (let m = 0, ml = morphAttribute.length; m < ml; m++) {
const name = morphAttribute[m].name || String(m);
this.morphTargetInfluences.push(0);
this.morphTargetDictionary[name] = m;
}
}
}
} else {
const morphTargets = geometry.morphTargets;
if (morphTargets !== undefined && morphTargets.length > 0) {
console.error('THREE.Line.updateMorphTargets() does not support THREE.Geometry. Use THREE.BufferGeometry instead.');
}
}
}
}
Line.prototype.isLine = true;
const _start = /*@__PURE__*/new Vector3();
const _end = /*@__PURE__*/new Vector3();
class LineSegments extends Line {
constructor(geometry, material) {
super(geometry, material);
this.type = 'LineSegments';
}
computeLineDistances() {
const geometry = this.geometry;
if (geometry.isBufferGeometry) {
// we assume non-indexed geometry
if (geometry.index === null) {
const positionAttribute = geometry.attributes.position;
const lineDistances = [];
for (let i = 0, l = positionAttribute.count; i < l; i += 2) {
_start.fromBufferAttribute(positionAttribute, i);
_end.fromBufferAttribute(positionAttribute, i + 1);
lineDistances[i] = i === 0 ? 0 : lineDistances[i - 1];
lineDistances[i + 1] = lineDistances[i] + _start.distanceTo(_end);
}
geometry.setAttribute('lineDistance', new Float32BufferAttribute(lineDistances, 1));
} else {
console.warn('THREE.LineSegments.computeLineDistances(): Computation only possible with non-indexed BufferGeometry.');
}
} else if (geometry.isGeometry) {
console.error('THREE.LineSegments.computeLineDistances() no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.');
}
return this;
}
}
LineSegments.prototype.isLineSegments = true;
class LineLoop extends Line {
constructor(geometry, material) {
super(geometry, material);
this.type = 'LineLoop';
}
}
LineLoop.prototype.isLineLoop = true;
/**
* parameters = {
* color: <hex>,
* opacity: <float>,
* map: new THREE.Texture( <Image> ),
* alphaMap: new THREE.Texture( <Image> ),
*
* size: <float>,
* sizeAttenuation: <bool>
*
* }
*/
class PointsMaterial extends Material {
constructor(parameters) {
super();
this.type = 'PointsMaterial';
this.color = new Color(0xffffff);
this.map = null;
this.alphaMap = null;
this.size = 1;
this.sizeAttenuation = true;
this.setValues(parameters);
}
copy(source) {
super.copy(source);
this.color.copy(source.color);
this.map = source.map;
this.alphaMap = source.alphaMap;
this.size = source.size;
this.sizeAttenuation = source.sizeAttenuation;
return this;
}
}
PointsMaterial.prototype.isPointsMaterial = true;
const _inverseMatrix = /*@__PURE__*/new Matrix4();
const _ray = /*@__PURE__*/new Ray();
const _sphere = /*@__PURE__*/new Sphere();
const _position$2 = /*@__PURE__*/new Vector3();
class Points extends Object3D {
constructor(geometry = new BufferGeometry(), material = new PointsMaterial()) {
super();
this.type = 'Points';
this.geometry = geometry;
this.material = material;
this.updateMorphTargets();
}
copy(source) {
super.copy(source);
this.material = source.material;
this.geometry = source.geometry;
return this;
}
raycast(raycaster, intersects) {
const geometry = this.geometry;
const matrixWorld = this.matrixWorld;
const threshold = raycaster.params.Points.threshold;
const drawRange = geometry.drawRange; // Checking boundingSphere distance to ray
if (geometry.boundingSphere === null) geometry.computeBoundingSphere();
_sphere.copy(geometry.boundingSphere);
_sphere.applyMatrix4(matrixWorld);
_sphere.radius += threshold;
if (raycaster.ray.intersectsSphere(_sphere) === false) return; //
_inverseMatrix.copy(matrixWorld).invert();
_ray.copy(raycaster.ray).applyMatrix4(_inverseMatrix);
const localThreshold = threshold / ((this.scale.x + this.scale.y + this.scale.z) / 3);
const localThresholdSq = localThreshold * localThreshold;
if (geometry.isBufferGeometry) {
const index = geometry.index;
const attributes = geometry.attributes;
const positionAttribute = attributes.position;
if (index !== null) {
const start = Math.max(0, drawRange.start);
const end = Math.min(index.count, drawRange.start + drawRange.count);
for (let i = start, il = end; i < il; i++) {
const a = index.getX(i);
_position$2.fromBufferAttribute(positionAttribute, a);
testPoint(_position$2, a, localThresholdSq, matrixWorld, raycaster, intersects, this);
}
} else {
const start = Math.max(0, drawRange.start);
const end = Math.min(positionAttribute.count, drawRange.start + drawRange.count);
for (let i = start, l = end; i < l; i++) {
_position$2.fromBufferAttribute(positionAttribute, i);
testPoint(_position$2, i, localThresholdSq, matrixWorld, raycaster, intersects, this);
}
}
} else {
console.error('THREE.Points.raycast() no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.');
}
}
updateMorphTargets() {
const geometry = this.geometry;
if (geometry.isBufferGeometry) {
const morphAttributes = geometry.morphAttributes;
const keys = Object.keys(morphAttributes);
if (keys.length > 0) {
const morphAttribute = morphAttributes[keys[0]];
if (morphAttribute !== undefined) {
this.morphTargetInfluences = [];
this.morphTargetDictionary = {};
for (let m = 0, ml = morphAttribute.length; m < ml; m++) {
const name = morphAttribute[m].name || String(m);
this.morphTargetInfluences.push(0);
this.morphTargetDictionary[name] = m;
}
}
}
} else {
const morphTargets = geometry.morphTargets;
if (morphTargets !== undefined && morphTargets.length > 0) {
console.error('THREE.Points.updateMorphTargets() does not support THREE.Geometry. Use THREE.BufferGeometry instead.');
}
}
}
}
Points.prototype.isPoints = true;
function testPoint(point, index, localThresholdSq, matrixWorld, raycaster, intersects, object) {
const rayPointDistanceSq = _ray.distanceSqToPoint(point);
if (rayPointDistanceSq < localThresholdSq) {
const intersectPoint = new Vector3();
_ray.closestPointToPoint(point, intersectPoint);
intersectPoint.applyMatrix4(matrixWorld);
const distance = raycaster.ray.origin.distanceTo(intersectPoint);
if (distance < raycaster.near || distance > raycaster.far) return;
intersects.push({
distance: distance,
distanceToRay: Math.sqrt(rayPointDistanceSq),
point: intersectPoint,
index: index,
face: null,
object: object
});
}
}
class VideoTexture extends Texture {
constructor(video, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy) {
super(video, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy);
this.format = format !== undefined ? format : RGBFormat;
this.minFilter = minFilter !== undefined ? minFilter : LinearFilter;
this.magFilter = magFilter !== undefined ? magFilter : LinearFilter;
this.generateMipmaps = false;
const scope = this;
function updateVideo() {
scope.needsUpdate = true;
video.requestVideoFrameCallback(updateVideo);
}
if ('requestVideoFrameCallback' in video) {
video.requestVideoFrameCallback(updateVideo);
}
}
clone() {
return new this.constructor(this.image).copy(this);
}
update() {
const video = this.image;
const hasVideoFrameCallback = ('requestVideoFrameCallback' in video);
if (hasVideoFrameCallback === false && video.readyState >= video.HAVE_CURRENT_DATA) {
this.needsUpdate = true;
}
}
}
VideoTexture.prototype.isVideoTexture = true;
class CompressedTexture extends Texture {
constructor(mipmaps, width, height, format, type, mapping, wrapS, wrapT, magFilter, minFilter, anisotropy, encoding) {
super(null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding);
this.image = {
width: width,
height: height
};
this.mipmaps = mipmaps; // no flipping for cube textures
// (also flipping doesn't work for compressed textures )
this.flipY = false; // can't generate mipmaps for compressed textures
// mips must be embedded in DDS files
this.generateMipmaps = false;
}
}
CompressedTexture.prototype.isCompressedTexture = true;
class CanvasTexture extends Texture {
constructor(canvas, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy) {
super(canvas, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy);
this.needsUpdate = true;
}
}
CanvasTexture.prototype.isCanvasTexture = true;
class DepthTexture extends Texture {
constructor(width, height, type, mapping, wrapS, wrapT, magFilter, minFilter, anisotropy, format) {
format = format !== undefined ? format : DepthFormat;
if (format !== DepthFormat && format !== DepthStencilFormat) {
throw new Error('DepthTexture format must be either THREE.DepthFormat or THREE.DepthStencilFormat');
}
if (type === undefined && format === DepthFormat) type = UnsignedShortType;
if (type === undefined && format === DepthStencilFormat) type = UnsignedInt248Type;
super(null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy);
this.image = {
width: width,
height: height
};
this.magFilter = magFilter !== undefined ? magFilter : NearestFilter;
this.minFilter = minFilter !== undefined ? minFilter : NearestFilter;
this.flipY = false;
this.generateMipmaps = false;
}
}
DepthTexture.prototype.isDepthTexture = true;
class CircleGeometry extends BufferGeometry {
constructor(radius = 1, segments = 8, thetaStart = 0, thetaLength = Math.PI * 2) {
super();
this.type = 'CircleGeometry';
this.parameters = {
radius: radius,
segments: segments,
thetaStart: thetaStart,
thetaLength: thetaLength
};
segments = Math.max(3, segments); // buffers
const indices = [];
const vertices = [];
const normals = [];
const uvs = []; // helper variables
const vertex = new Vector3();
const uv = new Vector2(); // center point
vertices.push(0, 0, 0);
normals.push(0, 0, 1);
uvs.push(0.5, 0.5);
for (let s = 0, i = 3; s <= segments; s++, i += 3) {
const segment = thetaStart + s / segments * thetaLength; // vertex
vertex.x = radius * Math.cos(segment);
vertex.y = radius * Math.sin(segment);
vertices.push(vertex.x, vertex.y, vertex.z); // normal
normals.push(0, 0, 1); // uvs
uv.x = (vertices[i] / radius + 1) / 2;
uv.y = (vertices[i + 1] / radius + 1) / 2;
uvs.push(uv.x, uv.y);
} // indices
for (let i = 1; i <= segments; i++) {
indices.push(i, i + 1, 0);
} // build geometry
this.setIndex(indices);
this.setAttribute('position', new Float32BufferAttribute(vertices, 3));
this.setAttribute('normal', new Float32BufferAttribute(normals, 3));
this.setAttribute('uv', new Float32BufferAttribute(uvs, 2));
}
static fromJSON(data) {
return new CircleGeometry(data.radius, data.segments, data.thetaStart, data.thetaLength);
}
}
class CylinderGeometry extends BufferGeometry {
constructor(radiusTop = 1, radiusBottom = 1, height = 1, radialSegments = 8, heightSegments = 1, openEnded = false, thetaStart = 0, thetaLength = Math.PI * 2) {
super();
this.type = 'CylinderGeometry';
this.parameters = {
radiusTop: radiusTop,
radiusBottom: radiusBottom,
height: height,
radialSegments: radialSegments,
heightSegments: heightSegments,
openEnded: openEnded,
thetaStart: thetaStart,
thetaLength: thetaLength
};
const scope = this;
radialSegments = Math.floor(radialSegments);
heightSegments = Math.floor(heightSegments); // buffers
const indices = [];
const vertices = [];
const normals = [];
const uvs = []; // helper variables
let index = 0;
const indexArray = [];
const halfHeight = height / 2;
let groupStart = 0; // generate geometry
generateTorso();
if (openEnded === false) {
if (radiusTop > 0) generateCap(true);
if (radiusBottom > 0) generateCap(false);
} // build geometry
this.setIndex(indices);
this.setAttribute('position', new Float32BufferAttribute(vertices, 3));
this.setAttribute('normal', new Float32BufferAttribute(normals, 3));
this.setAttribute('uv', new Float32BufferAttribute(uvs, 2));
function generateTorso() {
const normal = new Vector3();
const vertex = new Vector3();
let groupCount = 0; // this will be used to calculate the normal
const slope = (radiusBottom - radiusTop) / height; // generate vertices, normals and uvs
for (let y = 0; y <= heightSegments; y++) {
const indexRow = [];
const v = y / heightSegments; // calculate the radius of the current row
const radius = v * (radiusBottom - radiusTop) + radiusTop;
for (let x = 0; x <= radialSegments; x++) {
const u = x / radialSegments;
const theta = u * thetaLength + thetaStart;
const sinTheta = Math.sin(theta);
const cosTheta = Math.cos(theta); // vertex
vertex.x = radius * sinTheta;
vertex.y = -v * height + halfHeight;
vertex.z = radius * cosTheta;
vertices.push(vertex.x, vertex.y, vertex.z); // normal
normal.set(sinTheta, slope, cosTheta).normalize();
normals.push(normal.x, normal.y, normal.z); // uv
uvs.push(u, 1 - v); // save index of vertex in respective row
indexRow.push(index++);
} // now save vertices of the row in our index array
indexArray.push(indexRow);
} // generate indices
for (let x = 0; x < radialSegments; x++) {
for (let y = 0; y < heightSegments; y++) {
// we use the index array to access the correct indices
const a = indexArray[y][x];
const b = indexArray[y + 1][x];
const c = indexArray[y + 1][x + 1];
const d = indexArray[y][x + 1]; // faces
indices.push(a, b, d);
indices.push(b, c, d); // update group counter
groupCount += 6;
}
} // add a group to the geometry. this will ensure multi material support
scope.addGroup(groupStart, groupCount, 0); // calculate new start value for groups
groupStart += groupCount;
}
function generateCap(top) {
// save the index of the first center vertex
const centerIndexStart = index;
const uv = new Vector2();
const vertex = new Vector3();
let groupCount = 0;
const radius = top === true ? radiusTop : radiusBottom;
const sign = top === true ? 1 : -1; // first we generate the center vertex data of the cap.
// because the geometry needs one set of uvs per face,
// we must generate a center vertex per face/segment
for (let x = 1; x <= radialSegments; x++) {
// vertex
vertices.push(0, halfHeight * sign, 0); // normal
normals.push(0, sign, 0); // uv
uvs.push(0.5, 0.5); // increase index
index++;
} // save the index of the last center vertex
const centerIndexEnd = index; // now we generate the surrounding vertices, normals and uvs
for (let x = 0; x <= radialSegments; x++) {
const u = x / radialSegments;
const theta = u * thetaLength + thetaStart;
const cosTheta = Math.cos(theta);
const sinTheta = Math.sin(theta); // vertex
vertex.x = radius * sinTheta;
vertex.y = halfHeight * sign;
vertex.z = radius * cosTheta;
vertices.push(vertex.x, vertex.y, vertex.z); // normal
normals.push(0, sign, 0); // uv
uv.x = cosTheta * 0.5 + 0.5;
uv.y = sinTheta * 0.5 * sign + 0.5;
uvs.push(uv.x, uv.y); // increase index
index++;
} // generate indices
for (let x = 0; x < radialSegments; x++) {
const c = centerIndexStart + x;
const i = centerIndexEnd + x;
if (top === true) {
// face top
indices.push(i, i + 1, c);
} else {
// face bottom
indices.push(i + 1, i, c);
}
groupCount += 3;
} // add a group to the geometry. this will ensure multi material support
scope.addGroup(groupStart, groupCount, top === true ? 1 : 2); // calculate new start value for groups
groupStart += groupCount;
}
}
static fromJSON(data) {
return new CylinderGeometry(data.radiusTop, data.radiusBottom, data.height, data.radialSegments, data.heightSegments, data.openEnded, data.thetaStart, data.thetaLength);
}
}
class ConeGeometry extends CylinderGeometry {
constructor(radius = 1, height = 1, radialSegments = 8, heightSegments = 1, openEnded = false, thetaStart = 0, thetaLength = Math.PI * 2) {
super(0, radius, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength);
this.type = 'ConeGeometry';
this.parameters = {
radius: radius,
height: height,
radialSegments: radialSegments,
heightSegments: heightSegments,
openEnded: openEnded,
thetaStart: thetaStart,
thetaLength: thetaLength
};
}
static fromJSON(data) {
return new ConeGeometry(data.radius, data.height, data.radialSegments, data.heightSegments, data.openEnded, data.thetaStart, data.thetaLength);
}
}
class PolyhedronGeometry extends BufferGeometry {
constructor(vertices = [], indices = [], radius = 1, detail = 0) {
super();
this.type = 'PolyhedronGeometry';
this.parameters = {
vertices: vertices,
indices: indices,
radius: radius,
detail: detail
}; // default buffer data
const vertexBuffer = [];
const uvBuffer = []; // the subdivision creates the vertex buffer data
subdivide(detail); // all vertices should lie on a conceptual sphere with a given radius
applyRadius(radius); // finally, create the uv data
generateUVs(); // build non-indexed geometry
this.setAttribute('position', new Float32BufferAttribute(vertexBuffer, 3));
this.setAttribute('normal', new Float32BufferAttribute(vertexBuffer.slice(), 3));
this.setAttribute('uv', new Float32BufferAttribute(uvBuffer, 2));
if (detail === 0) {
this.computeVertexNormals(); // flat normals
} else {
this.normalizeNormals(); // smooth normals
} // helper functions
function subdivide(detail) {
const a = new Vector3();
const b = new Vector3();
const c = new Vector3(); // iterate over all faces and apply a subdivison with the given detail value
for (let i = 0; i < indices.length; i += 3) {
// get the vertices of the face
getVertexByIndex(indices[i + 0], a);
getVertexByIndex(indices[i + 1], b);
getVertexByIndex(indices[i + 2], c); // perform subdivision
subdivideFace(a, b, c, detail);
}
}
function subdivideFace(a, b, c, detail) {
const cols = detail + 1; // we use this multidimensional array as a data structure for creating the subdivision
const v = []; // construct all of the vertices for this subdivision
for (let i = 0; i <= cols; i++) {
v[i] = [];
const aj = a.clone().lerp(c, i / cols);
const bj = b.clone().lerp(c, i / cols);
const rows = cols - i;
for (let j = 0; j <= rows; j++) {
if (j === 0 && i === cols) {
v[i][j] = aj;
} else {
v[i][j] = aj.clone().lerp(bj, j / rows);
}
}
} // construct all of the faces
for (let i = 0; i < cols; i++) {
for (let j = 0; j < 2 * (cols - i) - 1; j++) {
const k = Math.floor(j / 2);
if (j % 2 === 0) {
pushVertex(v[i][k + 1]);
pushVertex(v[i + 1][k]);
pushVertex(v[i][k]);
} else {
pushVertex(v[i][k + 1]);
pushVertex(v[i + 1][k + 1]);
pushVertex(v[i + 1][k]);
}
}
}
}
function applyRadius(radius) {
const vertex = new Vector3(); // iterate over the entire buffer and apply the radius to each vertex
for (let i = 0; i < vertexBuffer.length; i += 3) {
vertex.x = vertexBuffer[i + 0];
vertex.y = vertexBuffer[i + 1];
vertex.z = vertexBuffer[i + 2];
vertex.normalize().multiplyScalar(radius);
vertexBuffer[i + 0] = vertex.x;
vertexBuffer[i + 1] = vertex.y;
vertexBuffer[i + 2] = vertex.z;
}
}
function generateUVs() {
const vertex = new Vector3();
for (let i = 0; i < vertexBuffer.length; i += 3) {
vertex.x = vertexBuffer[i + 0];
vertex.y = vertexBuffer[i + 1];
vertex.z = vertexBuffer[i + 2];
const u = azimuth(vertex) / 2 / Math.PI + 0.5;
const v = inclination(vertex) / Math.PI + 0.5;
uvBuffer.push(u, 1 - v);
}
correctUVs();
correctSeam();
}
function correctSeam() {
// handle case when face straddles the seam, see #3269
for (let i = 0; i < uvBuffer.length; i += 6) {
// uv data of a single face
const x0 = uvBuffer[i + 0];
const x1 = uvBuffer[i + 2];
const x2 = uvBuffer[i + 4];
const max = Math.max(x0, x1, x2);
const min = Math.min(x0, x1, x2); // 0.9 is somewhat arbitrary
if (max > 0.9 && min < 0.1) {
if (x0 < 0.2) uvBuffer[i + 0] += 1;
if (x1 < 0.2) uvBuffer[i + 2] += 1;
if (x2 < 0.2) uvBuffer[i + 4] += 1;
}
}
}
function pushVertex(vertex) {
vertexBuffer.push(vertex.x, vertex.y, vertex.z);
}
function getVertexByIndex(index, vertex) {
const stride = index * 3;
vertex.x = vertices[stride + 0];
vertex.y = vertices[stride + 1];
vertex.z = vertices[stride + 2];
}
function correctUVs() {
const a = new Vector3();
const b = new Vector3();
const c = new Vector3();
const centroid = new Vector3();
const uvA = new Vector2();
const uvB = new Vector2();
const uvC = new Vector2();
for (let i = 0, j = 0; i < vertexBuffer.length; i += 9, j += 6) {
a.set(vertexBuffer[i + 0], vertexBuffer[i + 1], vertexBuffer[i + 2]);
b.set(vertexBuffer[i + 3], vertexBuffer[i + 4], vertexBuffer[i + 5]);
c.set(vertexBuffer[i + 6], vertexBuffer[i + 7], vertexBuffer[i + 8]);
uvA.set(uvBuffer[j + 0], uvBuffer[j + 1]);
uvB.set(uvBuffer[j + 2], uvBuffer[j + 3]);
uvC.set(uvBuffer[j + 4], uvBuffer[j + 5]);
centroid.copy(a).add(b).add(c).divideScalar(3);
const azi = azimuth(centroid);
correctUV(uvA, j + 0, a, azi);
correctUV(uvB, j + 2, b, azi);
correctUV(uvC, j + 4, c, azi);
}
}
function correctUV(uv, stride, vector, azimuth) {
if (azimuth < 0 && uv.x === 1) {
uvBuffer[stride] = uv.x - 1;
}
if (vector.x === 0 && vector.z === 0) {
uvBuffer[stride] = azimuth / 2 / Math.PI + 0.5;
}
} // Angle around the Y axis, counter-clockwise when looking from above.
function azimuth(vector) {
return Math.atan2(vector.z, -vector.x);
} // Angle above the XZ plane.
function inclination(vector) {
return Math.atan2(-vector.y, Math.sqrt(vector.x * vector.x + vector.z * vector.z));
}
}
static fromJSON(data) {
return new PolyhedronGeometry(data.vertices, data.indices, data.radius, data.details);
}
}
class DodecahedronGeometry extends PolyhedronGeometry {
constructor(radius = 1, detail = 0) {
const t = (1 + Math.sqrt(5)) / 2;
const r = 1 / t;
const vertices = [// (±1, ±1, ±1)
-1, -1, -1, -1, -1, 1, -1, 1, -1, -1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, -1, 1, 1, 1, // (0, ±1/φ, ±φ)
0, -r, -t, 0, -r, t, 0, r, -t, 0, r, t, // (±1/φ, ±φ, 0)
-r, -t, 0, -r, t, 0, r, -t, 0, r, t, 0, // (±φ, 0, ±1/φ)
-t, 0, -r, t, 0, -r, -t, 0, r, t, 0, r];
const indices = [3, 11, 7, 3, 7, 15, 3, 15, 13, 7, 19, 17, 7, 17, 6, 7, 6, 15, 17, 4, 8, 17, 8, 10, 17, 10, 6, 8, 0, 16, 8, 16, 2, 8, 2, 10, 0, 12, 1, 0, 1, 18, 0, 18, 16, 6, 10, 2, 6, 2, 13, 6, 13, 15, 2, 16, 18, 2, 18, 3, 2, 3, 13, 18, 1, 9, 18, 9, 11, 18, 11, 3, 4, 14, 12, 4, 12, 0, 4, 0, 8, 11, 9, 5, 11, 5, 19, 11, 19, 7, 19, 5, 14, 19, 14, 4, 19, 4, 17, 1, 12, 14, 1, 14, 5, 1, 5, 9];
super(vertices, indices, radius, detail);
this.type = 'DodecahedronGeometry';
this.parameters = {
radius: radius,
detail: detail
};
}
static fromJSON(data) {
return new DodecahedronGeometry(data.radius, data.detail);
}
}
const _v0 = new Vector3();
const _v1$1 = new Vector3();
const _normal = new Vector3();
const _triangle = new Triangle();
class EdgesGeometry extends BufferGeometry {
constructor(geometry = null, thresholdAngle = 1) {
super();
this.type = 'EdgesGeometry';
this.parameters = {
geometry: geometry,
thresholdAngle: thresholdAngle
};
if (geometry !== null) {
const precisionPoints = 4;
const precision = Math.pow(10, precisionPoints);
const thresholdDot = Math.cos(DEG2RAD * thresholdAngle);
const indexAttr = geometry.getIndex();
const positionAttr = geometry.getAttribute('position');
const indexCount = indexAttr ? indexAttr.count : positionAttr.count;
const indexArr = [0, 0, 0];
const vertKeys = ['a', 'b', 'c'];
const hashes = new Array(3);
const edgeData = {};
const vertices = [];
for (let i = 0; i < indexCount; i += 3) {
if (indexAttr) {
indexArr[0] = indexAttr.getX(i);
indexArr[1] = indexAttr.getX(i + 1);
indexArr[2] = indexAttr.getX(i + 2);
} else {
indexArr[0] = i;
indexArr[1] = i + 1;
indexArr[2] = i + 2;
}
const {
a,
b,
c
} = _triangle;
a.fromBufferAttribute(positionAttr, indexArr[0]);
b.fromBufferAttribute(positionAttr, indexArr[1]);
c.fromBufferAttribute(positionAttr, indexArr[2]);
_triangle.getNormal(_normal); // create hashes for the edge from the vertices
hashes[0] = `${Math.round(a.x * precision)},${Math.round(a.y * precision)},${Math.round(a.z * precision)}`;
hashes[1] = `${Math.round(b.x * precision)},${Math.round(b.y * precision)},${Math.round(b.z * precision)}`;
hashes[2] = `${Math.round(c.x * precision)},${Math.round(c.y * precision)},${Math.round(c.z * precision)}`; // skip degenerate triangles
if (hashes[0] === hashes[1] || hashes[1] === hashes[2] || hashes[2] === hashes[0]) {
continue;
} // iterate over every edge
for (let j = 0; j < 3; j++) {
// get the first and next vertex making up the edge
const jNext = (j + 1) % 3;
const vecHash0 = hashes[j];
const vecHash1 = hashes[jNext];
const v0 = _triangle[vertKeys[j]];
const v1 = _triangle[vertKeys[jNext]];
const hash = `${vecHash0}_${vecHash1}`;
const reverseHash = `${vecHash1}_${vecHash0}`;
if (reverseHash in edgeData && edgeData[reverseHash]) {
// if we found a sibling edge add it into the vertex array if
// it meets the angle threshold and delete the edge from the map.
if (_normal.dot(edgeData[reverseHash].normal) <= thresholdDot) {
vertices.push(v0.x, v0.y, v0.z);
vertices.push(v1.x, v1.y, v1.z);
}
edgeData[reverseHash] = null;
} else if (!(hash in edgeData)) {
// if we've already got an edge here then skip adding a new one
edgeData[hash] = {
index0: indexArr[j],
index1: indexArr[jNext],
normal: _normal.clone()
};
}
}
} // iterate over all remaining, unmatched edges and add them to the vertex array
for (const key in edgeData) {
if (edgeData[key]) {
const {
index0,
index1
} = edgeData[key];
_v0.fromBufferAttribute(positionAttr, index0);
_v1$1.fromBufferAttribute(positionAttr, index1);
vertices.push(_v0.x, _v0.y, _v0.z);
vertices.push(_v1$1.x, _v1$1.y, _v1$1.z);
}
}
this.setAttribute('position', new Float32BufferAttribute(vertices, 3));
}
}
}
/**
* Extensible curve object.
*
* Some common of curve methods:
* .getPoint( t, optionalTarget ), .getTangent( t, optionalTarget )
* .getPointAt( u, optionalTarget ), .getTangentAt( u, optionalTarget )
* .getPoints(), .getSpacedPoints()
* .getLength()
* .updateArcLengths()
*
* This following curves inherit from THREE.Curve:
*
* -- 2D curves --
* THREE.ArcCurve
* THREE.CubicBezierCurve
* THREE.EllipseCurve
* THREE.LineCurve
* THREE.QuadraticBezierCurve
* THREE.SplineCurve
*
* -- 3D curves --
* THREE.CatmullRomCurve3
* THREE.CubicBezierCurve3
* THREE.LineCurve3
* THREE.QuadraticBezierCurve3
*
* A series of curves can be represented as a THREE.CurvePath.
*
**/
class Curve {
constructor() {
this.type = 'Curve';
this.arcLengthDivisions = 200;
} // Virtual base class method to overwrite and implement in subclasses
// - t [0 .. 1]
getPoint() {
console.warn('THREE.Curve: .getPoint() not implemented.');
return null;
} // Get point at relative position in curve according to arc length
// - u [0 .. 1]
getPointAt(u, optionalTarget) {
const t = this.getUtoTmapping(u);
return this.getPoint(t, optionalTarget);
} // Get sequence of points using getPoint( t )
getPoints(divisions = 5) {
const points = [];
for (let d = 0; d <= divisions; d++) {
points.push(this.getPoint(d / divisions));
}
return points;
} // Get sequence of points using getPointAt( u )
getSpacedPoints(divisions = 5) {
const points = [];
for (let d = 0; d <= divisions; d++) {
points.push(this.getPointAt(d / divisions));
}
return points;
} // Get total curve arc length
getLength() {
const lengths = this.getLengths();
return lengths[lengths.length - 1];
} // Get list of cumulative segment lengths
getLengths(divisions = this.arcLengthDivisions) {
if (this.cacheArcLengths && this.cacheArcLengths.length === divisions + 1 && !this.needsUpdate) {
return this.cacheArcLengths;
}
this.needsUpdate = false;
const cache = [];
let current,
last = this.getPoint(0);
let sum = 0;
cache.push(0);
for (let p = 1; p <= divisions; p++) {
current = this.getPoint(p / divisions);
sum += current.distanceTo(last);
cache.push(sum);
last = current;
}
this.cacheArcLengths = cache;
return cache; // { sums: cache, sum: sum }; Sum is in the last element.
}
updateArcLengths() {
this.needsUpdate = true;
this.getLengths();
} // Given u ( 0 .. 1 ), get a t to find p. This gives you points which are equidistant
getUtoTmapping(u, distance) {
const arcLengths = this.getLengths();
let i = 0;
const il = arcLengths.length;
let targetArcLength; // The targeted u distance value to get
if (distance) {
targetArcLength = distance;
} else {
targetArcLength = u * arcLengths[il - 1];
} // binary search for the index with largest value smaller than target u distance
let low = 0,
high = il - 1,
comparison;
while (low <= high) {
i = Math.floor(low + (high - low) / 2); // less likely to overflow, though probably not issue here, JS doesn't really have integers, all numbers are floats
comparison = arcLengths[i] - targetArcLength;
if (comparison < 0) {
low = i + 1;
} else if (comparison > 0) {
high = i - 1;
} else {
high = i;
break; // DONE
}
}
i = high;
if (arcLengths[i] === targetArcLength) {
return i / (il - 1);
} // we could get finer grain at lengths, or use simple interpolation between two points
const lengthBefore = arcLengths[i];
const lengthAfter = arcLengths[i + 1];
const segmentLength = lengthAfter - lengthBefore; // determine where we are between the 'before' and 'after' points
const segmentFraction = (targetArcLength - lengthBefore) / segmentLength; // add that fractional amount to t
const t = (i + segmentFraction) / (il - 1);
return t;
} // Returns a unit vector tangent at t
// In case any sub curve does not implement its tangent derivation,
// 2 points a small delta apart will be used to find its gradient
// which seems to give a reasonable approximation
getTangent(t, optionalTarget) {
const delta = 0.0001;
let t1 = t - delta;
let t2 = t + delta; // Capping in case of danger
if (t1 < 0) t1 = 0;
if (t2 > 1) t2 = 1;
const pt1 = this.getPoint(t1);
const pt2 = this.getPoint(t2);
const tangent = optionalTarget || (pt1.isVector2 ? new Vector2() : new Vector3());
tangent.copy(pt2).sub(pt1).normalize();
return tangent;
}
getTangentAt(u, optionalTarget) {
const t = this.getUtoTmapping(u);
return this.getTangent(t, optionalTarget);
}
computeFrenetFrames(segments, closed) {
// see http://www.cs.indiana.edu/pub/techreports/TR425.pdf
const normal = new Vector3();
const tangents = [];
const normals = [];
const binormals = [];
const vec = new Vector3();
const mat = new Matrix4(); // compute the tangent vectors for each segment on the curve
for (let i = 0; i <= segments; i++) {
const u = i / segments;
tangents[i] = this.getTangentAt(u, new Vector3());
} // select an initial normal vector perpendicular to the first tangent vector,
// and in the direction of the minimum tangent xyz component
normals[0] = new Vector3();
binormals[0] = new Vector3();
let min = Number.MAX_VALUE;
const tx = Math.abs(tangents[0].x);
const ty = Math.abs(tangents[0].y);
const tz = Math.abs(tangents[0].z);
if (tx <= min) {
min = tx;
normal.set(1, 0, 0);
}
if (ty <= min) {
min = ty;
normal.set(0, 1, 0);
}
if (tz <= min) {
normal.set(0, 0, 1);
}
vec.crossVectors(tangents[0], normal).normalize();
normals[0].crossVectors(tangents[0], vec);
binormals[0].crossVectors(tangents[0], normals[0]); // compute the slowly-varying normal and binormal vectors for each segment on the curve
for (let i = 1; i <= segments; i++) {
normals[i] = normals[i - 1].clone();
binormals[i] = binormals[i - 1].clone();
vec.crossVectors(tangents[i - 1], tangents[i]);
if (vec.length() > Number.EPSILON) {
vec.normalize();
const theta = Math.acos(clamp(tangents[i - 1].dot(tangents[i]), -1, 1)); // clamp for floating pt errors
normals[i].applyMatrix4(mat.makeRotationAxis(vec, theta));
}
binormals[i].crossVectors(tangents[i], normals[i]);
} // if the curve is closed, postprocess the vectors so the first and last normal vectors are the same
if (closed === true) {
let theta = Math.acos(clamp(normals[0].dot(normals[segments]), -1, 1));
theta /= segments;
if (tangents[0].dot(vec.crossVectors(normals[0], normals[segments])) > 0) {
theta = -theta;
}
for (let i = 1; i <= segments; i++) {
// twist a little...
normals[i].applyMatrix4(mat.makeRotationAxis(tangents[i], theta * i));
binormals[i].crossVectors(tangents[i], normals[i]);
}
}
return {
tangents: tangents,
normals: normals,
binormals: binormals
};
}
clone() {
return new this.constructor().copy(this);
}
copy(source) {
this.arcLengthDivisions = source.arcLengthDivisions;
return this;
}
toJSON() {
const data = {
metadata: {
version: 4.5,
type: 'Curve',
generator: 'Curve.toJSON'
}
};
data.arcLengthDivisions = this.arcLengthDivisions;
data.type = this.type;
return data;
}
fromJSON(json) {
this.arcLengthDivisions = json.arcLengthDivisions;
return this;
}
}
class EllipseCurve extends Curve {
constructor(aX = 0, aY = 0, xRadius = 1, yRadius = 1, aStartAngle = 0, aEndAngle = Math.PI * 2, aClockwise = false, aRotation = 0) {
super();
this.type = 'EllipseCurve';
this.aX = aX;
this.aY = aY;
this.xRadius = xRadius;
this.yRadius = yRadius;
this.aStartAngle = aStartAngle;
this.aEndAngle = aEndAngle;
this.aClockwise = aClockwise;
this.aRotation = aRotation;
}
getPoint(t, optionalTarget) {
const point = optionalTarget || new Vector2();
const twoPi = Math.PI * 2;
let deltaAngle = this.aEndAngle - this.aStartAngle;
const samePoints = Math.abs(deltaAngle) < Number.EPSILON; // ensures that deltaAngle is 0 .. 2 PI
while (deltaAngle < 0) deltaAngle += twoPi;
while (deltaAngle > twoPi) deltaAngle -= twoPi;
if (deltaAngle < Number.EPSILON) {
if (samePoints) {
deltaAngle = 0;
} else {
deltaAngle = twoPi;
}
}
if (this.aClockwise === true && !samePoints) {
if (deltaAngle === twoPi) {
deltaAngle = -twoPi;
} else {
deltaAngle = deltaAngle - twoPi;
}
}
const angle = this.aStartAngle + t * deltaAngle;
let x = this.aX + this.xRadius * Math.cos(angle);
let y = this.aY + this.yRadius * Math.sin(angle);
if (this.aRotation !== 0) {
const cos = Math.cos(this.aRotation);
const sin = Math.sin(this.aRotation);
const tx = x - this.aX;
const ty = y - this.aY; // Rotate the point about the center of the ellipse.
x = tx * cos - ty * sin + this.aX;
y = tx * sin + ty * cos + this.aY;
}
return point.set(x, y);
}
copy(source) {
super.copy(source);
this.aX = source.aX;
this.aY = source.aY;
this.xRadius = source.xRadius;
this.yRadius = source.yRadius;
this.aStartAngle = source.aStartAngle;
this.aEndAngle = source.aEndAngle;
this.aClockwise = source.aClockwise;
this.aRotation = source.aRotation;
return this;
}
toJSON() {
const data = super.toJSON();
data.aX = this.aX;
data.aY = this.aY;
data.xRadius = this.xRadius;
data.yRadius = this.yRadius;
data.aStartAngle = this.aStartAngle;
data.aEndAngle = this.aEndAngle;
data.aClockwise = this.aClockwise;
data.aRotation = this.aRotation;
return data;
}
fromJSON(json) {
super.fromJSON(json);
this.aX = json.aX;
this.aY = json.aY;
this.xRadius = json.xRadius;
this.yRadius = json.yRadius;
this.aStartAngle = json.aStartAngle;
this.aEndAngle = json.aEndAngle;
this.aClockwise = json.aClockwise;
this.aRotation = json.aRotation;
return this;
}
}
EllipseCurve.prototype.isEllipseCurve = true;
class ArcCurve extends EllipseCurve {
constructor(aX, aY, aRadius, aStartAngle, aEndAngle, aClockwise) {
super(aX, aY, aRadius, aRadius, aStartAngle, aEndAngle, aClockwise);
this.type = 'ArcCurve';
}
}
ArcCurve.prototype.isArcCurve = true;
/**
* Centripetal CatmullRom Curve - which is useful for avoiding
* cusps and self-intersections in non-uniform catmull rom curves.
* http://www.cemyuksel.com/research/catmullrom_param/catmullrom.pdf
*
* curve.type accepts centripetal(default), chordal and catmullrom
* curve.tension is used for catmullrom which defaults to 0.5
*/
/*
Based on an optimized c++ solution in
- http://stackoverflow.com/questions/9489736/catmull-rom-curve-with-no-cusps-and-no-self-intersections/
- http://ideone.com/NoEbVM
This CubicPoly class could be used for reusing some variables and calculations,
but for three.js curve use, it could be possible inlined and flatten into a single function call
which can be placed in CurveUtils.
*/
function CubicPoly() {
let c0 = 0,
c1 = 0,
c2 = 0,
c3 = 0;
/*
* Compute coefficients for a cubic polynomial
* p(s) = c0 + c1*s + c2*s^2 + c3*s^3
* such that
* p(0) = x0, p(1) = x1
* and
* p'(0) = t0, p'(1) = t1.
*/
function init(x0, x1, t0, t1) {
c0 = x0;
c1 = t0;
c2 = -3 * x0 + 3 * x1 - 2 * t0 - t1;
c3 = 2 * x0 - 2 * x1 + t0 + t1;
}
return {
initCatmullRom: function (x0, x1, x2, x3, tension) {
init(x1, x2, tension * (x2 - x0), tension * (x3 - x1));
},
initNonuniformCatmullRom: function (x0, x1, x2, x3, dt0, dt1, dt2) {
// compute tangents when parameterized in [t1,t2]
let t1 = (x1 - x0) / dt0 - (x2 - x0) / (dt0 + dt1) + (x2 - x1) / dt1;
let t2 = (x2 - x1) / dt1 - (x3 - x1) / (dt1 + dt2) + (x3 - x2) / dt2; // rescale tangents for parametrization in [0,1]
t1 *= dt1;
t2 *= dt1;
init(x1, x2, t1, t2);
},
calc: function (t) {
const t2 = t * t;
const t3 = t2 * t;
return c0 + c1 * t + c2 * t2 + c3 * t3;
}
};
} //
const tmp = new Vector3();
const px = new CubicPoly(),
py = new CubicPoly(),
pz = new CubicPoly();
class CatmullRomCurve3 extends Curve {
constructor(points = [], closed = false, curveType = 'centripetal', tension = 0.5) {
super();
this.type = 'CatmullRomCurve3';
this.points = points;
this.closed = closed;
this.curveType = curveType;
this.tension = tension;
}
getPoint(t, optionalTarget = new Vector3()) {
const point = optionalTarget;
const points = this.points;
const l = points.length;
const p = (l - (this.closed ? 0 : 1)) * t;
let intPoint = Math.floor(p);
let weight = p - intPoint;
if (this.closed) {
intPoint += intPoint > 0 ? 0 : (Math.floor(Math.abs(intPoint) / l) + 1) * l;
} else if (weight === 0 && intPoint === l - 1) {
intPoint = l - 2;
weight = 1;
}
let p0, p3; // 4 points (p1 & p2 defined below)
if (this.closed || intPoint > 0) {
p0 = points[(intPoint - 1) % l];
} else {
// extrapolate first point
tmp.subVectors(points[0], points[1]).add(points[0]);
p0 = tmp;
}
const p1 = points[intPoint % l];
const p2 = points[(intPoint + 1) % l];
if (this.closed || intPoint + 2 < l) {
p3 = points[(intPoint + 2) % l];
} else {
// extrapolate last point
tmp.subVectors(points[l - 1], points[l - 2]).add(points[l - 1]);
p3 = tmp;
}
if (this.curveType === 'centripetal' || this.curveType === 'chordal') {
// init Centripetal / Chordal Catmull-Rom
const pow = this.curveType === 'chordal' ? 0.5 : 0.25;
let dt0 = Math.pow(p0.distanceToSquared(p1), pow);
let dt1 = Math.pow(p1.distanceToSquared(p2), pow);
let dt2 = Math.pow(p2.distanceToSquared(p3), pow); // safety check for repeated points
if (dt1 < 1e-4) dt1 = 1.0;
if (dt0 < 1e-4) dt0 = dt1;
if (dt2 < 1e-4) dt2 = dt1;
px.initNonuniformCatmullRom(p0.x, p1.x, p2.x, p3.x, dt0, dt1, dt2);
py.initNonuniformCatmullRom(p0.y, p1.y, p2.y, p3.y, dt0, dt1, dt2);
pz.initNonuniformCatmullRom(p0.z, p1.z, p2.z, p3.z, dt0, dt1, dt2);
} else if (this.curveType === 'catmullrom') {
px.initCatmullRom(p0.x, p1.x, p2.x, p3.x, this.tension);
py.initCatmullRom(p0.y, p1.y, p2.y, p3.y, this.tension);
pz.initCatmullRom(p0.z, p1.z, p2.z, p3.z, this.tension);
}
point.set(px.calc(weight), py.calc(weight), pz.calc(weight));
return point;
}
copy(source) {
super.copy(source);
this.points = [];
for (let i = 0, l = source.points.length; i < l; i++) {
const point = source.points[i];
this.points.push(point.clone());
}
this.closed = source.closed;
this.curveType = source.curveType;
this.tension = source.tension;
return this;
}
toJSON() {
const data = super.toJSON();
data.points = [];
for (let i = 0, l = this.points.length; i < l; i++) {
const point = this.points[i];
data.points.push(point.toArray());
}
data.closed = this.closed;
data.curveType = this.curveType;
data.tension = this.tension;
return data;
}
fromJSON(json) {
super.fromJSON(json);
this.points = [];
for (let i = 0, l = json.points.length; i < l; i++) {
const point = json.points[i];
this.points.push(new Vector3().fromArray(point));
}
this.closed = json.closed;
this.curveType = json.curveType;
this.tension = json.tension;
return this;
}
}
CatmullRomCurve3.prototype.isCatmullRomCurve3 = true;
/**
* Bezier Curves formulas obtained from
* http://en.wikipedia.org/wiki/Bézier_curve
*/
function CatmullRom(t, p0, p1, p2, p3) {
const v0 = (p2 - p0) * 0.5;
const v1 = (p3 - p1) * 0.5;
const t2 = t * t;
const t3 = t * t2;
return (2 * p1 - 2 * p2 + v0 + v1) * t3 + (-3 * p1 + 3 * p2 - 2 * v0 - v1) * t2 + v0 * t + p1;
} //
function QuadraticBezierP0(t, p) {
const k = 1 - t;
return k * k * p;
}
function QuadraticBezierP1(t, p) {
return 2 * (1 - t) * t * p;
}
function QuadraticBezierP2(t, p) {
return t * t * p;
}
function QuadraticBezier(t, p0, p1, p2) {
return QuadraticBezierP0(t, p0) + QuadraticBezierP1(t, p1) + QuadraticBezierP2(t, p2);
} //
function CubicBezierP0(t, p) {
const k = 1 - t;
return k * k * k * p;
}
function CubicBezierP1(t, p) {
const k = 1 - t;
return 3 * k * k * t * p;
}
function CubicBezierP2(t, p) {
return 3 * (1 - t) * t * t * p;
}
function CubicBezierP3(t, p) {
return t * t * t * p;
}
function CubicBezier(t, p0, p1, p2, p3) {
return CubicBezierP0(t, p0) + CubicBezierP1(t, p1) + CubicBezierP2(t, p2) + CubicBezierP3(t, p3);
}
class CubicBezierCurve extends Curve {
constructor(v0 = new Vector2(), v1 = new Vector2(), v2 = new Vector2(), v3 = new Vector2()) {
super();
this.type = 'CubicBezierCurve';
this.v0 = v0;
this.v1 = v1;
this.v2 = v2;
this.v3 = v3;
}
getPoint(t, optionalTarget = new Vector2()) {
const point = optionalTarget;
const v0 = this.v0,
v1 = this.v1,
v2 = this.v2,
v3 = this.v3;
point.set(CubicBezier(t, v0.x, v1.x, v2.x, v3.x), CubicBezier(t, v0.y, v1.y, v2.y, v3.y));
return point;
}
copy(source) {
super.copy(source);
this.v0.copy(source.v0);
this.v1.copy(source.v1);
this.v2.copy(source.v2);
this.v3.copy(source.v3);
return this;
}
toJSON() {
const data = super.toJSON();
data.v0 = this.v0.toArray();
data.v1 = this.v1.toArray();
data.v2 = this.v2.toArray();
data.v3 = this.v3.toArray();
return data;
}
fromJSON(json) {
super.fromJSON(json);
this.v0.fromArray(json.v0);
this.v1.fromArray(json.v1);
this.v2.fromArray(json.v2);
this.v3.fromArray(json.v3);
return this;
}
}
CubicBezierCurve.prototype.isCubicBezierCurve = true;
class CubicBezierCurve3 extends Curve {
constructor(v0 = new Vector3(), v1 = new Vector3(), v2 = new Vector3(), v3 = new Vector3()) {
super();
this.type = 'CubicBezierCurve3';
this.v0 = v0;
this.v1 = v1;
this.v2 = v2;
this.v3 = v3;
}
getPoint(t, optionalTarget = new Vector3()) {
const point = optionalTarget;
const v0 = this.v0,
v1 = this.v1,
v2 = this.v2,
v3 = this.v3;
point.set(CubicBezier(t, v0.x, v1.x, v2.x, v3.x), CubicBezier(t, v0.y, v1.y, v2.y, v3.y), CubicBezier(t, v0.z, v1.z, v2.z, v3.z));
return point;
}
copy(source) {
super.copy(source);
this.v0.copy(source.v0);
this.v1.copy(source.v1);
this.v2.copy(source.v2);
this.v3.copy(source.v3);
return this;
}
toJSON() {
const data = super.toJSON();
data.v0 = this.v0.toArray();
data.v1 = this.v1.toArray();
data.v2 = this.v2.toArray();
data.v3 = this.v3.toArray();
return data;
}
fromJSON(json) {
super.fromJSON(json);
this.v0.fromArray(json.v0);
this.v1.fromArray(json.v1);
this.v2.fromArray(json.v2);
this.v3.fromArray(json.v3);
return this;
}
}
CubicBezierCurve3.prototype.isCubicBezierCurve3 = true;
class LineCurve extends Curve {
constructor(v1 = new Vector2(), v2 = new Vector2()) {
super();
this.type = 'LineCurve';
this.v1 = v1;
this.v2 = v2;
}
getPoint(t, optionalTarget = new Vector2()) {
const point = optionalTarget;
if (t === 1) {
point.copy(this.v2);
} else {
point.copy(this.v2).sub(this.v1);
point.multiplyScalar(t).add(this.v1);
}
return point;
} // Line curve is linear, so we can overwrite default getPointAt
getPointAt(u, optionalTarget) {
return this.getPoint(u, optionalTarget);
}
getTangent(t, optionalTarget) {
const tangent = optionalTarget || new Vector2();
tangent.copy(this.v2).sub(this.v1).normalize();
return tangent;
}
copy(source) {
super.copy(source);
this.v1.copy(source.v1);
this.v2.copy(source.v2);
return this;
}
toJSON() {
const data = super.toJSON();
data.v1 = this.v1.toArray();
data.v2 = this.v2.toArray();
return data;
}
fromJSON(json) {
super.fromJSON(json);
this.v1.fromArray(json.v1);
this.v2.fromArray(json.v2);
return this;
}
}
LineCurve.prototype.isLineCurve = true;
class LineCurve3 extends Curve {
constructor(v1 = new Vector3(), v2 = new Vector3()) {
super();
this.type = 'LineCurve3';
this.isLineCurve3 = true;
this.v1 = v1;
this.v2 = v2;
}
getPoint(t, optionalTarget = new Vector3()) {
const point = optionalTarget;
if (t === 1) {
point.copy(this.v2);
} else {
point.copy(this.v2).sub(this.v1);
point.multiplyScalar(t).add(this.v1);
}
return point;
} // Line curve is linear, so we can overwrite default getPointAt
getPointAt(u, optionalTarget) {
return this.getPoint(u, optionalTarget);
}
copy(source) {
super.copy(source);
this.v1.copy(source.v1);
this.v2.copy(source.v2);
return this;
}
toJSON() {
const data = super.toJSON();
data.v1 = this.v1.toArray();
data.v2 = this.v2.toArray();
return data;
}
fromJSON(json) {
super.fromJSON(json);
this.v1.fromArray(json.v1);
this.v2.fromArray(json.v2);
return this;
}
}
class QuadraticBezierCurve extends Curve {
constructor(v0 = new Vector2(), v1 = new Vector2(), v2 = new Vector2()) {
super();
this.type = 'QuadraticBezierCurve';
this.v0 = v0;
this.v1 = v1;
this.v2 = v2;
}
getPoint(t, optionalTarget = new Vector2()) {
const point = optionalTarget;
const v0 = this.v0,
v1 = this.v1,
v2 = this.v2;
point.set(QuadraticBezier(t, v0.x, v1.x, v2.x), QuadraticBezier(t, v0.y, v1.y, v2.y));
return point;
}
copy(source) {
super.copy(source);
this.v0.copy(source.v0);
this.v1.copy(source.v1);
this.v2.copy(source.v2);
return this;
}
toJSON() {
const data = super.toJSON();
data.v0 = this.v0.toArray();
data.v1 = this.v1.toArray();
data.v2 = this.v2.toArray();
return data;
}
fromJSON(json) {
super.fromJSON(json);
this.v0.fromArray(json.v0);
this.v1.fromArray(json.v1);
this.v2.fromArray(json.v2);
return this;
}
}
QuadraticBezierCurve.prototype.isQuadraticBezierCurve = true;
class QuadraticBezierCurve3 extends Curve {
constructor(v0 = new Vector3(), v1 = new Vector3(), v2 = new Vector3()) {
super();
this.type = 'QuadraticBezierCurve3';
this.v0 = v0;
this.v1 = v1;
this.v2 = v2;
}
getPoint(t, optionalTarget = new Vector3()) {
const point = optionalTarget;
const v0 = this.v0,
v1 = this.v1,
v2 = this.v2;
point.set(QuadraticBezier(t, v0.x, v1.x, v2.x), QuadraticBezier(t, v0.y, v1.y, v2.y), QuadraticBezier(t, v0.z, v1.z, v2.z));
return point;
}
copy(source) {
super.copy(source);
this.v0.copy(source.v0);
this.v1.copy(source.v1);
this.v2.copy(source.v2);
return this;
}
toJSON() {
const data = super.toJSON();
data.v0 = this.v0.toArray();
data.v1 = this.v1.toArray();
data.v2 = this.v2.toArray();
return data;
}
fromJSON(json) {
super.fromJSON(json);
this.v0.fromArray(json.v0);
this.v1.fromArray(json.v1);
this.v2.fromArray(json.v2);
return this;
}
}
QuadraticBezierCurve3.prototype.isQuadraticBezierCurve3 = true;
class SplineCurve extends Curve {
constructor(points = []) {
super();
this.type = 'SplineCurve';
this.points = points;
}
getPoint(t, optionalTarget = new Vector2()) {
const point = optionalTarget;
const points = this.points;
const p = (points.length - 1) * t;
const intPoint = Math.floor(p);
const weight = p - intPoint;
const p0 = points[intPoint === 0 ? intPoint : intPoint - 1];
const p1 = points[intPoint];
const p2 = points[intPoint > points.length - 2 ? points.length - 1 : intPoint + 1];
const p3 = points[intPoint > points.length - 3 ? points.length - 1 : intPoint + 2];
point.set(CatmullRom(weight, p0.x, p1.x, p2.x, p3.x), CatmullRom(weight, p0.y, p1.y, p2.y, p3.y));
return point;
}
copy(source) {
super.copy(source);
this.points = [];
for (let i = 0, l = source.points.length; i < l; i++) {
const point = source.points[i];
this.points.push(point.clone());
}
return this;
}
toJSON() {
const data = super.toJSON();
data.points = [];
for (let i = 0, l = this.points.length; i < l; i++) {
const point = this.points[i];
data.points.push(point.toArray());
}
return data;
}
fromJSON(json) {
super.fromJSON(json);
this.points = [];
for (let i = 0, l = json.points.length; i < l; i++) {
const point = json.points[i];
this.points.push(new Vector2().fromArray(point));
}
return this;
}
}
SplineCurve.prototype.isSplineCurve = true;
var Curves = /*#__PURE__*/Object.freeze({
__proto__: null,
ArcCurve: ArcCurve,
CatmullRomCurve3: CatmullRomCurve3,
CubicBezierCurve: CubicBezierCurve,
CubicBezierCurve3: CubicBezierCurve3,
EllipseCurve: EllipseCurve,
LineCurve: LineCurve,
LineCurve3: LineCurve3,
QuadraticBezierCurve: QuadraticBezierCurve,
QuadraticBezierCurve3: QuadraticBezierCurve3,
SplineCurve: SplineCurve
});
/**************************************************************
* Curved Path - a curve path is simply a array of connected
* curves, but retains the api of a curve
**************************************************************/
class CurvePath extends Curve {
constructor() {
super();
this.type = 'CurvePath';
this.curves = [];
this.autoClose = false; // Automatically closes the path
}
add(curve) {
this.curves.push(curve);
}
closePath() {
// Add a line curve if start and end of lines are not connected
const startPoint = this.curves[0].getPoint(0);
const endPoint = this.curves[this.curves.length - 1].getPoint(1);
if (!startPoint.equals(endPoint)) {
this.curves.push(new LineCurve(endPoint, startPoint));
}
} // To get accurate point with reference to
// entire path distance at time t,
// following has to be done:
// 1. Length of each sub path have to be known
// 2. Locate and identify type of curve
// 3. Get t for the curve
// 4. Return curve.getPointAt(t')
getPoint(t, optionalTarget) {
const d = t * this.getLength();
const curveLengths = this.getCurveLengths();
let i = 0; // To think about boundaries points.
while (i < curveLengths.length) {
if (curveLengths[i] >= d) {
const diff = curveLengths[i] - d;
const curve = this.curves[i];
const segmentLength = curve.getLength();
const u = segmentLength === 0 ? 0 : 1 - diff / segmentLength;
return curve.getPointAt(u, optionalTarget);
}
i++;
}
return null; // loop where sum != 0, sum > d , sum+1 <d
} // We cannot use the default THREE.Curve getPoint() with getLength() because in
// THREE.Curve, getLength() depends on getPoint() but in THREE.CurvePath
// getPoint() depends on getLength
getLength() {
const lens = this.getCurveLengths();
return lens[lens.length - 1];
} // cacheLengths must be recalculated.
updateArcLengths() {
this.needsUpdate = true;
this.cacheLengths = null;
this.getCurveLengths();
} // Compute lengths and cache them
// We cannot overwrite getLengths() because UtoT mapping uses it.
getCurveLengths() {
// We use cache values if curves and cache array are same length
if (this.cacheLengths && this.cacheLengths.length === this.curves.length) {
return this.cacheLengths;
} // Get length of sub-curve
// Push sums into cached array
const lengths = [];
let sums = 0;
for (let i = 0, l = this.curves.length; i < l; i++) {
sums += this.curves[i].getLength();
lengths.push(sums);
}
this.cacheLengths = lengths;
return lengths;
}
getSpacedPoints(divisions = 40) {
const points = [];
for (let i = 0; i <= divisions; i++) {
points.push(this.getPoint(i / divisions));
}
if (this.autoClose) {
points.push(points[0]);
}
return points;
}
getPoints(divisions = 12) {
const points = [];
let last;
for (let i = 0, curves = this.curves; i < curves.length; i++) {
const curve = curves[i];
const resolution = curve && curve.isEllipseCurve ? divisions * 2 : curve && (curve.isLineCurve || curve.isLineCurve3) ? 1 : curve && curve.isSplineCurve ? divisions * curve.points.length : divisions;
const pts = curve.getPoints(resolution);
for (let j = 0; j < pts.length; j++) {
const point = pts[j];
if (last && last.equals(point)) continue; // ensures no consecutive points are duplicates
points.push(point);
last = point;
}
}
if (this.autoClose && points.length > 1 && !points[points.length - 1].equals(points[0])) {
points.push(points[0]);
}
return points;
}
copy(source) {
super.copy(source);
this.curves = [];
for (let i = 0, l = source.curves.length; i < l; i++) {
const curve = source.curves[i];
this.curves.push(curve.clone());
}
this.autoClose = source.autoClose;
return this;
}
toJSON() {
const data = super.toJSON();
data.autoClose = this.autoClose;
data.curves = [];
for (let i = 0, l = this.curves.length; i < l; i++) {
const curve = this.curves[i];
data.curves.push(curve.toJSON());
}
return data;
}
fromJSON(json) {
super.fromJSON(json);
this.autoClose = json.autoClose;
this.curves = [];
for (let i = 0, l = json.curves.length; i < l; i++) {
const curve = json.curves[i];
this.curves.push(new Curves[curve.type]().fromJSON(curve));
}
return this;
}
}
class Path extends CurvePath {
constructor(points) {
super();
this.type = 'Path';
this.currentPoint = new Vector2();
if (points) {
this.setFromPoints(points);
}
}
setFromPoints(points) {
this.moveTo(points[0].x, points[0].y);
for (let i = 1, l = points.length; i < l; i++) {
this.lineTo(points[i].x, points[i].y);
}
return this;
}
moveTo(x, y) {
this.currentPoint.set(x, y); // TODO consider referencing vectors instead of copying?
return this;
}
lineTo(x, y) {
const curve = new LineCurve(this.currentPoint.clone(), new Vector2(x, y));
this.curves.push(curve);
this.currentPoint.set(x, y);
return this;
}
quadraticCurveTo(aCPx, aCPy, aX, aY) {
const curve = new QuadraticBezierCurve(this.currentPoint.clone(), new Vector2(aCPx, aCPy), new Vector2(aX, aY));
this.curves.push(curve);
this.currentPoint.set(aX, aY);
return this;
}
bezierCurveTo(aCP1x, aCP1y, aCP2x, aCP2y, aX, aY) {
const curve = new CubicBezierCurve(this.currentPoint.clone(), new Vector2(aCP1x, aCP1y), new Vector2(aCP2x, aCP2y), new Vector2(aX, aY));
this.curves.push(curve);
this.currentPoint.set(aX, aY);
return this;
}
splineThru(pts
/*Array of Vector*/
) {
const npts = [this.currentPoint.clone()].concat(pts);
const curve = new SplineCurve(npts);
this.curves.push(curve);
this.currentPoint.copy(pts[pts.length - 1]);
return this;
}
arc(aX, aY, aRadius, aStartAngle, aEndAngle, aClockwise) {
const x0 = this.currentPoint.x;
const y0 = this.currentPoint.y;
this.absarc(aX + x0, aY + y0, aRadius, aStartAngle, aEndAngle, aClockwise);
return this;
}
absarc(aX, aY, aRadius, aStartAngle, aEndAngle, aClockwise) {
this.absellipse(aX, aY, aRadius, aRadius, aStartAngle, aEndAngle, aClockwise);
return this;
}
ellipse(aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation) {
const x0 = this.currentPoint.x;
const y0 = this.currentPoint.y;
this.absellipse(aX + x0, aY + y0, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation);
return this;
}
absellipse(aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation) {
const curve = new EllipseCurve(aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation);
if (this.curves.length > 0) {
// if a previous curve is present, attempt to join
const firstPoint = curve.getPoint(0);
if (!firstPoint.equals(this.currentPoint)) {
this.lineTo(firstPoint.x, firstPoint.y);
}
}
this.curves.push(curve);
const lastPoint = curve.getPoint(1);
this.currentPoint.copy(lastPoint);
return this;
}
copy(source) {
super.copy(source);
this.currentPoint.copy(source.currentPoint);
return this;
}
toJSON() {
const data = super.toJSON();
data.currentPoint = this.currentPoint.toArray();
return data;
}
fromJSON(json) {
super.fromJSON(json);
this.currentPoint.fromArray(json.currentPoint);
return this;
}
}
class Shape extends Path {
constructor(points) {
super(points);
this.uuid = generateUUID();
this.type = 'Shape';
this.holes = [];
}
getPointsHoles(divisions) {
const holesPts = [];
for (let i = 0, l = this.holes.length; i < l; i++) {
holesPts[i] = this.holes[i].getPoints(divisions);
}
return holesPts;
} // get points of shape and holes (keypoints based on segments parameter)
extractPoints(divisions) {
return {
shape: this.getPoints(divisions),
holes: this.getPointsHoles(divisions)
};
}
copy(source) {
super.copy(source);
this.holes = [];
for (let i = 0, l = source.holes.length; i < l; i++) {
const hole = source.holes[i];
this.holes.push(hole.clone());
}
return this;
}
toJSON() {
const data = super.toJSON();
data.uuid = this.uuid;
data.holes = [];
for (let i = 0, l = this.holes.length; i < l; i++) {
const hole = this.holes[i];
data.holes.push(hole.toJSON());
}
return data;
}
fromJSON(json) {
super.fromJSON(json);
this.uuid = json.uuid;
this.holes = [];
for (let i = 0, l = json.holes.length; i < l; i++) {
const hole = json.holes[i];
this.holes.push(new Path().fromJSON(hole));
}
return this;
}
}
/**
* Port from https://github.com/mapbox/earcut (v2.2.2)
*/
const Earcut = {
triangulate: function (data, holeIndices, dim = 2) {
const hasHoles = holeIndices && holeIndices.length;
const outerLen = hasHoles ? holeIndices[0] * dim : data.length;
let outerNode = linkedList(data, 0, outerLen, dim, true);
const triangles = [];
if (!outerNode || outerNode.next === outerNode.prev) return triangles;
let minX, minY, maxX, maxY, x, y, invSize;
if (hasHoles) outerNode = eliminateHoles(data, holeIndices, outerNode, dim); // if the shape is not too simple, we'll use z-order curve hash later; calculate polygon bbox
if (data.length > 80 * dim) {
minX = maxX = data[0];
minY = maxY = data[1];
for (let i = dim; i < outerLen; i += dim) {
x = data[i];
y = data[i + 1];
if (x < minX) minX = x;
if (y < minY) minY = y;
if (x > maxX) maxX = x;
if (y > maxY) maxY = y;
} // minX, minY and invSize are later used to transform coords into integers for z-order calculation
invSize = Math.max(maxX - minX, maxY - minY);
invSize = invSize !== 0 ? 1 / invSize : 0;
}
earcutLinked(outerNode, triangles, dim, minX, minY, invSize);
return triangles;
}
}; // create a circular doubly linked list from polygon points in the specified winding order
function linkedList(data, start, end, dim, clockwise) {
let i, last;
if (clockwise === signedArea(data, start, end, dim) > 0) {
for (i = start; i < end; i += dim) last = insertNode(i, data[i], data[i + 1], last);
} else {
for (i = end - dim; i >= start; i -= dim) last = insertNode(i, data[i], data[i + 1], last);
}
if (last && equals(last, last.next)) {
removeNode(last);
last = last.next;
}
return last;
} // eliminate colinear or duplicate points
function filterPoints(start, end) {
if (!start) return start;
if (!end) end = start;
let p = start,
again;
do {
again = false;
if (!p.steiner && (equals(p, p.next) || area(p.prev, p, p.next) === 0)) {
removeNode(p);
p = end = p.prev;
if (p === p.next) break;
again = true;
} else {
p = p.next;
}
} while (again || p !== end);
return end;
} // main ear slicing loop which triangulates a polygon (given as a linked list)
function earcutLinked(ear, triangles, dim, minX, minY, invSize, pass) {
if (!ear) return; // interlink polygon nodes in z-order
if (!pass && invSize) indexCurve(ear, minX, minY, invSize);
let stop = ear,
prev,
next; // iterate through ears, slicing them one by one
while (ear.prev !== ear.next) {
prev = ear.prev;
next = ear.next;
if (invSize ? isEarHashed(ear, minX, minY, invSize) : isEar(ear)) {
// cut off the triangle
triangles.push(prev.i / dim);
triangles.push(ear.i / dim);
triangles.push(next.i / dim);
removeNode(ear); // skipping the next vertex leads to less sliver triangles
ear = next.next;
stop = next.next;
continue;
}
ear = next; // if we looped through the whole remaining polygon and can't find any more ears
if (ear === stop) {
// try filtering points and slicing again
if (!pass) {
earcutLinked(filterPoints(ear), triangles, dim, minX, minY, invSize, 1); // if this didn't work, try curing all small self-intersections locally
} else if (pass === 1) {
ear = cureLocalIntersections(filterPoints(ear), triangles, dim);
earcutLinked(ear, triangles, dim, minX, minY, invSize, 2); // as a last resort, try splitting the remaining polygon into two
} else if (pass === 2) {
splitEarcut(ear, triangles, dim, minX, minY, invSize);
}
break;
}
}
} // check whether a polygon node forms a valid ear with adjacent nodes
function isEar(ear) {
const a = ear.prev,
b = ear,
c = ear.next;
if (area(a, b, c) >= 0) return false; // reflex, can't be an ear
// now make sure we don't have other points inside the potential ear
let p = ear.next.next;
while (p !== ear.prev) {
if (pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y) && area(p.prev, p, p.next) >= 0) return false;
p = p.next;
}
return true;
}
function isEarHashed(ear, minX, minY, invSize) {
const a = ear.prev,
b = ear,
c = ear.next;
if (area(a, b, c) >= 0) return false; // reflex, can't be an ear
// triangle bbox; min & max are calculated like this for speed
const minTX = a.x < b.x ? a.x < c.x ? a.x : c.x : b.x < c.x ? b.x : c.x,
minTY = a.y < b.y ? a.y < c.y ? a.y : c.y : b.y < c.y ? b.y : c.y,
maxTX = a.x > b.x ? a.x > c.x ? a.x : c.x : b.x > c.x ? b.x : c.x,
maxTY = a.y > b.y ? a.y > c.y ? a.y : c.y : b.y > c.y ? b.y : c.y; // z-order range for the current triangle bbox;
const minZ = zOrder(minTX, minTY, minX, minY, invSize),
maxZ = zOrder(maxTX, maxTY, minX, minY, invSize);
let p = ear.prevZ,
n = ear.nextZ; // look for points inside the triangle in both directions
while (p && p.z >= minZ && n && n.z <= maxZ) {
if (p !== ear.prev && p !== ear.next && pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y) && area(p.prev, p, p.next) >= 0) return false;
p = p.prevZ;
if (n !== ear.prev && n !== ear.next && pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, n.x, n.y) && area(n.prev, n, n.next) >= 0) return false;
n = n.nextZ;
} // look for remaining points in decreasing z-order
while (p && p.z >= minZ) {
if (p !== ear.prev && p !== ear.next && pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y) && area(p.prev, p, p.next) >= 0) return false;
p = p.prevZ;
} // look for remaining points in increasing z-order
while (n && n.z <= maxZ) {
if (n !== ear.prev && n !== ear.next && pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, n.x, n.y) && area(n.prev, n, n.next) >= 0) return false;
n = n.nextZ;
}
return true;
} // go through all polygon nodes and cure small local self-intersections
function cureLocalIntersections(start, triangles, dim) {
let p = start;
do {
const a = p.prev,
b = p.next.next;
if (!equals(a, b) && intersects(a, p, p.next, b) && locallyInside(a, b) && locallyInside(b, a)) {
triangles.push(a.i / dim);
triangles.push(p.i / dim);
triangles.push(b.i / dim); // remove two nodes involved
removeNode(p);
removeNode(p.next);
p = start = b;
}
p = p.next;
} while (p !== start);
return filterPoints(p);
} // try splitting polygon into two and triangulate them independently
function splitEarcut(start, triangles, dim, minX, minY, invSize) {
// look for a valid diagonal that divides the polygon into two
let a = start;
do {
let b = a.next.next;
while (b !== a.prev) {
if (a.i !== b.i && isValidDiagonal(a, b)) {
// split the polygon in two by the diagonal
let c = splitPolygon(a, b); // filter colinear points around the cuts
a = filterPoints(a, a.next);
c = filterPoints(c, c.next); // run earcut on each half
earcutLinked(a, triangles, dim, minX, minY, invSize);
earcutLinked(c, triangles, dim, minX, minY, invSize);
return;
}
b = b.next;
}
a = a.next;
} while (a !== start);
} // link every hole into the outer loop, producing a single-ring polygon without holes
function eliminateHoles(data, holeIndices, outerNode, dim) {
const queue = [];
let i, len, start, end, list;
for (i = 0, len = holeIndices.length; i < len; i++) {
start = holeIndices[i] * dim;
end = i < len - 1 ? holeIndices[i + 1] * dim : data.length;
list = linkedList(data, start, end, dim, false);
if (list === list.next) list.steiner = true;
queue.push(getLeftmost(list));
}
queue.sort(compareX); // process holes from left to right
for (i = 0; i < queue.length; i++) {
eliminateHole(queue[i], outerNode);
outerNode = filterPoints(outerNode, outerNode.next);
}
return outerNode;
}
function compareX(a, b) {
return a.x - b.x;
} // find a bridge between vertices that connects hole with an outer ring and and link it
function eliminateHole(hole, outerNode) {
outerNode = findHoleBridge(hole, outerNode);
if (outerNode) {
const b = splitPolygon(outerNode, hole); // filter collinear points around the cuts
filterPoints(outerNode, outerNode.next);
filterPoints(b, b.next);
}
} // David Eberly's algorithm for finding a bridge between hole and outer polygon
function findHoleBridge(hole, outerNode) {
let p = outerNode;
const hx = hole.x;
const hy = hole.y;
let qx = -Infinity,
m; // find a segment intersected by a ray from the hole's leftmost point to the left;
// segment's endpoint with lesser x will be potential connection point
do {
if (hy <= p.y && hy >= p.next.y && p.next.y !== p.y) {
const x = p.x + (hy - p.y) * (p.next.x - p.x) / (p.next.y - p.y);
if (x <= hx && x > qx) {
qx = x;
if (x === hx) {
if (hy === p.y) return p;
if (hy === p.next.y) return p.next;
}
m = p.x < p.next.x ? p : p.next;
}
}
p = p.next;
} while (p !== outerNode);
if (!m) return null;
if (hx === qx) return m; // hole touches outer segment; pick leftmost endpoint
// look for points inside the triangle of hole point, segment intersection and endpoint;
// if there are no points found, we have a valid connection;
// otherwise choose the point of the minimum angle with the ray as connection point
const stop = m,
mx = m.x,
my = m.y;
let tanMin = Infinity,
tan;
p = m;
do {
if (hx >= p.x && p.x >= mx && hx !== p.x && pointInTriangle(hy < my ? hx : qx, hy, mx, my, hy < my ? qx : hx, hy, p.x, p.y)) {
tan = Math.abs(hy - p.y) / (hx - p.x); // tangential
if (locallyInside(p, hole) && (tan < tanMin || tan === tanMin && (p.x > m.x || p.x === m.x && sectorContainsSector(m, p)))) {
m = p;
tanMin = tan;
}
}
p = p.next;
} while (p !== stop);
return m;
} // whether sector in vertex m contains sector in vertex p in the same coordinates
function sectorContainsSector(m, p) {
return area(m.prev, m, p.prev) < 0 && area(p.next, m, m.next) < 0;
} // interlink polygon nodes in z-order
function indexCurve(start, minX, minY, invSize) {
let p = start;
do {
if (p.z === null) p.z = zOrder(p.x, p.y, minX, minY, invSize);
p.prevZ = p.prev;
p.nextZ = p.next;
p = p.next;
} while (p !== start);
p.prevZ.nextZ = null;
p.prevZ = null;
sortLinked(p);
} // Simon Tatham's linked list merge sort algorithm
// http://www.chiark.greenend.org.uk/~sgtatham/algorithms/listsort.html
function sortLinked(list) {
let i,
p,
q,
e,
tail,
numMerges,
pSize,
qSize,
inSize = 1;
do {
p = list;
list = null;
tail = null;
numMerges = 0;
while (p) {
numMerges++;
q = p;
pSize = 0;
for (i = 0; i < inSize; i++) {
pSize++;
q = q.nextZ;
if (!q) break;
}
qSize = inSize;
while (pSize > 0 || qSize > 0 && q) {
if (pSize !== 0 && (qSize === 0 || !q || p.z <= q.z)) {
e = p;
p = p.nextZ;
pSize--;
} else {
e = q;
q = q.nextZ;
qSize--;
}
if (tail) tail.nextZ = e;else list = e;
e.prevZ = tail;
tail = e;
}
p = q;
}
tail.nextZ = null;
inSize *= 2;
} while (numMerges > 1);
return list;
} // z-order of a point given coords and inverse of the longer side of data bbox
function zOrder(x, y, minX, minY, invSize) {
// coords are transformed into non-negative 15-bit integer range
x = 32767 * (x - minX) * invSize;
y = 32767 * (y - minY) * invSize;
x = (x | x << 8) & 0x00FF00FF;
x = (x | x << 4) & 0x0F0F0F0F;
x = (x | x << 2) & 0x33333333;
x = (x | x << 1) & 0x55555555;
y = (y | y << 8) & 0x00FF00FF;
y = (y | y << 4) & 0x0F0F0F0F;
y = (y | y << 2) & 0x33333333;
y = (y | y << 1) & 0x55555555;
return x | y << 1;
} // find the leftmost node of a polygon ring
function getLeftmost(start) {
let p = start,
leftmost = start;
do {
if (p.x < leftmost.x || p.x === leftmost.x && p.y < leftmost.y) leftmost = p;
p = p.next;
} while (p !== start);
return leftmost;
} // check if a point lies within a convex triangle
function pointInTriangle(ax, ay, bx, by, cx, cy, px, py) {
return (cx - px) * (ay - py) - (ax - px) * (cy - py) >= 0 && (ax - px) * (by - py) - (bx - px) * (ay - py) >= 0 && (bx - px) * (cy - py) - (cx - px) * (by - py) >= 0;
} // check if a diagonal between two polygon nodes is valid (lies in polygon interior)
function isValidDiagonal(a, b) {
return a.next.i !== b.i && a.prev.i !== b.i && !intersectsPolygon(a, b) && (locallyInside(a, b) && locallyInside(b, a) && middleInside(a, b) && (area(a.prev, a, b.prev) || area(a, b.prev, b)) || // does not create opposite-facing sectors
equals(a, b) && area(a.prev, a, a.next) > 0 && area(b.prev, b, b.next) > 0); // special zero-length case
} // signed area of a triangle
function area(p, q, r) {
return (q.y - p.y) * (r.x - q.x) - (q.x - p.x) * (r.y - q.y);
} // check if two points are equal
function equals(p1, p2) {
return p1.x === p2.x && p1.y === p2.y;
} // check if two segments intersect
function intersects(p1, q1, p2, q2) {
const o1 = sign(area(p1, q1, p2));
const o2 = sign(area(p1, q1, q2));
const o3 = sign(area(p2, q2, p1));
const o4 = sign(area(p2, q2, q1));
if (o1 !== o2 && o3 !== o4) return true; // general case
if (o1 === 0 && onSegment(p1, p2, q1)) return true; // p1, q1 and p2 are collinear and p2 lies on p1q1
if (o2 === 0 && onSegment(p1, q2, q1)) return true; // p1, q1 and q2 are collinear and q2 lies on p1q1
if (o3 === 0 && onSegment(p2, p1, q2)) return true; // p2, q2 and p1 are collinear and p1 lies on p2q2
if (o4 === 0 && onSegment(p2, q1, q2)) return true; // p2, q2 and q1 are collinear and q1 lies on p2q2
return false;
} // for collinear points p, q, r, check if point q lies on segment pr
function onSegment(p, q, r) {
return q.x <= Math.max(p.x, r.x) && q.x >= Math.min(p.x, r.x) && q.y <= Math.max(p.y, r.y) && q.y >= Math.min(p.y, r.y);
}
function sign(num) {
return num > 0 ? 1 : num < 0 ? -1 : 0;
} // check if a polygon diagonal intersects any polygon segments
function intersectsPolygon(a, b) {
let p = a;
do {
if (p.i !== a.i && p.next.i !== a.i && p.i !== b.i && p.next.i !== b.i && intersects(p, p.next, a, b)) return true;
p = p.next;
} while (p !== a);
return false;
} // check if a polygon diagonal is locally inside the polygon
function locallyInside(a, b) {
return area(a.prev, a, a.next) < 0 ? area(a, b, a.next) >= 0 && area(a, a.prev, b) >= 0 : area(a, b, a.prev) < 0 || area(a, a.next, b) < 0;
} // check if the middle point of a polygon diagonal is inside the polygon
function middleInside(a, b) {
let p = a,
inside = false;
const px = (a.x + b.x) / 2,
py = (a.y + b.y) / 2;
do {
if (p.y > py !== p.next.y > py && p.next.y !== p.y && px < (p.next.x - p.x) * (py - p.y) / (p.next.y - p.y) + p.x) inside = !inside;
p = p.next;
} while (p !== a);
return inside;
} // link two polygon vertices with a bridge; if the vertices belong to the same ring, it splits polygon into two;
// if one belongs to the outer ring and another to a hole, it merges it into a single ring
function splitPolygon(a, b) {
const a2 = new Node(a.i, a.x, a.y),
b2 = new Node(b.i, b.x, b.y),
an = a.next,
bp = b.prev;
a.next = b;
b.prev = a;
a2.next = an;
an.prev = a2;
b2.next = a2;
a2.prev = b2;
bp.next = b2;
b2.prev = bp;
return b2;
} // create a node and optionally link it with previous one (in a circular doubly linked list)
function insertNode(i, x, y, last) {
const p = new Node(i, x, y);
if (!last) {
p.prev = p;
p.next = p;
} else {
p.next = last.next;
p.prev = last;
last.next.prev = p;
last.next = p;
}
return p;
}
function removeNode(p) {
p.next.prev = p.prev;
p.prev.next = p.next;
if (p.prevZ) p.prevZ.nextZ = p.nextZ;
if (p.nextZ) p.nextZ.prevZ = p.prevZ;
}
function Node(i, x, y) {
// vertex index in coordinates array
this.i = i; // vertex coordinates
this.x = x;
this.y = y; // previous and next vertex nodes in a polygon ring
this.prev = null;
this.next = null; // z-order curve value
this.z = null; // previous and next nodes in z-order
this.prevZ = null;
this.nextZ = null; // indicates whether this is a steiner point
this.steiner = false;
}
function signedArea(data, start, end, dim) {
let sum = 0;
for (let i = start, j = end - dim; i < end; i += dim) {
sum += (data[j] - data[i]) * (data[i + 1] + data[j + 1]);
j = i;
}
return sum;
}
class ShapeUtils {
// calculate area of the contour polygon
static area(contour) {
const n = contour.length;
let a = 0.0;
for (let p = n - 1, q = 0; q < n; p = q++) {
a += contour[p].x * contour[q].y - contour[q].x * contour[p].y;
}
return a * 0.5;
}
static isClockWise(pts) {
return ShapeUtils.area(pts) < 0;
}
static triangulateShape(contour, holes) {
const vertices = []; // flat array of vertices like [ x0,y0, x1,y1, x2,y2, ... ]
const holeIndices = []; // array of hole indices
const faces = []; // final array of vertex indices like [ [ a,b,d ], [ b,c,d ] ]
removeDupEndPts(contour);
addContour(vertices, contour); //
let holeIndex = contour.length;
holes.forEach(removeDupEndPts);
for (let i = 0; i < holes.length; i++) {
holeIndices.push(holeIndex);
holeIndex += holes[i].length;
addContour(vertices, holes[i]);
} //
const triangles = Earcut.triangulate(vertices, holeIndices); //
for (let i = 0; i < triangles.length; i += 3) {
faces.push(triangles.slice(i, i + 3));
}
return faces;
}
}
function removeDupEndPts(points) {
const l = points.length;
if (l > 2 && points[l - 1].equals(points[0])) {
points.pop();
}
}
function addContour(vertices, contour) {
for (let i = 0; i < contour.length; i++) {
vertices.push(contour[i].x);
vertices.push(contour[i].y);
}
}
/**
* Creates extruded geometry from a path shape.
*
* parameters = {
*
* curveSegments: <int>, // number of points on the curves
* steps: <int>, // number of points for z-side extrusions / used for subdividing segments of extrude spline too
* depth: <float>, // Depth to extrude the shape
*
* bevelEnabled: <bool>, // turn on bevel
* bevelThickness: <float>, // how deep into the original shape bevel goes
* bevelSize: <float>, // how far from shape outline (including bevelOffset) is bevel
* bevelOffset: <float>, // how far from shape outline does bevel start
* bevelSegments: <int>, // number of bevel layers
*
* extrudePath: <THREE.Curve> // curve to extrude shape along
*
* UVGenerator: <Object> // object that provides UV generator functions
*
* }
*/
class ExtrudeGeometry extends BufferGeometry {
constructor(shapes = new Shape([new Vector2(0.5, 0.5), new Vector2(-0.5, 0.5), new Vector2(-0.5, -0.5), new Vector2(0.5, -0.5)]), options = {}) {
super();
this.type = 'ExtrudeGeometry';
this.parameters = {
shapes: shapes,
options: options
};
shapes = Array.isArray(shapes) ? shapes : [shapes];
const scope = this;
const verticesArray = [];
const uvArray = [];
for (let i = 0, l = shapes.length; i < l; i++) {
const shape = shapes[i];
addShape(shape);
} // build geometry
this.setAttribute('position', new Float32BufferAttribute(verticesArray, 3));
this.setAttribute('uv', new Float32BufferAttribute(uvArray, 2));
this.computeVertexNormals(); // functions
function addShape(shape) {
const placeholder = []; // options
const curveSegments = options.curveSegments !== undefined ? options.curveSegments : 12;
const steps = options.steps !== undefined ? options.steps : 1;
let depth = options.depth !== undefined ? options.depth : 1;
let bevelEnabled = options.bevelEnabled !== undefined ? options.bevelEnabled : true;
let bevelThickness = options.bevelThickness !== undefined ? options.bevelThickness : 0.2;
let bevelSize = options.bevelSize !== undefined ? options.bevelSize : bevelThickness - 0.1;
let bevelOffset = options.bevelOffset !== undefined ? options.bevelOffset : 0;
let bevelSegments = options.bevelSegments !== undefined ? options.bevelSegments : 3;
const extrudePath = options.extrudePath;
const uvgen = options.UVGenerator !== undefined ? options.UVGenerator : WorldUVGenerator; // deprecated options
if (options.amount !== undefined) {
console.warn('THREE.ExtrudeBufferGeometry: amount has been renamed to depth.');
depth = options.amount;
} //
let extrudePts,
extrudeByPath = false;
let splineTube, binormal, normal, position2;
if (extrudePath) {
extrudePts = extrudePath.getSpacedPoints(steps);
extrudeByPath = true;
bevelEnabled = false; // bevels not supported for path extrusion
// SETUP TNB variables
// TODO1 - have a .isClosed in spline?
splineTube = extrudePath.computeFrenetFrames(steps, false); // console.log(splineTube, 'splineTube', splineTube.normals.length, 'steps', steps, 'extrudePts', extrudePts.length);
binormal = new Vector3();
normal = new Vector3();
position2 = new Vector3();
} // Safeguards if bevels are not enabled
if (!bevelEnabled) {
bevelSegments = 0;
bevelThickness = 0;
bevelSize = 0;
bevelOffset = 0;
} // Variables initialization
const shapePoints = shape.extractPoints(curveSegments);
let vertices = shapePoints.shape;
const holes = shapePoints.holes;
const reverse = !ShapeUtils.isClockWise(vertices);
if (reverse) {
vertices = vertices.reverse(); // Maybe we should also check if holes are in the opposite direction, just to be safe ...
for (let h = 0, hl = holes.length; h < hl; h++) {
const ahole = holes[h];
if (ShapeUtils.isClockWise(ahole)) {
holes[h] = ahole.reverse();
}
}
}
const faces = ShapeUtils.triangulateShape(vertices, holes);
/* Vertices */
const contour = vertices; // vertices has all points but contour has only points of circumference
for (let h = 0, hl = holes.length; h < hl; h++) {
const ahole = holes[h];
vertices = vertices.concat(ahole);
}
function scalePt2(pt, vec, size) {
if (!vec) console.error('THREE.ExtrudeGeometry: vec does not exist');
return vec.clone().multiplyScalar(size).add(pt);
}
const vlen = vertices.length,
flen = faces.length; // Find directions for point movement
function getBevelVec(inPt, inPrev, inNext) {
// computes for inPt the corresponding point inPt' on a new contour
// shifted by 1 unit (length of normalized vector) to the left
// if we walk along contour clockwise, this new contour is outside the old one
//
// inPt' is the intersection of the two lines parallel to the two
// adjacent edges of inPt at a distance of 1 unit on the left side.
let v_trans_x, v_trans_y, shrink_by; // resulting translation vector for inPt
// good reading for geometry algorithms (here: line-line intersection)
// http://geomalgorithms.com/a05-_intersect-1.html
const v_prev_x = inPt.x - inPrev.x,
v_prev_y = inPt.y - inPrev.y;
const v_next_x = inNext.x - inPt.x,
v_next_y = inNext.y - inPt.y;
const v_prev_lensq = v_prev_x * v_prev_x + v_prev_y * v_prev_y; // check for collinear edges
const collinear0 = v_prev_x * v_next_y - v_prev_y * v_next_x;
if (Math.abs(collinear0) > Number.EPSILON) {
// not collinear
// length of vectors for normalizing
const v_prev_len = Math.sqrt(v_prev_lensq);
const v_next_len = Math.sqrt(v_next_x * v_next_x + v_next_y * v_next_y); // shift adjacent points by unit vectors to the left
const ptPrevShift_x = inPrev.x - v_prev_y / v_prev_len;
const ptPrevShift_y = inPrev.y + v_prev_x / v_prev_len;
const ptNextShift_x = inNext.x - v_next_y / v_next_len;
const ptNextShift_y = inNext.y + v_next_x / v_next_len; // scaling factor for v_prev to intersection point
const sf = ((ptNextShift_x - ptPrevShift_x) * v_next_y - (ptNextShift_y - ptPrevShift_y) * v_next_x) / (v_prev_x * v_next_y - v_prev_y * v_next_x); // vector from inPt to intersection point
v_trans_x = ptPrevShift_x + v_prev_x * sf - inPt.x;
v_trans_y = ptPrevShift_y + v_prev_y * sf - inPt.y; // Don't normalize!, otherwise sharp corners become ugly
// but prevent crazy spikes
const v_trans_lensq = v_trans_x * v_trans_x + v_trans_y * v_trans_y;
if (v_trans_lensq <= 2) {
return new Vector2(v_trans_x, v_trans_y);
} else {
shrink_by = Math.sqrt(v_trans_lensq / 2);
}
} else {
// handle special case of collinear edges
let direction_eq = false; // assumes: opposite
if (v_prev_x > Number.EPSILON) {
if (v_next_x > Number.EPSILON) {
direction_eq = true;
}
} else {
if (v_prev_x < -Number.EPSILON) {
if (v_next_x < -Number.EPSILON) {
direction_eq = true;
}
} else {
if (Math.sign(v_prev_y) === Math.sign(v_next_y)) {
direction_eq = true;
}
}
}
if (direction_eq) {
// console.log("Warning: lines are a straight sequence");
v_trans_x = -v_prev_y;
v_trans_y = v_prev_x;
shrink_by = Math.sqrt(v_prev_lensq);
} else {
// console.log("Warning: lines are a straight spike");
v_trans_x = v_prev_x;
v_trans_y = v_prev_y;
shrink_by = Math.sqrt(v_prev_lensq / 2);
}
}
return new Vector2(v_trans_x / shrink_by, v_trans_y / shrink_by);
}
const contourMovements = [];
for (let i = 0, il = contour.length, j = il - 1, k = i + 1; i < il; i++, j++, k++) {
if (j === il) j = 0;
if (k === il) k = 0; // (j)---(i)---(k)
// console.log('i,j,k', i, j , k)
contourMovements[i] = getBevelVec(contour[i], contour[j], contour[k]);
}
const holesMovements = [];
let oneHoleMovements,
verticesMovements = contourMovements.concat();
for (let h = 0, hl = holes.length; h < hl; h++) {
const ahole = holes[h];
oneHoleMovements = [];
for (let i = 0, il = ahole.length, j = il - 1, k = i + 1; i < il; i++, j++, k++) {
if (j === il) j = 0;
if (k === il) k = 0; // (j)---(i)---(k)
oneHoleMovements[i] = getBevelVec(ahole[i], ahole[j], ahole[k]);
}
holesMovements.push(oneHoleMovements);
verticesMovements = verticesMovements.concat(oneHoleMovements);
} // Loop bevelSegments, 1 for the front, 1 for the back
for (let b = 0; b < bevelSegments; b++) {
//for ( b = bevelSegments; b > 0; b -- ) {
const t = b / bevelSegments;
const z = bevelThickness * Math.cos(t * Math.PI / 2);
const bs = bevelSize * Math.sin(t * Math.PI / 2) + bevelOffset; // contract shape
for (let i = 0, il = contour.length; i < il; i++) {
const vert = scalePt2(contour[i], contourMovements[i], bs);
v(vert.x, vert.y, -z);
} // expand holes
for (let h = 0, hl = holes.length; h < hl; h++) {
const ahole = holes[h];
oneHoleMovements = holesMovements[h];
for (let i = 0, il = ahole.length; i < il; i++) {
const vert = scalePt2(ahole[i], oneHoleMovements[i], bs);
v(vert.x, vert.y, -z);
}
}
}
const bs = bevelSize + bevelOffset; // Back facing vertices
for (let i = 0; i < vlen; i++) {
const vert = bevelEnabled ? scalePt2(vertices[i], verticesMovements[i], bs) : vertices[i];
if (!extrudeByPath) {
v(vert.x, vert.y, 0);
} else {
// v( vert.x, vert.y + extrudePts[ 0 ].y, extrudePts[ 0 ].x );
normal.copy(splineTube.normals[0]).multiplyScalar(vert.x);
binormal.copy(splineTube.binormals[0]).multiplyScalar(vert.y);
position2.copy(extrudePts[0]).add(normal).add(binormal);
v(position2.x, position2.y, position2.z);
}
} // Add stepped vertices...
// Including front facing vertices
for (let s = 1; s <= steps; s++) {
for (let i = 0; i < vlen; i++) {
const vert = bevelEnabled ? scalePt2(vertices[i], verticesMovements[i], bs) : vertices[i];
if (!extrudeByPath) {
v(vert.x, vert.y, depth / steps * s);
} else {
// v( vert.x, vert.y + extrudePts[ s - 1 ].y, extrudePts[ s - 1 ].x );
normal.copy(splineTube.normals[s]).multiplyScalar(vert.x);
binormal.copy(splineTube.binormals[s]).multiplyScalar(vert.y);
position2.copy(extrudePts[s]).add(normal).add(binormal);
v(position2.x, position2.y, position2.z);
}
}
} // Add bevel segments planes
//for ( b = 1; b <= bevelSegments; b ++ ) {
for (let b = bevelSegments - 1; b >= 0; b--) {
const t = b / bevelSegments;
const z = bevelThickness * Math.cos(t * Math.PI / 2);
const bs = bevelSize * Math.sin(t * Math.PI / 2) + bevelOffset; // contract shape
for (let i = 0, il = contour.length; i < il; i++) {
const vert = scalePt2(contour[i], contourMovements[i], bs);
v(vert.x, vert.y, depth + z);
} // expand holes
for (let h = 0, hl = holes.length; h < hl; h++) {
const ahole = holes[h];
oneHoleMovements = holesMovements[h];
for (let i = 0, il = ahole.length; i < il; i++) {
const vert = scalePt2(ahole[i], oneHoleMovements[i], bs);
if (!extrudeByPath) {
v(vert.x, vert.y, depth + z);
} else {
v(vert.x, vert.y + extrudePts[steps - 1].y, extrudePts[steps - 1].x + z);
}
}
}
}
/* Faces */
// Top and bottom faces
buildLidFaces(); // Sides faces
buildSideFaces(); ///// Internal functions
function buildLidFaces() {
const start = verticesArray.length / 3;
if (bevelEnabled) {
let layer = 0; // steps + 1
let offset = vlen * layer; // Bottom faces
for (let i = 0; i < flen; i++) {
const face = faces[i];
f3(face[2] + offset, face[1] + offset, face[0] + offset);
}
layer = steps + bevelSegments * 2;
offset = vlen * layer; // Top faces
for (let i = 0; i < flen; i++) {
const face = faces[i];
f3(face[0] + offset, face[1] + offset, face[2] + offset);
}
} else {
// Bottom faces
for (let i = 0; i < flen; i++) {
const face = faces[i];
f3(face[2], face[1], face[0]);
} // Top faces
for (let i = 0; i < flen; i++) {
const face = faces[i];
f3(face[0] + vlen * steps, face[1] + vlen * steps, face[2] + vlen * steps);
}
}
scope.addGroup(start, verticesArray.length / 3 - start, 0);
} // Create faces for the z-sides of the shape
function buildSideFaces() {
const start = verticesArray.length / 3;
let layeroffset = 0;
sidewalls(contour, layeroffset);
layeroffset += contour.length;
for (let h = 0, hl = holes.length; h < hl; h++) {
const ahole = holes[h];
sidewalls(ahole, layeroffset); //, true
layeroffset += ahole.length;
}
scope.addGroup(start, verticesArray.length / 3 - start, 1);
}
function sidewalls(contour, layeroffset) {
let i = contour.length;
while (--i >= 0) {
const j = i;
let k = i - 1;
if (k < 0) k = contour.length - 1; //console.log('b', i,j, i-1, k,vertices.length);
for (let s = 0, sl = steps + bevelSegments * 2; s < sl; s++) {
const slen1 = vlen * s;
const slen2 = vlen * (s + 1);
const a = layeroffset + j + slen1,
b = layeroffset + k + slen1,
c = layeroffset + k + slen2,
d = layeroffset + j + slen2;
f4(a, b, c, d);
}
}
}
function v(x, y, z) {
placeholder.push(x);
placeholder.push(y);
placeholder.push(z);
}
function f3(a, b, c) {
addVertex(a);
addVertex(b);
addVertex(c);
const nextIndex = verticesArray.length / 3;
const uvs = uvgen.generateTopUV(scope, verticesArray, nextIndex - 3, nextIndex - 2, nextIndex - 1);
addUV(uvs[0]);
addUV(uvs[1]);
addUV(uvs[2]);
}
function f4(a, b, c, d) {
addVertex(a);
addVertex(b);
addVertex(d);
addVertex(b);
addVertex(c);
addVertex(d);
const nextIndex = verticesArray.length / 3;
const uvs = uvgen.generateSideWallUV(scope, verticesArray, nextIndex - 6, nextIndex - 3, nextIndex - 2, nextIndex - 1);
addUV(uvs[0]);
addUV(uvs[1]);
addUV(uvs[3]);
addUV(uvs[1]);
addUV(uvs[2]);
addUV(uvs[3]);
}
function addVertex(index) {
verticesArray.push(placeholder[index * 3 + 0]);
verticesArray.push(placeholder[index * 3 + 1]);
verticesArray.push(placeholder[index * 3 + 2]);
}
function addUV(vector2) {
uvArray.push(vector2.x);
uvArray.push(vector2.y);
}
}
}
toJSON() {
const data = super.toJSON();
const shapes = this.parameters.shapes;
const options = this.parameters.options;
return toJSON$1(shapes, options, data);
}
static fromJSON(data, shapes) {
const geometryShapes = [];
for (let j = 0, jl = data.shapes.length; j < jl; j++) {
const shape = shapes[data.shapes[j]];
geometryShapes.push(shape);
}
const extrudePath = data.options.extrudePath;
if (extrudePath !== undefined) {
data.options.extrudePath = new Curves[extrudePath.type]().fromJSON(extrudePath);
}
return new ExtrudeGeometry(geometryShapes, data.options);
}
}
const WorldUVGenerator = {
generateTopUV: function (geometry, vertices, indexA, indexB, indexC) {
const a_x = vertices[indexA * 3];
const a_y = vertices[indexA * 3 + 1];
const b_x = vertices[indexB * 3];
const b_y = vertices[indexB * 3 + 1];
const c_x = vertices[indexC * 3];
const c_y = vertices[indexC * 3 + 1];
return [new Vector2(a_x, a_y), new Vector2(b_x, b_y), new Vector2(c_x, c_y)];
},
generateSideWallUV: function (geometry, vertices, indexA, indexB, indexC, indexD) {
const a_x = vertices[indexA * 3];
const a_y = vertices[indexA * 3 + 1];
const a_z = vertices[indexA * 3 + 2];
const b_x = vertices[indexB * 3];
const b_y = vertices[indexB * 3 + 1];
const b_z = vertices[indexB * 3 + 2];
const c_x = vertices[indexC * 3];
const c_y = vertices[indexC * 3 + 1];
const c_z = vertices[indexC * 3 + 2];
const d_x = vertices[indexD * 3];
const d_y = vertices[indexD * 3 + 1];
const d_z = vertices[indexD * 3 + 2];
if (Math.abs(a_y - b_y) < Math.abs(a_x - b_x)) {
return [new Vector2(a_x, 1 - a_z), new Vector2(b_x, 1 - b_z), new Vector2(c_x, 1 - c_z), new Vector2(d_x, 1 - d_z)];
} else {
return [new Vector2(a_y, 1 - a_z), new Vector2(b_y, 1 - b_z), new Vector2(c_y, 1 - c_z), new Vector2(d_y, 1 - d_z)];
}
}
};
function toJSON$1(shapes, options, data) {
data.shapes = [];
if (Array.isArray(shapes)) {
for (let i = 0, l = shapes.length; i < l; i++) {
const shape = shapes[i];
data.shapes.push(shape.uuid);
}
} else {
data.shapes.push(shapes.uuid);
}
if (options.extrudePath !== undefined) data.options.extrudePath = options.extrudePath.toJSON();
return data;
}
class IcosahedronGeometry extends PolyhedronGeometry {
constructor(radius = 1, detail = 0) {
const t = (1 + Math.sqrt(5)) / 2;
const vertices = [-1, t, 0, 1, t, 0, -1, -t, 0, 1, -t, 0, 0, -1, t, 0, 1, t, 0, -1, -t, 0, 1, -t, t, 0, -1, t, 0, 1, -t, 0, -1, -t, 0, 1];
const indices = [0, 11, 5, 0, 5, 1, 0, 1, 7, 0, 7, 10, 0, 10, 11, 1, 5, 9, 5, 11, 4, 11, 10, 2, 10, 7, 6, 7, 1, 8, 3, 9, 4, 3, 4, 2, 3, 2, 6, 3, 6, 8, 3, 8, 9, 4, 9, 5, 2, 4, 11, 6, 2, 10, 8, 6, 7, 9, 8, 1];
super(vertices, indices, radius, detail);
this.type = 'IcosahedronGeometry';
this.parameters = {
radius: radius,
detail: detail
};
}
static fromJSON(data) {
return new IcosahedronGeometry(data.radius, data.detail);
}
}
class LatheGeometry extends BufferGeometry {
constructor(points = [new Vector2(0, 0.5), new Vector2(0.5, 0), new Vector2(0, -0.5)], segments = 12, phiStart = 0, phiLength = Math.PI * 2) {
super();
this.type = 'LatheGeometry';
this.parameters = {
points: points,
segments: segments,
phiStart: phiStart,
phiLength: phiLength
};
segments = Math.floor(segments); // clamp phiLength so it's in range of [ 0, 2PI ]
phiLength = clamp(phiLength, 0, Math.PI * 2); // buffers
const indices = [];
const vertices = [];
const uvs = []; // helper variables
const inverseSegments = 1.0 / segments;
const vertex = new Vector3();
const uv = new Vector2(); // generate vertices and uvs
for (let i = 0; i <= segments; i++) {
const phi = phiStart + i * inverseSegments * phiLength;
const sin = Math.sin(phi);
const cos = Math.cos(phi);
for (let j = 0; j <= points.length - 1; j++) {
// vertex
vertex.x = points[j].x * sin;
vertex.y = points[j].y;
vertex.z = points[j].x * cos;
vertices.push(vertex.x, vertex.y, vertex.z); // uv
uv.x = i / segments;
uv.y = j / (points.length - 1);
uvs.push(uv.x, uv.y);
}
} // indices
for (let i = 0; i < segments; i++) {
for (let j = 0; j < points.length - 1; j++) {
const base = j + i * points.length;
const a = base;
const b = base + points.length;
const c = base + points.length + 1;
const d = base + 1; // faces
indices.push(a, b, d);
indices.push(b, c, d);
}
} // build geometry
this.setIndex(indices);
this.setAttribute('position', new Float32BufferAttribute(vertices, 3));
this.setAttribute('uv', new Float32BufferAttribute(uvs, 2)); // generate normals
this.computeVertexNormals(); // if the geometry is closed, we need to average the normals along the seam.
// because the corresponding vertices are identical (but still have different UVs).
if (phiLength === Math.PI * 2) {
const normals = this.attributes.normal.array;
const n1 = new Vector3();
const n2 = new Vector3();
const n = new Vector3(); // this is the buffer offset for the last line of vertices
const base = segments * points.length * 3;
for (let i = 0, j = 0; i < points.length; i++, j += 3) {
// select the normal of the vertex in the first line
n1.x = normals[j + 0];
n1.y = normals[j + 1];
n1.z = normals[j + 2]; // select the normal of the vertex in the last line
n2.x = normals[base + j + 0];
n2.y = normals[base + j + 1];
n2.z = normals[base + j + 2]; // average normals
n.addVectors(n1, n2).normalize(); // assign the new values to both normals
normals[j + 0] = normals[base + j + 0] = n.x;
normals[j + 1] = normals[base + j + 1] = n.y;
normals[j + 2] = normals[base + j + 2] = n.z;
}
}
}
static fromJSON(data) {
return new LatheGeometry(data.points, data.segments, data.phiStart, data.phiLength);
}
}
class OctahedronGeometry extends PolyhedronGeometry {
constructor(radius = 1, detail = 0) {
const vertices = [1, 0, 0, -1, 0, 0, 0, 1, 0, 0, -1, 0, 0, 0, 1, 0, 0, -1];
const indices = [0, 2, 4, 0, 4, 3, 0, 3, 5, 0, 5, 2, 1, 2, 5, 1, 5, 3, 1, 3, 4, 1, 4, 2];
super(vertices, indices, radius, detail);
this.type = 'OctahedronGeometry';
this.parameters = {
radius: radius,
detail: detail
};
}
static fromJSON(data) {
return new OctahedronGeometry(data.radius, data.detail);
}
}
class RingGeometry extends BufferGeometry {
constructor(innerRadius = 0.5, outerRadius = 1, thetaSegments = 8, phiSegments = 1, thetaStart = 0, thetaLength = Math.PI * 2) {
super();
this.type = 'RingGeometry';
this.parameters = {
innerRadius: innerRadius,
outerRadius: outerRadius,
thetaSegments: thetaSegments,
phiSegments: phiSegments,
thetaStart: thetaStart,
thetaLength: thetaLength
};
thetaSegments = Math.max(3, thetaSegments);
phiSegments = Math.max(1, phiSegments); // buffers
const indices = [];
const vertices = [];
const normals = [];
const uvs = []; // some helper variables
let radius = innerRadius;
const radiusStep = (outerRadius - innerRadius) / phiSegments;
const vertex = new Vector3();
const uv = new Vector2(); // generate vertices, normals and uvs
for (let j = 0; j <= phiSegments; j++) {
for (let i = 0; i <= thetaSegments; i++) {
// values are generate from the inside of the ring to the outside
const segment = thetaStart + i / thetaSegments * thetaLength; // vertex
vertex.x = radius * Math.cos(segment);
vertex.y = radius * Math.sin(segment);
vertices.push(vertex.x, vertex.y, vertex.z); // normal
normals.push(0, 0, 1); // uv
uv.x = (vertex.x / outerRadius + 1) / 2;
uv.y = (vertex.y / outerRadius + 1) / 2;
uvs.push(uv.x, uv.y);
} // increase the radius for next row of vertices
radius += radiusStep;
} // indices
for (let j = 0; j < phiSegments; j++) {
const thetaSegmentLevel = j * (thetaSegments + 1);
for (let i = 0; i < thetaSegments; i++) {
const segment = i + thetaSegmentLevel;
const a = segment;
const b = segment + thetaSegments + 1;
const c = segment + thetaSegments + 2;
const d = segment + 1; // faces
indices.push(a, b, d);
indices.push(b, c, d);
}
} // build geometry
this.setIndex(indices);
this.setAttribute('position', new Float32BufferAttribute(vertices, 3));
this.setAttribute('normal', new Float32BufferAttribute(normals, 3));
this.setAttribute('uv', new Float32BufferAttribute(uvs, 2));
}
static fromJSON(data) {
return new RingGeometry(data.innerRadius, data.outerRadius, data.thetaSegments, data.phiSegments, data.thetaStart, data.thetaLength);
}
}
class ShapeGeometry extends BufferGeometry {
constructor(shapes = new Shape([new Vector2(0, 0.5), new Vector2(-0.5, -0.5), new Vector2(0.5, -0.5)]), curveSegments = 12) {
super();
this.type = 'ShapeGeometry';
this.parameters = {
shapes: shapes,
curveSegments: curveSegments
}; // buffers
const indices = [];
const vertices = [];
const normals = [];
const uvs = []; // helper variables
let groupStart = 0;
let groupCount = 0; // allow single and array values for "shapes" parameter
if (Array.isArray(shapes) === false) {
addShape(shapes);
} else {
for (let i = 0; i < shapes.length; i++) {
addShape(shapes[i]);
this.addGroup(groupStart, groupCount, i); // enables MultiMaterial support
groupStart += groupCount;
groupCount = 0;
}
} // build geometry
this.setIndex(indices);
this.setAttribute('position', new Float32BufferAttribute(vertices, 3));
this.setAttribute('normal', new Float32BufferAttribute(normals, 3));
this.setAttribute('uv', new Float32BufferAttribute(uvs, 2)); // helper functions
function addShape(shape) {
const indexOffset = vertices.length / 3;
const points = shape.extractPoints(curveSegments);
let shapeVertices = points.shape;
const shapeHoles = points.holes; // check direction of vertices
if (ShapeUtils.isClockWise(shapeVertices) === false) {
shapeVertices = shapeVertices.reverse();
}
for (let i = 0, l = shapeHoles.length; i < l; i++) {
const shapeHole = shapeHoles[i];
if (ShapeUtils.isClockWise(shapeHole) === true) {
shapeHoles[i] = shapeHole.reverse();
}
}
const faces = ShapeUtils.triangulateShape(shapeVertices, shapeHoles); // join vertices of inner and outer paths to a single array
for (let i = 0, l = shapeHoles.length; i < l; i++) {
const shapeHole = shapeHoles[i];
shapeVertices = shapeVertices.concat(shapeHole);
} // vertices, normals, uvs
for (let i = 0, l = shapeVertices.length; i < l; i++) {
const vertex = shapeVertices[i];
vertices.push(vertex.x, vertex.y, 0);
normals.push(0, 0, 1);
uvs.push(vertex.x, vertex.y); // world uvs
} // incides
for (let i = 0, l = faces.length; i < l; i++) {
const face = faces[i];
const a = face[0] + indexOffset;
const b = face[1] + indexOffset;
const c = face[2] + indexOffset;
indices.push(a, b, c);
groupCount += 3;
}
}
}
toJSON() {
const data = super.toJSON();
const shapes = this.parameters.shapes;
return toJSON(shapes, data);
}
static fromJSON(data, shapes) {
const geometryShapes = [];
for (let j = 0, jl = data.shapes.length; j < jl; j++) {
const shape = shapes[data.shapes[j]];
geometryShapes.push(shape);
}
return new ShapeGeometry(geometryShapes, data.curveSegments);
}
}
function toJSON(shapes, data) {
data.shapes = [];
if (Array.isArray(shapes)) {
for (let i = 0, l = shapes.length; i < l; i++) {
const shape = shapes[i];
data.shapes.push(shape.uuid);
}
} else {
data.shapes.push(shapes.uuid);
}
return data;
}
class SphereGeometry extends BufferGeometry {
constructor(radius = 1, widthSegments = 32, heightSegments = 16, phiStart = 0, phiLength = Math.PI * 2, thetaStart = 0, thetaLength = Math.PI) {
super();
this.type = 'SphereGeometry';
this.parameters = {
radius: radius,
widthSegments: widthSegments,
heightSegments: heightSegments,
phiStart: phiStart,
phiLength: phiLength,
thetaStart: thetaStart,
thetaLength: thetaLength
};
widthSegments = Math.max(3, Math.floor(widthSegments));
heightSegments = Math.max(2, Math.floor(heightSegments));
const thetaEnd = Math.min(thetaStart + thetaLength, Math.PI);
let index = 0;
const grid = [];
const vertex = new Vector3();
const normal = new Vector3(); // buffers
const indices = [];
const vertices = [];
const normals = [];
const uvs = []; // generate vertices, normals and uvs
for (let iy = 0; iy <= heightSegments; iy++) {
const verticesRow = [];
const v = iy / heightSegments; // special case for the poles
let uOffset = 0;
if (iy == 0 && thetaStart == 0) {
uOffset = 0.5 / widthSegments;
} else if (iy == heightSegments && thetaEnd == Math.PI) {
uOffset = -0.5 / widthSegments;
}
for (let ix = 0; ix <= widthSegments; ix++) {
const u = ix / widthSegments; // vertex
vertex.x = -radius * Math.cos(phiStart + u * phiLength) * Math.sin(thetaStart + v * thetaLength);
vertex.y = radius * Math.cos(thetaStart + v * thetaLength);
vertex.z = radius * Math.sin(phiStart + u * phiLength) * Math.sin(thetaStart + v * thetaLength);
vertices.push(vertex.x, vertex.y, vertex.z); // normal
normal.copy(vertex).normalize();
normals.push(normal.x, normal.y, normal.z); // uv
uvs.push(u + uOffset, 1 - v);
verticesRow.push(index++);
}
grid.push(verticesRow);
} // indices
for (let iy = 0; iy < heightSegments; iy++) {
for (let ix = 0; ix < widthSegments; ix++) {
const a = grid[iy][ix + 1];
const b = grid[iy][ix];
const c = grid[iy + 1][ix];
const d = grid[iy + 1][ix + 1];
if (iy !== 0 || thetaStart > 0) indices.push(a, b, d);
if (iy !== heightSegments - 1 || thetaEnd < Math.PI) indices.push(b, c, d);
}
} // build geometry
this.setIndex(indices);
this.setAttribute('position', new Float32BufferAttribute(vertices, 3));
this.setAttribute('normal', new Float32BufferAttribute(normals, 3));
this.setAttribute('uv', new Float32BufferAttribute(uvs, 2));
}
static fromJSON(data) {
return new SphereGeometry(data.radius, data.widthSegments, data.heightSegments, data.phiStart, data.phiLength, data.thetaStart, data.thetaLength);
}
}
class TetrahedronGeometry extends PolyhedronGeometry {
constructor(radius = 1, detail = 0) {
const vertices = [1, 1, 1, -1, -1, 1, -1, 1, -1, 1, -1, -1];
const indices = [2, 1, 0, 0, 3, 2, 1, 3, 0, 2, 3, 1];
super(vertices, indices, radius, detail);
this.type = 'TetrahedronGeometry';
this.parameters = {
radius: radius,
detail: detail
};
}
static fromJSON(data) {
return new TetrahedronGeometry(data.radius, data.detail);
}
}
class TorusGeometry extends BufferGeometry {
constructor(radius = 1, tube = 0.4, radialSegments = 8, tubularSegments = 6, arc = Math.PI * 2) {
super();
this.type = 'TorusGeometry';
this.parameters = {
radius: radius,
tube: tube,
radialSegments: radialSegments,
tubularSegments: tubularSegments,
arc: arc
};
radialSegments = Math.floor(radialSegments);
tubularSegments = Math.floor(tubularSegments); // buffers
const indices = [];
const vertices = [];
const normals = [];
const uvs = []; // helper variables
const center = new Vector3();
const vertex = new Vector3();
const normal = new Vector3(); // generate vertices, normals and uvs
for (let j = 0; j <= radialSegments; j++) {
for (let i = 0; i <= tubularSegments; i++) {
const u = i / tubularSegments * arc;
const v = j / radialSegments * Math.PI * 2; // vertex
vertex.x = (radius + tube * Math.cos(v)) * Math.cos(u);
vertex.y = (radius + tube * Math.cos(v)) * Math.sin(u);
vertex.z = tube * Math.sin(v);
vertices.push(vertex.x, vertex.y, vertex.z); // normal
center.x = radius * Math.cos(u);
center.y = radius * Math.sin(u);
normal.subVectors(vertex, center).normalize();
normals.push(normal.x, normal.y, normal.z); // uv
uvs.push(i / tubularSegments);
uvs.push(j / radialSegments);
}
} // generate indices
for (let j = 1; j <= radialSegments; j++) {
for (let i = 1; i <= tubularSegments; i++) {
// indices
const a = (tubularSegments + 1) * j + i - 1;
const b = (tubularSegments + 1) * (j - 1) + i - 1;
const c = (tubularSegments + 1) * (j - 1) + i;
const d = (tubularSegments + 1) * j + i; // faces
indices.push(a, b, d);
indices.push(b, c, d);
}
} // build geometry
this.setIndex(indices);
this.setAttribute('position', new Float32BufferAttribute(vertices, 3));
this.setAttribute('normal', new Float32BufferAttribute(normals, 3));
this.setAttribute('uv', new Float32BufferAttribute(uvs, 2));
}
static fromJSON(data) {
return new TorusGeometry(data.radius, data.tube, data.radialSegments, data.tubularSegments, data.arc);
}
}
class TorusKnotGeometry extends BufferGeometry {
constructor(radius = 1, tube = 0.4, tubularSegments = 64, radialSegments = 8, p = 2, q = 3) {
super();
this.type = 'TorusKnotGeometry';
this.parameters = {
radius: radius,
tube: tube,
tubularSegments: tubularSegments,
radialSegments: radialSegments,
p: p,
q: q
};
tubularSegments = Math.floor(tubularSegments);
radialSegments = Math.floor(radialSegments); // buffers
const indices = [];
const vertices = [];
const normals = [];
const uvs = []; // helper variables
const vertex = new Vector3();
const normal = new Vector3();
const P1 = new Vector3();
const P2 = new Vector3();
const B = new Vector3();
const T = new Vector3();
const N = new Vector3(); // generate vertices, normals and uvs
for (let i = 0; i <= tubularSegments; ++i) {
// the radian "u" is used to calculate the position on the torus curve of the current tubular segement
const u = i / tubularSegments * p * Math.PI * 2; // now we calculate two points. P1 is our current position on the curve, P2 is a little farther ahead.
// these points are used to create a special "coordinate space", which is necessary to calculate the correct vertex positions
calculatePositionOnCurve(u, p, q, radius, P1);
calculatePositionOnCurve(u + 0.01, p, q, radius, P2); // calculate orthonormal basis
T.subVectors(P2, P1);
N.addVectors(P2, P1);
B.crossVectors(T, N);
N.crossVectors(B, T); // normalize B, N. T can be ignored, we don't use it
B.normalize();
N.normalize();
for (let j = 0; j <= radialSegments; ++j) {
// now calculate the vertices. they are nothing more than an extrusion of the torus curve.
// because we extrude a shape in the xy-plane, there is no need to calculate a z-value.
const v = j / radialSegments * Math.PI * 2;
const cx = -tube * Math.cos(v);
const cy = tube * Math.sin(v); // now calculate the final vertex position.
// first we orient the extrusion with our basis vectos, then we add it to the current position on the curve
vertex.x = P1.x + (cx * N.x + cy * B.x);
vertex.y = P1.y + (cx * N.y + cy * B.y);
vertex.z = P1.z + (cx * N.z + cy * B.z);
vertices.push(vertex.x, vertex.y, vertex.z); // normal (P1 is always the center/origin of the extrusion, thus we can use it to calculate the normal)
normal.subVectors(vertex, P1).normalize();
normals.push(normal.x, normal.y, normal.z); // uv
uvs.push(i / tubularSegments);
uvs.push(j / radialSegments);
}
} // generate indices
for (let j = 1; j <= tubularSegments; j++) {
for (let i = 1; i <= radialSegments; i++) {
// indices
const a = (radialSegments + 1) * (j - 1) + (i - 1);
const b = (radialSegments + 1) * j + (i - 1);
const c = (radialSegments + 1) * j + i;
const d = (radialSegments + 1) * (j - 1) + i; // faces
indices.push(a, b, d);
indices.push(b, c, d);
}
} // build geometry
this.setIndex(indices);
this.setAttribute('position', new Float32BufferAttribute(vertices, 3));
this.setAttribute('normal', new Float32BufferAttribute(normals, 3));
this.setAttribute('uv', new Float32BufferAttribute(uvs, 2)); // this function calculates the current position on the torus curve
function calculatePositionOnCurve(u, p, q, radius, position) {
const cu = Math.cos(u);
const su = Math.sin(u);
const quOverP = q / p * u;
const cs = Math.cos(quOverP);
position.x = radius * (2 + cs) * 0.5 * cu;
position.y = radius * (2 + cs) * su * 0.5;
position.z = radius * Math.sin(quOverP) * 0.5;
}
}
static fromJSON(data) {
return new TorusKnotGeometry(data.radius, data.tube, data.tubularSegments, data.radialSegments, data.p, data.q);
}
}
class TubeGeometry extends BufferGeometry {
constructor(path = new QuadraticBezierCurve3(new Vector3(-1, -1, 0), new Vector3(-1, 1, 0), new Vector3(1, 1, 0)), tubularSegments = 64, radius = 1, radialSegments = 8, closed = false) {
super();
this.type = 'TubeGeometry';
this.parameters = {
path: path,
tubularSegments: tubularSegments,
radius: radius,
radialSegments: radialSegments,
closed: closed
};
const frames = path.computeFrenetFrames(tubularSegments, closed); // expose internals
this.tangents = frames.tangents;
this.normals = frames.normals;
this.binormals = frames.binormals; // helper variables
const vertex = new Vector3();
const normal = new Vector3();
const uv = new Vector2();
let P = new Vector3(); // buffer
const vertices = [];
const normals = [];
const uvs = [];
const indices = []; // create buffer data
generateBufferData(); // build geometry
this.setIndex(indices);
this.setAttribute('position', new Float32BufferAttribute(vertices, 3));
this.setAttribute('normal', new Float32BufferAttribute(normals, 3));
this.setAttribute('uv', new Float32BufferAttribute(uvs, 2)); // functions
function generateBufferData() {
for (let i = 0; i < tubularSegments; i++) {
generateSegment(i);
} // if the geometry is not closed, generate the last row of vertices and normals
// at the regular position on the given path
//
// if the geometry is closed, duplicate the first row of vertices and normals (uvs will differ)
generateSegment(closed === false ? tubularSegments : 0); // uvs are generated in a separate function.
// this makes it easy compute correct values for closed geometries
generateUVs(); // finally create faces
generateIndices();
}
function generateSegment(i) {
// we use getPointAt to sample evenly distributed points from the given path
P = path.getPointAt(i / tubularSegments, P); // retrieve corresponding normal and binormal
const N = frames.normals[i];
const B = frames.binormals[i]; // generate normals and vertices for the current segment
for (let j = 0; j <= radialSegments; j++) {
const v = j / radialSegments * Math.PI * 2;
const sin = Math.sin(v);
const cos = -Math.cos(v); // normal
normal.x = cos * N.x + sin * B.x;
normal.y = cos * N.y + sin * B.y;
normal.z = cos * N.z + sin * B.z;
normal.normalize();
normals.push(normal.x, normal.y, normal.z); // vertex
vertex.x = P.x + radius * normal.x;
vertex.y = P.y + radius * normal.y;
vertex.z = P.z + radius * normal.z;
vertices.push(vertex.x, vertex.y, vertex.z);
}
}
function generateIndices() {
for (let j = 1; j <= tubularSegments; j++) {
for (let i = 1; i <= radialSegments; i++) {
const a = (radialSegments + 1) * (j - 1) + (i - 1);
const b = (radialSegments + 1) * j + (i - 1);
const c = (radialSegments + 1) * j + i;
const d = (radialSegments + 1) * (j - 1) + i; // faces
indices.push(a, b, d);
indices.push(b, c, d);
}
}
}
function generateUVs() {
for (let i = 0; i <= tubularSegments; i++) {
for (let j = 0; j <= radialSegments; j++) {
uv.x = i / tubularSegments;
uv.y = j / radialSegments;
uvs.push(uv.x, uv.y);
}
}
}
}
toJSON() {
const data = super.toJSON();
data.path = this.parameters.path.toJSON();
return data;
}
static fromJSON(data) {
// This only works for built-in curves (e.g. CatmullRomCurve3).
// User defined curves or instances of CurvePath will not be deserialized.
return new TubeGeometry(new Curves[data.path.type]().fromJSON(data.path), data.tubularSegments, data.radius, data.radialSegments, data.closed);
}
}
class WireframeGeometry extends BufferGeometry {
constructor(geometry = null) {
super();
this.type = 'WireframeGeometry';
this.parameters = {
geometry: geometry
};
if (geometry !== null) {
// buffer
const vertices = [];
const edges = new Set(); // helper variables
const start = new Vector3();
const end = new Vector3();
if (geometry.index !== null) {
// indexed BufferGeometry
const position = geometry.attributes.position;
const indices = geometry.index;
let groups = geometry.groups;
if (groups.length === 0) {
groups = [{
start: 0,
count: indices.count,
materialIndex: 0
}];
} // create a data structure that contains all eges without duplicates
for (let o = 0, ol = groups.length; o < ol; ++o) {
const group = groups[o];
const groupStart = group.start;
const groupCount = group.count;
for (let i = groupStart, l = groupStart + groupCount; i < l; i += 3) {
for (let j = 0; j < 3; j++) {
const index1 = indices.getX(i + j);
const index2 = indices.getX(i + (j + 1) % 3);
start.fromBufferAttribute(position, index1);
end.fromBufferAttribute(position, index2);
if (isUniqueEdge(start, end, edges) === true) {
vertices.push(start.x, start.y, start.z);
vertices.push(end.x, end.y, end.z);
}
}
}
}
} else {
// non-indexed BufferGeometry
const position = geometry.attributes.position;
for (let i = 0, l = position.count / 3; i < l; i++) {
for (let j = 0; j < 3; j++) {
// three edges per triangle, an edge is represented as (index1, index2)
// e.g. the first triangle has the following edges: (0,1),(1,2),(2,0)
const index1 = 3 * i + j;
const index2 = 3 * i + (j + 1) % 3;
start.fromBufferAttribute(position, index1);
end.fromBufferAttribute(position, index2);
if (isUniqueEdge(start, end, edges) === true) {
vertices.push(start.x, start.y, start.z);
vertices.push(end.x, end.y, end.z);
}
}
}
} // build geometry
this.setAttribute('position', new Float32BufferAttribute(vertices, 3));
}
}
}
function isUniqueEdge(start, end, edges) {
const hash1 = `${start.x},${start.y},${start.z}-${end.x},${end.y},${end.z}`;
const hash2 = `${end.x},${end.y},${end.z}-${start.x},${start.y},${start.z}`; // coincident edge
if (edges.has(hash1) === true || edges.has(hash2) === true) {
return false;
} else {
edges.add(hash1, hash2);
return true;
}
}
var Geometries = /*#__PURE__*/Object.freeze({
__proto__: null,
BoxGeometry: BoxGeometry,
BoxBufferGeometry: BoxGeometry,
CircleGeometry: CircleGeometry,
CircleBufferGeometry: CircleGeometry,
ConeGeometry: ConeGeometry,
ConeBufferGeometry: ConeGeometry,
CylinderGeometry: CylinderGeometry,
CylinderBufferGeometry: CylinderGeometry,
DodecahedronGeometry: DodecahedronGeometry,
DodecahedronBufferGeometry: DodecahedronGeometry,
EdgesGeometry: EdgesGeometry,
ExtrudeGeometry: ExtrudeGeometry,
ExtrudeBufferGeometry: ExtrudeGeometry,
IcosahedronGeometry: IcosahedronGeometry,
IcosahedronBufferGeometry: IcosahedronGeometry,
LatheGeometry: LatheGeometry,
LatheBufferGeometry: LatheGeometry,
OctahedronGeometry: OctahedronGeometry,
OctahedronBufferGeometry: OctahedronGeometry,
PlaneGeometry: PlaneGeometry,
PlaneBufferGeometry: PlaneGeometry,
PolyhedronGeometry: PolyhedronGeometry,
PolyhedronBufferGeometry: PolyhedronGeometry,
RingGeometry: RingGeometry,
RingBufferGeometry: RingGeometry,
ShapeGeometry: ShapeGeometry,
ShapeBufferGeometry: ShapeGeometry,
SphereGeometry: SphereGeometry,
SphereBufferGeometry: SphereGeometry,
TetrahedronGeometry: TetrahedronGeometry,
TetrahedronBufferGeometry: TetrahedronGeometry,
TorusGeometry: TorusGeometry,
TorusBufferGeometry: TorusGeometry,
TorusKnotGeometry: TorusKnotGeometry,
TorusKnotBufferGeometry: TorusKnotGeometry,
TubeGeometry: TubeGeometry,
TubeBufferGeometry: TubeGeometry,
WireframeGeometry: WireframeGeometry
});
/**
* parameters = {
* color: <THREE.Color>
* }
*/
class ShadowMaterial extends Material {
constructor(parameters) {
super();
this.type = 'ShadowMaterial';
this.color = new Color(0x000000);
this.transparent = true;
this.setValues(parameters);
}
copy(source) {
super.copy(source);
this.color.copy(source.color);
return this;
}
}
ShadowMaterial.prototype.isShadowMaterial = true;
/**
* parameters = {
* color: <hex>,
* roughness: <float>,
* metalness: <float>,
* opacity: <float>,
*
* map: new THREE.Texture( <Image> ),
*
* lightMap: new THREE.Texture( <Image> ),
* lightMapIntensity: <float>
*
* aoMap: new THREE.Texture( <Image> ),
* aoMapIntensity: <float>
*
* emissive: <hex>,
* emissiveIntensity: <float>
* emissiveMap: new THREE.Texture( <Image> ),
*
* bumpMap: new THREE.Texture( <Image> ),
* bumpScale: <float>,
*
* normalMap: new THREE.Texture( <Image> ),
* normalMapType: THREE.TangentSpaceNormalMap,
* normalScale: <Vector2>,
*
* displacementMap: new THREE.Texture( <Image> ),
* displacementScale: <float>,
* displacementBias: <float>,
*
* roughnessMap: new THREE.Texture( <Image> ),
*
* metalnessMap: new THREE.Texture( <Image> ),
*
* alphaMap: new THREE.Texture( <Image> ),
*
* envMap: new THREE.CubeTexture( [posx, negx, posy, negy, posz, negz] ),
* envMapIntensity: <float>
*
* refractionRatio: <float>,
*
* wireframe: <boolean>,
* wireframeLinewidth: <float>,
*
* flatShading: <bool>
* }
*/
class MeshStandardMaterial extends Material {
constructor(parameters) {
super();
this.defines = {
'STANDARD': ''
};
this.type = 'MeshStandardMaterial';
this.color = new Color(0xffffff); // diffuse
this.roughness = 1.0;
this.metalness = 0.0;
this.map = null;
this.lightMap = null;
this.lightMapIntensity = 1.0;
this.aoMap = null;
this.aoMapIntensity = 1.0;
this.emissive = new Color(0x000000);
this.emissiveIntensity = 1.0;
this.emissiveMap = null;
this.bumpMap = null;
this.bumpScale = 1;
this.normalMap = null;
this.normalMapType = TangentSpaceNormalMap;
this.normalScale = new Vector2(1, 1);
this.displacementMap = null;
this.displacementScale = 1;
this.displacementBias = 0;
this.roughnessMap = null;
this.metalnessMap = null;
this.alphaMap = null;
this.envMap = null;
this.envMapIntensity = 1.0;
this.refractionRatio = 0.98;
this.wireframe = false;
this.wireframeLinewidth = 1;
this.wireframeLinecap = 'round';
this.wireframeLinejoin = 'round';
this.flatShading = false;
this.setValues(parameters);
}
copy(source) {
super.copy(source);
this.defines = {
'STANDARD': ''
};
this.color.copy(source.color);
this.roughness = source.roughness;
this.metalness = source.metalness;
this.map = source.map;
this.lightMap = source.lightMap;
this.lightMapIntensity = source.lightMapIntensity;
this.aoMap = source.aoMap;
this.aoMapIntensity = source.aoMapIntensity;
this.emissive.copy(source.emissive);
this.emissiveMap = source.emissiveMap;
this.emissiveIntensity = source.emissiveIntensity;
this.bumpMap = source.bumpMap;
this.bumpScale = source.bumpScale;
this.normalMap = source.normalMap;
this.normalMapType = source.normalMapType;
this.normalScale.copy(source.normalScale);
this.displacementMap = source.displacementMap;
this.displacementScale = source.displacementScale;
this.displacementBias = source.displacementBias;
this.roughnessMap = source.roughnessMap;
this.metalnessMap = source.metalnessMap;
this.alphaMap = source.alphaMap;
this.envMap = source.envMap;
this.envMapIntensity = source.envMapIntensity;
this.refractionRatio = source.refractionRatio;
this.wireframe = source.wireframe;
this.wireframeLinewidth = source.wireframeLinewidth;
this.wireframeLinecap = source.wireframeLinecap;
this.wireframeLinejoin = source.wireframeLinejoin;
this.flatShading = source.flatShading;
return this;
}
}
MeshStandardMaterial.prototype.isMeshStandardMaterial = true;
/**
* parameters = {
* clearcoat: <float>,
* clearcoatMap: new THREE.Texture( <Image> ),
* clearcoatRoughness: <float>,
* clearcoatRoughnessMap: new THREE.Texture( <Image> ),
* clearcoatNormalScale: <Vector2>,
* clearcoatNormalMap: new THREE.Texture( <Image> ),
*
* ior: <float>,
* reflectivity: <float>,
*
* sheen: <float>,
* sheenTint: <Color>,
* sheenRoughness: <float>,
*
* transmission: <float>,
* transmissionMap: new THREE.Texture( <Image> ),
*
* thickness: <float>,
* thicknessMap: new THREE.Texture( <Image> ),
* attenuationDistance: <float>,
* attenuationTint: <Color>,
*
* specularIntensity: <float>,
* specularIntensityhMap: new THREE.Texture( <Image> ),
* specularTint: <Color>,
* specularTintMap: new THREE.Texture( <Image> )
* }
*/
class MeshPhysicalMaterial extends MeshStandardMaterial {
constructor(parameters) {
super();
this.defines = {
'STANDARD': '',
'PHYSICAL': ''
};
this.type = 'MeshPhysicalMaterial';
this.clearcoatMap = null;
this.clearcoatRoughness = 0.0;
this.clearcoatRoughnessMap = null;
this.clearcoatNormalScale = new Vector2(1, 1);
this.clearcoatNormalMap = null;
this.ior = 1.5;
Object.defineProperty(this, 'reflectivity', {
get: function () {
return clamp(2.5 * (this.ior - 1) / (this.ior + 1), 0, 1);
},
set: function (reflectivity) {
this.ior = (1 + 0.4 * reflectivity) / (1 - 0.4 * reflectivity);
}
});
this.sheenTint = new Color(0x000000);
this.sheenRoughness = 1.0;
this.transmissionMap = null;
this.thickness = 0.01;
this.thicknessMap = null;
this.attenuationDistance = 0.0;
this.attenuationTint = new Color(1, 1, 1);
this.specularIntensity = 1.0;
this.specularIntensityMap = null;
this.specularTint = new Color(1, 1, 1);
this.specularTintMap = null;
this._sheen = 0.0;
this._clearcoat = 0;
this._transmission = 0;
this.setValues(parameters);
}
get sheen() {
return this._sheen;
}
set sheen(value) {
if (this._sheen > 0 !== value > 0) {
this.version++;
}
this._sheen = value;
}
get clearcoat() {
return this._clearcoat;
}
set clearcoat(value) {
if (this._clearcoat > 0 !== value > 0) {
this.version++;
}
this._clearcoat = value;
}
get transmission() {
return this._transmission;
}
set transmission(value) {
if (this._transmission > 0 !== value > 0) {
this.version++;
}
this._transmission = value;
}
copy(source) {
super.copy(source);
this.defines = {
'STANDARD': '',
'PHYSICAL': ''
};
this.clearcoat = source.clearcoat;
this.clearcoatMap = source.clearcoatMap;
this.clearcoatRoughness = source.clearcoatRoughness;
this.clearcoatRoughnessMap = source.clearcoatRoughnessMap;
this.clearcoatNormalMap = source.clearcoatNormalMap;
this.clearcoatNormalScale.copy(source.clearcoatNormalScale);
this.ior = source.ior;
this.sheen = source.sheen;
this.sheenTint.copy(source.sheenTint);
this.sheenRoughness = source.sheenRoughness;
this.transmission = source.transmission;
this.transmissionMap = source.transmissionMap;
this.thickness = source.thickness;
this.thicknessMap = source.thicknessMap;
this.attenuationDistance = source.attenuationDistance;
this.attenuationTint.copy(source.attenuationTint);
this.specularIntensity = source.specularIntensity;
this.specularIntensityMap = source.specularIntensityMap;
this.specularTint.copy(source.specularTint);
this.specularTintMap = source.specularTintMap;
return this;
}
}
MeshPhysicalMaterial.prototype.isMeshPhysicalMaterial = true;
/**
* parameters = {
* color: <hex>,
* specular: <hex>,
* shininess: <float>,
* opacity: <float>,
*
* map: new THREE.Texture( <Image> ),
*
* lightMap: new THREE.Texture( <Image> ),
* lightMapIntensity: <float>
*
* aoMap: new THREE.Texture( <Image> ),
* aoMapIntensity: <float>
*
* emissive: <hex>,
* emissiveIntensity: <float>
* emissiveMap: new THREE.Texture( <Image> ),
*
* bumpMap: new THREE.Texture( <Image> ),
* bumpScale: <float>,
*
* normalMap: new THREE.Texture( <Image> ),
* normalMapType: THREE.TangentSpaceNormalMap,
* normalScale: <Vector2>,
*
* displacementMap: new THREE.Texture( <Image> ),
* displacementScale: <float>,
* displacementBias: <float>,
*
* specularMap: new THREE.Texture( <Image> ),
*
* alphaMap: new THREE.Texture( <Image> ),
*
* envMap: new THREE.CubeTexture( [posx, negx, posy, negy, posz, negz] ),
* combine: THREE.MultiplyOperation,
* reflectivity: <float>,
* refractionRatio: <float>,
*
* wireframe: <boolean>,
* wireframeLinewidth: <float>,
*
* flatShading: <bool>
* }
*/
class MeshPhongMaterial extends Material {
constructor(parameters) {
super();
this.type = 'MeshPhongMaterial';
this.color = new Color(0xffffff); // diffuse
this.specular = new Color(0x111111);
this.shininess = 30;
this.map = null;
this.lightMap = null;
this.lightMapIntensity = 1.0;
this.aoMap = null;
this.aoMapIntensity = 1.0;
this.emissive = new Color(0x000000);
this.emissiveIntensity = 1.0;
this.emissiveMap = null;
this.bumpMap = null;
this.bumpScale = 1;
this.normalMap = null;
this.normalMapType = TangentSpaceNormalMap;
this.normalScale = new Vector2(1, 1);
this.displacementMap = null;
this.displacementScale = 1;
this.displacementBias = 0;
this.specularMap = null;
this.alphaMap = null;
this.envMap = null;
this.combine = MultiplyOperation;
this.reflectivity = 1;
this.refractionRatio = 0.98;
this.wireframe = false;
this.wireframeLinewidth = 1;
this.wireframeLinecap = 'round';
this.wireframeLinejoin = 'round';
this.flatShading = false;
this.setValues(parameters);
}
copy(source) {
super.copy(source);
this.color.copy(source.color);
this.specular.copy(source.specular);
this.shininess = source.shininess;
this.map = source.map;
this.lightMap = source.lightMap;
this.lightMapIntensity = source.lightMapIntensity;
this.aoMap = source.aoMap;
this.aoMapIntensity = source.aoMapIntensity;
this.emissive.copy(source.emissive);
this.emissiveMap = source.emissiveMap;
this.emissiveIntensity = source.emissiveIntensity;
this.bumpMap = source.bumpMap;
this.bumpScale = source.bumpScale;
this.normalMap = source.normalMap;
this.normalMapType = source.normalMapType;
this.normalScale.copy(source.normalScale);
this.displacementMap = source.displacementMap;
this.displacementScale = source.displacementScale;
this.displacementBias = source.displacementBias;
this.specularMap = source.specularMap;
this.alphaMap = source.alphaMap;
this.envMap = source.envMap;
this.combine = source.combine;
this.reflectivity = source.reflectivity;
this.refractionRatio = source.refractionRatio;
this.wireframe = source.wireframe;
this.wireframeLinewidth = source.wireframeLinewidth;
this.wireframeLinecap = source.wireframeLinecap;
this.wireframeLinejoin = source.wireframeLinejoin;
this.flatShading = source.flatShading;
return this;
}
}
MeshPhongMaterial.prototype.isMeshPhongMaterial = true;
/**
* parameters = {
* color: <hex>,
*
* map: new THREE.Texture( <Image> ),
* gradientMap: new THREE.Texture( <Image> ),
*
* lightMap: new THREE.Texture( <Image> ),
* lightMapIntensity: <float>
*
* aoMap: new THREE.Texture( <Image> ),
* aoMapIntensity: <float>
*
* emissive: <hex>,
* emissiveIntensity: <float>
* emissiveMap: new THREE.Texture( <Image> ),
*
* bumpMap: new THREE.Texture( <Image> ),
* bumpScale: <float>,
*
* normalMap: new THREE.Texture( <Image> ),
* normalMapType: THREE.TangentSpaceNormalMap,
* normalScale: <Vector2>,
*
* displacementMap: new THREE.Texture( <Image> ),
* displacementScale: <float>,
* displacementBias: <float>,
*
* alphaMap: new THREE.Texture( <Image> ),
*
* wireframe: <boolean>,
* wireframeLinewidth: <float>,
*
* }
*/
class MeshToonMaterial extends Material {
constructor(parameters) {
super();
this.defines = {
'TOON': ''
};
this.type = 'MeshToonMaterial';
this.color = new Color(0xffffff);
this.map = null;
this.gradientMap = null;
this.lightMap = null;
this.lightMapIntensity = 1.0;
this.aoMap = null;
this.aoMapIntensity = 1.0;
this.emissive = new Color(0x000000);
this.emissiveIntensity = 1.0;
this.emissiveMap = null;
this.bumpMap = null;
this.bumpScale = 1;
this.normalMap = null;
this.normalMapType = TangentSpaceNormalMap;
this.normalScale = new Vector2(1, 1);
this.displacementMap = null;
this.displacementScale = 1;
this.displacementBias = 0;
this.alphaMap = null;
this.wireframe = false;
this.wireframeLinewidth = 1;
this.wireframeLinecap = 'round';
this.wireframeLinejoin = 'round';
this.setValues(parameters);
}
copy(source) {
super.copy(source);
this.color.copy(source.color);
this.map = source.map;
this.gradientMap = source.gradientMap;
this.lightMap = source.lightMap;
this.lightMapIntensity = source.lightMapIntensity;
this.aoMap = source.aoMap;
this.aoMapIntensity = source.aoMapIntensity;
this.emissive.copy(source.emissive);
this.emissiveMap = source.emissiveMap;
this.emissiveIntensity = source.emissiveIntensity;
this.bumpMap = source.bumpMap;
this.bumpScale = source.bumpScale;
this.normalMap = source.normalMap;
this.normalMapType = source.normalMapType;
this.normalScale.copy(source.normalScale);
this.displacementMap = source.displacementMap;
this.displacementScale = source.displacementScale;
this.displacementBias = source.displacementBias;
this.alphaMap = source.alphaMap;
this.wireframe = source.wireframe;
this.wireframeLinewidth = source.wireframeLinewidth;
this.wireframeLinecap = source.wireframeLinecap;
this.wireframeLinejoin = source.wireframeLinejoin;
return this;
}
}
MeshToonMaterial.prototype.isMeshToonMaterial = true;
/**
* parameters = {
* opacity: <float>,
*
* bumpMap: new THREE.Texture( <Image> ),
* bumpScale: <float>,
*
* normalMap: new THREE.Texture( <Image> ),
* normalMapType: THREE.TangentSpaceNormalMap,
* normalScale: <Vector2>,
*
* displacementMap: new THREE.Texture( <Image> ),
* displacementScale: <float>,
* displacementBias: <float>,
*
* wireframe: <boolean>,
* wireframeLinewidth: <float>
*
* flatShading: <bool>
* }
*/
class MeshNormalMaterial extends Material {
constructor(parameters) {
super();
this.type = 'MeshNormalMaterial';
this.bumpMap = null;
this.bumpScale = 1;
this.normalMap = null;
this.normalMapType = TangentSpaceNormalMap;
this.normalScale = new Vector2(1, 1);
this.displacementMap = null;
this.displacementScale = 1;
this.displacementBias = 0;
this.wireframe = false;
this.wireframeLinewidth = 1;
this.fog = false;
this.flatShading = false;
this.setValues(parameters);
}
copy(source) {
super.copy(source);
this.bumpMap = source.bumpMap;
this.bumpScale = source.bumpScale;
this.normalMap = source.normalMap;
this.normalMapType = source.normalMapType;
this.normalScale.copy(source.normalScale);
this.displacementMap = source.displacementMap;
this.displacementScale = source.displacementScale;
this.displacementBias = source.displacementBias;
this.wireframe = source.wireframe;
this.wireframeLinewidth = source.wireframeLinewidth;
this.flatShading = source.flatShading;
return this;
}
}
MeshNormalMaterial.prototype.isMeshNormalMaterial = true;
/**
* parameters = {
* color: <hex>,
* opacity: <float>,
*
* map: new THREE.Texture( <Image> ),
*
* lightMap: new THREE.Texture( <Image> ),
* lightMapIntensity: <float>
*
* aoMap: new THREE.Texture( <Image> ),
* aoMapIntensity: <float>
*
* emissive: <hex>,
* emissiveIntensity: <float>
* emissiveMap: new THREE.Texture( <Image> ),
*
* specularMap: new THREE.Texture( <Image> ),
*
* alphaMap: new THREE.Texture( <Image> ),
*
* envMap: new THREE.CubeTexture( [posx, negx, posy, negy, posz, negz] ),
* combine: THREE.Multiply,
* reflectivity: <float>,
* refractionRatio: <float>,
*
* wireframe: <boolean>,
* wireframeLinewidth: <float>,
*
* }
*/
class MeshLambertMaterial extends Material {
constructor(parameters) {
super();
this.type = 'MeshLambertMaterial';
this.color = new Color(0xffffff); // diffuse
this.map = null;
this.lightMap = null;
this.lightMapIntensity = 1.0;
this.aoMap = null;
this.aoMapIntensity = 1.0;
this.emissive = new Color(0x000000);
this.emissiveIntensity = 1.0;
this.emissiveMap = null;
this.specularMap = null;
this.alphaMap = null;
this.envMap = null;
this.combine = MultiplyOperation;
this.reflectivity = 1;
this.refractionRatio = 0.98;
this.wireframe = false;
this.wireframeLinewidth = 1;
this.wireframeLinecap = 'round';
this.wireframeLinejoin = 'round';
this.setValues(parameters);
}
copy(source) {
super.copy(source);
this.color.copy(source.color);
this.map = source.map;
this.lightMap = source.lightMap;
this.lightMapIntensity = source.lightMapIntensity;
this.aoMap = source.aoMap;
this.aoMapIntensity = source.aoMapIntensity;
this.emissive.copy(source.emissive);
this.emissiveMap = source.emissiveMap;
this.emissiveIntensity = source.emissiveIntensity;
this.specularMap = source.specularMap;
this.alphaMap = source.alphaMap;
this.envMap = source.envMap;
this.combine = source.combine;
this.reflectivity = source.reflectivity;
this.refractionRatio = source.refractionRatio;
this.wireframe = source.wireframe;
this.wireframeLinewidth = source.wireframeLinewidth;
this.wireframeLinecap = source.wireframeLinecap;
this.wireframeLinejoin = source.wireframeLinejoin;
return this;
}
}
MeshLambertMaterial.prototype.isMeshLambertMaterial = true;
/**
* parameters = {
* color: <hex>,
* opacity: <float>,
*
* matcap: new THREE.Texture( <Image> ),
*
* map: new THREE.Texture( <Image> ),
*
* bumpMap: new THREE.Texture( <Image> ),
* bumpScale: <float>,
*
* normalMap: new THREE.Texture( <Image> ),
* normalMapType: THREE.TangentSpaceNormalMap,
* normalScale: <Vector2>,
*
* displacementMap: new THREE.Texture( <Image> ),
* displacementScale: <float>,
* displacementBias: <float>,
*
* alphaMap: new THREE.Texture( <Image> ),
*
* flatShading: <bool>
* }
*/
class MeshMatcapMaterial extends Material {
constructor(parameters) {
super();
this.defines = {
'MATCAP': ''
};
this.type = 'MeshMatcapMaterial';
this.color = new Color(0xffffff); // diffuse
this.matcap = null;
this.map = null;
this.bumpMap = null;
this.bumpScale = 1;
this.normalMap = null;
this.normalMapType = TangentSpaceNormalMap;
this.normalScale = new Vector2(1, 1);
this.displacementMap = null;
this.displacementScale = 1;
this.displacementBias = 0;
this.alphaMap = null;
this.flatShading = false;
this.setValues(parameters);
}
copy(source) {
super.copy(source);
this.defines = {
'MATCAP': ''
};
this.color.copy(source.color);
this.matcap = source.matcap;
this.map = source.map;
this.bumpMap = source.bumpMap;
this.bumpScale = source.bumpScale;
this.normalMap = source.normalMap;
this.normalMapType = source.normalMapType;
this.normalScale.copy(source.normalScale);
this.displacementMap = source.displacementMap;
this.displacementScale = source.displacementScale;
this.displacementBias = source.displacementBias;
this.alphaMap = source.alphaMap;
this.flatShading = source.flatShading;
return this;
}
}
MeshMatcapMaterial.prototype.isMeshMatcapMaterial = true;
/**
* parameters = {
* color: <hex>,
* opacity: <float>,
*
* linewidth: <float>,
*
* scale: <float>,
* dashSize: <float>,
* gapSize: <float>
* }
*/
class LineDashedMaterial extends LineBasicMaterial {
constructor(parameters) {
super();
this.type = 'LineDashedMaterial';
this.scale = 1;
this.dashSize = 3;
this.gapSize = 1;
this.setValues(parameters);
}
copy(source) {
super.copy(source);
this.scale = source.scale;
this.dashSize = source.dashSize;
this.gapSize = source.gapSize;
return this;
}
}
LineDashedMaterial.prototype.isLineDashedMaterial = true;
var Materials = /*#__PURE__*/Object.freeze({
__proto__: null,
ShadowMaterial: ShadowMaterial,
SpriteMaterial: SpriteMaterial,
RawShaderMaterial: RawShaderMaterial,
ShaderMaterial: ShaderMaterial,
PointsMaterial: PointsMaterial,
MeshPhysicalMaterial: MeshPhysicalMaterial,
MeshStandardMaterial: MeshStandardMaterial,
MeshPhongMaterial: MeshPhongMaterial,
MeshToonMaterial: MeshToonMaterial,
MeshNormalMaterial: MeshNormalMaterial,
MeshLambertMaterial: MeshLambertMaterial,
MeshDepthMaterial: MeshDepthMaterial,
MeshDistanceMaterial: MeshDistanceMaterial,
MeshBasicMaterial: MeshBasicMaterial,
MeshMatcapMaterial: MeshMatcapMaterial,
LineDashedMaterial: LineDashedMaterial,
LineBasicMaterial: LineBasicMaterial,
Material: Material
});
const AnimationUtils = {
// same as Array.prototype.slice, but also works on typed arrays
arraySlice: function (array, from, to) {
if (AnimationUtils.isTypedArray(array)) {
// in ios9 array.subarray(from, undefined) will return empty array
// but array.subarray(from) or array.subarray(from, len) is correct
return new array.constructor(array.subarray(from, to !== undefined ? to : array.length));
}
return array.slice(from, to);
},
// converts an array to a specific type
convertArray: function (array, type, forceClone) {
if (!array || // let 'undefined' and 'null' pass
!forceClone && array.constructor === type) return array;
if (typeof type.BYTES_PER_ELEMENT === 'number') {
return new type(array); // create typed array
}
return Array.prototype.slice.call(array); // create Array
},
isTypedArray: function (object) {
return ArrayBuffer.isView(object) && !(object instanceof DataView);
},
// returns an array by which times and values can be sorted
getKeyframeOrder: function (times) {
function compareTime(i, j) {
return times[i] - times[j];
}
const n = times.length;
const result = new Array(n);
for (let i = 0; i !== n; ++i) result[i] = i;
result.sort(compareTime);
return result;
},
// uses the array previously returned by 'getKeyframeOrder' to sort data
sortedArray: function (values, stride, order) {
const nValues = values.length;
const result = new values.constructor(nValues);
for (let i = 0, dstOffset = 0; dstOffset !== nValues; ++i) {
const srcOffset = order[i] * stride;
for (let j = 0; j !== stride; ++j) {
result[dstOffset++] = values[srcOffset + j];
}
}
return result;
},
// function for parsing AOS keyframe formats
flattenJSON: function (jsonKeys, times, values, valuePropertyName) {
let i = 1,
key = jsonKeys[0];
while (key !== undefined && key[valuePropertyName] === undefined) {
key = jsonKeys[i++];
}
if (key === undefined) return; // no data
let value = key[valuePropertyName];
if (value === undefined) return; // no data
if (Array.isArray(value)) {
do {
value = key[valuePropertyName];
if (value !== undefined) {
times.push(key.time);
values.push.apply(values, value); // push all elements
}
key = jsonKeys[i++];
} while (key !== undefined);
} else if (value.toArray !== undefined) {
// ...assume THREE.Math-ish
do {
value = key[valuePropertyName];
if (value !== undefined) {
times.push(key.time);
value.toArray(values, values.length);
}
key = jsonKeys[i++];
} while (key !== undefined);
} else {
// otherwise push as-is
do {
value = key[valuePropertyName];
if (value !== undefined) {
times.push(key.time);
values.push(value);
}
key = jsonKeys[i++];
} while (key !== undefined);
}
},
subclip: function (sourceClip, name, startFrame, endFrame, fps = 30) {
const clip = sourceClip.clone();
clip.name = name;
const tracks = [];
for (let i = 0; i < clip.tracks.length; ++i) {
const track = clip.tracks[i];
const valueSize = track.getValueSize();
const times = [];
const values = [];
for (let j = 0; j < track.times.length; ++j) {
const frame = track.times[j] * fps;
if (frame < startFrame || frame >= endFrame) continue;
times.push(track.times[j]);
for (let k = 0; k < valueSize; ++k) {
values.push(track.values[j * valueSize + k]);
}
}
if (times.length === 0) continue;
track.times = AnimationUtils.convertArray(times, track.times.constructor);
track.values = AnimationUtils.convertArray(values, track.values.constructor);
tracks.push(track);
}
clip.tracks = tracks; // find minimum .times value across all tracks in the trimmed clip
let minStartTime = Infinity;
for (let i = 0; i < clip.tracks.length; ++i) {
if (minStartTime > clip.tracks[i].times[0]) {
minStartTime = clip.tracks[i].times[0];
}
} // shift all tracks such that clip begins at t=0
for (let i = 0; i < clip.tracks.length; ++i) {
clip.tracks[i].shift(-1 * minStartTime);
}
clip.resetDuration();
return clip;
},
makeClipAdditive: function (targetClip, referenceFrame = 0, referenceClip = targetClip, fps = 30) {
if (fps <= 0) fps = 30;
const numTracks = referenceClip.tracks.length;
const referenceTime = referenceFrame / fps; // Make each track's values relative to the values at the reference frame
for (let i = 0; i < numTracks; ++i) {
const referenceTrack = referenceClip.tracks[i];
const referenceTrackType = referenceTrack.ValueTypeName; // Skip this track if it's non-numeric
if (referenceTrackType === 'bool' || referenceTrackType === 'string') continue; // Find the track in the target clip whose name and type matches the reference track
const targetTrack = targetClip.tracks.find(function (track) {
return track.name === referenceTrack.name && track.ValueTypeName === referenceTrackType;
});
if (targetTrack === undefined) continue;
let referenceOffset = 0;
const referenceValueSize = referenceTrack.getValueSize();
if (referenceTrack.createInterpolant.isInterpolantFactoryMethodGLTFCubicSpline) {
referenceOffset = referenceValueSize / 3;
}
let targetOffset = 0;
const targetValueSize = targetTrack.getValueSize();
if (targetTrack.createInterpolant.isInterpolantFactoryMethodGLTFCubicSpline) {
targetOffset = targetValueSize / 3;
}
const lastIndex = referenceTrack.times.length - 1;
let referenceValue; // Find the value to subtract out of the track
if (referenceTime <= referenceTrack.times[0]) {
// Reference frame is earlier than the first keyframe, so just use the first keyframe
const startIndex = referenceOffset;
const endIndex = referenceValueSize - referenceOffset;
referenceValue = AnimationUtils.arraySlice(referenceTrack.values, startIndex, endIndex);
} else if (referenceTime >= referenceTrack.times[lastIndex]) {
// Reference frame is after the last keyframe, so just use the last keyframe
const startIndex = lastIndex * referenceValueSize + referenceOffset;
const endIndex = startIndex + referenceValueSize - referenceOffset;
referenceValue = AnimationUtils.arraySlice(referenceTrack.values, startIndex, endIndex);
} else {
// Interpolate to the reference value
const interpolant = referenceTrack.createInterpolant();
const startIndex = referenceOffset;
const endIndex = referenceValueSize - referenceOffset;
interpolant.evaluate(referenceTime);
referenceValue = AnimationUtils.arraySlice(interpolant.resultBuffer, startIndex, endIndex);
} // Conjugate the quaternion
if (referenceTrackType === 'quaternion') {
const referenceQuat = new Quaternion().fromArray(referenceValue).normalize().conjugate();
referenceQuat.toArray(referenceValue);
} // Subtract the reference value from all of the track values
const numTimes = targetTrack.times.length;
for (let j = 0; j < numTimes; ++j) {
const valueStart = j * targetValueSize + targetOffset;
if (referenceTrackType === 'quaternion') {
// Multiply the conjugate for quaternion track types
Quaternion.multiplyQuaternionsFlat(targetTrack.values, valueStart, referenceValue, 0, targetTrack.values, valueStart);
} else {
const valueEnd = targetValueSize - targetOffset * 2; // Subtract each value for all other numeric track types
for (let k = 0; k < valueEnd; ++k) {
targetTrack.values[valueStart + k] -= referenceValue[k];
}
}
}
}
targetClip.blendMode = AdditiveAnimationBlendMode;
return targetClip;
}
};
/**
* Abstract base class of interpolants over parametric samples.
*
* The parameter domain is one dimensional, typically the time or a path
* along a curve defined by the data.
*
* The sample values can have any dimensionality and derived classes may
* apply special interpretations to the data.
*
* This class provides the interval seek in a Template Method, deferring
* the actual interpolation to derived classes.
*
* Time complexity is O(1) for linear access crossing at most two points
* and O(log N) for random access, where N is the number of positions.
*
* References:
*
* http://www.oodesign.com/template-method-pattern.html
*
*/
class Interpolant {
constructor(parameterPositions, sampleValues, sampleSize, resultBuffer) {
this.parameterPositions = parameterPositions;
this._cachedIndex = 0;
this.resultBuffer = resultBuffer !== undefined ? resultBuffer : new sampleValues.constructor(sampleSize);
this.sampleValues = sampleValues;
this.valueSize = sampleSize;
this.settings = null;
this.DefaultSettings_ = {};
}
evaluate(t) {
const pp = this.parameterPositions;
let i1 = this._cachedIndex,
t1 = pp[i1],
t0 = pp[i1 - 1];
validate_interval: {
seek: {
let right;
linear_scan: {
//- See http://jsperf.com/comparison-to-undefined/3
//- slower code:
//-
//- if ( t >= t1 || t1 === undefined ) {
forward_scan: if (!(t < t1)) {
for (let giveUpAt = i1 + 2;;) {
if (t1 === undefined) {
if (t < t0) break forward_scan; // after end
i1 = pp.length;
this._cachedIndex = i1;
return this.afterEnd_(i1 - 1, t, t0);
}
if (i1 === giveUpAt) break; // this loop
t0 = t1;
t1 = pp[++i1];
if (t < t1) {
// we have arrived at the sought interval
break seek;
}
} // prepare binary search on the right side of the index
right = pp.length;
break linear_scan;
} //- slower code:
//- if ( t < t0 || t0 === undefined ) {
if (!(t >= t0)) {
// looping?
const t1global = pp[1];
if (t < t1global) {
i1 = 2; // + 1, using the scan for the details
t0 = t1global;
} // linear reverse scan
for (let giveUpAt = i1 - 2;;) {
if (t0 === undefined) {
// before start
this._cachedIndex = 0;
return this.beforeStart_(0, t, t1);
}
if (i1 === giveUpAt) break; // this loop
t1 = t0;
t0 = pp[--i1 - 1];
if (t >= t0) {
// we have arrived at the sought interval
break seek;
}
} // prepare binary search on the left side of the index
right = i1;
i1 = 0;
break linear_scan;
} // the interval is valid
break validate_interval;
} // linear scan
// binary search
while (i1 < right) {
const mid = i1 + right >>> 1;
if (t < pp[mid]) {
right = mid;
} else {
i1 = mid + 1;
}
}
t1 = pp[i1];
t0 = pp[i1 - 1]; // check boundary cases, again
if (t0 === undefined) {
this._cachedIndex = 0;
return this.beforeStart_(0, t, t1);
}
if (t1 === undefined) {
i1 = pp.length;
this._cachedIndex = i1;
return this.afterEnd_(i1 - 1, t0, t);
}
} // seek
this._cachedIndex = i1;
this.intervalChanged_(i1, t0, t1);
} // validate_interval
return this.interpolate_(i1, t0, t, t1);
}
getSettings_() {
return this.settings || this.DefaultSettings_;
}
copySampleValue_(index) {
// copies a sample value to the result buffer
const result = this.resultBuffer,
values = this.sampleValues,
stride = this.valueSize,
offset = index * stride;
for (let i = 0; i !== stride; ++i) {
result[i] = values[offset + i];
}
return result;
} // Template methods for derived classes:
interpolate_() {
throw new Error('call to abstract method'); // implementations shall return this.resultBuffer
}
intervalChanged_() {// empty
}
} // ALIAS DEFINITIONS
Interpolant.prototype.beforeStart_ = Interpolant.prototype.copySampleValue_;
Interpolant.prototype.afterEnd_ = Interpolant.prototype.copySampleValue_;
/**
* Fast and simple cubic spline interpolant.
*
* It was derived from a Hermitian construction setting the first derivative
* at each sample position to the linear slope between neighboring positions
* over their parameter interval.
*/
class CubicInterpolant extends Interpolant {
constructor(parameterPositions, sampleValues, sampleSize, resultBuffer) {
super(parameterPositions, sampleValues, sampleSize, resultBuffer);
this._weightPrev = -0;
this._offsetPrev = -0;
this._weightNext = -0;
this._offsetNext = -0;
this.DefaultSettings_ = {
endingStart: ZeroCurvatureEnding,
endingEnd: ZeroCurvatureEnding
};
}
intervalChanged_(i1, t0, t1) {
const pp = this.parameterPositions;
let iPrev = i1 - 2,
iNext = i1 + 1,
tPrev = pp[iPrev],
tNext = pp[iNext];
if (tPrev === undefined) {
switch (this.getSettings_().endingStart) {
case ZeroSlopeEnding:
// f'(t0) = 0
iPrev = i1;
tPrev = 2 * t0 - t1;
break;
case WrapAroundEnding:
// use the other end of the curve
iPrev = pp.length - 2;
tPrev = t0 + pp[iPrev] - pp[iPrev + 1];
break;
default:
// ZeroCurvatureEnding
// f''(t0) = 0 a.k.a. Natural Spline
iPrev = i1;
tPrev = t1;
}
}
if (tNext === undefined) {
switch (this.getSettings_().endingEnd) {
case ZeroSlopeEnding:
// f'(tN) = 0
iNext = i1;
tNext = 2 * t1 - t0;
break;
case WrapAroundEnding:
// use the other end of the curve
iNext = 1;
tNext = t1 + pp[1] - pp[0];
break;
default:
// ZeroCurvatureEnding
// f''(tN) = 0, a.k.a. Natural Spline
iNext = i1 - 1;
tNext = t0;
}
}
const halfDt = (t1 - t0) * 0.5,
stride = this.valueSize;
this._weightPrev = halfDt / (t0 - tPrev);
this._weightNext = halfDt / (tNext - t1);
this._offsetPrev = iPrev * stride;
this._offsetNext = iNext * stride;
}
interpolate_(i1, t0, t, t1) {
const result = this.resultBuffer,
values = this.sampleValues,
stride = this.valueSize,
o1 = i1 * stride,
o0 = o1 - stride,
oP = this._offsetPrev,
oN = this._offsetNext,
wP = this._weightPrev,
wN = this._weightNext,
p = (t - t0) / (t1 - t0),
pp = p * p,
ppp = pp * p; // evaluate polynomials
const sP = -wP * ppp + 2 * wP * pp - wP * p;
const s0 = (1 + wP) * ppp + (-1.5 - 2 * wP) * pp + (-0.5 + wP) * p + 1;
const s1 = (-1 - wN) * ppp + (1.5 + wN) * pp + 0.5 * p;
const sN = wN * ppp - wN * pp; // combine data linearly
for (let i = 0; i !== stride; ++i) {
result[i] = sP * values[oP + i] + s0 * values[o0 + i] + s1 * values[o1 + i] + sN * values[oN + i];
}
return result;
}
}
class LinearInterpolant extends Interpolant {
constructor(parameterPositions, sampleValues, sampleSize, resultBuffer) {
super(parameterPositions, sampleValues, sampleSize, resultBuffer);
}
interpolate_(i1, t0, t, t1) {
const result = this.resultBuffer,
values = this.sampleValues,
stride = this.valueSize,
offset1 = i1 * stride,
offset0 = offset1 - stride,
weight1 = (t - t0) / (t1 - t0),
weight0 = 1 - weight1;
for (let i = 0; i !== stride; ++i) {
result[i] = values[offset0 + i] * weight0 + values[offset1 + i] * weight1;
}
return result;
}
}
/**
*
* Interpolant that evaluates to the sample value at the position preceeding
* the parameter.
*/
class DiscreteInterpolant extends Interpolant {
constructor(parameterPositions, sampleValues, sampleSize, resultBuffer) {
super(parameterPositions, sampleValues, sampleSize, resultBuffer);
}
interpolate_(i1
/*, t0, t, t1 */
) {
return this.copySampleValue_(i1 - 1);
}
}
class KeyframeTrack {
constructor(name, times, values, interpolation) {
if (name === undefined) throw new Error('THREE.KeyframeTrack: track name is undefined');
if (times === undefined || times.length === 0) throw new Error('THREE.KeyframeTrack: no keyframes in track named ' + name);
this.name = name;
this.times = AnimationUtils.convertArray(times, this.TimeBufferType);
this.values = AnimationUtils.convertArray(values, this.ValueBufferType);
this.setInterpolation(interpolation || this.DefaultInterpolation);
} // Serialization (in static context, because of constructor invocation
// and automatic invocation of .toJSON):
static toJSON(track) {
const trackType = track.constructor;
let json; // derived classes can define a static toJSON method
if (trackType.toJSON !== this.toJSON) {
json = trackType.toJSON(track);
} else {
// by default, we assume the data can be serialized as-is
json = {
'name': track.name,
'times': AnimationUtils.convertArray(track.times, Array),
'values': AnimationUtils.convertArray(track.values, Array)
};
const interpolation = track.getInterpolation();
if (interpolation !== track.DefaultInterpolation) {
json.interpolation = interpolation;
}
}
json.type = track.ValueTypeName; // mandatory
return json;
}
InterpolantFactoryMethodDiscrete(result) {
return new DiscreteInterpolant(this.times, this.values, this.getValueSize(), result);
}
InterpolantFactoryMethodLinear(result) {
return new LinearInterpolant(this.times, this.values, this.getValueSize(), result);
}
InterpolantFactoryMethodSmooth(result) {
return new CubicInterpolant(this.times, this.values, this.getValueSize(), result);
}
setInterpolation(interpolation) {
let factoryMethod;
switch (interpolation) {
case InterpolateDiscrete:
factoryMethod = this.InterpolantFactoryMethodDiscrete;
break;
case InterpolateLinear:
factoryMethod = this.InterpolantFactoryMethodLinear;
break;
case InterpolateSmooth:
factoryMethod = this.InterpolantFactoryMethodSmooth;
break;
}
if (factoryMethod === undefined) {
const message = 'unsupported interpolation for ' + this.ValueTypeName + ' keyframe track named ' + this.name;
if (this.createInterpolant === undefined) {
// fall back to default, unless the default itself is messed up
if (interpolation !== this.DefaultInterpolation) {
this.setInterpolation(this.DefaultInterpolation);
} else {
throw new Error(message); // fatal, in this case
}
}
console.warn('THREE.KeyframeTrack:', message);
return this;
}
this.createInterpolant = factoryMethod;
return this;
}
getInterpolation() {
switch (this.createInterpolant) {
case this.InterpolantFactoryMethodDiscrete:
return InterpolateDiscrete;
case this.InterpolantFactoryMethodLinear:
return InterpolateLinear;
case this.InterpolantFactoryMethodSmooth:
return InterpolateSmooth;
}
}
getValueSize() {
return this.values.length / this.times.length;
} // move all keyframes either forwards or backwards in time
shift(timeOffset) {
if (timeOffset !== 0.0) {
const times = this.times;
for (let i = 0, n = times.length; i !== n; ++i) {
times[i] += timeOffset;
}
}
return this;
} // scale all keyframe times by a factor (useful for frame <-> seconds conversions)
scale(timeScale) {
if (timeScale !== 1.0) {
const times = this.times;
for (let i = 0, n = times.length; i !== n; ++i) {
times[i] *= timeScale;
}
}
return this;
} // removes keyframes before and after animation without changing any values within the range [startTime, endTime].
// IMPORTANT: We do not shift around keys to the start of the track time, because for interpolated keys this will change their values
trim(startTime, endTime) {
const times = this.times,
nKeys = times.length;
let from = 0,
to = nKeys - 1;
while (from !== nKeys && times[from] < startTime) {
++from;
}
while (to !== -1 && times[to] > endTime) {
--to;
}
++to; // inclusive -> exclusive bound
if (from !== 0 || to !== nKeys) {
// empty tracks are forbidden, so keep at least one keyframe
if (from >= to) {
to = Math.max(to, 1);
from = to - 1;
}
const stride = this.getValueSize();
this.times = AnimationUtils.arraySlice(times, from, to);
this.values = AnimationUtils.arraySlice(this.values, from * stride, to * stride);
}
return this;
} // ensure we do not get a GarbageInGarbageOut situation, make sure tracks are at least minimally viable
validate() {
let valid = true;
const valueSize = this.getValueSize();
if (valueSize - Math.floor(valueSize) !== 0) {
console.error('THREE.KeyframeTrack: Invalid value size in track.', this);
valid = false;
}
const times = this.times,
values = this.values,
nKeys = times.length;
if (nKeys === 0) {
console.error('THREE.KeyframeTrack: Track is empty.', this);
valid = false;
}
let prevTime = null;
for (let i = 0; i !== nKeys; i++) {
const currTime = times[i];
if (typeof currTime === 'number' && isNaN(currTime)) {
console.error('THREE.KeyframeTrack: Time is not a valid number.', this, i, currTime);
valid = false;
break;
}
if (prevTime !== null && prevTime > currTime) {
console.error('THREE.KeyframeTrack: Out of order keys.', this, i, currTime, prevTime);
valid = false;
break;
}
prevTime = currTime;
}
if (values !== undefined) {
if (AnimationUtils.isTypedArray(values)) {
for (let i = 0, n = values.length; i !== n; ++i) {
const value = values[i];
if (isNaN(value)) {
console.error('THREE.KeyframeTrack: Value is not a valid number.', this, i, value);
valid = false;
break;
}
}
}
}
return valid;
} // removes equivalent sequential keys as common in morph target sequences
// (0,0,0,0,1,1,1,0,0,0,0,0,0,0) --> (0,0,1,1,0,0)
optimize() {
// times or values may be shared with other tracks, so overwriting is unsafe
const times = AnimationUtils.arraySlice(this.times),
values = AnimationUtils.arraySlice(this.values),
stride = this.getValueSize(),
smoothInterpolation = this.getInterpolation() === InterpolateSmooth,
lastIndex = times.length - 1;
let writeIndex = 1;
for (let i = 1; i < lastIndex; ++i) {
let keep = false;
const time = times[i];
const timeNext = times[i + 1]; // remove adjacent keyframes scheduled at the same time
if (time !== timeNext && (i !== 1 || time !== times[0])) {
if (!smoothInterpolation) {
// remove unnecessary keyframes same as their neighbors
const offset = i * stride,
offsetP = offset - stride,
offsetN = offset + stride;
for (let j = 0; j !== stride; ++j) {
const value = values[offset + j];
if (value !== values[offsetP + j] || value !== values[offsetN + j]) {
keep = true;
break;
}
}
} else {
keep = true;
}
} // in-place compaction
if (keep) {
if (i !== writeIndex) {
times[writeIndex] = times[i];
const readOffset = i * stride,
writeOffset = writeIndex * stride;
for (let j = 0; j !== stride; ++j) {
values[writeOffset + j] = values[readOffset + j];
}
}
++writeIndex;
}
} // flush last keyframe (compaction looks ahead)
if (lastIndex > 0) {
times[writeIndex] = times[lastIndex];
for (let readOffset = lastIndex * stride, writeOffset = writeIndex * stride, j = 0; j !== stride; ++j) {
values[writeOffset + j] = values[readOffset + j];
}
++writeIndex;
}
if (writeIndex !== times.length) {
this.times = AnimationUtils.arraySlice(times, 0, writeIndex);
this.values = AnimationUtils.arraySlice(values, 0, writeIndex * stride);
} else {
this.times = times;
this.values = values;
}
return this;
}
clone() {
const times = AnimationUtils.arraySlice(this.times, 0);
const values = AnimationUtils.arraySlice(this.values, 0);
const TypedKeyframeTrack = this.constructor;
const track = new TypedKeyframeTrack(this.name, times, values); // Interpolant argument to constructor is not saved, so copy the factory method directly.
track.createInterpolant = this.createInterpolant;
return track;
}
}
KeyframeTrack.prototype.TimeBufferType = Float32Array;
KeyframeTrack.prototype.ValueBufferType = Float32Array;
KeyframeTrack.prototype.DefaultInterpolation = InterpolateLinear;
/**
* A Track of Boolean keyframe values.
*/
class BooleanKeyframeTrack extends KeyframeTrack {}
BooleanKeyframeTrack.prototype.ValueTypeName = 'bool';
BooleanKeyframeTrack.prototype.ValueBufferType = Array;
BooleanKeyframeTrack.prototype.DefaultInterpolation = InterpolateDiscrete;
BooleanKeyframeTrack.prototype.InterpolantFactoryMethodLinear = undefined;
BooleanKeyframeTrack.prototype.InterpolantFactoryMethodSmooth = undefined; // Note: Actually this track could have a optimized / compressed
/**
* A Track of keyframe values that represent color.
*/
class ColorKeyframeTrack extends KeyframeTrack {}
ColorKeyframeTrack.prototype.ValueTypeName = 'color'; // ValueBufferType is inherited
/**
* A Track of numeric keyframe values.
*/
class NumberKeyframeTrack extends KeyframeTrack {}
NumberKeyframeTrack.prototype.ValueTypeName = 'number'; // ValueBufferType is inherited
/**
* Spherical linear unit quaternion interpolant.
*/
class QuaternionLinearInterpolant extends Interpolant {
constructor(parameterPositions, sampleValues, sampleSize, resultBuffer) {
super(parameterPositions, sampleValues, sampleSize, resultBuffer);
}
interpolate_(i1, t0, t, t1) {
const result = this.resultBuffer,
values = this.sampleValues,
stride = this.valueSize,
alpha = (t - t0) / (t1 - t0);
let offset = i1 * stride;
for (let end = offset + stride; offset !== end; offset += 4) {
Quaternion.slerpFlat(result, 0, values, offset - stride, values, offset, alpha);
}
return result;
}
}
/**
* A Track of quaternion keyframe values.
*/
class QuaternionKeyframeTrack extends KeyframeTrack {
InterpolantFactoryMethodLinear(result) {
return new QuaternionLinearInterpolant(this.times, this.values, this.getValueSize(), result);
}
}
QuaternionKeyframeTrack.prototype.ValueTypeName = 'quaternion'; // ValueBufferType is inherited
QuaternionKeyframeTrack.prototype.DefaultInterpolation = InterpolateLinear;
QuaternionKeyframeTrack.prototype.InterpolantFactoryMethodSmooth = undefined;
/**
* A Track that interpolates Strings
*/
class StringKeyframeTrack extends KeyframeTrack {}
StringKeyframeTrack.prototype.ValueTypeName = 'string';
StringKeyframeTrack.prototype.ValueBufferType = Array;
StringKeyframeTrack.prototype.DefaultInterpolation = InterpolateDiscrete;
StringKeyframeTrack.prototype.InterpolantFactoryMethodLinear = undefined;
StringKeyframeTrack.prototype.InterpolantFactoryMethodSmooth = undefined;
/**
* A Track of vectored keyframe values.
*/
class VectorKeyframeTrack extends KeyframeTrack {}
VectorKeyframeTrack.prototype.ValueTypeName = 'vector'; // ValueBufferType is inherited
class AnimationClip {
constructor(name, duration = -1, tracks, blendMode = NormalAnimationBlendMode) {
this.name = name;
this.tracks = tracks;
this.duration = duration;
this.blendMode = blendMode;
this.uuid = generateUUID(); // this means it should figure out its duration by scanning the tracks
if (this.duration < 0) {
this.resetDuration();
}
}
static parse(json) {
const tracks = [],
jsonTracks = json.tracks,
frameTime = 1.0 / (json.fps || 1.0);
for (let i = 0, n = jsonTracks.length; i !== n; ++i) {
tracks.push(parseKeyframeTrack(jsonTracks[i]).scale(frameTime));
}
const clip = new this(json.name, json.duration, tracks, json.blendMode);
clip.uuid = json.uuid;
return clip;
}
static toJSON(clip) {
const tracks = [],
clipTracks = clip.tracks;
const json = {
'name': clip.name,
'duration': clip.duration,
'tracks': tracks,
'uuid': clip.uuid,
'blendMode': clip.blendMode
};
for (let i = 0, n = clipTracks.length; i !== n; ++i) {
tracks.push(KeyframeTrack.toJSON(clipTracks[i]));
}
return json;
}
static CreateFromMorphTargetSequence(name, morphTargetSequence, fps, noLoop) {
const numMorphTargets = morphTargetSequence.length;
const tracks = [];
for (let i = 0; i < numMorphTargets; i++) {
let times = [];
let values = [];
times.push((i + numMorphTargets - 1) % numMorphTargets, i, (i + 1) % numMorphTargets);
values.push(0, 1, 0);
const order = AnimationUtils.getKeyframeOrder(times);
times = AnimationUtils.sortedArray(times, 1, order);
values = AnimationUtils.sortedArray(values, 1, order); // if there is a key at the first frame, duplicate it as the
// last frame as well for perfect loop.
if (!noLoop && times[0] === 0) {
times.push(numMorphTargets);
values.push(values[0]);
}
tracks.push(new NumberKeyframeTrack('.morphTargetInfluences[' + morphTargetSequence[i].name + ']', times, values).scale(1.0 / fps));
}
return new this(name, -1, tracks);
}
static findByName(objectOrClipArray, name) {
let clipArray = objectOrClipArray;
if (!Array.isArray(objectOrClipArray)) {
const o = objectOrClipArray;
clipArray = o.geometry && o.geometry.animations || o.animations;
}
for (let i = 0; i < clipArray.length; i++) {
if (clipArray[i].name === name) {
return clipArray[i];
}
}
return null;
}
static CreateClipsFromMorphTargetSequences(morphTargets, fps, noLoop) {
const animationToMorphTargets = {}; // tested with https://regex101.com/ on trick sequences
// such flamingo_flyA_003, flamingo_run1_003, crdeath0059
const pattern = /^([\w-]*?)([\d]+)$/; // sort morph target names into animation groups based
// patterns like Walk_001, Walk_002, Run_001, Run_002
for (let i = 0, il = morphTargets.length; i < il; i++) {
const morphTarget = morphTargets[i];
const parts = morphTarget.name.match(pattern);
if (parts && parts.length > 1) {
const name = parts[1];
let animationMorphTargets = animationToMorphTargets[name];
if (!animationMorphTargets) {
animationToMorphTargets[name] = animationMorphTargets = [];
}
animationMorphTargets.push(morphTarget);
}
}
const clips = [];
for (const name in animationToMorphTargets) {
clips.push(this.CreateFromMorphTargetSequence(name, animationToMorphTargets[name], fps, noLoop));
}
return clips;
} // parse the animation.hierarchy format
static parseAnimation(animation, bones) {
if (!animation) {
console.error('THREE.AnimationClip: No animation in JSONLoader data.');
return null;
}
const addNonemptyTrack = function (trackType, trackName, animationKeys, propertyName, destTracks) {
// only return track if there are actually keys.
if (animationKeys.length !== 0) {
const times = [];
const values = [];
AnimationUtils.flattenJSON(animationKeys, times, values, propertyName); // empty keys are filtered out, so check again
if (times.length !== 0) {
destTracks.push(new trackType(trackName, times, values));
}
}
};
const tracks = [];
const clipName = animation.name || 'default';
const fps = animation.fps || 30;
const blendMode = animation.blendMode; // automatic length determination in AnimationClip.
let duration = animation.length || -1;
const hierarchyTracks = animation.hierarchy || [];
for (let h = 0; h < hierarchyTracks.length; h++) {
const animationKeys = hierarchyTracks[h].keys; // skip empty tracks
if (!animationKeys || animationKeys.length === 0) continue; // process morph targets
if (animationKeys[0].morphTargets) {
// figure out all morph targets used in this track
const morphTargetNames = {};
let k;
for (k = 0; k < animationKeys.length; k++) {
if (animationKeys[k].morphTargets) {
for (let m = 0; m < animationKeys[k].morphTargets.length; m++) {
morphTargetNames[animationKeys[k].morphTargets[m]] = -1;
}
}
} // create a track for each morph target with all zero
// morphTargetInfluences except for the keys in which
// the morphTarget is named.
for (const morphTargetName in morphTargetNames) {
const times = [];
const values = [];
for (let m = 0; m !== animationKeys[k].morphTargets.length; ++m) {
const animationKey = animationKeys[k];
times.push(animationKey.time);
values.push(animationKey.morphTarget === morphTargetName ? 1 : 0);
}
tracks.push(new NumberKeyframeTrack('.morphTargetInfluence[' + morphTargetName + ']', times, values));
}
duration = morphTargetNames.length * (fps || 1.0);
} else {
// ...assume skeletal animation
const boneName = '.bones[' + bones[h].name + ']';
addNonemptyTrack(VectorKeyframeTrack, boneName + '.position', animationKeys, 'pos', tracks);
addNonemptyTrack(QuaternionKeyframeTrack, boneName + '.quaternion', animationKeys, 'rot', tracks);
addNonemptyTrack(VectorKeyframeTrack, boneName + '.scale', animationKeys, 'scl', tracks);
}
}
if (tracks.length === 0) {
return null;
}
const clip = new this(clipName, duration, tracks, blendMode);
return clip;
}
resetDuration() {
const tracks = this.tracks;
let duration = 0;
for (let i = 0, n = tracks.length; i !== n; ++i) {
const track = this.tracks[i];
duration = Math.max(duration, track.times[track.times.length - 1]);
}
this.duration = duration;
return this;
}
trim() {
for (let i = 0; i < this.tracks.length; i++) {
this.tracks[i].trim(0, this.duration);
}
return this;
}
validate() {
let valid = true;
for (let i = 0; i < this.tracks.length; i++) {
valid = valid && this.tracks[i].validate();
}
return valid;
}
optimize() {
for (let i = 0; i < this.tracks.length; i++) {
this.tracks[i].optimize();
}
return this;
}
clone() {
const tracks = [];
for (let i = 0; i < this.tracks.length; i++) {
tracks.push(this.tracks[i].clone());
}
return new this.constructor(this.name, this.duration, tracks, this.blendMode);
}
toJSON() {
return this.constructor.toJSON(this);
}
}
function getTrackTypeForValueTypeName(typeName) {
switch (typeName.toLowerCase()) {
case 'scalar':
case 'double':
case 'float':
case 'number':
case 'integer':
return NumberKeyframeTrack;
case 'vector':
case 'vector2':
case 'vector3':
case 'vector4':
return VectorKeyframeTrack;
case 'color':
return ColorKeyframeTrack;
case 'quaternion':
return QuaternionKeyframeTrack;
case 'bool':
case 'boolean':
return BooleanKeyframeTrack;
case 'string':
return StringKeyframeTrack;
}
throw new Error('THREE.KeyframeTrack: Unsupported typeName: ' + typeName);
}
function parseKeyframeTrack(json) {
if (json.type === undefined) {
throw new Error('THREE.KeyframeTrack: track type undefined, can not parse');
}
const trackType = getTrackTypeForValueTypeName(json.type);
if (json.times === undefined) {
const times = [],
values = [];
AnimationUtils.flattenJSON(json.keys, times, values, 'value');
json.times = times;
json.values = values;
} // derived classes can define a static parse method
if (trackType.parse !== undefined) {
return trackType.parse(json);
} else {
// by default, we assume a constructor compatible with the base
return new trackType(json.name, json.times, json.values, json.interpolation);
}
}
const Cache = {
enabled: false,
files: {},
add: function (key, file) {
if (this.enabled === false) return; // console.log( 'THREE.Cache', 'Adding key:', key );
this.files[key] = file;
},
get: function (key) {
if (this.enabled === false) return; // console.log( 'THREE.Cache', 'Checking key:', key );
return this.files[key];
},
remove: function (key) {
delete this.files[key];
},
clear: function () {
this.files = {};
}
};
class LoadingManager {
constructor(onLoad, onProgress, onError) {
const scope = this;
let isLoading = false;
let itemsLoaded = 0;
let itemsTotal = 0;
let urlModifier = undefined;
const handlers = []; // Refer to #5689 for the reason why we don't set .onStart
// in the constructor
this.onStart = undefined;
this.onLoad = onLoad;
this.onProgress = onProgress;
this.onError = onError;
this.itemStart = function (url) {
itemsTotal++;
if (isLoading === false) {
if (scope.onStart !== undefined) {
scope.onStart(url, itemsLoaded, itemsTotal);
}
}
isLoading = true;
};
this.itemEnd = function (url) {
itemsLoaded++;
if (scope.onProgress !== undefined) {
scope.onProgress(url, itemsLoaded, itemsTotal);
}
if (itemsLoaded === itemsTotal) {
isLoading = false;
if (scope.onLoad !== undefined) {
scope.onLoad();
}
}
};
this.itemError = function (url) {
if (scope.onError !== undefined) {
scope.onError(url);
}
};
this.resolveURL = function (url) {
if (urlModifier) {
return urlModifier(url);
}
return url;
};
this.setURLModifier = function (transform) {
urlModifier = transform;
return this;
};
this.addHandler = function (regex, loader) {
handlers.push(regex, loader);
return this;
};
this.removeHandler = function (regex) {
const index = handlers.indexOf(regex);
if (index !== -1) {
handlers.splice(index, 2);
}
return this;
};
this.getHandler = function (file) {
for (let i = 0, l = handlers.length; i < l; i += 2) {
const regex = handlers[i];
const loader = handlers[i + 1];
if (regex.global) regex.lastIndex = 0; // see #17920
if (regex.test(file)) {
return loader;
}
}
return null;
};
}
}
const DefaultLoadingManager = new LoadingManager();
class Loader {
constructor(manager) {
this.manager = manager !== undefined ? manager : DefaultLoadingManager;
this.crossOrigin = 'anonymous';
this.withCredentials = false;
this.path = '';
this.resourcePath = '';
this.requestHeader = {};
}
load() {}
loadAsync(url, onProgress) {
const scope = this;
return new Promise(function (resolve, reject) {
scope.load(url, resolve, onProgress, reject);
});
}
parse() {}
setCrossOrigin(crossOrigin) {
this.crossOrigin = crossOrigin;
return this;
}
setWithCredentials(value) {
this.withCredentials = value;
return this;
}
setPath(path) {
this.path = path;
return this;
}
setResourcePath(resourcePath) {
this.resourcePath = resourcePath;
return this;
}
setRequestHeader(requestHeader) {
this.requestHeader = requestHeader;
return this;
}
}
const loading = {};
class FileLoader extends Loader {
constructor(manager) {
super(manager);
}
load(url, onLoad, onProgress, onError) {
if (url === undefined) url = '';
if (this.path !== undefined) url = this.path + url;
url = this.manager.resolveURL(url);
const cached = Cache.get(url);
if (cached !== undefined) {
this.manager.itemStart(url);
setTimeout(() => {
if (onLoad) onLoad(cached);
this.manager.itemEnd(url);
}, 0);
return cached;
} // Check if request is duplicate
if (loading[url] !== undefined) {
loading[url].push({
onLoad: onLoad,
onProgress: onProgress,
onError: onError
});
return;
} // Initialise array for duplicate requests
loading[url] = [];
loading[url].push({
onLoad: onLoad,
onProgress: onProgress,
onError: onError
}); // create request
const req = new Request(url, {
headers: new Headers(this.requestHeader),
credentials: this.withCredentials ? 'include' : 'same-origin' // An abort controller could be added within a future PR
}); // start the fetch
fetch(req).then(response => {
if (response.status === 200 || response.status === 0) {
// Some browsers return HTTP Status 0 when using non-http protocol
// e.g. 'file://' or 'data://'. Handle as success.
if (response.status === 0) {
console.warn('THREE.FileLoader: HTTP Status 0 received.');
}
const callbacks = loading[url];
const reader = response.body.getReader();
const contentLength = response.headers.get('Content-Length');
const total = contentLength ? parseInt(contentLength) : 0;
const lengthComputable = total !== 0;
let loaded = 0; // periodically read data into the new stream tracking while download progress
return new ReadableStream({
start(controller) {
readData();
function readData() {
reader.read().then(({
done,
value
}) => {
if (done) {
controller.close();
} else {
loaded += value.byteLength;
const event = new ProgressEvent('progress', {
lengthComputable,
loaded,
total
});
for (let i = 0, il = callbacks.length; i < il; i++) {
const callback = callbacks[i];
if (callback.onProgress) callback.onProgress(event);
}
controller.enqueue(value);
readData();
}
});
}
}
});
} else {
throw Error(`fetch for "${response.url}" responded with ${response.status}: ${response.statusText}`);
}
}).then(stream => {
const response = new Response(stream);
switch (this.responseType) {
case 'arraybuffer':
return response.arrayBuffer();
case 'blob':
return response.blob();
case 'document':
return response.text().then(text => {
const parser = new DOMParser();
return parser.parseFromString(text, this.mimeType);
});
case 'json':
return response.json();
default:
return response.text();
}
}).then(data => {
// Add to cache only on HTTP success, so that we do not cache
// error response bodies as proper responses to requests.
Cache.add(url, data);
const callbacks = loading[url];
delete loading[url];
for (let i = 0, il = callbacks.length; i < il; i++) {
const callback = callbacks[i];
if (callback.onLoad) callback.onLoad(data);
}
this.manager.itemEnd(url);
}).catch(err => {
// Abort errors and other errors are handled the same
const callbacks = loading[url];
delete loading[url];
for (let i = 0, il = callbacks.length; i < il; i++) {
const callback = callbacks[i];
if (callback.onError) callback.onError(err);
}
this.manager.itemError(url);
this.manager.itemEnd(url);
});
this.manager.itemStart(url);
}
setResponseType(value) {
this.responseType = value;
return this;
}
setMimeType(value) {
this.mimeType = value;
return this;
}
}
class AnimationLoader extends Loader {
constructor(manager) {
super(manager);
}
load(url, onLoad, onProgress, onError) {
const scope = this;
const loader = new FileLoader(this.manager);
loader.setPath(this.path);
loader.setRequestHeader(this.requestHeader);
loader.setWithCredentials(this.withCredentials);
loader.load(url, function (text) {
try {
onLoad(scope.parse(JSON.parse(text)));
} catch (e) {
if (onError) {
onError(e);
} else {
console.error(e);
}
scope.manager.itemError(url);
}
}, onProgress, onError);
}
parse(json) {
const animations = [];
for (let i = 0; i < json.length; i++) {
const clip = AnimationClip.parse(json[i]);
animations.push(clip);
}
return animations;
}
}
/**
* Abstract Base class to block based textures loader (dds, pvr, ...)
*
* Sub classes have to implement the parse() method which will be used in load().
*/
class CompressedTextureLoader extends Loader {
constructor(manager) {
super(manager);
}
load(url, onLoad, onProgress, onError) {
const scope = this;
const images = [];
const texture = new CompressedTexture();
const loader = new FileLoader(this.manager);
loader.setPath(this.path);
loader.setResponseType('arraybuffer');
loader.setRequestHeader(this.requestHeader);
loader.setWithCredentials(scope.withCredentials);
let loaded = 0;
function loadTexture(i) {
loader.load(url[i], function (buffer) {
const texDatas = scope.parse(buffer, true);
images[i] = {
width: texDatas.width,
height: texDatas.height,
format: texDatas.format,
mipmaps: texDatas.mipmaps
};
loaded += 1;
if (loaded === 6) {
if (texDatas.mipmapCount === 1) texture.minFilter = LinearFilter;
texture.image = images;
texture.format = texDatas.format;
texture.needsUpdate = true;
if (onLoad) onLoad(texture);
}
}, onProgress, onError);
}
if (Array.isArray(url)) {
for (let i = 0, il = url.length; i < il; ++i) {
loadTexture(i);
}
} else {
// compressed cubemap texture stored in a single DDS file
loader.load(url, function (buffer) {
const texDatas = scope.parse(buffer, true);
if (texDatas.isCubemap) {
const faces = texDatas.mipmaps.length / texDatas.mipmapCount;
for (let f = 0; f < faces; f++) {
images[f] = {
mipmaps: []
};
for (let i = 0; i < texDatas.mipmapCount; i++) {
images[f].mipmaps.push(texDatas.mipmaps[f * texDatas.mipmapCount + i]);
images[f].format = texDatas.format;
images[f].width = texDatas.width;
images[f].height = texDatas.height;
}
}
texture.image = images;
} else {
texture.image.width = texDatas.width;
texture.image.height = texDatas.height;
texture.mipmaps = texDatas.mipmaps;
}
if (texDatas.mipmapCount === 1) {
texture.minFilter = LinearFilter;
}
texture.format = texDatas.format;
texture.needsUpdate = true;
if (onLoad) onLoad(texture);
}, onProgress, onError);
}
return texture;
}
}
class ImageLoader extends Loader {
constructor(manager) {
super(manager);
}
load(url, onLoad, onProgress, onError) {
if (this.path !== undefined) url = this.path + url;
url = this.manager.resolveURL(url);
const scope = this;
const cached = Cache.get(url);
if (cached !== undefined) {
scope.manager.itemStart(url);
setTimeout(function () {
if (onLoad) onLoad(cached);
scope.manager.itemEnd(url);
}, 0);
return cached;
}
const image = createElementNS('img');
function onImageLoad() {
image.removeEventListener('load', onImageLoad, false);
image.removeEventListener('error', onImageError, false);
Cache.add(url, this);
if (onLoad) onLoad(this);
scope.manager.itemEnd(url);
}
function onImageError(event) {
image.removeEventListener('load', onImageLoad, false);
image.removeEventListener('error', onImageError, false);
if (onError) onError(event);
scope.manager.itemError(url);
scope.manager.itemEnd(url);
}
image.addEventListener('load', onImageLoad, false);
image.addEventListener('error', onImageError, false);
if (url.substr(0, 5) !== 'data:') {
if (this.crossOrigin !== undefined) image.crossOrigin = this.crossOrigin;
}
scope.manager.itemStart(url);
image.src = url;
return image;
}
}
class CubeTextureLoader extends Loader {
constructor(manager) {
super(manager);
}
load(urls, onLoad, onProgress, onError) {
const texture = new CubeTexture();
const loader = new ImageLoader(this.manager);
loader.setCrossOrigin(this.crossOrigin);
loader.setPath(this.path);
let loaded = 0;
function loadTexture(i) {
loader.load(urls[i], function (image) {
texture.images[i] = image;
loaded++;
if (loaded === 6) {
texture.needsUpdate = true;
if (onLoad) onLoad(texture);
}
}, undefined, onError);
}
for (let i = 0; i < urls.length; ++i) {
loadTexture(i);
}
return texture;
}
}
/**
* Abstract Base class to load generic binary textures formats (rgbe, hdr, ...)
*
* Sub classes have to implement the parse() method which will be used in load().
*/
class DataTextureLoader extends Loader {
constructor(manager) {
super(manager);
}
load(url, onLoad, onProgress, onError) {
const scope = this;
const texture = new DataTexture();
const loader = new FileLoader(this.manager);
loader.setResponseType('arraybuffer');
loader.setRequestHeader(this.requestHeader);
loader.setPath(this.path);
loader.setWithCredentials(scope.withCredentials);
loader.load(url, function (buffer) {
const texData = scope.parse(buffer);
if (!texData) return;
if (texData.image !== undefined) {
texture.image = texData.image;
} else if (texData.data !== undefined) {
texture.image.width = texData.width;
texture.image.height = texData.height;
texture.image.data = texData.data;
}
texture.wrapS = texData.wrapS !== undefined ? texData.wrapS : ClampToEdgeWrapping;
texture.wrapT = texData.wrapT !== undefined ? texData.wrapT : ClampToEdgeWrapping;
texture.magFilter = texData.magFilter !== undefined ? texData.magFilter : LinearFilter;
texture.minFilter = texData.minFilter !== undefined ? texData.minFilter : LinearFilter;
texture.anisotropy = texData.anisotropy !== undefined ? texData.anisotropy : 1;
if (texData.encoding !== undefined) {
texture.encoding = texData.encoding;
}
if (texData.flipY !== undefined) {
texture.flipY = texData.flipY;
}
if (texData.format !== undefined) {
texture.format = texData.format;
}
if (texData.type !== undefined) {
texture.type = texData.type;
}
if (texData.mipmaps !== undefined) {
texture.mipmaps = texData.mipmaps;
texture.minFilter = LinearMipmapLinearFilter; // presumably...
}
if (texData.mipmapCount === 1) {
texture.minFilter = LinearFilter;
}
if (texData.generateMipmaps !== undefined) {
texture.generateMipmaps = texData.generateMipmaps;
}
texture.needsUpdate = true;
if (onLoad) onLoad(texture, texData);
}, onProgress, onError);
return texture;
}
}
class TextureLoader extends Loader {
constructor(manager) {
super(manager);
}
load(url, onLoad, onProgress, onError) {
const texture = new Texture();
const loader = new ImageLoader(this.manager);
loader.setCrossOrigin(this.crossOrigin);
loader.setPath(this.path);
loader.load(url, function (image) {
texture.image = image;
texture.needsUpdate = true;
if (onLoad !== undefined) {
onLoad(texture);
}
}, onProgress, onError);
return texture;
}
}
class Light extends Object3D {
constructor(color, intensity = 1) {
super();
this.type = 'Light';
this.color = new Color(color);
this.intensity = intensity;
}
dispose() {// Empty here in base class; some subclasses override.
}
copy(source) {
super.copy(source);
this.color.copy(source.color);
this.intensity = source.intensity;
return this;
}
toJSON(meta) {
const data = super.toJSON(meta);
data.object.color = this.color.getHex();
data.object.intensity = this.intensity;
if (this.groundColor !== undefined) data.object.groundColor = this.groundColor.getHex();
if (this.distance !== undefined) data.object.distance = this.distance;
if (this.angle !== undefined) data.object.angle = this.angle;
if (this.decay !== undefined) data.object.decay = this.decay;
if (this.penumbra !== undefined) data.object.penumbra = this.penumbra;
if (this.shadow !== undefined) data.object.shadow = this.shadow.toJSON();
return data;
}
}
Light.prototype.isLight = true;
class HemisphereLight extends Light {
constructor(skyColor, groundColor, intensity) {
super(skyColor, intensity);
this.type = 'HemisphereLight';
this.position.copy(Object3D.DefaultUp);
this.updateMatrix();
this.groundColor = new Color(groundColor);
}
copy(source) {
Light.prototype.copy.call(this, source);
this.groundColor.copy(source.groundColor);
return this;
}
}
HemisphereLight.prototype.isHemisphereLight = true;
const _projScreenMatrix$1 = /*@__PURE__*/new Matrix4();
const _lightPositionWorld$1 = /*@__PURE__*/new Vector3();
const _lookTarget$1 = /*@__PURE__*/new Vector3();
class LightShadow {
constructor(camera) {
this.camera = camera;
this.bias = 0;
this.normalBias = 0;
this.radius = 1;
this.blurSamples = 8;
this.mapSize = new Vector2(512, 512);
this.map = null;
this.mapPass = null;
this.matrix = new Matrix4();
this.autoUpdate = true;
this.needsUpdate = false;
this._frustum = new Frustum();
this._frameExtents = new Vector2(1, 1);
this._viewportCount = 1;
this._viewports = [new Vector4(0, 0, 1, 1)];
}
getViewportCount() {
return this._viewportCount;
}
getFrustum() {
return this._frustum;
}
updateMatrices(light) {
const shadowCamera = this.camera;
const shadowMatrix = this.matrix;
_lightPositionWorld$1.setFromMatrixPosition(light.matrixWorld);
shadowCamera.position.copy(_lightPositionWorld$1);
_lookTarget$1.setFromMatrixPosition(light.target.matrixWorld);
shadowCamera.lookAt(_lookTarget$1);
shadowCamera.updateMatrixWorld();
_projScreenMatrix$1.multiplyMatrices(shadowCamera.projectionMatrix, shadowCamera.matrixWorldInverse);
this._frustum.setFromProjectionMatrix(_projScreenMatrix$1);
shadowMatrix.set(0.5, 0.0, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.0, 0.5, 0.5, 0.0, 0.0, 0.0, 1.0);
shadowMatrix.multiply(shadowCamera.projectionMatrix);
shadowMatrix.multiply(shadowCamera.matrixWorldInverse);
}
getViewport(viewportIndex) {
return this._viewports[viewportIndex];
}
getFrameExtents() {
return this._frameExtents;
}
dispose() {
if (this.map) {
this.map.dispose();
}
if (this.mapPass) {
this.mapPass.dispose();
}
}
copy(source) {
this.camera = source.camera.clone();
this.bias = source.bias;
this.radius = source.radius;
this.mapSize.copy(source.mapSize);
return this;
}
clone() {
return new this.constructor().copy(this);
}
toJSON() {
const object = {};
if (this.bias !== 0) object.bias = this.bias;
if (this.normalBias !== 0) object.normalBias = this.normalBias;
if (this.radius !== 1) object.radius = this.radius;
if (this.mapSize.x !== 512 || this.mapSize.y !== 512) object.mapSize = this.mapSize.toArray();
object.camera = this.camera.toJSON(false).object;
delete object.camera.matrix;
return object;
}
}
class SpotLightShadow extends LightShadow {
constructor() {
super(new PerspectiveCamera(50, 1, 0.5, 500));
this.focus = 1;
}
updateMatrices(light) {
const camera = this.camera;
const fov = RAD2DEG * 2 * light.angle * this.focus;
const aspect = this.mapSize.width / this.mapSize.height;
const far = light.distance || camera.far;
if (fov !== camera.fov || aspect !== camera.aspect || far !== camera.far) {
camera.fov = fov;
camera.aspect = aspect;
camera.far = far;
camera.updateProjectionMatrix();
}
super.updateMatrices(light);
}
copy(source) {
super.copy(source);
this.focus = source.focus;
return this;
}
}
SpotLightShadow.prototype.isSpotLightShadow = true;
class SpotLight extends Light {
constructor(color, intensity, distance = 0, angle = Math.PI / 3, penumbra = 0, decay = 1) {
super(color, intensity);
this.type = 'SpotLight';
this.position.copy(Object3D.DefaultUp);
this.updateMatrix();
this.target = new Object3D();
this.distance = distance;
this.angle = angle;
this.penumbra = penumbra;
this.decay = decay; // for physically correct lights, should be 2.
this.shadow = new SpotLightShadow();
}
get power() {
// compute the light's luminous power (in lumens) from its intensity (in candela)
// by convention for a spotlight, luminous power (lm) = π * luminous intensity (cd)
return this.intensity * Math.PI;
}
set power(power) {
// set the light's intensity (in candela) from the desired luminous power (in lumens)
this.intensity = power / Math.PI;
}
dispose() {
this.shadow.dispose();
}
copy(source) {
super.copy(source);
this.distance = source.distance;
this.angle = source.angle;
this.penumbra = source.penumbra;
this.decay = source.decay;
this.target = source.target.clone();
this.shadow = source.shadow.clone();
return this;
}
}
SpotLight.prototype.isSpotLight = true;
const _projScreenMatrix = /*@__PURE__*/new Matrix4();
const _lightPositionWorld = /*@__PURE__*/new Vector3();
const _lookTarget = /*@__PURE__*/new Vector3();
class PointLightShadow extends LightShadow {
constructor() {
super(new PerspectiveCamera(90, 1, 0.5, 500));
this._frameExtents = new Vector2(4, 2);
this._viewportCount = 6;
this._viewports = [// These viewports map a cube-map onto a 2D texture with the
// following orientation:
//
// xzXZ
// y Y
//
// X - Positive x direction
// x - Negative x direction
// Y - Positive y direction
// y - Negative y direction
// Z - Positive z direction
// z - Negative z direction
// positive X
new Vector4(2, 1, 1, 1), // negative X
new Vector4(0, 1, 1, 1), // positive Z
new Vector4(3, 1, 1, 1), // negative Z
new Vector4(1, 1, 1, 1), // positive Y
new Vector4(3, 0, 1, 1), // negative Y
new Vector4(1, 0, 1, 1)];
this._cubeDirections = [new Vector3(1, 0, 0), new Vector3(-1, 0, 0), new Vector3(0, 0, 1), new Vector3(0, 0, -1), new Vector3(0, 1, 0), new Vector3(0, -1, 0)];
this._cubeUps = [new Vector3(0, 1, 0), new Vector3(0, 1, 0), new Vector3(0, 1, 0), new Vector3(0, 1, 0), new Vector3(0, 0, 1), new Vector3(0, 0, -1)];
}
updateMatrices(light, viewportIndex = 0) {
const camera = this.camera;
const shadowMatrix = this.matrix;
const far = light.distance || camera.far;
if (far !== camera.far) {
camera.far = far;
camera.updateProjectionMatrix();
}
_lightPositionWorld.setFromMatrixPosition(light.matrixWorld);
camera.position.copy(_lightPositionWorld);
_lookTarget.copy(camera.position);
_lookTarget.add(this._cubeDirections[viewportIndex]);
camera.up.copy(this._cubeUps[viewportIndex]);
camera.lookAt(_lookTarget);
camera.updateMatrixWorld();
shadowMatrix.makeTranslation(-_lightPositionWorld.x, -_lightPositionWorld.y, -_lightPositionWorld.z);
_projScreenMatrix.multiplyMatrices(camera.projectionMatrix, camera.matrixWorldInverse);
this._frustum.setFromProjectionMatrix(_projScreenMatrix);
}
}
PointLightShadow.prototype.isPointLightShadow = true;
class PointLight extends Light {
constructor(color, intensity, distance = 0, decay = 1) {
super(color, intensity);
this.type = 'PointLight';
this.distance = distance;
this.decay = decay; // for physically correct lights, should be 2.
this.shadow = new PointLightShadow();
}
get power() {
// compute the light's luminous power (in lumens) from its intensity (in candela)
// for an isotropic light source, luminous power (lm) = 4 π luminous intensity (cd)
return this.intensity * 4 * Math.PI;
}
set power(power) {
// set the light's intensity (in candela) from the desired luminous power (in lumens)
this.intensity = power / (4 * Math.PI);
}
dispose() {
this.shadow.dispose();
}
copy(source) {
super.copy(source);
this.distance = source.distance;
this.decay = source.decay;
this.shadow = source.shadow.clone();
return this;
}
}
PointLight.prototype.isPointLight = true;
class DirectionalLightShadow extends LightShadow {
constructor() {
super(new OrthographicCamera(-5, 5, 5, -5, 0.5, 500));
}
}
DirectionalLightShadow.prototype.isDirectionalLightShadow = true;
class DirectionalLight extends Light {
constructor(color, intensity) {
super(color, intensity);
this.type = 'DirectionalLight';
this.position.copy(Object3D.DefaultUp);
this.updateMatrix();
this.target = new Object3D();
this.shadow = new DirectionalLightShadow();
}
dispose() {
this.shadow.dispose();
}
copy(source) {
super.copy(source);
this.target = source.target.clone();
this.shadow = source.shadow.clone();
return this;
}
}
DirectionalLight.prototype.isDirectionalLight = true;
class AmbientLight extends Light {
constructor(color, intensity) {
super(color, intensity);
this.type = 'AmbientLight';
}
}
AmbientLight.prototype.isAmbientLight = true;
class RectAreaLight extends Light {
constructor(color, intensity, width = 10, height = 10) {
super(color, intensity);
this.type = 'RectAreaLight';
this.width = width;
this.height = height;
}
get power() {
// compute the light's luminous power (in lumens) from its intensity (in nits)
return this.intensity * this.width * this.height * Math.PI;
}
set power(power) {
// set the light's intensity (in nits) from the desired luminous power (in lumens)
this.intensity = power / (this.width * this.height * Math.PI);
}
copy(source) {
super.copy(source);
this.width = source.width;
this.height = source.height;
return this;
}
toJSON(meta) {
const data = super.toJSON(meta);
data.object.width = this.width;
data.object.height = this.height;
return data;
}
}
RectAreaLight.prototype.isRectAreaLight = true;
/**
* Primary reference:
* https://graphics.stanford.edu/papers/envmap/envmap.pdf
*
* Secondary reference:
* https://www.ppsloan.org/publications/StupidSH36.pdf
*/
// 3-band SH defined by 9 coefficients
class SphericalHarmonics3 {
constructor() {
this.coefficients = [];
for (let i = 0; i < 9; i++) {
this.coefficients.push(new Vector3());
}
}
set(coefficients) {
for (let i = 0; i < 9; i++) {
this.coefficients[i].copy(coefficients[i]);
}
return this;
}
zero() {
for (let i = 0; i < 9; i++) {
this.coefficients[i].set(0, 0, 0);
}
return this;
} // get the radiance in the direction of the normal
// target is a Vector3
getAt(normal, target) {
// normal is assumed to be unit length
const x = normal.x,
y = normal.y,
z = normal.z;
const coeff = this.coefficients; // band 0
target.copy(coeff[0]).multiplyScalar(0.282095); // band 1
target.addScaledVector(coeff[1], 0.488603 * y);
target.addScaledVector(coeff[2], 0.488603 * z);
target.addScaledVector(coeff[3], 0.488603 * x); // band 2
target.addScaledVector(coeff[4], 1.092548 * (x * y));
target.addScaledVector(coeff[5], 1.092548 * (y * z));
target.addScaledVector(coeff[6], 0.315392 * (3.0 * z * z - 1.0));
target.addScaledVector(coeff[7], 1.092548 * (x * z));
target.addScaledVector(coeff[8], 0.546274 * (x * x - y * y));
return target;
} // get the irradiance (radiance convolved with cosine lobe) in the direction of the normal
// target is a Vector3
// https://graphics.stanford.edu/papers/envmap/envmap.pdf
getIrradianceAt(normal, target) {
// normal is assumed to be unit length
const x = normal.x,
y = normal.y,
z = normal.z;
const coeff = this.coefficients; // band 0
target.copy(coeff[0]).multiplyScalar(0.886227); // π * 0.282095
// band 1
target.addScaledVector(coeff[1], 2.0 * 0.511664 * y); // ( 2 * π / 3 ) * 0.488603
target.addScaledVector(coeff[2], 2.0 * 0.511664 * z);
target.addScaledVector(coeff[3], 2.0 * 0.511664 * x); // band 2
target.addScaledVector(coeff[4], 2.0 * 0.429043 * x * y); // ( π / 4 ) * 1.092548
target.addScaledVector(coeff[5], 2.0 * 0.429043 * y * z);
target.addScaledVector(coeff[6], 0.743125 * z * z - 0.247708); // ( π / 4 ) * 0.315392 * 3
target.addScaledVector(coeff[7], 2.0 * 0.429043 * x * z);
target.addScaledVector(coeff[8], 0.429043 * (x * x - y * y)); // ( π / 4 ) * 0.546274
return target;
}
add(sh) {
for (let i = 0; i < 9; i++) {
this.coefficients[i].add(sh.coefficients[i]);
}
return this;
}
addScaledSH(sh, s) {
for (let i = 0; i < 9; i++) {
this.coefficients[i].addScaledVector(sh.coefficients[i], s);
}
return this;
}
scale(s) {
for (let i = 0; i < 9; i++) {
this.coefficients[i].multiplyScalar(s);
}
return this;
}
lerp(sh, alpha) {
for (let i = 0; i < 9; i++) {
this.coefficients[i].lerp(sh.coefficients[i], alpha);
}
return this;
}
equals(sh) {
for (let i = 0; i < 9; i++) {
if (!this.coefficients[i].equals(sh.coefficients[i])) {
return false;
}
}
return true;
}
copy(sh) {
return this.set(sh.coefficients);
}
clone() {
return new this.constructor().copy(this);
}
fromArray(array, offset = 0) {
const coefficients = this.coefficients;
for (let i = 0; i < 9; i++) {
coefficients[i].fromArray(array, offset + i * 3);
}
return this;
}
toArray(array = [], offset = 0) {
const coefficients = this.coefficients;
for (let i = 0; i < 9; i++) {
coefficients[i].toArray(array, offset + i * 3);
}
return array;
} // evaluate the basis functions
// shBasis is an Array[ 9 ]
static getBasisAt(normal, shBasis) {
// normal is assumed to be unit length
const x = normal.x,
y = normal.y,
z = normal.z; // band 0
shBasis[0] = 0.282095; // band 1
shBasis[1] = 0.488603 * y;
shBasis[2] = 0.488603 * z;
shBasis[3] = 0.488603 * x; // band 2
shBasis[4] = 1.092548 * x * y;
shBasis[5] = 1.092548 * y * z;
shBasis[6] = 0.315392 * (3 * z * z - 1);
shBasis[7] = 1.092548 * x * z;
shBasis[8] = 0.546274 * (x * x - y * y);
}
}
SphericalHarmonics3.prototype.isSphericalHarmonics3 = true;
class LightProbe extends Light {
constructor(sh = new SphericalHarmonics3(), intensity = 1) {
super(undefined, intensity);
this.sh = sh;
}
copy(source) {
super.copy(source);
this.sh.copy(source.sh);
return this;
}
fromJSON(json) {
this.intensity = json.intensity; // TODO: Move this bit to Light.fromJSON();
this.sh.fromArray(json.sh);
return this;
}
toJSON(meta) {
const data = super.toJSON(meta);
data.object.sh = this.sh.toArray();
return data;
}
}
LightProbe.prototype.isLightProbe = true;
class MaterialLoader extends Loader {
constructor(manager) {
super(manager);
this.textures = {};
}
load(url, onLoad, onProgress, onError) {
const scope = this;
const loader = new FileLoader(scope.manager);
loader.setPath(scope.path);
loader.setRequestHeader(scope.requestHeader);
loader.setWithCredentials(scope.withCredentials);
loader.load(url, function (text) {
try {
onLoad(scope.parse(JSON.parse(text)));
} catch (e) {
if (onError) {
onError(e);
} else {
console.error(e);
}
scope.manager.itemError(url);
}
}, onProgress, onError);
}
parse(json) {
const textures = this.textures;
function getTexture(name) {
if (textures[name] === undefined) {
console.warn('THREE.MaterialLoader: Undefined texture', name);
}
return textures[name];
}
const material = new Materials[json.type]();
if (json.uuid !== undefined) material.uuid = json.uuid;
if (json.name !== undefined) material.name = json.name;
if (json.color !== undefined && material.color !== undefined) material.color.setHex(json.color);
if (json.roughness !== undefined) material.roughness = json.roughness;
if (json.metalness !== undefined) material.metalness = json.metalness;
if (json.sheen !== undefined) material.sheen = json.sheen;
if (json.sheenTint !== undefined) material.sheenTint = new Color().setHex(json.sheenTint);
if (json.sheenRoughness !== undefined) material.sheenRoughness = json.sheenRoughness;
if (json.emissive !== undefined && material.emissive !== undefined) material.emissive.setHex(json.emissive);
if (json.specular !== undefined && material.specular !== undefined) material.specular.setHex(json.specular);
if (json.specularIntensity !== undefined) material.specularIntensity = json.specularIntensity;
if (json.specularTint !== undefined && material.specularTint !== undefined) material.specularTint.setHex(json.specularTint);
if (json.shininess !== undefined) material.shininess = json.shininess;
if (json.clearcoat !== undefined) material.clearcoat = json.clearcoat;
if (json.clearcoatRoughness !== undefined) material.clearcoatRoughness = json.clearcoatRoughness;
if (json.transmission !== undefined) material.transmission = json.transmission;
if (json.thickness !== undefined) material.thickness = json.thickness;
if (json.attenuationDistance !== undefined) material.attenuationDistance = json.attenuationDistance;
if (json.attenuationTint !== undefined && material.attenuationTint !== undefined) material.attenuationTint.setHex(json.attenuationTint);
if (json.fog !== undefined) material.fog = json.fog;
if (json.flatShading !== undefined) material.flatShading = json.flatShading;
if (json.blending !== undefined) material.blending = json.blending;
if (json.combine !== undefined) material.combine = json.combine;
if (json.side !== undefined) material.side = json.side;
if (json.shadowSide !== undefined) material.shadowSide = json.shadowSide;
if (json.opacity !== undefined) material.opacity = json.opacity;
if (json.format !== undefined) material.format = json.format;
if (json.transparent !== undefined) material.transparent = json.transparent;
if (json.alphaTest !== undefined) material.alphaTest = json.alphaTest;
if (json.depthTest !== undefined) material.depthTest = json.depthTest;
if (json.depthWrite !== undefined) material.depthWrite = json.depthWrite;
if (json.colorWrite !== undefined) material.colorWrite = json.colorWrite;
if (json.stencilWrite !== undefined) material.stencilWrite = json.stencilWrite;
if (json.stencilWriteMask !== undefined) material.stencilWriteMask = json.stencilWriteMask;
if (json.stencilFunc !== undefined) material.stencilFunc = json.stencilFunc;
if (json.stencilRef !== undefined) material.stencilRef = json.stencilRef;
if (json.stencilFuncMask !== undefined) material.stencilFuncMask = json.stencilFuncMask;
if (json.stencilFail !== undefined) material.stencilFail = json.stencilFail;
if (json.stencilZFail !== undefined) material.stencilZFail = json.stencilZFail;
if (json.stencilZPass !== undefined) material.stencilZPass = json.stencilZPass;
if (json.wireframe !== undefined) material.wireframe = json.wireframe;
if (json.wireframeLinewidth !== undefined) material.wireframeLinewidth = json.wireframeLinewidth;
if (json.wireframeLinecap !== undefined) material.wireframeLinecap = json.wireframeLinecap;
if (json.wireframeLinejoin !== undefined) material.wireframeLinejoin = json.wireframeLinejoin;
if (json.rotation !== undefined) material.rotation = json.rotation;
if (json.linewidth !== 1) material.linewidth = json.linewidth;
if (json.dashSize !== undefined) material.dashSize = json.dashSize;
if (json.gapSize !== undefined) material.gapSize = json.gapSize;
if (json.scale !== undefined) material.scale = json.scale;
if (json.polygonOffset !== undefined) material.polygonOffset = json.polygonOffset;
if (json.polygonOffsetFactor !== undefined) material.polygonOffsetFactor = json.polygonOffsetFactor;
if (json.polygonOffsetUnits !== undefined) material.polygonOffsetUnits = json.polygonOffsetUnits;
if (json.dithering !== undefined) material.dithering = json.dithering;
if (json.alphaToCoverage !== undefined) material.alphaToCoverage = json.alphaToCoverage;
if (json.premultipliedAlpha !== undefined) material.premultipliedAlpha = json.premultipliedAlpha;
if (json.visible !== undefined) material.visible = json.visible;
if (json.toneMapped !== undefined) material.toneMapped = json.toneMapped;
if (json.userData !== undefined) material.userData = json.userData;
if (json.vertexColors !== undefined) {
if (typeof json.vertexColors === 'number') {
material.vertexColors = json.vertexColors > 0 ? true : false;
} else {
material.vertexColors = json.vertexColors;
}
} // Shader Material
if (json.uniforms !== undefined) {
for (const name in json.uniforms) {
const uniform = json.uniforms[name];
material.uniforms[name] = {};
switch (uniform.type) {
case 't':
material.uniforms[name].value = getTexture(uniform.value);
break;
case 'c':
material.uniforms[name].value = new Color().setHex(uniform.value);
break;
case 'v2':
material.uniforms[name].value = new Vector2().fromArray(uniform.value);
break;
case 'v3':
material.uniforms[name].value = new Vector3().fromArray(uniform.value);
break;
case 'v4':
material.uniforms[name].value = new Vector4().fromArray(uniform.value);
break;
case 'm3':
material.uniforms[name].value = new Matrix3().fromArray(uniform.value);
break;
case 'm4':
material.uniforms[name].value = new Matrix4().fromArray(uniform.value);
break;
default:
material.uniforms[name].value = uniform.value;
}
}
}
if (json.defines !== undefined) material.defines = json.defines;
if (json.vertexShader !== undefined) material.vertexShader = json.vertexShader;
if (json.fragmentShader !== undefined) material.fragmentShader = json.fragmentShader;
if (json.extensions !== undefined) {
for (const key in json.extensions) {
material.extensions[key] = json.extensions[key];
}
} // Deprecated
if (json.shading !== undefined) material.flatShading = json.shading === 1; // THREE.FlatShading
// for PointsMaterial
if (json.size !== undefined) material.size = json.size;
if (json.sizeAttenuation !== undefined) material.sizeAttenuation = json.sizeAttenuation; // maps
if (json.map !== undefined) material.map = getTexture(json.map);
if (json.matcap !== undefined) material.matcap = getTexture(json.matcap);
if (json.alphaMap !== undefined) material.alphaMap = getTexture(json.alphaMap);
if (json.bumpMap !== undefined) material.bumpMap = getTexture(json.bumpMap);
if (json.bumpScale !== undefined) material.bumpScale = json.bumpScale;
if (json.normalMap !== undefined) material.normalMap = getTexture(json.normalMap);
if (json.normalMapType !== undefined) material.normalMapType = json.normalMapType;
if (json.normalScale !== undefined) {
let normalScale = json.normalScale;
if (Array.isArray(normalScale) === false) {
// Blender exporter used to export a scalar. See #7459
normalScale = [normalScale, normalScale];
}
material.normalScale = new Vector2().fromArray(normalScale);
}
if (json.displacementMap !== undefined) material.displacementMap = getTexture(json.displacementMap);
if (json.displacementScale !== undefined) material.displacementScale = json.displacementScale;
if (json.displacementBias !== undefined) material.displacementBias = json.displacementBias;
if (json.roughnessMap !== undefined) material.roughnessMap = getTexture(json.roughnessMap);
if (json.metalnessMap !== undefined) material.metalnessMap = getTexture(json.metalnessMap);
if (json.emissiveMap !== undefined) material.emissiveMap = getTexture(json.emissiveMap);
if (json.emissiveIntensity !== undefined) material.emissiveIntensity = json.emissiveIntensity;
if (json.specularMap !== undefined) material.specularMap = getTexture(json.specularMap);
if (json.specularIntensityMap !== undefined) material.specularIntensityMap = getTexture(json.specularIntensityMap);
if (json.specularTintMap !== undefined) material.specularTintMap = getTexture(json.specularTintMap);
if (json.envMap !== undefined) material.envMap = getTexture(json.envMap);
if (json.envMapIntensity !== undefined) material.envMapIntensity = json.envMapIntensity;
if (json.reflectivity !== undefined) material.reflectivity = json.reflectivity;
if (json.refractionRatio !== undefined) material.refractionRatio = json.refractionRatio;
if (json.lightMap !== undefined) material.lightMap = getTexture(json.lightMap);
if (json.lightMapIntensity !== undefined) material.lightMapIntensity = json.lightMapIntensity;
if (json.aoMap !== undefined) material.aoMap = getTexture(json.aoMap);
if (json.aoMapIntensity !== undefined) material.aoMapIntensity = json.aoMapIntensity;
if (json.gradientMap !== undefined) material.gradientMap = getTexture(json.gradientMap);
if (json.clearcoatMap !== undefined) material.clearcoatMap = getTexture(json.clearcoatMap);
if (json.clearcoatRoughnessMap !== undefined) material.clearcoatRoughnessMap = getTexture(json.clearcoatRoughnessMap);
if (json.clearcoatNormalMap !== undefined) material.clearcoatNormalMap = getTexture(json.clearcoatNormalMap);
if (json.clearcoatNormalScale !== undefined) material.clearcoatNormalScale = new Vector2().fromArray(json.clearcoatNormalScale);
if (json.transmissionMap !== undefined) material.transmissionMap = getTexture(json.transmissionMap);
if (json.thicknessMap !== undefined) material.thicknessMap = getTexture(json.thicknessMap);
return material;
}
setTextures(value) {
this.textures = value;
return this;
}
}
class LoaderUtils {
static decodeText(array) {
if (typeof TextDecoder !== 'undefined') {
return new TextDecoder().decode(array);
} // Avoid the String.fromCharCode.apply(null, array) shortcut, which
// throws a "maximum call stack size exceeded" error for large arrays.
let s = '';
for (let i = 0, il = array.length; i < il; i++) {
// Implicitly assumes little-endian.
s += String.fromCharCode(array[i]);
}
try {
// merges multi-byte utf-8 characters.
return decodeURIComponent(escape(s));
} catch (e) {
// see #16358
return s;
}
}
static extractUrlBase(url) {
const index = url.lastIndexOf('/');
if (index === -1) return './';
return url.substr(0, index + 1);
}
}
class InstancedBufferGeometry extends BufferGeometry {
constructor() {
super();
this.type = 'InstancedBufferGeometry';
this.instanceCount = Infinity;
}
copy(source) {
super.copy(source);
this.instanceCount = source.instanceCount;
return this;
}
clone() {
return new this.constructor().copy(this);
}
toJSON() {
const data = super.toJSON(this);
data.instanceCount = this.instanceCount;
data.isInstancedBufferGeometry = true;
return data;
}
}
InstancedBufferGeometry.prototype.isInstancedBufferGeometry = true;
class BufferGeometryLoader extends Loader {
constructor(manager) {
super(manager);
}
load(url, onLoad, onProgress, onError) {
const scope = this;
const loader = new FileLoader(scope.manager);
loader.setPath(scope.path);
loader.setRequestHeader(scope.requestHeader);
loader.setWithCredentials(scope.withCredentials);
loader.load(url, function (text) {
try {
onLoad(scope.parse(JSON.parse(text)));
} catch (e) {
if (onError) {
onError(e);
} else {
console.error(e);
}
scope.manager.itemError(url);
}
}, onProgress, onError);
}
parse(json) {
const interleavedBufferMap = {};
const arrayBufferMap = {};
function getInterleavedBuffer(json, uuid) {
if (interleavedBufferMap[uuid] !== undefined) return interleavedBufferMap[uuid];
const interleavedBuffers = json.interleavedBuffers;
const interleavedBuffer = interleavedBuffers[uuid];
const buffer = getArrayBuffer(json, interleavedBuffer.buffer);
const array = getTypedArray(interleavedBuffer.type, buffer);
const ib = new InterleavedBuffer(array, interleavedBuffer.stride);
ib.uuid = interleavedBuffer.uuid;
interleavedBufferMap[uuid] = ib;
return ib;
}
function getArrayBuffer(json, uuid) {
if (arrayBufferMap[uuid] !== undefined) return arrayBufferMap[uuid];
const arrayBuffers = json.arrayBuffers;
const arrayBuffer = arrayBuffers[uuid];
const ab = new Uint32Array(arrayBuffer).buffer;
arrayBufferMap[uuid] = ab;
return ab;
}
const geometry = json.isInstancedBufferGeometry ? new InstancedBufferGeometry() : new BufferGeometry();
const index = json.data.index;
if (index !== undefined) {
const typedArray = getTypedArray(index.type, index.array);
geometry.setIndex(new BufferAttribute(typedArray, 1));
}
const attributes = json.data.attributes;
for (const key in attributes) {
const attribute = attributes[key];
let bufferAttribute;
if (attribute.isInterleavedBufferAttribute) {
const interleavedBuffer = getInterleavedBuffer(json.data, attribute.data);
bufferAttribute = new InterleavedBufferAttribute(interleavedBuffer, attribute.itemSize, attribute.offset, attribute.normalized);
} else {
const typedArray = getTypedArray(attribute.type, attribute.array);
const bufferAttributeConstr = attribute.isInstancedBufferAttribute ? InstancedBufferAttribute : BufferAttribute;
bufferAttribute = new bufferAttributeConstr(typedArray, attribute.itemSize, attribute.normalized);
}
if (attribute.name !== undefined) bufferAttribute.name = attribute.name;
if (attribute.usage !== undefined) bufferAttribute.setUsage(attribute.usage);
if (attribute.updateRange !== undefined) {
bufferAttribute.updateRange.offset = attribute.updateRange.offset;
bufferAttribute.updateRange.count = attribute.updateRange.count;
}
geometry.setAttribute(key, bufferAttribute);
}
const morphAttributes = json.data.morphAttributes;
if (morphAttributes) {
for (const key in morphAttributes) {
const attributeArray = morphAttributes[key];
const array = [];
for (let i = 0, il = attributeArray.length; i < il; i++) {
const attribute = attributeArray[i];
let bufferAttribute;
if (attribute.isInterleavedBufferAttribute) {
const interleavedBuffer = getInterleavedBuffer(json.data, attribute.data);
bufferAttribute = new InterleavedBufferAttribute(interleavedBuffer, attribute.itemSize, attribute.offset, attribute.normalized);
} else {
const typedArray = getTypedArray(attribute.type, attribute.array);
bufferAttribute = new BufferAttribute(typedArray, attribute.itemSize, attribute.normalized);
}
if (attribute.name !== undefined) bufferAttribute.name = attribute.name;
array.push(bufferAttribute);
}
geometry.morphAttributes[key] = array;
}
}
const morphTargetsRelative = json.data.morphTargetsRelative;
if (morphTargetsRelative) {
geometry.morphTargetsRelative = true;
}
const groups = json.data.groups || json.data.drawcalls || json.data.offsets;
if (groups !== undefined) {
for (let i = 0, n = groups.length; i !== n; ++i) {
const group = groups[i];
geometry.addGroup(group.start, group.count, group.materialIndex);
}
}
const boundingSphere = json.data.boundingSphere;
if (boundingSphere !== undefined) {
const center = new Vector3();
if (boundingSphere.center !== undefined) {
center.fromArray(boundingSphere.center);
}
geometry.boundingSphere = new Sphere(center, boundingSphere.radius);
}
if (json.name) geometry.name = json.name;
if (json.userData) geometry.userData = json.userData;
return geometry;
}
}
class ObjectLoader extends Loader {
constructor(manager) {
super(manager);
}
load(url, onLoad, onProgress, onError) {
const scope = this;
const path = this.path === '' ? LoaderUtils.extractUrlBase(url) : this.path;
this.resourcePath = this.resourcePath || path;
const loader = new FileLoader(this.manager);
loader.setPath(this.path);
loader.setRequestHeader(this.requestHeader);
loader.setWithCredentials(this.withCredentials);
loader.load(url, function (text) {
let json = null;
try {
json = JSON.parse(text);
} catch (error) {
if (onError !== undefined) onError(error);
console.error('THREE:ObjectLoader: Can\'t parse ' + url + '.', error.message);
return;
}
const metadata = json.metadata;
if (metadata === undefined || metadata.type === undefined || metadata.type.toLowerCase() === 'geometry') {
console.error('THREE.ObjectLoader: Can\'t load ' + url);
return;
}
scope.parse(json, onLoad);
}, onProgress, onError);
}
async loadAsync(url, onProgress) {
const scope = this;
const path = this.path === '' ? LoaderUtils.extractUrlBase(url) : this.path;
this.resourcePath = this.resourcePath || path;
const loader = new FileLoader(this.manager);
loader.setPath(this.path);
loader.setRequestHeader(this.requestHeader);
loader.setWithCredentials(this.withCredentials);
const text = await loader.loadAsync(url, onProgress);
const json = JSON.parse(text);
const metadata = json.metadata;
if (metadata === undefined || metadata.type === undefined || metadata.type.toLowerCase() === 'geometry') {
throw new Error('THREE.ObjectLoader: Can\'t load ' + url);
}
return await scope.parseAsync(json);
}
parse(json, onLoad) {
const animations = this.parseAnimations(json.animations);
const shapes = this.parseShapes(json.shapes);
const geometries = this.parseGeometries(json.geometries, shapes);
const images = this.parseImages(json.images, function () {
if (onLoad !== undefined) onLoad(object);
});
const textures = this.parseTextures(json.textures, images);
const materials = this.parseMaterials(json.materials, textures);
const object = this.parseObject(json.object, geometries, materials, textures, animations);
const skeletons = this.parseSkeletons(json.skeletons, object);
this.bindSkeletons(object, skeletons); //
if (onLoad !== undefined) {
let hasImages = false;
for (const uuid in images) {
if (images[uuid] instanceof HTMLImageElement) {
hasImages = true;
break;
}
}
if (hasImages === false) onLoad(object);
}
return object;
}
async parseAsync(json) {
const animations = this.parseAnimations(json.animations);
const shapes = this.parseShapes(json.shapes);
const geometries = this.parseGeometries(json.geometries, shapes);
const images = await this.parseImagesAsync(json.images);
const textures = this.parseTextures(json.textures, images);
const materials = this.parseMaterials(json.materials, textures);
const object = this.parseObject(json.object, geometries, materials, textures, animations);
const skeletons = this.parseSkeletons(json.skeletons, object);
this.bindSkeletons(object, skeletons);
return object;
}
parseShapes(json) {
const shapes = {};
if (json !== undefined) {
for (let i = 0, l = json.length; i < l; i++) {
const shape = new Shape().fromJSON(json[i]);
shapes[shape.uuid] = shape;
}
}
return shapes;
}
parseSkeletons(json, object) {
const skeletons = {};
const bones = {}; // generate bone lookup table
object.traverse(function (child) {
if (child.isBone) bones[child.uuid] = child;
}); // create skeletons
if (json !== undefined) {
for (let i = 0, l = json.length; i < l; i++) {
const skeleton = new Skeleton().fromJSON(json[i], bones);
skeletons[skeleton.uuid] = skeleton;
}
}
return skeletons;
}
parseGeometries(json, shapes) {
const geometries = {};
if (json !== undefined) {
const bufferGeometryLoader = new BufferGeometryLoader();
for (let i = 0, l = json.length; i < l; i++) {
let geometry;
const data = json[i];
switch (data.type) {
case 'BufferGeometry':
case 'InstancedBufferGeometry':
geometry = bufferGeometryLoader.parse(data);
break;
case 'Geometry':
console.error('THREE.ObjectLoader: The legacy Geometry type is no longer supported.');
break;
default:
if (data.type in Geometries) {
geometry = Geometries[data.type].fromJSON(data, shapes);
} else {
console.warn(`THREE.ObjectLoader: Unsupported geometry type "${data.type}"`);
}
}
geometry.uuid = data.uuid;
if (data.name !== undefined) geometry.name = data.name;
if (geometry.isBufferGeometry === true && data.userData !== undefined) geometry.userData = data.userData;
geometries[data.uuid] = geometry;
}
}
return geometries;
}
parseMaterials(json, textures) {
const cache = {}; // MultiMaterial
const materials = {};
if (json !== undefined) {
const loader = new MaterialLoader();
loader.setTextures(textures);
for (let i = 0, l = json.length; i < l; i++) {
const data = json[i];
if (data.type === 'MultiMaterial') {
// Deprecated
const array = [];
for (let j = 0; j < data.materials.length; j++) {
const material = data.materials[j];
if (cache[material.uuid] === undefined) {
cache[material.uuid] = loader.parse(material);
}
array.push(cache[material.uuid]);
}
materials[data.uuid] = array;
} else {
if (cache[data.uuid] === undefined) {
cache[data.uuid] = loader.parse(data);
}
materials[data.uuid] = cache[data.uuid];
}
}
}
return materials;
}
parseAnimations(json) {
const animations = {};
if (json !== undefined) {
for (let i = 0; i < json.length; i++) {
const data = json[i];
const clip = AnimationClip.parse(data);
animations[clip.uuid] = clip;
}
}
return animations;
}
parseImages(json, onLoad) {
const scope = this;
const images = {};
let loader;
function loadImage(url) {
scope.manager.itemStart(url);
return loader.load(url, function () {
scope.manager.itemEnd(url);
}, undefined, function () {
scope.manager.itemError(url);
scope.manager.itemEnd(url);
});
}
function deserializeImage(image) {
if (typeof image === 'string') {
const url = image;
const path = /^(\/\/)|([a-z]+:(\/\/)?)/i.test(url) ? url : scope.resourcePath + url;
return loadImage(path);
} else {
if (image.data) {
return {
data: getTypedArray(image.type, image.data),
width: image.width,
height: image.height
};
} else {
return null;
}
}
}
if (json !== undefined && json.length > 0) {
const manager = new LoadingManager(onLoad);
loader = new ImageLoader(manager);
loader.setCrossOrigin(this.crossOrigin);
for (let i = 0, il = json.length; i < il; i++) {
const image = json[i];
const url = image.url;
if (Array.isArray(url)) {
// load array of images e.g CubeTexture
images[image.uuid] = [];
for (let j = 0, jl = url.length; j < jl; j++) {
const currentUrl = url[j];
const deserializedImage = deserializeImage(currentUrl);
if (deserializedImage !== null) {
if (deserializedImage instanceof HTMLImageElement) {
images[image.uuid].push(deserializedImage);
} else {
// special case: handle array of data textures for cube textures
images[image.uuid].push(new DataTexture(deserializedImage.data, deserializedImage.width, deserializedImage.height));
}
}
}
} else {
// load single image
const deserializedImage = deserializeImage(image.url);
if (deserializedImage !== null) {
images[image.uuid] = deserializedImage;
}
}
}
}
return images;
}
async parseImagesAsync(json) {
const scope = this;
const images = {};
let loader;
async function deserializeImage(image) {
if (typeof image === 'string') {
const url = image;
const path = /^(\/\/)|([a-z]+:(\/\/)?)/i.test(url) ? url : scope.resourcePath + url;
return await loader.loadAsync(path);
} else {
if (image.data) {
return {
data: getTypedArray(image.type, image.data),
width: image.width,
height: image.height
};
} else {
return null;
}
}
}
if (json !== undefined && json.length > 0) {
loader = new ImageLoader(this.manager);
loader.setCrossOrigin(this.crossOrigin);
for (let i = 0, il = json.length; i < il; i++) {
const image = json[i];
const url = image.url;
if (Array.isArray(url)) {
// load array of images e.g CubeTexture
images[image.uuid] = [];
for (let j = 0, jl = url.length; j < jl; j++) {
const currentUrl = url[j];
const deserializedImage = await deserializeImage(currentUrl);
if (deserializedImage !== null) {
if (deserializedImage instanceof HTMLImageElement) {
images[image.uuid].push(deserializedImage);
} else {
// special case: handle array of data textures for cube textures
images[image.uuid].push(new DataTexture(deserializedImage.data, deserializedImage.width, deserializedImage.height));
}
}
}
} else {
// load single image
const deserializedImage = await deserializeImage(image.url);
if (deserializedImage !== null) {
images[image.uuid] = deserializedImage;
}
}
}
}
return images;
}
parseTextures(json, images) {
function parseConstant(value, type) {
if (typeof value === 'number') return value;
console.warn('THREE.ObjectLoader.parseTexture: Constant should be in numeric form.', value);
return type[value];
}
const textures = {};
if (json !== undefined) {
for (let i = 0, l = json.length; i < l; i++) {
const data = json[i];
if (data.image === undefined) {
console.warn('THREE.ObjectLoader: No "image" specified for', data.uuid);
}
if (images[data.image] === undefined) {
console.warn('THREE.ObjectLoader: Undefined image', data.image);
}
let texture;
const image = images[data.image];
if (Array.isArray(image)) {
texture = new CubeTexture(image);
if (image.length === 6) texture.needsUpdate = true;
} else {
if (image && image.data) {
texture = new DataTexture(image.data, image.width, image.height);
} else {
texture = new Texture(image);
}
if (image) texture.needsUpdate = true; // textures can have undefined image data
}
texture.uuid = data.uuid;
if (data.name !== undefined) texture.name = data.name;
if (data.mapping !== undefined) texture.mapping = parseConstant(data.mapping, TEXTURE_MAPPING);
if (data.offset !== undefined) texture.offset.fromArray(data.offset);
if (data.repeat !== undefined) texture.repeat.fromArray(data.repeat);
if (data.center !== undefined) texture.center.fromArray(data.center);
if (data.rotation !== undefined) texture.rotation = data.rotation;
if (data.wrap !== undefined) {
texture.wrapS = parseConstant(data.wrap[0], TEXTURE_WRAPPING);
texture.wrapT = parseConstant(data.wrap[1], TEXTURE_WRAPPING);
}
if (data.format !== undefined) texture.format = data.format;
if (data.type !== undefined) texture.type = data.type;
if (data.encoding !== undefined) texture.encoding = data.encoding;
if (data.minFilter !== undefined) texture.minFilter = parseConstant(data.minFilter, TEXTURE_FILTER);
if (data.magFilter !== undefined) texture.magFilter = parseConstant(data.magFilter, TEXTURE_FILTER);
if (data.anisotropy !== undefined) texture.anisotropy = data.anisotropy;
if (data.flipY !== undefined) texture.flipY = data.flipY;
if (data.premultiplyAlpha !== undefined) texture.premultiplyAlpha = data.premultiplyAlpha;
if (data.unpackAlignment !== undefined) texture.unpackAlignment = data.unpackAlignment;
textures[data.uuid] = texture;
}
}
return textures;
}
parseObject(data, geometries, materials, textures, animations) {
let object;
function getGeometry(name) {
if (geometries[name] === undefined) {
console.warn('THREE.ObjectLoader: Undefined geometry', name);
}
return geometries[name];
}
function getMaterial(name) {
if (name === undefined) return undefined;
if (Array.isArray(name)) {
const array = [];
for (let i = 0, l = name.length; i < l; i++) {
const uuid = name[i];
if (materials[uuid] === undefined) {
console.warn('THREE.ObjectLoader: Undefined material', uuid);
}
array.push(materials[uuid]);
}
return array;
}
if (materials[name] === undefined) {
console.warn('THREE.ObjectLoader: Undefined material', name);
}
return materials[name];
}
function getTexture(uuid) {
if (textures[uuid] === undefined) {
console.warn('THREE.ObjectLoader: Undefined texture', uuid);
}
return textures[uuid];
}
let geometry, material;
switch (data.type) {
case 'Scene':
object = new Scene();
if (data.background !== undefined) {
if (Number.isInteger(data.background)) {
object.background = new Color(data.background);
} else {
object.background = getTexture(data.background);
}
}
if (data.environment !== undefined) {
object.environment = getTexture(data.environment);
}
if (data.fog !== undefined) {
if (data.fog.type === 'Fog') {
object.fog = new Fog(data.fog.color, data.fog.near, data.fog.far);
} else if (data.fog.type === 'FogExp2') {
object.fog = new FogExp2(data.fog.color, data.fog.density);
}
}
break;
case 'PerspectiveCamera':
object = new PerspectiveCamera(data.fov, data.aspect, data.near, data.far);
if (data.focus !== undefined) object.focus = data.focus;
if (data.zoom !== undefined) object.zoom = data.zoom;
if (data.filmGauge !== undefined) object.filmGauge = data.filmGauge;
if (data.filmOffset !== undefined) object.filmOffset = data.filmOffset;
if (data.view !== undefined) object.view = Object.assign({}, data.view);
break;
case 'OrthographicCamera':
object = new OrthographicCamera(data.left, data.right, data.top, data.bottom, data.near, data.far);
if (data.zoom !== undefined) object.zoom = data.zoom;
if (data.view !== undefined) object.view = Object.assign({}, data.view);
break;
case 'AmbientLight':
object = new AmbientLight(data.color, data.intensity);
break;
case 'DirectionalLight':
object = new DirectionalLight(data.color, data.intensity);
break;
case 'PointLight':
object = new PointLight(data.color, data.intensity, data.distance, data.decay);
break;
case 'RectAreaLight':
object = new RectAreaLight(data.color, data.intensity, data.width, data.height);
break;
case 'SpotLight':
object = new SpotLight(data.color, data.intensity, data.distance, data.angle, data.penumbra, data.decay);
break;
case 'HemisphereLight':
object = new HemisphereLight(data.color, data.groundColor, data.intensity);
break;
case 'LightProbe':
object = new LightProbe().fromJSON(data);
break;
case 'SkinnedMesh':
geometry = getGeometry(data.geometry);
material = getMaterial(data.material);
object = new SkinnedMesh(geometry, material);
if (data.bindMode !== undefined) object.bindMode = data.bindMode;
if (data.bindMatrix !== undefined) object.bindMatrix.fromArray(data.bindMatrix);
if (data.skeleton !== undefined) object.skeleton = data.skeleton;
break;
case 'Mesh':
geometry = getGeometry(data.geometry);
material = getMaterial(data.material);
object = new Mesh(geometry, material);
break;
case 'InstancedMesh':
geometry = getGeometry(data.geometry);
material = getMaterial(data.material);
const count = data.count;
const instanceMatrix = data.instanceMatrix;
const instanceColor = data.instanceColor;
object = new InstancedMesh(geometry, material, count);
object.instanceMatrix = new InstancedBufferAttribute(new Float32Array(instanceMatrix.array), 16);
if (instanceColor !== undefined) object.instanceColor = new InstancedBufferAttribute(new Float32Array(instanceColor.array), instanceColor.itemSize);
break;
case 'LOD':
object = new LOD();
break;
case 'Line':
object = new Line(getGeometry(data.geometry), getMaterial(data.material));
break;
case 'LineLoop':
object = new LineLoop(getGeometry(data.geometry), getMaterial(data.material));
break;
case 'LineSegments':
object = new LineSegments(getGeometry(data.geometry), getMaterial(data.material));
break;
case 'PointCloud':
case 'Points':
object = new Points(getGeometry(data.geometry), getMaterial(data.material));
break;
case 'Sprite':
object = new Sprite(getMaterial(data.material));
break;
case 'Group':
object = new Group();
break;
case 'Bone':
object = new Bone();
break;
default:
object = new Object3D();
}
object.uuid = data.uuid;
if (data.name !== undefined) object.name = data.name;
if (data.matrix !== undefined) {
object.matrix.fromArray(data.matrix);
if (data.matrixAutoUpdate !== undefined) object.matrixAutoUpdate = data.matrixAutoUpdate;
if (object.matrixAutoUpdate) object.matrix.decompose(object.position, object.quaternion, object.scale);
} else {
if (data.position !== undefined) object.position.fromArray(data.position);
if (data.rotation !== undefined) object.rotation.fromArray(data.rotation);
if (data.quaternion !== undefined) object.quaternion.fromArray(data.quaternion);
if (data.scale !== undefined) object.scale.fromArray(data.scale);
}
if (data.castShadow !== undefined) object.castShadow = data.castShadow;
if (data.receiveShadow !== undefined) object.receiveShadow = data.receiveShadow;
if (data.shadow) {
if (data.shadow.bias !== undefined) object.shadow.bias = data.shadow.bias;
if (data.shadow.normalBias !== undefined) object.shadow.normalBias = data.shadow.normalBias;
if (data.shadow.radius !== undefined) object.shadow.radius = data.shadow.radius;
if (data.shadow.mapSize !== undefined) object.shadow.mapSize.fromArray(data.shadow.mapSize);
if (data.shadow.camera !== undefined) object.shadow.camera = this.parseObject(data.shadow.camera);
}
if (data.visible !== undefined) object.visible = data.visible;
if (data.frustumCulled !== undefined) object.frustumCulled = data.frustumCulled;
if (data.renderOrder !== undefined) object.renderOrder = data.renderOrder;
if (data.userData !== undefined) object.userData = data.userData;
if (data.layers !== undefined) object.layers.mask = data.layers;
if (data.children !== undefined) {
const children = data.children;
for (let i = 0; i < children.length; i++) {
object.add(this.parseObject(children[i], geometries, materials, textures, animations));
}
}
if (data.animations !== undefined) {
const objectAnimations = data.animations;
for (let i = 0; i < objectAnimations.length; i++) {
const uuid = objectAnimations[i];
object.animations.push(animations[uuid]);
}
}
if (data.type === 'LOD') {
if (data.autoUpdate !== undefined) object.autoUpdate = data.autoUpdate;
const levels = data.levels;
for (let l = 0; l < levels.length; l++) {
const level = levels[l];
const child = object.getObjectByProperty('uuid', level.object);
if (child !== undefined) {
object.addLevel(child, level.distance);
}
}
}
return object;
}
bindSkeletons(object, skeletons) {
if (Object.keys(skeletons).length === 0) return;
object.traverse(function (child) {
if (child.isSkinnedMesh === true && child.skeleton !== undefined) {
const skeleton = skeletons[child.skeleton];
if (skeleton === undefined) {
console.warn('THREE.ObjectLoader: No skeleton found with UUID:', child.skeleton);
} else {
child.bind(skeleton, child.bindMatrix);
}
}
});
}
/* DEPRECATED */
setTexturePath(value) {
console.warn('THREE.ObjectLoader: .setTexturePath() has been renamed to .setResourcePath().');
return this.setResourcePath(value);
}
}
const TEXTURE_MAPPING = {
UVMapping: UVMapping,
CubeReflectionMapping: CubeReflectionMapping,
CubeRefractionMapping: CubeRefractionMapping,
EquirectangularReflectionMapping: EquirectangularReflectionMapping,
EquirectangularRefractionMapping: EquirectangularRefractionMapping,
CubeUVReflectionMapping: CubeUVReflectionMapping,
CubeUVRefractionMapping: CubeUVRefractionMapping
};
const TEXTURE_WRAPPING = {
RepeatWrapping: RepeatWrapping,
ClampToEdgeWrapping: ClampToEdgeWrapping,
MirroredRepeatWrapping: MirroredRepeatWrapping
};
const TEXTURE_FILTER = {
NearestFilter: NearestFilter,
NearestMipmapNearestFilter: NearestMipmapNearestFilter,
NearestMipmapLinearFilter: NearestMipmapLinearFilter,
LinearFilter: LinearFilter,
LinearMipmapNearestFilter: LinearMipmapNearestFilter,
LinearMipmapLinearFilter: LinearMipmapLinearFilter
};
class ImageBitmapLoader extends Loader {
constructor(manager) {
super(manager);
if (typeof createImageBitmap === 'undefined') {
console.warn('THREE.ImageBitmapLoader: createImageBitmap() not supported.');
}
if (typeof fetch === 'undefined') {
console.warn('THREE.ImageBitmapLoader: fetch() not supported.');
}
this.options = {
premultiplyAlpha: 'none'
};
}
setOptions(options) {
this.options = options;
return this;
}
load(url, onLoad, onProgress, onError) {
if (url === undefined) url = '';
if (this.path !== undefined) url = this.path + url;
url = this.manager.resolveURL(url);
const scope = this;
const cached = Cache.get(url);
if (cached !== undefined) {
scope.manager.itemStart(url);
setTimeout(function () {
if (onLoad) onLoad(cached);
scope.manager.itemEnd(url);
}, 0);
return cached;
}
const fetchOptions = {};
fetchOptions.credentials = this.crossOrigin === 'anonymous' ? 'same-origin' : 'include';
fetchOptions.headers = this.requestHeader;
fetch(url, fetchOptions).then(function (res) {
return res.blob();
}).then(function (blob) {
return createImageBitmap(blob, Object.assign(scope.options, {
colorSpaceConversion: 'none'
}));
}).then(function (imageBitmap) {
Cache.add(url, imageBitmap);
if (onLoad) onLoad(imageBitmap);
scope.manager.itemEnd(url);
}).catch(function (e) {
if (onError) onError(e);
scope.manager.itemError(url);
scope.manager.itemEnd(url);
});
scope.manager.itemStart(url);
}
}
ImageBitmapLoader.prototype.isImageBitmapLoader = true;
let _context;
const AudioContext = {
getContext: function () {
if (_context === undefined) {
_context = new (window.AudioContext || window.webkitAudioContext)();
}
return _context;
},
setContext: function (value) {
_context = value;
}
};
class AudioLoader extends Loader {
constructor(manager) {
super(manager);
}
load(url, onLoad, onProgress, onError) {
const scope = this;
const loader = new FileLoader(this.manager);
loader.setResponseType('arraybuffer');
loader.setPath(this.path);
loader.setRequestHeader(this.requestHeader);
loader.setWithCredentials(this.withCredentials);
loader.load(url, function (buffer) {
try {
// Create a copy of the buffer. The `decodeAudioData` method
// detaches the buffer when complete, preventing reuse.
const bufferCopy = buffer.slice(0);
const context = AudioContext.getContext();
context.decodeAudioData(bufferCopy, function (audioBuffer) {
onLoad(audioBuffer);
});
} catch (e) {
if (onError) {
onError(e);
} else {
console.error(e);
}
scope.manager.itemError(url);
}
}, onProgress, onError);
}
}
class HemisphereLightProbe extends LightProbe {
constructor(skyColor, groundColor, intensity = 1) {
super(undefined, intensity);
const color1 = new Color().set(skyColor);
const color2 = new Color().set(groundColor);
const sky = new Vector3(color1.r, color1.g, color1.b);
const ground = new Vector3(color2.r, color2.g, color2.b); // without extra factor of PI in the shader, should = 1 / Math.sqrt( Math.PI );
const c0 = Math.sqrt(Math.PI);
const c1 = c0 * Math.sqrt(0.75);
this.sh.coefficients[0].copy(sky).add(ground).multiplyScalar(c0);
this.sh.coefficients[1].copy(sky).sub(ground).multiplyScalar(c1);
}
}
HemisphereLightProbe.prototype.isHemisphereLightProbe = true;
class AmbientLightProbe extends LightProbe {
constructor(color, intensity = 1) {
super(undefined, intensity);
const color1 = new Color().set(color); // without extra factor of PI in the shader, would be 2 / Math.sqrt( Math.PI );
this.sh.coefficients[0].set(color1.r, color1.g, color1.b).multiplyScalar(2 * Math.sqrt(Math.PI));
}
}
AmbientLightProbe.prototype.isAmbientLightProbe = true;
const _eyeRight = /*@__PURE__*/new Matrix4();
const _eyeLeft = /*@__PURE__*/new Matrix4();
class StereoCamera {
constructor() {
this.type = 'StereoCamera';
this.aspect = 1;
this.eyeSep = 0.064;
this.cameraL = new PerspectiveCamera();
this.cameraL.layers.enable(1);
this.cameraL.matrixAutoUpdate = false;
this.cameraR = new PerspectiveCamera();
this.cameraR.layers.enable(2);
this.cameraR.matrixAutoUpdate = false;
this._cache = {
focus: null,
fov: null,
aspect: null,
near: null,
far: null,
zoom: null,
eyeSep: null
};
}
update(camera) {
const cache = this._cache;
const needsUpdate = cache.focus !== camera.focus || cache.fov !== camera.fov || cache.aspect !== camera.aspect * this.aspect || cache.near !== camera.near || cache.far !== camera.far || cache.zoom !== camera.zoom || cache.eyeSep !== this.eyeSep;
if (needsUpdate) {
cache.focus = camera.focus;
cache.fov = camera.fov;
cache.aspect = camera.aspect * this.aspect;
cache.near = camera.near;
cache.far = camera.far;
cache.zoom = camera.zoom;
cache.eyeSep = this.eyeSep; // Off-axis stereoscopic effect based on
// http://paulbourke.net/stereographics/stereorender/
const projectionMatrix = camera.projectionMatrix.clone();
const eyeSepHalf = cache.eyeSep / 2;
const eyeSepOnProjection = eyeSepHalf * cache.near / cache.focus;
const ymax = cache.near * Math.tan(DEG2RAD * cache.fov * 0.5) / cache.zoom;
let xmin, xmax; // translate xOffset
_eyeLeft.elements[12] = -eyeSepHalf;
_eyeRight.elements[12] = eyeSepHalf; // for left eye
xmin = -ymax * cache.aspect + eyeSepOnProjection;
xmax = ymax * cache.aspect + eyeSepOnProjection;
projectionMatrix.elements[0] = 2 * cache.near / (xmax - xmin);
projectionMatrix.elements[8] = (xmax + xmin) / (xmax - xmin);
this.cameraL.projectionMatrix.copy(projectionMatrix); // for right eye
xmin = -ymax * cache.aspect - eyeSepOnProjection;
xmax = ymax * cache.aspect - eyeSepOnProjection;
projectionMatrix.elements[0] = 2 * cache.near / (xmax - xmin);
projectionMatrix.elements[8] = (xmax + xmin) / (xmax - xmin);
this.cameraR.projectionMatrix.copy(projectionMatrix);
}
this.cameraL.matrixWorld.copy(camera.matrixWorld).multiply(_eyeLeft);
this.cameraR.matrixWorld.copy(camera.matrixWorld).multiply(_eyeRight);
}
}
class Clock {
constructor(autoStart = true) {
this.autoStart = autoStart;
this.startTime = 0;
this.oldTime = 0;
this.elapsedTime = 0;
this.running = false;
}
start() {
this.startTime = now();
this.oldTime = this.startTime;
this.elapsedTime = 0;
this.running = true;
}
stop() {
this.getElapsedTime();
this.running = false;
this.autoStart = false;
}
getElapsedTime() {
this.getDelta();
return this.elapsedTime;
}
getDelta() {
let diff = 0;
if (this.autoStart && !this.running) {
this.start();
return 0;
}
if (this.running) {
const newTime = now();
diff = (newTime - this.oldTime) / 1000;
this.oldTime = newTime;
this.elapsedTime += diff;
}
return diff;
}
}
function now() {
return (typeof performance === 'undefined' ? Date : performance).now(); // see #10732
}
const _position$1 = /*@__PURE__*/new Vector3();
const _quaternion$1 = /*@__PURE__*/new Quaternion();
const _scale$1 = /*@__PURE__*/new Vector3();
const _orientation$1 = /*@__PURE__*/new Vector3();
class AudioListener extends Object3D {
constructor() {
super();
this.type = 'AudioListener';
this.context = AudioContext.getContext();
this.gain = this.context.createGain();
this.gain.connect(this.context.destination);
this.filter = null;
this.timeDelta = 0; // private
this._clock = new Clock();
}
getInput() {
return this.gain;
}
removeFilter() {
if (this.filter !== null) {
this.gain.disconnect(this.filter);
this.filter.disconnect(this.context.destination);
this.gain.connect(this.context.destination);
this.filter = null;
}
return this;
}
getFilter() {
return this.filter;
}
setFilter(value) {
if (this.filter !== null) {
this.gain.disconnect(this.filter);
this.filter.disconnect(this.context.destination);
} else {
this.gain.disconnect(this.context.destination);
}
this.filter = value;
this.gain.connect(this.filter);
this.filter.connect(this.context.destination);
return this;
}
getMasterVolume() {
return this.gain.gain.value;
}
setMasterVolume(value) {
this.gain.gain.setTargetAtTime(value, this.context.currentTime, 0.01);
return this;
}
updateMatrixWorld(force) {
super.updateMatrixWorld(force);
const listener = this.context.listener;
const up = this.up;
this.timeDelta = this._clock.getDelta();
this.matrixWorld.decompose(_position$1, _quaternion$1, _scale$1);
_orientation$1.set(0, 0, -1).applyQuaternion(_quaternion$1);
if (listener.positionX) {
// code path for Chrome (see #14393)
const endTime = this.context.currentTime + this.timeDelta;
listener.positionX.linearRampToValueAtTime(_position$1.x, endTime);
listener.positionY.linearRampToValueAtTime(_position$1.y, endTime);
listener.positionZ.linearRampToValueAtTime(_position$1.z, endTime);
listener.forwardX.linearRampToValueAtTime(_orientation$1.x, endTime);
listener.forwardY.linearRampToValueAtTime(_orientation$1.y, endTime);
listener.forwardZ.linearRampToValueAtTime(_orientation$1.z, endTime);
listener.upX.linearRampToValueAtTime(up.x, endTime);
listener.upY.linearRampToValueAtTime(up.y, endTime);
listener.upZ.linearRampToValueAtTime(up.z, endTime);
} else {
listener.setPosition(_position$1.x, _position$1.y, _position$1.z);
listener.setOrientation(_orientation$1.x, _orientation$1.y, _orientation$1.z, up.x, up.y, up.z);
}
}
}
class Audio extends Object3D {
constructor(listener) {
super();
this.type = 'Audio';
this.listener = listener;
this.context = listener.context;
this.gain = this.context.createGain();
this.gain.connect(listener.getInput());
this.autoplay = false;
this.buffer = null;
this.detune = 0;
this.loop = false;
this.loopStart = 0;
this.loopEnd = 0;
this.offset = 0;
this.duration = undefined;
this.playbackRate = 1;
this.isPlaying = false;
this.hasPlaybackControl = true;
this.source = null;
this.sourceType = 'empty';
this._startedAt = 0;
this._progress = 0;
this._connected = false;
this.filters = [];
}
getOutput() {
return this.gain;
}
setNodeSource(audioNode) {
this.hasPlaybackControl = false;
this.sourceType = 'audioNode';
this.source = audioNode;
this.connect();
return this;
}
setMediaElementSource(mediaElement) {
this.hasPlaybackControl = false;
this.sourceType = 'mediaNode';
this.source = this.context.createMediaElementSource(mediaElement);
this.connect();
return this;
}
setMediaStreamSource(mediaStream) {
this.hasPlaybackControl = false;
this.sourceType = 'mediaStreamNode';
this.source = this.context.createMediaStreamSource(mediaStream);
this.connect();
return this;
}
setBuffer(audioBuffer) {
this.buffer = audioBuffer;
this.sourceType = 'buffer';
if (this.autoplay) this.play();
return this;
}
play(delay = 0) {
if (this.isPlaying === true) {
console.warn('THREE.Audio: Audio is already playing.');
return;
}
if (this.hasPlaybackControl === false) {
console.warn('THREE.Audio: this Audio has no playback control.');
return;
}
this._startedAt = this.context.currentTime + delay;
const source = this.context.createBufferSource();
source.buffer = this.buffer;
source.loop = this.loop;
source.loopStart = this.loopStart;
source.loopEnd = this.loopEnd;
source.onended = this.onEnded.bind(this);
source.start(this._startedAt, this._progress + this.offset, this.duration);
this.isPlaying = true;
this.source = source;
this.setDetune(this.detune);
this.setPlaybackRate(this.playbackRate);
return this.connect();
}
pause() {
if (this.hasPlaybackControl === false) {
console.warn('THREE.Audio: this Audio has no playback control.');
return;
}
if (this.isPlaying === true) {
// update current progress
this._progress += Math.max(this.context.currentTime - this._startedAt, 0) * this.playbackRate;
if (this.loop === true) {
// ensure _progress does not exceed duration with looped audios
this._progress = this._progress % (this.duration || this.buffer.duration);
}
this.source.stop();
this.source.onended = null;
this.isPlaying = false;
}
return this;
}
stop() {
if (this.hasPlaybackControl === false) {
console.warn('THREE.Audio: this Audio has no playback control.');
return;
}
this._progress = 0;
this.source.stop();
this.source.onended = null;
this.isPlaying = false;
return this;
}
connect() {
if (this.filters.length > 0) {
this.source.connect(this.filters[0]);
for (let i = 1, l = this.filters.length; i < l; i++) {
this.filters[i - 1].connect(this.filters[i]);
}
this.filters[this.filters.length - 1].connect(this.getOutput());
} else {
this.source.connect(this.getOutput());
}
this._connected = true;
return this;
}
disconnect() {
if (this.filters.length > 0) {
this.source.disconnect(this.filters[0]);
for (let i = 1, l = this.filters.length; i < l; i++) {
this.filters[i - 1].disconnect(this.filters[i]);
}
this.filters[this.filters.length - 1].disconnect(this.getOutput());
} else {
this.source.disconnect(this.getOutput());
}
this._connected = false;
return this;
}
getFilters() {
return this.filters;
}
setFilters(value) {
if (!value) value = [];
if (this._connected === true) {
this.disconnect();
this.filters = value.slice();
this.connect();
} else {
this.filters = value.slice();
}
return this;
}
setDetune(value) {
this.detune = value;
if (this.source.detune === undefined) return; // only set detune when available
if (this.isPlaying === true) {
this.source.detune.setTargetAtTime(this.detune, this.context.currentTime, 0.01);
}
return this;
}
getDetune() {
return this.detune;
}
getFilter() {
return this.getFilters()[0];
}
setFilter(filter) {
return this.setFilters(filter ? [filter] : []);
}
setPlaybackRate(value) {
if (this.hasPlaybackControl === false) {
console.warn('THREE.Audio: this Audio has no playback control.');
return;
}
this.playbackRate = value;
if (this.isPlaying === true) {
this.source.playbackRate.setTargetAtTime(this.playbackRate, this.context.currentTime, 0.01);
}
return this;
}
getPlaybackRate() {
return this.playbackRate;
}
onEnded() {
this.isPlaying = false;
}
getLoop() {
if (this.hasPlaybackControl === false) {
console.warn('THREE.Audio: this Audio has no playback control.');
return false;
}
return this.loop;
}
setLoop(value) {
if (this.hasPlaybackControl === false) {
console.warn('THREE.Audio: this Audio has no playback control.');
return;
}
this.loop = value;
if (this.isPlaying === true) {
this.source.loop = this.loop;
}
return this;
}
setLoopStart(value) {
this.loopStart = value;
return this;
}
setLoopEnd(value) {
this.loopEnd = value;
return this;
}
getVolume() {
return this.gain.gain.value;
}
setVolume(value) {
this.gain.gain.setTargetAtTime(value, this.context.currentTime, 0.01);
return this;
}
}
const _position = /*@__PURE__*/new Vector3();
const _quaternion = /*@__PURE__*/new Quaternion();
const _scale = /*@__PURE__*/new Vector3();
const _orientation = /*@__PURE__*/new Vector3();
class PositionalAudio extends Audio {
constructor(listener) {
super(listener);
this.panner = this.context.createPanner();
this.panner.panningModel = 'HRTF';
this.panner.connect(this.gain);
}
getOutput() {
return this.panner;
}
getRefDistance() {
return this.panner.refDistance;
}
setRefDistance(value) {
this.panner.refDistance = value;
return this;
}
getRolloffFactor() {
return this.panner.rolloffFactor;
}
setRolloffFactor(value) {
this.panner.rolloffFactor = value;
return this;
}
getDistanceModel() {
return this.panner.distanceModel;
}
setDistanceModel(value) {
this.panner.distanceModel = value;
return this;
}
getMaxDistance() {
return this.panner.maxDistance;
}
setMaxDistance(value) {
this.panner.maxDistance = value;
return this;
}
setDirectionalCone(coneInnerAngle, coneOuterAngle, coneOuterGain) {
this.panner.coneInnerAngle = coneInnerAngle;
this.panner.coneOuterAngle = coneOuterAngle;
this.panner.coneOuterGain = coneOuterGain;
return this;
}
updateMatrixWorld(force) {
super.updateMatrixWorld(force);
if (this.hasPlaybackControl === true && this.isPlaying === false) return;
this.matrixWorld.decompose(_position, _quaternion, _scale);
_orientation.set(0, 0, 1).applyQuaternion(_quaternion);
const panner = this.panner;
if (panner.positionX) {
// code path for Chrome and Firefox (see #14393)
const endTime = this.context.currentTime + this.listener.timeDelta;
panner.positionX.linearRampToValueAtTime(_position.x, endTime);
panner.positionY.linearRampToValueAtTime(_position.y, endTime);
panner.positionZ.linearRampToValueAtTime(_position.z, endTime);
panner.orientationX.linearRampToValueAtTime(_orientation.x, endTime);
panner.orientationY.linearRampToValueAtTime(_orientation.y, endTime);
panner.orientationZ.linearRampToValueAtTime(_orientation.z, endTime);
} else {
panner.setPosition(_position.x, _position.y, _position.z);
panner.setOrientation(_orientation.x, _orientation.y, _orientation.z);
}
}
}
class AudioAnalyser {
constructor(audio, fftSize = 2048) {
this.analyser = audio.context.createAnalyser();
this.analyser.fftSize = fftSize;
this.data = new Uint8Array(this.analyser.frequencyBinCount);
audio.getOutput().connect(this.analyser);
}
getFrequencyData() {
this.analyser.getByteFrequencyData(this.data);
return this.data;
}
getAverageFrequency() {
let value = 0;
const data = this.getFrequencyData();
for (let i = 0; i < data.length; i++) {
value += data[i];
}
return value / data.length;
}
}
class PropertyMixer {
constructor(binding, typeName, valueSize) {
this.binding = binding;
this.valueSize = valueSize;
let mixFunction, mixFunctionAdditive, setIdentity; // buffer layout: [ incoming | accu0 | accu1 | orig | addAccu | (optional work) ]
//
// interpolators can use .buffer as their .result
// the data then goes to 'incoming'
//
// 'accu0' and 'accu1' are used frame-interleaved for
// the cumulative result and are compared to detect
// changes
//
// 'orig' stores the original state of the property
//
// 'add' is used for additive cumulative results
//
// 'work' is optional and is only present for quaternion types. It is used
// to store intermediate quaternion multiplication results
switch (typeName) {
case 'quaternion':
mixFunction = this._slerp;
mixFunctionAdditive = this._slerpAdditive;
setIdentity = this._setAdditiveIdentityQuaternion;
this.buffer = new Float64Array(valueSize * 6);
this._workIndex = 5;
break;
case 'string':
case 'bool':
mixFunction = this._select; // Use the regular mix function and for additive on these types,
// additive is not relevant for non-numeric types
mixFunctionAdditive = this._select;
setIdentity = this._setAdditiveIdentityOther;
this.buffer = new Array(valueSize * 5);
break;
default:
mixFunction = this._lerp;
mixFunctionAdditive = this._lerpAdditive;
setIdentity = this._setAdditiveIdentityNumeric;
this.buffer = new Float64Array(valueSize * 5);
}
this._mixBufferRegion = mixFunction;
this._mixBufferRegionAdditive = mixFunctionAdditive;
this._setIdentity = setIdentity;
this._origIndex = 3;
this._addIndex = 4;
this.cumulativeWeight = 0;
this.cumulativeWeightAdditive = 0;
this.useCount = 0;
this.referenceCount = 0;
} // accumulate data in the 'incoming' region into 'accu<i>'
accumulate(accuIndex, weight) {
// note: happily accumulating nothing when weight = 0, the caller knows
// the weight and shouldn't have made the call in the first place
const buffer = this.buffer,
stride = this.valueSize,
offset = accuIndex * stride + stride;
let currentWeight = this.cumulativeWeight;
if (currentWeight === 0) {
// accuN := incoming * weight
for (let i = 0; i !== stride; ++i) {
buffer[offset + i] = buffer[i];
}
currentWeight = weight;
} else {
// accuN := accuN + incoming * weight
currentWeight += weight;
const mix = weight / currentWeight;
this._mixBufferRegion(buffer, offset, 0, mix, stride);
}
this.cumulativeWeight = currentWeight;
} // accumulate data in the 'incoming' region into 'add'
accumulateAdditive(weight) {
const buffer = this.buffer,
stride = this.valueSize,
offset = stride * this._addIndex;
if (this.cumulativeWeightAdditive === 0) {
// add = identity
this._setIdentity();
} // add := add + incoming * weight
this._mixBufferRegionAdditive(buffer, offset, 0, weight, stride);
this.cumulativeWeightAdditive += weight;
} // apply the state of 'accu<i>' to the binding when accus differ
apply(accuIndex) {
const stride = this.valueSize,
buffer = this.buffer,
offset = accuIndex * stride + stride,
weight = this.cumulativeWeight,
weightAdditive = this.cumulativeWeightAdditive,
binding = this.binding;
this.cumulativeWeight = 0;
this.cumulativeWeightAdditive = 0;
if (weight < 1) {
// accuN := accuN + original * ( 1 - cumulativeWeight )
const originalValueOffset = stride * this._origIndex;
this._mixBufferRegion(buffer, offset, originalValueOffset, 1 - weight, stride);
}
if (weightAdditive > 0) {
// accuN := accuN + additive accuN
this._mixBufferRegionAdditive(buffer, offset, this._addIndex * stride, 1, stride);
}
for (let i = stride, e = stride + stride; i !== e; ++i) {
if (buffer[i] !== buffer[i + stride]) {
// value has changed -> update scene graph
binding.setValue(buffer, offset);
break;
}
}
} // remember the state of the bound property and copy it to both accus
saveOriginalState() {
const binding = this.binding;
const buffer = this.buffer,
stride = this.valueSize,
originalValueOffset = stride * this._origIndex;
binding.getValue(buffer, originalValueOffset); // accu[0..1] := orig -- initially detect changes against the original
for (let i = stride, e = originalValueOffset; i !== e; ++i) {
buffer[i] = buffer[originalValueOffset + i % stride];
} // Add to identity for additive
this._setIdentity();
this.cumulativeWeight = 0;
this.cumulativeWeightAdditive = 0;
} // apply the state previously taken via 'saveOriginalState' to the binding
restoreOriginalState() {
const originalValueOffset = this.valueSize * 3;
this.binding.setValue(this.buffer, originalValueOffset);
}
_setAdditiveIdentityNumeric() {
const startIndex = this._addIndex * this.valueSize;
const endIndex = startIndex + this.valueSize;
for (let i = startIndex; i < endIndex; i++) {
this.buffer[i] = 0;
}
}
_setAdditiveIdentityQuaternion() {
this._setAdditiveIdentityNumeric();
this.buffer[this._addIndex * this.valueSize + 3] = 1;
}
_setAdditiveIdentityOther() {
const startIndex = this._origIndex * this.valueSize;
const targetIndex = this._addIndex * this.valueSize;
for (let i = 0; i < this.valueSize; i++) {
this.buffer[targetIndex + i] = this.buffer[startIndex + i];
}
} // mix functions
_select(buffer, dstOffset, srcOffset, t, stride) {
if (t >= 0.5) {
for (let i = 0; i !== stride; ++i) {
buffer[dstOffset + i] = buffer[srcOffset + i];
}
}
}
_slerp(buffer, dstOffset, srcOffset, t) {
Quaternion.slerpFlat(buffer, dstOffset, buffer, dstOffset, buffer, srcOffset, t);
}
_slerpAdditive(buffer, dstOffset, srcOffset, t, stride) {
const workOffset = this._workIndex * stride; // Store result in intermediate buffer offset
Quaternion.multiplyQuaternionsFlat(buffer, workOffset, buffer, dstOffset, buffer, srcOffset); // Slerp to the intermediate result
Quaternion.slerpFlat(buffer, dstOffset, buffer, dstOffset, buffer, workOffset, t);
}
_lerp(buffer, dstOffset, srcOffset, t, stride) {
const s = 1 - t;
for (let i = 0; i !== stride; ++i) {
const j = dstOffset + i;
buffer[j] = buffer[j] * s + buffer[srcOffset + i] * t;
}
}
_lerpAdditive(buffer, dstOffset, srcOffset, t, stride) {
for (let i = 0; i !== stride; ++i) {
const j = dstOffset + i;
buffer[j] = buffer[j] + buffer[srcOffset + i] * t;
}
}
}
// Characters [].:/ are reserved for track binding syntax.
const _RESERVED_CHARS_RE = '\\[\\]\\.:\\/';
const _reservedRe = new RegExp('[' + _RESERVED_CHARS_RE + ']', 'g'); // Attempts to allow node names from any language. ES5's `\w` regexp matches
// only latin characters, and the unicode \p{L} is not yet supported. So
// instead, we exclude reserved characters and match everything else.
const _wordChar = '[^' + _RESERVED_CHARS_RE + ']';
const _wordCharOrDot = '[^' + _RESERVED_CHARS_RE.replace('\\.', '') + ']'; // Parent directories, delimited by '/' or ':'. Currently unused, but must
// be matched to parse the rest of the track name.
const _directoryRe = /((?:WC+[\/:])*)/.source.replace('WC', _wordChar); // Target node. May contain word characters (a-zA-Z0-9_) and '.' or '-'.
const _nodeRe = /(WCOD+)?/.source.replace('WCOD', _wordCharOrDot); // Object on target node, and accessor. May not contain reserved
// characters. Accessor may contain any character except closing bracket.
const _objectRe = /(?:\.(WC+)(?:\[(.+)\])?)?/.source.replace('WC', _wordChar); // Property and accessor. May not contain reserved characters. Accessor may
// contain any non-bracket characters.
const _propertyRe = /\.(WC+)(?:\[(.+)\])?/.source.replace('WC', _wordChar);
const _trackRe = new RegExp('' + '^' + _directoryRe + _nodeRe + _objectRe + _propertyRe + '$');
const _supportedObjectNames = ['material', 'materials', 'bones'];
class Composite {
constructor(targetGroup, path, optionalParsedPath) {
const parsedPath = optionalParsedPath || PropertyBinding.parseTrackName(path);
this._targetGroup = targetGroup;
this._bindings = targetGroup.subscribe_(path, parsedPath);
}
getValue(array, offset) {
this.bind(); // bind all binding
const firstValidIndex = this._targetGroup.nCachedObjects_,
binding = this._bindings[firstValidIndex]; // and only call .getValue on the first
if (binding !== undefined) binding.getValue(array, offset);
}
setValue(array, offset) {
const bindings = this._bindings;
for (let i = this._targetGroup.nCachedObjects_, n = bindings.length; i !== n; ++i) {
bindings[i].setValue(array, offset);
}
}
bind() {
const bindings = this._bindings;
for (let i = this._targetGroup.nCachedObjects_, n = bindings.length; i !== n; ++i) {
bindings[i].bind();
}
}
unbind() {
const bindings = this._bindings;
for (let i = this._targetGroup.nCachedObjects_, n = bindings.length; i !== n; ++i) {
bindings[i].unbind();
}
}
} // Note: This class uses a State pattern on a per-method basis:
// 'bind' sets 'this.getValue' / 'setValue' and shadows the
// prototype version of these methods with one that represents
// the bound state. When the property is not found, the methods
// become no-ops.
class PropertyBinding {
constructor(rootNode, path, parsedPath) {
this.path = path;
this.parsedPath = parsedPath || PropertyBinding.parseTrackName(path);
this.node = PropertyBinding.findNode(rootNode, this.parsedPath.nodeName) || rootNode;
this.rootNode = rootNode; // initial state of these methods that calls 'bind'
this.getValue = this._getValue_unbound;
this.setValue = this._setValue_unbound;
}
static create(root, path, parsedPath) {
if (!(root && root.isAnimationObjectGroup)) {
return new PropertyBinding(root, path, parsedPath);
} else {
return new PropertyBinding.Composite(root, path, parsedPath);
}
}
/**
* Replaces spaces with underscores and removes unsupported characters from
* node names, to ensure compatibility with parseTrackName().
*
* @param {string} name Node name to be sanitized.
* @return {string}
*/
static sanitizeNodeName(name) {
return name.replace(/\s/g, '_').replace(_reservedRe, '');
}
static parseTrackName(trackName) {
const matches = _trackRe.exec(trackName);
if (!matches) {
throw new Error('PropertyBinding: Cannot parse trackName: ' + trackName);
}
const results = {
// directoryName: matches[ 1 ], // (tschw) currently unused
nodeName: matches[2],
objectName: matches[3],
objectIndex: matches[4],
propertyName: matches[5],
// required
propertyIndex: matches[6]
};
const lastDot = results.nodeName && results.nodeName.lastIndexOf('.');
if (lastDot !== undefined && lastDot !== -1) {
const objectName = results.nodeName.substring(lastDot + 1); // Object names must be checked against an allowlist. Otherwise, there
// is no way to parse 'foo.bar.baz': 'baz' must be a property, but
// 'bar' could be the objectName, or part of a nodeName (which can
// include '.' characters).
if (_supportedObjectNames.indexOf(objectName) !== -1) {
results.nodeName = results.nodeName.substring(0, lastDot);
results.objectName = objectName;
}
}
if (results.propertyName === null || results.propertyName.length === 0) {
throw new Error('PropertyBinding: can not parse propertyName from trackName: ' + trackName);
}
return results;
}
static findNode(root, nodeName) {
if (!nodeName || nodeName === '' || nodeName === '.' || nodeName === -1 || nodeName === root.name || nodeName === root.uuid) {
return root;
} // search into skeleton bones.
if (root.skeleton) {
const bone = root.skeleton.getBoneByName(nodeName);
if (bone !== undefined) {
return bone;
}
} // search into node subtree.
if (root.children) {
const searchNodeSubtree = function (children) {
for (let i = 0; i < children.length; i++) {
const childNode = children[i];
if (childNode.name === nodeName || childNode.uuid === nodeName) {
return childNode;
}
const result = searchNodeSubtree(childNode.children);
if (result) return result;
}
return null;
};
const subTreeNode = searchNodeSubtree(root.children);
if (subTreeNode) {
return subTreeNode;
}
}
return null;
} // these are used to "bind" a nonexistent property
_getValue_unavailable() {}
_setValue_unavailable() {} // Getters
_getValue_direct(buffer, offset) {
buffer[offset] = this.targetObject[this.propertyName];
}
_getValue_array(buffer, offset) {
const source = this.resolvedProperty;
for (let i = 0, n = source.length; i !== n; ++i) {
buffer[offset++] = source[i];
}
}
_getValue_arrayElement(buffer, offset) {
buffer[offset] = this.resolvedProperty[this.propertyIndex];
}
_getValue_toArray(buffer, offset) {
this.resolvedProperty.toArray(buffer, offset);
} // Direct
_setValue_direct(buffer, offset) {
this.targetObject[this.propertyName] = buffer[offset];
}
_setValue_direct_setNeedsUpdate(buffer, offset) {
this.targetObject[this.propertyName] = buffer[offset];
this.targetObject.needsUpdate = true;
}
_setValue_direct_setMatrixWorldNeedsUpdate(buffer, offset) {
this.targetObject[this.propertyName] = buffer[offset];
this.targetObject.matrixWorldNeedsUpdate = true;
} // EntireArray
_setValue_array(buffer, offset) {
const dest = this.resolvedProperty;
for (let i = 0, n = dest.length; i !== n; ++i) {
dest[i] = buffer[offset++];
}
}
_setValue_array_setNeedsUpdate(buffer, offset) {
const dest = this.resolvedProperty;
for (let i = 0, n = dest.length; i !== n; ++i) {
dest[i] = buffer[offset++];
}
this.targetObject.needsUpdate = true;
}
_setValue_array_setMatrixWorldNeedsUpdate(buffer, offset) {
const dest = this.resolvedProperty;
for (let i = 0, n = dest.length; i !== n; ++i) {
dest[i] = buffer[offset++];
}
this.targetObject.matrixWorldNeedsUpdate = true;
} // ArrayElement
_setValue_arrayElement(buffer, offset) {
this.resolvedProperty[this.propertyIndex] = buffer[offset];
}
_setValue_arrayElement_setNeedsUpdate(buffer, offset) {
this.resolvedProperty[this.propertyIndex] = buffer[offset];
this.targetObject.needsUpdate = true;
}
_setValue_arrayElement_setMatrixWorldNeedsUpdate(buffer, offset) {
this.resolvedProperty[this.propertyIndex] = buffer[offset];
this.targetObject.matrixWorldNeedsUpdate = true;
} // HasToFromArray
_setValue_fromArray(buffer, offset) {
this.resolvedProperty.fromArray(buffer, offset);
}
_setValue_fromArray_setNeedsUpdate(buffer, offset) {
this.resolvedProperty.fromArray(buffer, offset);
this.targetObject.needsUpdate = true;
}
_setValue_fromArray_setMatrixWorldNeedsUpdate(buffer, offset) {
this.resolvedProperty.fromArray(buffer, offset);
this.targetObject.matrixWorldNeedsUpdate = true;
}
_getValue_unbound(targetArray, offset) {
this.bind();
this.getValue(targetArray, offset);
}
_setValue_unbound(sourceArray, offset) {
this.bind();
this.setValue(sourceArray, offset);
} // create getter / setter pair for a property in the scene graph
bind() {
let targetObject = this.node;
const parsedPath = this.parsedPath;
const objectName = parsedPath.objectName;
const propertyName = parsedPath.propertyName;
let propertyIndex = parsedPath.propertyIndex;
if (!targetObject) {
targetObject = PropertyBinding.findNode(this.rootNode, parsedPath.nodeName) || this.rootNode;
this.node = targetObject;
} // set fail state so we can just 'return' on error
this.getValue = this._getValue_unavailable;
this.setValue = this._setValue_unavailable; // ensure there is a value node
if (!targetObject) {
console.error('THREE.PropertyBinding: Trying to update node for track: ' + this.path + ' but it wasn\'t found.');
return;
}
if (objectName) {
let objectIndex = parsedPath.objectIndex; // special cases were we need to reach deeper into the hierarchy to get the face materials....
switch (objectName) {
case 'materials':
if (!targetObject.material) {
console.error('THREE.PropertyBinding: Can not bind to material as node does not have a material.', this);
return;
}
if (!targetObject.material.materials) {
console.error('THREE.PropertyBinding: Can not bind to material.materials as node.material does not have a materials array.', this);
return;
}
targetObject = targetObject.material.materials;
break;
case 'bones':
if (!targetObject.skeleton) {
console.error('THREE.PropertyBinding: Can not bind to bones as node does not have a skeleton.', this);
return;
} // potential future optimization: skip this if propertyIndex is already an integer
// and convert the integer string to a true integer.
targetObject = targetObject.skeleton.bones; // support resolving morphTarget names into indices.
for (let i = 0; i < targetObject.length; i++) {
if (targetObject[i].name === objectIndex) {
objectIndex = i;
break;
}
}
break;
default:
if (targetObject[objectName] === undefined) {
console.error('THREE.PropertyBinding: Can not bind to objectName of node undefined.', this);
return;
}
targetObject = targetObject[objectName];
}
if (objectIndex !== undefined) {
if (targetObject[objectIndex] === undefined) {
console.error('THREE.PropertyBinding: Trying to bind to objectIndex of objectName, but is undefined.', this, targetObject);
return;
}
targetObject = targetObject[objectIndex];
}
} // resolve property
const nodeProperty = targetObject[propertyName];
if (nodeProperty === undefined) {
const nodeName = parsedPath.nodeName;
console.error('THREE.PropertyBinding: Trying to update property for track: ' + nodeName + '.' + propertyName + ' but it wasn\'t found.', targetObject);
return;
} // determine versioning scheme
let versioning = this.Versioning.None;
this.targetObject = targetObject;
if (targetObject.needsUpdate !== undefined) {
// material
versioning = this.Versioning.NeedsUpdate;
} else if (targetObject.matrixWorldNeedsUpdate !== undefined) {
// node transform
versioning = this.Versioning.MatrixWorldNeedsUpdate;
} // determine how the property gets bound
let bindingType = this.BindingType.Direct;
if (propertyIndex !== undefined) {
// access a sub element of the property array (only primitives are supported right now)
if (propertyName === 'morphTargetInfluences') {
// potential optimization, skip this if propertyIndex is already an integer, and convert the integer string to a true integer.
// support resolving morphTarget names into indices.
if (!targetObject.geometry) {
console.error('THREE.PropertyBinding: Can not bind to morphTargetInfluences because node does not have a geometry.', this);
return;
}
if (targetObject.geometry.isBufferGeometry) {
if (!targetObject.geometry.morphAttributes) {
console.error('THREE.PropertyBinding: Can not bind to morphTargetInfluences because node does not have a geometry.morphAttributes.', this);
return;
}
if (targetObject.morphTargetDictionary[propertyIndex] !== undefined) {
propertyIndex = targetObject.morphTargetDictionary[propertyIndex];
}
} else {
console.error('THREE.PropertyBinding: Can not bind to morphTargetInfluences on THREE.Geometry. Use THREE.BufferGeometry instead.', this);
return;
}
}
bindingType = this.BindingType.ArrayElement;
this.resolvedProperty = nodeProperty;
this.propertyIndex = propertyIndex;
} else if (nodeProperty.fromArray !== undefined && nodeProperty.toArray !== undefined) {
// must use copy for Object3D.Euler/Quaternion
bindingType = this.BindingType.HasFromToArray;
this.resolvedProperty = nodeProperty;
} else if (Array.isArray(nodeProperty)) {
bindingType = this.BindingType.EntireArray;
this.resolvedProperty = nodeProperty;
} else {
this.propertyName = propertyName;
} // select getter / setter
this.getValue = this.GetterByBindingType[bindingType];
this.setValue = this.SetterByBindingTypeAndVersioning[bindingType][versioning];
}
unbind() {
this.node = null; // back to the prototype version of getValue / setValue
// note: avoiding to mutate the shape of 'this' via 'delete'
this.getValue = this._getValue_unbound;
this.setValue = this._setValue_unbound;
}
}
PropertyBinding.Composite = Composite;
PropertyBinding.prototype.BindingType = {
Direct: 0,
EntireArray: 1,
ArrayElement: 2,
HasFromToArray: 3
};
PropertyBinding.prototype.Versioning = {
None: 0,
NeedsUpdate: 1,
MatrixWorldNeedsUpdate: 2
};
PropertyBinding.prototype.GetterByBindingType = [PropertyBinding.prototype._getValue_direct, PropertyBinding.prototype._getValue_array, PropertyBinding.prototype._getValue_arrayElement, PropertyBinding.prototype._getValue_toArray];
PropertyBinding.prototype.SetterByBindingTypeAndVersioning = [[// Direct
PropertyBinding.prototype._setValue_direct, PropertyBinding.prototype._setValue_direct_setNeedsUpdate, PropertyBinding.prototype._setValue_direct_setMatrixWorldNeedsUpdate], [// EntireArray
PropertyBinding.prototype._setValue_array, PropertyBinding.prototype._setValue_array_setNeedsUpdate, PropertyBinding.prototype._setValue_array_setMatrixWorldNeedsUpdate], [// ArrayElement
PropertyBinding.prototype._setValue_arrayElement, PropertyBinding.prototype._setValue_arrayElement_setNeedsUpdate, PropertyBinding.prototype._setValue_arrayElement_setMatrixWorldNeedsUpdate], [// HasToFromArray
PropertyBinding.prototype._setValue_fromArray, PropertyBinding.prototype._setValue_fromArray_setNeedsUpdate, PropertyBinding.prototype._setValue_fromArray_setMatrixWorldNeedsUpdate]];
/**
*
* A group of objects that receives a shared animation state.
*
* Usage:
*
* - Add objects you would otherwise pass as 'root' to the
* constructor or the .clipAction method of AnimationMixer.
*
* - Instead pass this object as 'root'.
*
* - You can also add and remove objects later when the mixer
* is running.
*
* Note:
*
* Objects of this class appear as one object to the mixer,
* so cache control of the individual objects must be done
* on the group.
*
* Limitation:
*
* - The animated properties must be compatible among the
* all objects in the group.
*
* - A single property can either be controlled through a
* target group or directly, but not both.
*/
class AnimationObjectGroup {
constructor() {
this.uuid = generateUUID(); // cached objects followed by the active ones
this._objects = Array.prototype.slice.call(arguments);
this.nCachedObjects_ = 0; // threshold
// note: read by PropertyBinding.Composite
const indices = {};
this._indicesByUUID = indices; // for bookkeeping
for (let i = 0, n = arguments.length; i !== n; ++i) {
indices[arguments[i].uuid] = i;
}
this._paths = []; // inside: string
this._parsedPaths = []; // inside: { we don't care, here }
this._bindings = []; // inside: Array< PropertyBinding >
this._bindingsIndicesByPath = {}; // inside: indices in these arrays
const scope = this;
this.stats = {
objects: {
get total() {
return scope._objects.length;
},
get inUse() {
return this.total - scope.nCachedObjects_;
}
},
get bindingsPerObject() {
return scope._bindings.length;
}
};
}
add() {
const objects = this._objects,
indicesByUUID = this._indicesByUUID,
paths = this._paths,
parsedPaths = this._parsedPaths,
bindings = this._bindings,
nBindings = bindings.length;
let knownObject = undefined,
nObjects = objects.length,
nCachedObjects = this.nCachedObjects_;
for (let i = 0, n = arguments.length; i !== n; ++i) {
const object = arguments[i],
uuid = object.uuid;
let index = indicesByUUID[uuid];
if (index === undefined) {
// unknown object -> add it to the ACTIVE region
index = nObjects++;
indicesByUUID[uuid] = index;
objects.push(object); // accounting is done, now do the same for all bindings
for (let j = 0, m = nBindings; j !== m; ++j) {
bindings[j].push(new PropertyBinding(object, paths[j], parsedPaths[j]));
}
} else if (index < nCachedObjects) {
knownObject = objects[index]; // move existing object to the ACTIVE region
const firstActiveIndex = --nCachedObjects,
lastCachedObject = objects[firstActiveIndex];
indicesByUUID[lastCachedObject.uuid] = index;
objects[index] = lastCachedObject;
indicesByUUID[uuid] = firstActiveIndex;
objects[firstActiveIndex] = object; // accounting is done, now do the same for all bindings
for (let j = 0, m = nBindings; j !== m; ++j) {
const bindingsForPath = bindings[j],
lastCached = bindingsForPath[firstActiveIndex];
let binding = bindingsForPath[index];
bindingsForPath[index] = lastCached;
if (binding === undefined) {
// since we do not bother to create new bindings
// for objects that are cached, the binding may
// or may not exist
binding = new PropertyBinding(object, paths[j], parsedPaths[j]);
}
bindingsForPath[firstActiveIndex] = binding;
}
} else if (objects[index] !== knownObject) {
console.error('THREE.AnimationObjectGroup: Different objects with the same UUID ' + 'detected. Clean the caches or recreate your infrastructure when reloading scenes.');
} // else the object is already where we want it to be
} // for arguments
this.nCachedObjects_ = nCachedObjects;
}
remove() {
const objects = this._objects,
indicesByUUID = this._indicesByUUID,
bindings = this._bindings,
nBindings = bindings.length;
let nCachedObjects = this.nCachedObjects_;
for (let i = 0, n = arguments.length; i !== n; ++i) {
const object = arguments[i],
uuid = object.uuid,
index = indicesByUUID[uuid];
if (index !== undefined && index >= nCachedObjects) {
// move existing object into the CACHED region
const lastCachedIndex = nCachedObjects++,
firstActiveObject = objects[lastCachedIndex];
indicesByUUID[firstActiveObject.uuid] = index;
objects[index] = firstActiveObject;
indicesByUUID[uuid] = lastCachedIndex;
objects[lastCachedIndex] = object; // accounting is done, now do the same for all bindings
for (let j = 0, m = nBindings; j !== m; ++j) {
const bindingsForPath = bindings[j],
firstActive = bindingsForPath[lastCachedIndex],
binding = bindingsForPath[index];
bindingsForPath[index] = firstActive;
bindingsForPath[lastCachedIndex] = binding;
}
}
} // for arguments
this.nCachedObjects_ = nCachedObjects;
} // remove & forget
uncache() {
const objects = this._objects,
indicesByUUID = this._indicesByUUID,
bindings = this._bindings,
nBindings = bindings.length;
let nCachedObjects = this.nCachedObjects_,
nObjects = objects.length;
for (let i = 0, n = arguments.length; i !== n; ++i) {
const object = arguments[i],
uuid = object.uuid,
index = indicesByUUID[uuid];
if (index !== undefined) {
delete indicesByUUID[uuid];
if (index < nCachedObjects) {
// object is cached, shrink the CACHED region
const firstActiveIndex = --nCachedObjects,
lastCachedObject = objects[firstActiveIndex],
lastIndex = --nObjects,
lastObject = objects[lastIndex]; // last cached object takes this object's place
indicesByUUID[lastCachedObject.uuid] = index;
objects[index] = lastCachedObject; // last object goes to the activated slot and pop
indicesByUUID[lastObject.uuid] = firstActiveIndex;
objects[firstActiveIndex] = lastObject;
objects.pop(); // accounting is done, now do the same for all bindings
for (let j = 0, m = nBindings; j !== m; ++j) {
const bindingsForPath = bindings[j],
lastCached = bindingsForPath[firstActiveIndex],
last = bindingsForPath[lastIndex];
bindingsForPath[index] = lastCached;
bindingsForPath[firstActiveIndex] = last;
bindingsForPath.pop();
}
} else {
// object is active, just swap with the last and pop
const lastIndex = --nObjects,
lastObject = objects[lastIndex];
if (lastIndex > 0) {
indicesByUUID[lastObject.uuid] = index;
}
objects[index] = lastObject;
objects.pop(); // accounting is done, now do the same for all bindings
for (let j = 0, m = nBindings; j !== m; ++j) {
const bindingsForPath = bindings[j];
bindingsForPath[index] = bindingsForPath[lastIndex];
bindingsForPath.pop();
}
} // cached or active
} // if object is known
} // for arguments
this.nCachedObjects_ = nCachedObjects;
} // Internal interface used by befriended PropertyBinding.Composite:
subscribe_(path, parsedPath) {
// returns an array of bindings for the given path that is changed
// according to the contained objects in the group
const indicesByPath = this._bindingsIndicesByPath;
let index = indicesByPath[path];
const bindings = this._bindings;
if (index !== undefined) return bindings[index];
const paths = this._paths,
parsedPaths = this._parsedPaths,
objects = this._objects,
nObjects = objects.length,
nCachedObjects = this.nCachedObjects_,
bindingsForPath = new Array(nObjects);
index = bindings.length;
indicesByPath[path] = index;
paths.push(path);
parsedPaths.push(parsedPath);
bindings.push(bindingsForPath);
for (let i = nCachedObjects, n = objects.length; i !== n; ++i) {
const object = objects[i];
bindingsForPath[i] = new PropertyBinding(object, path, parsedPath);
}
return bindingsForPath;
}
unsubscribe_(path) {
// tells the group to forget about a property path and no longer
// update the array previously obtained with 'subscribe_'
const indicesByPath = this._bindingsIndicesByPath,
index = indicesByPath[path];
if (index !== undefined) {
const paths = this._paths,
parsedPaths = this._parsedPaths,
bindings = this._bindings,
lastBindingsIndex = bindings.length - 1,
lastBindings = bindings[lastBindingsIndex],
lastBindingsPath = path[lastBindingsIndex];
indicesByPath[lastBindingsPath] = index;
bindings[index] = lastBindings;
bindings.pop();
parsedPaths[index] = parsedPaths[lastBindingsIndex];
parsedPaths.pop();
paths[index] = paths[lastBindingsIndex];
paths.pop();
}
}
}
AnimationObjectGroup.prototype.isAnimationObjectGroup = true;
class AnimationAction {
constructor(mixer, clip, localRoot = null, blendMode = clip.blendMode) {
this._mixer = mixer;
this._clip = clip;
this._localRoot = localRoot;
this.blendMode = blendMode;
const tracks = clip.tracks,
nTracks = tracks.length,
interpolants = new Array(nTracks);
const interpolantSettings = {
endingStart: ZeroCurvatureEnding,
endingEnd: ZeroCurvatureEnding
};
for (let i = 0; i !== nTracks; ++i) {
const interpolant = tracks[i].createInterpolant(null);
interpolants[i] = interpolant;
interpolant.settings = interpolantSettings;
}
this._interpolantSettings = interpolantSettings;
this._interpolants = interpolants; // bound by the mixer
// inside: PropertyMixer (managed by the mixer)
this._propertyBindings = new Array(nTracks);
this._cacheIndex = null; // for the memory manager
this._byClipCacheIndex = null; // for the memory manager
this._timeScaleInterpolant = null;
this._weightInterpolant = null;
this.loop = LoopRepeat;
this._loopCount = -1; // global mixer time when the action is to be started
// it's set back to 'null' upon start of the action
this._startTime = null; // scaled local time of the action
// gets clamped or wrapped to 0..clip.duration according to loop
this.time = 0;
this.timeScale = 1;
this._effectiveTimeScale = 1;
this.weight = 1;
this._effectiveWeight = 1;
this.repetitions = Infinity; // no. of repetitions when looping
this.paused = false; // true -> zero effective time scale
this.enabled = true; // false -> zero effective weight
this.clampWhenFinished = false; // keep feeding the last frame?
this.zeroSlopeAtStart = true; // for smooth interpolation w/o separate
this.zeroSlopeAtEnd = true; // clips for start, loop and end
} // State & Scheduling
play() {
this._mixer._activateAction(this);
return this;
}
stop() {
this._mixer._deactivateAction(this);
return this.reset();
}
reset() {
this.paused = false;
this.enabled = true;
this.time = 0; // restart clip
this._loopCount = -1; // forget previous loops
this._startTime = null; // forget scheduling
return this.stopFading().stopWarping();
}
isRunning() {
return this.enabled && !this.paused && this.timeScale !== 0 && this._startTime === null && this._mixer._isActiveAction(this);
} // return true when play has been called
isScheduled() {
return this._mixer._isActiveAction(this);
}
startAt(time) {
this._startTime = time;
return this;
}
setLoop(mode, repetitions) {
this.loop = mode;
this.repetitions = repetitions;
return this;
} // Weight
// set the weight stopping any scheduled fading
// although .enabled = false yields an effective weight of zero, this
// method does *not* change .enabled, because it would be confusing
setEffectiveWeight(weight) {
this.weight = weight; // note: same logic as when updated at runtime
this._effectiveWeight = this.enabled ? weight : 0;
return this.stopFading();
} // return the weight considering fading and .enabled
getEffectiveWeight() {
return this._effectiveWeight;
}
fadeIn(duration) {
return this._scheduleFading(duration, 0, 1);
}
fadeOut(duration) {
return this._scheduleFading(duration, 1, 0);
}
crossFadeFrom(fadeOutAction, duration, warp) {
fadeOutAction.fadeOut(duration);
this.fadeIn(duration);
if (warp) {
const fadeInDuration = this._clip.duration,
fadeOutDuration = fadeOutAction._clip.duration,
startEndRatio = fadeOutDuration / fadeInDuration,
endStartRatio = fadeInDuration / fadeOutDuration;
fadeOutAction.warp(1.0, startEndRatio, duration);
this.warp(endStartRatio, 1.0, duration);
}
return this;
}
crossFadeTo(fadeInAction, duration, warp) {
return fadeInAction.crossFadeFrom(this, duration, warp);
}
stopFading() {
const weightInterpolant = this._weightInterpolant;
if (weightInterpolant !== null) {
this._weightInterpolant = null;
this._mixer._takeBackControlInterpolant(weightInterpolant);
}
return this;
} // Time Scale Control
// set the time scale stopping any scheduled warping
// although .paused = true yields an effective time scale of zero, this
// method does *not* change .paused, because it would be confusing
setEffectiveTimeScale(timeScale) {
this.timeScale = timeScale;
this._effectiveTimeScale = this.paused ? 0 : timeScale;
return this.stopWarping();
} // return the time scale considering warping and .paused
getEffectiveTimeScale() {
return this._effectiveTimeScale;
}
setDuration(duration) {
this.timeScale = this._clip.duration / duration;
return this.stopWarping();
}
syncWith(action) {
this.time = action.time;
this.timeScale = action.timeScale;
return this.stopWarping();
}
halt(duration) {
return this.warp(this._effectiveTimeScale, 0, duration);
}
warp(startTimeScale, endTimeScale, duration) {
const mixer = this._mixer,
now = mixer.time,
timeScale = this.timeScale;
let interpolant = this._timeScaleInterpolant;
if (interpolant === null) {
interpolant = mixer._lendControlInterpolant();
this._timeScaleInterpolant = interpolant;
}
const times = interpolant.parameterPositions,
values = interpolant.sampleValues;
times[0] = now;
times[1] = now + duration;
values[0] = startTimeScale / timeScale;
values[1] = endTimeScale / timeScale;
return this;
}
stopWarping() {
const timeScaleInterpolant = this._timeScaleInterpolant;
if (timeScaleInterpolant !== null) {
this._timeScaleInterpolant = null;
this._mixer._takeBackControlInterpolant(timeScaleInterpolant);
}
return this;
} // Object Accessors
getMixer() {
return this._mixer;
}
getClip() {
return this._clip;
}
getRoot() {
return this._localRoot || this._mixer._root;
} // Interna
_update(time, deltaTime, timeDirection, accuIndex) {
// called by the mixer
if (!this.enabled) {
// call ._updateWeight() to update ._effectiveWeight
this._updateWeight(time);
return;
}
const startTime = this._startTime;
if (startTime !== null) {
// check for scheduled start of action
const timeRunning = (time - startTime) * timeDirection;
if (timeRunning < 0 || timeDirection === 0) {
return; // yet to come / don't decide when delta = 0
} // start
this._startTime = null; // unschedule
deltaTime = timeDirection * timeRunning;
} // apply time scale and advance time
deltaTime *= this._updateTimeScale(time);
const clipTime = this._updateTime(deltaTime); // note: _updateTime may disable the action resulting in
// an effective weight of 0
const weight = this._updateWeight(time);
if (weight > 0) {
const interpolants = this._interpolants;
const propertyMixers = this._propertyBindings;
switch (this.blendMode) {
case AdditiveAnimationBlendMode:
for (let j = 0, m = interpolants.length; j !== m; ++j) {
interpolants[j].evaluate(clipTime);
propertyMixers[j].accumulateAdditive(weight);
}
break;
case NormalAnimationBlendMode:
default:
for (let j = 0, m = interpolants.length; j !== m; ++j) {
interpolants[j].evaluate(clipTime);
propertyMixers[j].accumulate(accuIndex, weight);
}
}
}
}
_updateWeight(time) {
let weight = 0;
if (this.enabled) {
weight = this.weight;
const interpolant = this._weightInterpolant;
if (interpolant !== null) {
const interpolantValue = interpolant.evaluate(time)[0];
weight *= interpolantValue;
if (time > interpolant.parameterPositions[1]) {
this.stopFading();
if (interpolantValue === 0) {
// faded out, disable
this.enabled = false;
}
}
}
}
this._effectiveWeight = weight;
return weight;
}
_updateTimeScale(time) {
let timeScale = 0;
if (!this.paused) {
timeScale = this.timeScale;
const interpolant = this._timeScaleInterpolant;
if (interpolant !== null) {
const interpolantValue = interpolant.evaluate(time)[0];
timeScale *= interpolantValue;
if (time > interpolant.parameterPositions[1]) {
this.stopWarping();
if (timeScale === 0) {
// motion has halted, pause
this.paused = true;
} else {
// warp done - apply final time scale
this.timeScale = timeScale;
}
}
}
}
this._effectiveTimeScale = timeScale;
return timeScale;
}
_updateTime(deltaTime) {
const duration = this._clip.duration;
const loop = this.loop;
let time = this.time + deltaTime;
let loopCount = this._loopCount;
const pingPong = loop === LoopPingPong;
if (deltaTime === 0) {
if (loopCount === -1) return time;
return pingPong && (loopCount & 1) === 1 ? duration - time : time;
}
if (loop === LoopOnce) {
if (loopCount === -1) {
// just started
this._loopCount = 0;
this._setEndings(true, true, false);
}
handle_stop: {
if (time >= duration) {
time = duration;
} else if (time < 0) {
time = 0;
} else {
this.time = time;
break handle_stop;
}
if (this.clampWhenFinished) this.paused = true;else this.enabled = false;
this.time = time;
this._mixer.dispatchEvent({
type: 'finished',
action: this,
direction: deltaTime < 0 ? -1 : 1
});
}
} else {
// repetitive Repeat or PingPong
if (loopCount === -1) {
// just started
if (deltaTime >= 0) {
loopCount = 0;
this._setEndings(true, this.repetitions === 0, pingPong);
} else {
// when looping in reverse direction, the initial
// transition through zero counts as a repetition,
// so leave loopCount at -1
this._setEndings(this.repetitions === 0, true, pingPong);
}
}
if (time >= duration || time < 0) {
// wrap around
const loopDelta = Math.floor(time / duration); // signed
time -= duration * loopDelta;
loopCount += Math.abs(loopDelta);
const pending = this.repetitions - loopCount;
if (pending <= 0) {
// have to stop (switch state, clamp time, fire event)
if (this.clampWhenFinished) this.paused = true;else this.enabled = false;
time = deltaTime > 0 ? duration : 0;
this.time = time;
this._mixer.dispatchEvent({
type: 'finished',
action: this,
direction: deltaTime > 0 ? 1 : -1
});
} else {
// keep running
if (pending === 1) {
// entering the last round
const atStart = deltaTime < 0;
this._setEndings(atStart, !atStart, pingPong);
} else {
this._setEndings(false, false, pingPong);
}
this._loopCount = loopCount;
this.time = time;
this._mixer.dispatchEvent({
type: 'loop',
action: this,
loopDelta: loopDelta
});
}
} else {
this.time = time;
}
if (pingPong && (loopCount & 1) === 1) {
// invert time for the "pong round"
return duration - time;
}
}
return time;
}
_setEndings(atStart, atEnd, pingPong) {
const settings = this._interpolantSettings;
if (pingPong) {
settings.endingStart = ZeroSlopeEnding;
settings.endingEnd = ZeroSlopeEnding;
} else {
// assuming for LoopOnce atStart == atEnd == true
if (atStart) {
settings.endingStart = this.zeroSlopeAtStart ? ZeroSlopeEnding : ZeroCurvatureEnding;
} else {
settings.endingStart = WrapAroundEnding;
}
if (atEnd) {
settings.endingEnd = this.zeroSlopeAtEnd ? ZeroSlopeEnding : ZeroCurvatureEnding;
} else {
settings.endingEnd = WrapAroundEnding;
}
}
}
_scheduleFading(duration, weightNow, weightThen) {
const mixer = this._mixer,
now = mixer.time;
let interpolant = this._weightInterpolant;
if (interpolant === null) {
interpolant = mixer._lendControlInterpolant();
this._weightInterpolant = interpolant;
}
const times = interpolant.parameterPositions,
values = interpolant.sampleValues;
times[0] = now;
values[0] = weightNow;
times[1] = now + duration;
values[1] = weightThen;
return this;
}
}
class AnimationMixer extends EventDispatcher {
constructor(root) {
super();
this._root = root;
this._initMemoryManager();
this._accuIndex = 0;
this.time = 0;
this.timeScale = 1.0;
}
_bindAction(action, prototypeAction) {
const root = action._localRoot || this._root,
tracks = action._clip.tracks,
nTracks = tracks.length,
bindings = action._propertyBindings,
interpolants = action._interpolants,
rootUuid = root.uuid,
bindingsByRoot = this._bindingsByRootAndName;
let bindingsByName = bindingsByRoot[rootUuid];
if (bindingsByName === undefined) {
bindingsByName = {};
bindingsByRoot[rootUuid] = bindingsByName;
}
for (let i = 0; i !== nTracks; ++i) {
const track = tracks[i],
trackName = track.name;
let binding = bindingsByName[trackName];
if (binding !== undefined) {
bindings[i] = binding;
} else {
binding = bindings[i];
if (binding !== undefined) {
// existing binding, make sure the cache knows
if (binding._cacheIndex === null) {
++binding.referenceCount;
this._addInactiveBinding(binding, rootUuid, trackName);
}
continue;
}
const path = prototypeAction && prototypeAction._propertyBindings[i].binding.parsedPath;
binding = new PropertyMixer(PropertyBinding.create(root, trackName, path), track.ValueTypeName, track.getValueSize());
++binding.referenceCount;
this._addInactiveBinding(binding, rootUuid, trackName);
bindings[i] = binding;
}
interpolants[i].resultBuffer = binding.buffer;
}
}
_activateAction(action) {
if (!this._isActiveAction(action)) {
if (action._cacheIndex === null) {
// this action has been forgotten by the cache, but the user
// appears to be still using it -> rebind
const rootUuid = (action._localRoot || this._root).uuid,
clipUuid = action._clip.uuid,
actionsForClip = this._actionsByClip[clipUuid];
this._bindAction(action, actionsForClip && actionsForClip.knownActions[0]);
this._addInactiveAction(action, clipUuid, rootUuid);
}
const bindings = action._propertyBindings; // increment reference counts / sort out state
for (let i = 0, n = bindings.length; i !== n; ++i) {
const binding = bindings[i];
if (binding.useCount++ === 0) {
this._lendBinding(binding);
binding.saveOriginalState();
}
}
this._lendAction(action);
}
}
_deactivateAction(action) {
if (this._isActiveAction(action)) {
const bindings = action._propertyBindings; // decrement reference counts / sort out state
for (let i = 0, n = bindings.length; i !== n; ++i) {
const binding = bindings[i];
if (--binding.useCount === 0) {
binding.restoreOriginalState();
this._takeBackBinding(binding);
}
}
this._takeBackAction(action);
}
} // Memory manager
_initMemoryManager() {
this._actions = []; // 'nActiveActions' followed by inactive ones
this._nActiveActions = 0;
this._actionsByClip = {}; // inside:
// {
// knownActions: Array< AnimationAction > - used as prototypes
// actionByRoot: AnimationAction - lookup
// }
this._bindings = []; // 'nActiveBindings' followed by inactive ones
this._nActiveBindings = 0;
this._bindingsByRootAndName = {}; // inside: Map< name, PropertyMixer >
this._controlInterpolants = []; // same game as above
this._nActiveControlInterpolants = 0;
const scope = this;
this.stats = {
actions: {
get total() {
return scope._actions.length;
},
get inUse() {
return scope._nActiveActions;
}
},
bindings: {
get total() {
return scope._bindings.length;
},
get inUse() {
return scope._nActiveBindings;
}
},
controlInterpolants: {
get total() {
return scope._controlInterpolants.length;
},
get inUse() {
return scope._nActiveControlInterpolants;
}
}
};
} // Memory management for AnimationAction objects
_isActiveAction(action) {
const index = action._cacheIndex;
return index !== null && index < this._nActiveActions;
}
_addInactiveAction(action, clipUuid, rootUuid) {
const actions = this._actions,
actionsByClip = this._actionsByClip;
let actionsForClip = actionsByClip[clipUuid];
if (actionsForClip === undefined) {
actionsForClip = {
knownActions: [action],
actionByRoot: {}
};
action._byClipCacheIndex = 0;
actionsByClip[clipUuid] = actionsForClip;
} else {
const knownActions = actionsForClip.knownActions;
action._byClipCacheIndex = knownActions.length;
knownActions.push(action);
}
action._cacheIndex = actions.length;
actions.push(action);
actionsForClip.actionByRoot[rootUuid] = action;
}
_removeInactiveAction(action) {
const actions = this._actions,
lastInactiveAction = actions[actions.length - 1],
cacheIndex = action._cacheIndex;
lastInactiveAction._cacheIndex = cacheIndex;
actions[cacheIndex] = lastInactiveAction;
actions.pop();
action._cacheIndex = null;
const clipUuid = action._clip.uuid,
actionsByClip = this._actionsByClip,
actionsForClip = actionsByClip[clipUuid],
knownActionsForClip = actionsForClip.knownActions,
lastKnownAction = knownActionsForClip[knownActionsForClip.length - 1],
byClipCacheIndex = action._byClipCacheIndex;
lastKnownAction._byClipCacheIndex = byClipCacheIndex;
knownActionsForClip[byClipCacheIndex] = lastKnownAction;
knownActionsForClip.pop();
action._byClipCacheIndex = null;
const actionByRoot = actionsForClip.actionByRoot,
rootUuid = (action._localRoot || this._root).uuid;
delete actionByRoot[rootUuid];
if (knownActionsForClip.length === 0) {
delete actionsByClip[clipUuid];
}
this._removeInactiveBindingsForAction(action);
}
_removeInactiveBindingsForAction(action) {
const bindings = action._propertyBindings;
for (let i = 0, n = bindings.length; i !== n; ++i) {
const binding = bindings[i];
if (--binding.referenceCount === 0) {
this._removeInactiveBinding(binding);
}
}
}
_lendAction(action) {
// [ active actions | inactive actions ]
// [ active actions >| inactive actions ]
// s a
// <-swap->
// a s
const actions = this._actions,
prevIndex = action._cacheIndex,
lastActiveIndex = this._nActiveActions++,
firstInactiveAction = actions[lastActiveIndex];
action._cacheIndex = lastActiveIndex;
actions[lastActiveIndex] = action;
firstInactiveAction._cacheIndex = prevIndex;
actions[prevIndex] = firstInactiveAction;
}
_takeBackAction(action) {
// [ active actions | inactive actions ]
// [ active actions |< inactive actions ]
// a s
// <-swap->
// s a
const actions = this._actions,
prevIndex = action._cacheIndex,
firstInactiveIndex = --this._nActiveActions,
lastActiveAction = actions[firstInactiveIndex];
action._cacheIndex = firstInactiveIndex;
actions[firstInactiveIndex] = action;
lastActiveAction._cacheIndex = prevIndex;
actions[prevIndex] = lastActiveAction;
} // Memory management for PropertyMixer objects
_addInactiveBinding(binding, rootUuid, trackName) {
const bindingsByRoot = this._bindingsByRootAndName,
bindings = this._bindings;
let bindingByName = bindingsByRoot[rootUuid];
if (bindingByName === undefined) {
bindingByName = {};
bindingsByRoot[rootUuid] = bindingByName;
}
bindingByName[trackName] = binding;
binding._cacheIndex = bindings.length;
bindings.push(binding);
}
_removeInactiveBinding(binding) {
const bindings = this._bindings,
propBinding = binding.binding,
rootUuid = propBinding.rootNode.uuid,
trackName = propBinding.path,
bindingsByRoot = this._bindingsByRootAndName,
bindingByName = bindingsByRoot[rootUuid],
lastInactiveBinding = bindings[bindings.length - 1],
cacheIndex = binding._cacheIndex;
lastInactiveBinding._cacheIndex = cacheIndex;
bindings[cacheIndex] = lastInactiveBinding;
bindings.pop();
delete bindingByName[trackName];
if (Object.keys(bindingByName).length === 0) {
delete bindingsByRoot[rootUuid];
}
}
_lendBinding(binding) {
const bindings = this._bindings,
prevIndex = binding._cacheIndex,
lastActiveIndex = this._nActiveBindings++,
firstInactiveBinding = bindings[lastActiveIndex];
binding._cacheIndex = lastActiveIndex;
bindings[lastActiveIndex] = binding;
firstInactiveBinding._cacheIndex = prevIndex;
bindings[prevIndex] = firstInactiveBinding;
}
_takeBackBinding(binding) {
const bindings = this._bindings,
prevIndex = binding._cacheIndex,
firstInactiveIndex = --this._nActiveBindings,
lastActiveBinding = bindings[firstInactiveIndex];
binding._cacheIndex = firstInactiveIndex;
bindings[firstInactiveIndex] = binding;
lastActiveBinding._cacheIndex = prevIndex;
bindings[prevIndex] = lastActiveBinding;
} // Memory management of Interpolants for weight and time scale
_lendControlInterpolant() {
const interpolants = this._controlInterpolants,
lastActiveIndex = this._nActiveControlInterpolants++;
let interpolant = interpolants[lastActiveIndex];
if (interpolant === undefined) {
interpolant = new LinearInterpolant(new Float32Array(2), new Float32Array(2), 1, this._controlInterpolantsResultBuffer);
interpolant.__cacheIndex = lastActiveIndex;
interpolants[lastActiveIndex] = interpolant;
}
return interpolant;
}
_takeBackControlInterpolant(interpolant) {
const interpolants = this._controlInterpolants,
prevIndex = interpolant.__cacheIndex,
firstInactiveIndex = --this._nActiveControlInterpolants,
lastActiveInterpolant = interpolants[firstInactiveIndex];
interpolant.__cacheIndex = firstInactiveIndex;
interpolants[firstInactiveIndex] = interpolant;
lastActiveInterpolant.__cacheIndex = prevIndex;
interpolants[prevIndex] = lastActiveInterpolant;
} // return an action for a clip optionally using a custom root target
// object (this method allocates a lot of dynamic memory in case a
// previously unknown clip/root combination is specified)
clipAction(clip, optionalRoot, blendMode) {
const root = optionalRoot || this._root,
rootUuid = root.uuid;
let clipObject = typeof clip === 'string' ? AnimationClip.findByName(root, clip) : clip;
const clipUuid = clipObject !== null ? clipObject.uuid : clip;
const actionsForClip = this._actionsByClip[clipUuid];
let prototypeAction = null;
if (blendMode === undefined) {
if (clipObject !== null) {
blendMode = clipObject.blendMode;
} else {
blendMode = NormalAnimationBlendMode;
}
}
if (actionsForClip !== undefined) {
const existingAction = actionsForClip.actionByRoot[rootUuid];
if (existingAction !== undefined && existingAction.blendMode === blendMode) {
return existingAction;
} // we know the clip, so we don't have to parse all
// the bindings again but can just copy
prototypeAction = actionsForClip.knownActions[0]; // also, take the clip from the prototype action
if (clipObject === null) clipObject = prototypeAction._clip;
} // clip must be known when specified via string
if (clipObject === null) return null; // allocate all resources required to run it
const newAction = new AnimationAction(this, clipObject, optionalRoot, blendMode);
this._bindAction(newAction, prototypeAction); // and make the action known to the memory manager
this._addInactiveAction(newAction, clipUuid, rootUuid);
return newAction;
} // get an existing action
existingAction(clip, optionalRoot) {
const root = optionalRoot || this._root,
rootUuid = root.uuid,
clipObject = typeof clip === 'string' ? AnimationClip.findByName(root, clip) : clip,
clipUuid = clipObject ? clipObject.uuid : clip,
actionsForClip = this._actionsByClip[clipUuid];
if (actionsForClip !== undefined) {
return actionsForClip.actionByRoot[rootUuid] || null;
}
return null;
} // deactivates all previously scheduled actions
stopAllAction() {
const actions = this._actions,
nActions = this._nActiveActions;
for (let i = nActions - 1; i >= 0; --i) {
actions[i].stop();
}
return this;
} // advance the time and update apply the animation
update(deltaTime) {
deltaTime *= this.timeScale;
const actions = this._actions,
nActions = this._nActiveActions,
time = this.time += deltaTime,
timeDirection = Math.sign(deltaTime),
accuIndex = this._accuIndex ^= 1; // run active actions
for (let i = 0; i !== nActions; ++i) {
const action = actions[i];
action._update(time, deltaTime, timeDirection, accuIndex);
} // update scene graph
const bindings = this._bindings,
nBindings = this._nActiveBindings;
for (let i = 0; i !== nBindings; ++i) {
bindings[i].apply(accuIndex);
}
return this;
} // Allows you to seek to a specific time in an animation.
setTime(timeInSeconds) {
this.time = 0; // Zero out time attribute for AnimationMixer object;
for (let i = 0; i < this._actions.length; i++) {
this._actions[i].time = 0; // Zero out time attribute for all associated AnimationAction objects.
}
return this.update(timeInSeconds); // Update used to set exact time. Returns "this" AnimationMixer object.
} // return this mixer's root target object
getRoot() {
return this._root;
} // free all resources specific to a particular clip
uncacheClip(clip) {
const actions = this._actions,
clipUuid = clip.uuid,
actionsByClip = this._actionsByClip,
actionsForClip = actionsByClip[clipUuid];
if (actionsForClip !== undefined) {
// note: just calling _removeInactiveAction would mess up the
// iteration state and also require updating the state we can
// just throw away
const actionsToRemove = actionsForClip.knownActions;
for (let i = 0, n = actionsToRemove.length; i !== n; ++i) {
const action = actionsToRemove[i];
this._deactivateAction(action);
const cacheIndex = action._cacheIndex,
lastInactiveAction = actions[actions.length - 1];
action._cacheIndex = null;
action._byClipCacheIndex = null;
lastInactiveAction._cacheIndex = cacheIndex;
actions[cacheIndex] = lastInactiveAction;
actions.pop();
this._removeInactiveBindingsForAction(action);
}
delete actionsByClip[clipUuid];
}
} // free all resources specific to a particular root target object
uncacheRoot(root) {
const rootUuid = root.uuid,
actionsByClip = this._actionsByClip;
for (const clipUuid in actionsByClip) {
const actionByRoot = actionsByClip[clipUuid].actionByRoot,
action = actionByRoot[rootUuid];
if (action !== undefined) {
this._deactivateAction(action);
this._removeInactiveAction(action);
}
}
const bindingsByRoot = this._bindingsByRootAndName,
bindingByName = bindingsByRoot[rootUuid];
if (bindingByName !== undefined) {
for (const trackName in bindingByName) {
const binding = bindingByName[trackName];
binding.restoreOriginalState();
this._removeInactiveBinding(binding);
}
}
} // remove a targeted clip from the cache
uncacheAction(clip, optionalRoot) {
const action = this.existingAction(clip, optionalRoot);
if (action !== null) {
this._deactivateAction(action);
this._removeInactiveAction(action);
}
}
}
AnimationMixer.prototype._controlInterpolantsResultBuffer = new Float32Array(1);
class Uniform {
constructor(value) {
if (typeof value === 'string') {
console.warn('THREE.Uniform: Type parameter is no longer needed.');
value = arguments[1];
}
this.value = value;
}
clone() {
return new Uniform(this.value.clone === undefined ? this.value : this.value.clone());
}
}
class InstancedInterleavedBuffer extends InterleavedBuffer {
constructor(array, stride, meshPerAttribute = 1) {
super(array, stride);
this.meshPerAttribute = meshPerAttribute;
}
copy(source) {
super.copy(source);
this.meshPerAttribute = source.meshPerAttribute;
return this;
}
clone(data) {
const ib = super.clone(data);
ib.meshPerAttribute = this.meshPerAttribute;
return ib;
}
toJSON(data) {
const json = super.toJSON(data);
json.isInstancedInterleavedBuffer = true;
json.meshPerAttribute = this.meshPerAttribute;
return json;
}
}
InstancedInterleavedBuffer.prototype.isInstancedInterleavedBuffer = true;
class GLBufferAttribute {
constructor(buffer, type, itemSize, elementSize, count) {
this.buffer = buffer;
this.type = type;
this.itemSize = itemSize;
this.elementSize = elementSize;
this.count = count;
this.version = 0;
}
set needsUpdate(value) {
if (value === true) this.version++;
}
setBuffer(buffer) {
this.buffer = buffer;
return this;
}
setType(type, elementSize) {
this.type = type;
this.elementSize = elementSize;
return this;
}
setItemSize(itemSize) {
this.itemSize = itemSize;
return this;
}
setCount(count) {
this.count = count;
return this;
}
}
GLBufferAttribute.prototype.isGLBufferAttribute = true;
class Raycaster {
constructor(origin, direction, near = 0, far = Infinity) {
this.ray = new Ray(origin, direction); // direction is assumed to be normalized (for accurate distance calculations)
this.near = near;
this.far = far;
this.camera = null;
this.layers = new Layers();
this.params = {
Mesh: {},
Line: {
threshold: 1
},
LOD: {},
Points: {
threshold: 1
},
Sprite: {}
};
}
set(origin, direction) {
// direction is assumed to be normalized (for accurate distance calculations)
this.ray.set(origin, direction);
}
setFromCamera(coords, camera) {
if (camera && camera.isPerspectiveCamera) {
this.ray.origin.setFromMatrixPosition(camera.matrixWorld);
this.ray.direction.set(coords.x, coords.y, 0.5).unproject(camera).sub(this.ray.origin).normalize();
this.camera = camera;
} else if (camera && camera.isOrthographicCamera) {
this.ray.origin.set(coords.x, coords.y, (camera.near + camera.far) / (camera.near - camera.far)).unproject(camera); // set origin in plane of camera
this.ray.direction.set(0, 0, -1).transformDirection(camera.matrixWorld);
this.camera = camera;
} else {
console.error('THREE.Raycaster: Unsupported camera type: ' + camera.type);
}
}
intersectObject(object, recursive = true, intersects = []) {
intersectObject(object, this, intersects, recursive);
intersects.sort(ascSort);
return intersects;
}
intersectObjects(objects, recursive = true, intersects = []) {
for (let i = 0, l = objects.length; i < l; i++) {
intersectObject(objects[i], this, intersects, recursive);
}
intersects.sort(ascSort);
return intersects;
}
}
function ascSort(a, b) {
return a.distance - b.distance;
}
function intersectObject(object, raycaster, intersects, recursive) {
if (object.layers.test(raycaster.layers)) {
object.raycast(raycaster, intersects);
}
if (recursive === true) {
const children = object.children;
for (let i = 0, l = children.length; i < l; i++) {
intersectObject(children[i], raycaster, intersects, true);
}
}
}
/**
* Ref: https://en.wikipedia.org/wiki/Spherical_coordinate_system
*
* The polar angle (phi) is measured from the positive y-axis. The positive y-axis is up.
* The azimuthal angle (theta) is measured from the positive z-axis.
*/
class Spherical {
constructor(radius = 1, phi = 0, theta = 0) {
this.radius = radius;
this.phi = phi; // polar angle
this.theta = theta; // azimuthal angle
return this;
}
set(radius, phi, theta) {
this.radius = radius;
this.phi = phi;
this.theta = theta;
return this;
}
copy(other) {
this.radius = other.radius;
this.phi = other.phi;
this.theta = other.theta;
return this;
} // restrict phi to be betwee EPS and PI-EPS
makeSafe() {
const EPS = 0.000001;
this.phi = Math.max(EPS, Math.min(Math.PI - EPS, this.phi));
return this;
}
setFromVector3(v) {
return this.setFromCartesianCoords(v.x, v.y, v.z);
}
setFromCartesianCoords(x, y, z) {
this.radius = Math.sqrt(x * x + y * y + z * z);
if (this.radius === 0) {
this.theta = 0;
this.phi = 0;
} else {
this.theta = Math.atan2(x, z);
this.phi = Math.acos(clamp(y / this.radius, -1, 1));
}
return this;
}
clone() {
return new this.constructor().copy(this);
}
}
/**
* Ref: https://en.wikipedia.org/wiki/Cylindrical_coordinate_system
*/
class Cylindrical {
constructor(radius = 1, theta = 0, y = 0) {
this.radius = radius; // distance from the origin to a point in the x-z plane
this.theta = theta; // counterclockwise angle in the x-z plane measured in radians from the positive z-axis
this.y = y; // height above the x-z plane
return this;
}
set(radius, theta, y) {
this.radius = radius;
this.theta = theta;
this.y = y;
return this;
}
copy(other) {
this.radius = other.radius;
this.theta = other.theta;
this.y = other.y;
return this;
}
setFromVector3(v) {
return this.setFromCartesianCoords(v.x, v.y, v.z);
}
setFromCartesianCoords(x, y, z) {
this.radius = Math.sqrt(x * x + z * z);
this.theta = Math.atan2(x, z);
this.y = y;
return this;
}
clone() {
return new this.constructor().copy(this);
}
}
const _vector$4 = /*@__PURE__*/new Vector2();
class Box2 {
constructor(min = new Vector2(+Infinity, +Infinity), max = new Vector2(-Infinity, -Infinity)) {
this.min = min;
this.max = max;
}
set(min, max) {
this.min.copy(min);
this.max.copy(max);
return this;
}
setFromPoints(points) {
this.makeEmpty();
for (let i = 0, il = points.length; i < il; i++) {
this.expandByPoint(points[i]);
}
return this;
}
setFromCenterAndSize(center, size) {
const halfSize = _vector$4.copy(size).multiplyScalar(0.5);
this.min.copy(center).sub(halfSize);
this.max.copy(center).add(halfSize);
return this;
}
clone() {
return new this.constructor().copy(this);
}
copy(box) {
this.min.copy(box.min);
this.max.copy(box.max);
return this;
}
makeEmpty() {
this.min.x = this.min.y = +Infinity;
this.max.x = this.max.y = -Infinity;
return this;
}
isEmpty() {
// this is a more robust check for empty than ( volume <= 0 ) because volume can get positive with two negative axes
return this.max.x < this.min.x || this.max.y < this.min.y;
}
getCenter(target) {
return this.isEmpty() ? target.set(0, 0) : target.addVectors(this.min, this.max).multiplyScalar(0.5);
}
getSize(target) {
return this.isEmpty() ? target.set(0, 0) : target.subVectors(this.max, this.min);
}
expandByPoint(point) {
this.min.min(point);
this.max.max(point);
return this;
}
expandByVector(vector) {
this.min.sub(vector);
this.max.add(vector);
return this;
}
expandByScalar(scalar) {
this.min.addScalar(-scalar);
this.max.addScalar(scalar);
return this;
}
containsPoint(point) {
return point.x < this.min.x || point.x > this.max.x || point.y < this.min.y || point.y > this.max.y ? false : true;
}
containsBox(box) {
return this.min.x <= box.min.x && box.max.x <= this.max.x && this.min.y <= box.min.y && box.max.y <= this.max.y;
}
getParameter(point, target) {
// This can potentially have a divide by zero if the box
// has a size dimension of 0.
return target.set((point.x - this.min.x) / (this.max.x - this.min.x), (point.y - this.min.y) / (this.max.y - this.min.y));
}
intersectsBox(box) {
// using 4 splitting planes to rule out intersections
return box.max.x < this.min.x || box.min.x > this.max.x || box.max.y < this.min.y || box.min.y > this.max.y ? false : true;
}
clampPoint(point, target) {
return target.copy(point).clamp(this.min, this.max);
}
distanceToPoint(point) {
const clampedPoint = _vector$4.copy(point).clamp(this.min, this.max);
return clampedPoint.sub(point).length();
}
intersect(box) {
this.min.max(box.min);
this.max.min(box.max);
return this;
}
union(box) {
this.min.min(box.min);
this.max.max(box.max);
return this;
}
translate(offset) {
this.min.add(offset);
this.max.add(offset);
return this;
}
equals(box) {
return box.min.equals(this.min) && box.max.equals(this.max);
}
}
Box2.prototype.isBox2 = true;
const _startP = /*@__PURE__*/new Vector3();
const _startEnd = /*@__PURE__*/new Vector3();
class Line3 {
constructor(start = new Vector3(), end = new Vector3()) {
this.start = start;
this.end = end;
}
set(start, end) {
this.start.copy(start);
this.end.copy(end);
return this;
}
copy(line) {
this.start.copy(line.start);
this.end.copy(line.end);
return this;
}
getCenter(target) {
return target.addVectors(this.start, this.end).multiplyScalar(0.5);
}
delta(target) {
return target.subVectors(this.end, this.start);
}
distanceSq() {
return this.start.distanceToSquared(this.end);
}
distance() {
return this.start.distanceTo(this.end);
}
at(t, target) {
return this.delta(target).multiplyScalar(t).add(this.start);
}
closestPointToPointParameter(point, clampToLine) {
_startP.subVectors(point, this.start);
_startEnd.subVectors(this.end, this.start);
const startEnd2 = _startEnd.dot(_startEnd);
const startEnd_startP = _startEnd.dot(_startP);
let t = startEnd_startP / startEnd2;
if (clampToLine) {
t = clamp(t, 0, 1);
}
return t;
}
closestPointToPoint(point, clampToLine, target) {
const t = this.closestPointToPointParameter(point, clampToLine);
return this.delta(target).multiplyScalar(t).add(this.start);
}
applyMatrix4(matrix) {
this.start.applyMatrix4(matrix);
this.end.applyMatrix4(matrix);
return this;
}
equals(line) {
return line.start.equals(this.start) && line.end.equals(this.end);
}
clone() {
return new this.constructor().copy(this);
}
}
const _vector$3 = /*@__PURE__*/new Vector3();
class SpotLightHelper extends Object3D {
constructor(light, color) {
super();
this.light = light;
this.light.updateMatrixWorld();
this.matrix = light.matrixWorld;
this.matrixAutoUpdate = false;
this.color = color;
const geometry = new BufferGeometry();
const positions = [0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, -1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, -1, 1];
for (let i = 0, j = 1, l = 32; i < l; i++, j++) {
const p1 = i / l * Math.PI * 2;
const p2 = j / l * Math.PI * 2;
positions.push(Math.cos(p1), Math.sin(p1), 1, Math.cos(p2), Math.sin(p2), 1);
}
geometry.setAttribute('position', new Float32BufferAttribute(positions, 3));
const material = new LineBasicMaterial({
fog: false,
toneMapped: false
});
this.cone = new LineSegments(geometry, material);
this.add(this.cone);
this.update();
}
dispose() {
this.cone.geometry.dispose();
this.cone.material.dispose();
}
update() {
this.light.updateMatrixWorld();
const coneLength = this.light.distance ? this.light.distance : 1000;
const coneWidth = coneLength * Math.tan(this.light.angle);
this.cone.scale.set(coneWidth, coneWidth, coneLength);
_vector$3.setFromMatrixPosition(this.light.target.matrixWorld);
this.cone.lookAt(_vector$3);
if (this.color !== undefined) {
this.cone.material.color.set(this.color);
} else {
this.cone.material.color.copy(this.light.color);
}
}
}
const _vector$2 = /*@__PURE__*/new Vector3();
const _boneMatrix = /*@__PURE__*/new Matrix4();
const _matrixWorldInv = /*@__PURE__*/new Matrix4();
class SkeletonHelper extends LineSegments {
constructor(object) {
const bones = getBoneList(object);
const geometry = new BufferGeometry();
const vertices = [];
const colors = [];
const color1 = new Color(0, 0, 1);
const color2 = new Color(0, 1, 0);
for (let i = 0; i < bones.length; i++) {
const bone = bones[i];
if (bone.parent && bone.parent.isBone) {
vertices.push(0, 0, 0);
vertices.push(0, 0, 0);
colors.push(color1.r, color1.g, color1.b);
colors.push(color2.r, color2.g, color2.b);
}
}
geometry.setAttribute('position', new Float32BufferAttribute(vertices, 3));
geometry.setAttribute('color', new Float32BufferAttribute(colors, 3));
const material = new LineBasicMaterial({
vertexColors: true,
depthTest: false,
depthWrite: false,
toneMapped: false,
transparent: true
});
super(geometry, material);
this.type = 'SkeletonHelper';
this.isSkeletonHelper = true;
this.root = object;
this.bones = bones;
this.matrix = object.matrixWorld;
this.matrixAutoUpdate = false;
}
updateMatrixWorld(force) {
const bones = this.bones;
const geometry = this.geometry;
const position = geometry.getAttribute('position');
_matrixWorldInv.copy(this.root.matrixWorld).invert();
for (let i = 0, j = 0; i < bones.length; i++) {
const bone = bones[i];
if (bone.parent && bone.parent.isBone) {
_boneMatrix.multiplyMatrices(_matrixWorldInv, bone.matrixWorld);
_vector$2.setFromMatrixPosition(_boneMatrix);
position.setXYZ(j, _vector$2.x, _vector$2.y, _vector$2.z);
_boneMatrix.multiplyMatrices(_matrixWorldInv, bone.parent.matrixWorld);
_vector$2.setFromMatrixPosition(_boneMatrix);
position.setXYZ(j + 1, _vector$2.x, _vector$2.y, _vector$2.z);
j += 2;
}
}
geometry.getAttribute('position').needsUpdate = true;
super.updateMatrixWorld(force);
}
}
function getBoneList(object) {
const boneList = [];
if (object && object.isBone) {
boneList.push(object);
}
for (let i = 0; i < object.children.length; i++) {
boneList.push.apply(boneList, getBoneList(object.children[i]));
}
return boneList;
}
class PointLightHelper extends Mesh {
constructor(light, sphereSize, color) {
const geometry = new SphereGeometry(sphereSize, 4, 2);
const material = new MeshBasicMaterial({
wireframe: true,
fog: false,
toneMapped: false
});
super(geometry, material);
this.light = light;
this.light.updateMatrixWorld();
this.color = color;
this.type = 'PointLightHelper';
this.matrix = this.light.matrixWorld;
this.matrixAutoUpdate = false;
this.update();
/*
// TODO: delete this comment?
const distanceGeometry = new THREE.IcosahedronBufferGeometry( 1, 2 );
const distanceMaterial = new THREE.MeshBasicMaterial( { color: hexColor, fog: false, wireframe: true, opacity: 0.1, transparent: true } );
this.lightSphere = new THREE.Mesh( bulbGeometry, bulbMaterial );
this.lightDistance = new THREE.Mesh( distanceGeometry, distanceMaterial );
const d = light.distance;
if ( d === 0.0 ) {
this.lightDistance.visible = false;
} else {
this.lightDistance.scale.set( d, d, d );
}
this.add( this.lightDistance );
*/
}
dispose() {
this.geometry.dispose();
this.material.dispose();
}
update() {
if (this.color !== undefined) {
this.material.color.set(this.color);
} else {
this.material.color.copy(this.light.color);
}
/*
const d = this.light.distance;
if ( d === 0.0 ) {
this.lightDistance.visible = false;
} else {
this.lightDistance.visible = true;
this.lightDistance.scale.set( d, d, d );
}
*/
}
}
const _vector$1 = /*@__PURE__*/new Vector3();
const _color1 = /*@__PURE__*/new Color();
const _color2 = /*@__PURE__*/new Color();
class HemisphereLightHelper extends Object3D {
constructor(light, size, color) {
super();
this.light = light;
this.light.updateMatrixWorld();
this.matrix = light.matrixWorld;
this.matrixAutoUpdate = false;
this.color = color;
const geometry = new OctahedronGeometry(size);
geometry.rotateY(Math.PI * 0.5);
this.material = new MeshBasicMaterial({
wireframe: true,
fog: false,
toneMapped: false
});
if (this.color === undefined) this.material.vertexColors = true;
const position = geometry.getAttribute('position');
const colors = new Float32Array(position.count * 3);
geometry.setAttribute('color', new BufferAttribute(colors, 3));
this.add(new Mesh(geometry, this.material));
this.update();
}
dispose() {
this.children[0].geometry.dispose();
this.children[0].material.dispose();
}
update() {
const mesh = this.children[0];
if (this.color !== undefined) {
this.material.color.set(this.color);
} else {
const colors = mesh.geometry.getAttribute('color');
_color1.copy(this.light.color);
_color2.copy(this.light.groundColor);
for (let i = 0, l = colors.count; i < l; i++) {
const color = i < l / 2 ? _color1 : _color2;
colors.setXYZ(i, color.r, color.g, color.b);
}
colors.needsUpdate = true;
}
mesh.lookAt(_vector$1.setFromMatrixPosition(this.light.matrixWorld).negate());
}
}
class GridHelper extends LineSegments {
constructor(size = 10, divisions = 10, color1 = 0x444444, color2 = 0x888888) {
color1 = new Color(color1);
color2 = new Color(color2);
const center = divisions / 2;
const step = size / divisions;
const halfSize = size / 2;
const vertices = [],
colors = [];
for (let i = 0, j = 0, k = -halfSize; i <= divisions; i++, k += step) {
vertices.push(-halfSize, 0, k, halfSize, 0, k);
vertices.push(k, 0, -halfSize, k, 0, halfSize);
const color = i === center ? color1 : color2;
color.toArray(colors, j);
j += 3;
color.toArray(colors, j);
j += 3;
color.toArray(colors, j);
j += 3;
color.toArray(colors, j);
j += 3;
}
const geometry = new BufferGeometry();
geometry.setAttribute('position', new Float32BufferAttribute(vertices, 3));
geometry.setAttribute('color', new Float32BufferAttribute(colors, 3));
const material = new LineBasicMaterial({
vertexColors: true,
toneMapped: false
});
super(geometry, material);
this.type = 'GridHelper';
}
}
class PolarGridHelper extends LineSegments {
constructor(radius = 10, radials = 16, circles = 8, divisions = 64, color1 = 0x444444, color2 = 0x888888) {
color1 = new Color(color1);
color2 = new Color(color2);
const vertices = [];
const colors = []; // create the radials
for (let i = 0; i <= radials; i++) {
const v = i / radials * (Math.PI * 2);
const x = Math.sin(v) * radius;
const z = Math.cos(v) * radius;
vertices.push(0, 0, 0);
vertices.push(x, 0, z);
const color = i & 1 ? color1 : color2;
colors.push(color.r, color.g, color.b);
colors.push(color.r, color.g, color.b);
} // create the circles
for (let i = 0; i <= circles; i++) {
const color = i & 1 ? color1 : color2;
const r = radius - radius / circles * i;
for (let j = 0; j < divisions; j++) {
// first vertex
let v = j / divisions * (Math.PI * 2);
let x = Math.sin(v) * r;
let z = Math.cos(v) * r;
vertices.push(x, 0, z);
colors.push(color.r, color.g, color.b); // second vertex
v = (j + 1) / divisions * (Math.PI * 2);
x = Math.sin(v) * r;
z = Math.cos(v) * r;
vertices.push(x, 0, z);
colors.push(color.r, color.g, color.b);
}
}
const geometry = new BufferGeometry();
geometry.setAttribute('position', new Float32BufferAttribute(vertices, 3));
geometry.setAttribute('color', new Float32BufferAttribute(colors, 3));
const material = new LineBasicMaterial({
vertexColors: true,
toneMapped: false
});
super(geometry, material);
this.type = 'PolarGridHelper';
}
}
const _v1 = /*@__PURE__*/new Vector3();
const _v2 = /*@__PURE__*/new Vector3();
const _v3 = /*@__PURE__*/new Vector3();
class DirectionalLightHelper extends Object3D {
constructor(light, size, color) {
super();
this.light = light;
this.light.updateMatrixWorld();
this.matrix = light.matrixWorld;
this.matrixAutoUpdate = false;
this.color = color;
if (size === undefined) size = 1;
let geometry = new BufferGeometry();
geometry.setAttribute('position', new Float32BufferAttribute([-size, size, 0, size, size, 0, size, -size, 0, -size, -size, 0, -size, size, 0], 3));
const material = new LineBasicMaterial({
fog: false,
toneMapped: false
});
this.lightPlane = new Line(geometry, material);
this.add(this.lightPlane);
geometry = new BufferGeometry();
geometry.setAttribute('position', new Float32BufferAttribute([0, 0, 0, 0, 0, 1], 3));
this.targetLine = new Line(geometry, material);
this.add(this.targetLine);
this.update();
}
dispose() {
this.lightPlane.geometry.dispose();
this.lightPlane.material.dispose();
this.targetLine.geometry.dispose();
this.targetLine.material.dispose();
}
update() {
_v1.setFromMatrixPosition(this.light.matrixWorld);
_v2.setFromMatrixPosition(this.light.target.matrixWorld);
_v3.subVectors(_v2, _v1);
this.lightPlane.lookAt(_v2);
if (this.color !== undefined) {
this.lightPlane.material.color.set(this.color);
this.targetLine.material.color.set(this.color);
} else {
this.lightPlane.material.color.copy(this.light.color);
this.targetLine.material.color.copy(this.light.color);
}
this.targetLine.lookAt(_v2);
this.targetLine.scale.z = _v3.length();
}
}
const _vector = /*@__PURE__*/new Vector3();
const _camera = /*@__PURE__*/new Camera();
/**
* - shows frustum, line of sight and up of the camera
* - suitable for fast updates
* - based on frustum visualization in lightgl.js shadowmap example
* http://evanw.github.com/lightgl.js/tests/shadowmap.html
*/
class CameraHelper extends LineSegments {
constructor(camera) {
const geometry = new BufferGeometry();
const material = new LineBasicMaterial({
color: 0xffffff,
vertexColors: true,
toneMapped: false
});
const vertices = [];
const colors = [];
const pointMap = {}; // colors
const colorFrustum = new Color(0xffaa00);
const colorCone = new Color(0xff0000);
const colorUp = new Color(0x00aaff);
const colorTarget = new Color(0xffffff);
const colorCross = new Color(0x333333); // near
addLine('n1', 'n2', colorFrustum);
addLine('n2', 'n4', colorFrustum);
addLine('n4', 'n3', colorFrustum);
addLine('n3', 'n1', colorFrustum); // far
addLine('f1', 'f2', colorFrustum);
addLine('f2', 'f4', colorFrustum);
addLine('f4', 'f3', colorFrustum);
addLine('f3', 'f1', colorFrustum); // sides
addLine('n1', 'f1', colorFrustum);
addLine('n2', 'f2', colorFrustum);
addLine('n3', 'f3', colorFrustum);
addLine('n4', 'f4', colorFrustum); // cone
addLine('p', 'n1', colorCone);
addLine('p', 'n2', colorCone);
addLine('p', 'n3', colorCone);
addLine('p', 'n4', colorCone); // up
addLine('u1', 'u2', colorUp);
addLine('u2', 'u3', colorUp);
addLine('u3', 'u1', colorUp); // target
addLine('c', 't', colorTarget);
addLine('p', 'c', colorCross); // cross
addLine('cn1', 'cn2', colorCross);
addLine('cn3', 'cn4', colorCross);
addLine('cf1', 'cf2', colorCross);
addLine('cf3', 'cf4', colorCross);
function addLine(a, b, color) {
addPoint(a, color);
addPoint(b, color);
}
function addPoint(id, color) {
vertices.push(0, 0, 0);
colors.push(color.r, color.g, color.b);
if (pointMap[id] === undefined) {
pointMap[id] = [];
}
pointMap[id].push(vertices.length / 3 - 1);
}
geometry.setAttribute('position', new Float32BufferAttribute(vertices, 3));
geometry.setAttribute('color', new Float32BufferAttribute(colors, 3));
super(geometry, material);
this.type = 'CameraHelper';
this.camera = camera;
if (this.camera.updateProjectionMatrix) this.camera.updateProjectionMatrix();
this.matrix = camera.matrixWorld;
this.matrixAutoUpdate = false;
this.pointMap = pointMap;
this.update();
}
update() {
const geometry = this.geometry;
const pointMap = this.pointMap;
const w = 1,
h = 1; // we need just camera projection matrix inverse
// world matrix must be identity
_camera.projectionMatrixInverse.copy(this.camera.projectionMatrixInverse); // center / target
setPoint('c', pointMap, geometry, _camera, 0, 0, -1);
setPoint('t', pointMap, geometry, _camera, 0, 0, 1); // near
setPoint('n1', pointMap, geometry, _camera, -w, -h, -1);
setPoint('n2', pointMap, geometry, _camera, w, -h, -1);
setPoint('n3', pointMap, geometry, _camera, -w, h, -1);
setPoint('n4', pointMap, geometry, _camera, w, h, -1); // far
setPoint('f1', pointMap, geometry, _camera, -w, -h, 1);
setPoint('f2', pointMap, geometry, _camera, w, -h, 1);
setPoint('f3', pointMap, geometry, _camera, -w, h, 1);
setPoint('f4', pointMap, geometry, _camera, w, h, 1); // up
setPoint('u1', pointMap, geometry, _camera, w * 0.7, h * 1.1, -1);
setPoint('u2', pointMap, geometry, _camera, -w * 0.7, h * 1.1, -1);
setPoint('u3', pointMap, geometry, _camera, 0, h * 2, -1); // cross
setPoint('cf1', pointMap, geometry, _camera, -w, 0, 1);
setPoint('cf2', pointMap, geometry, _camera, w, 0, 1);
setPoint('cf3', pointMap, geometry, _camera, 0, -h, 1);
setPoint('cf4', pointMap, geometry, _camera, 0, h, 1);
setPoint('cn1', pointMap, geometry, _camera, -w, 0, -1);
setPoint('cn2', pointMap, geometry, _camera, w, 0, -1);
setPoint('cn3', pointMap, geometry, _camera, 0, -h, -1);
setPoint('cn4', pointMap, geometry, _camera, 0, h, -1);
geometry.getAttribute('position').needsUpdate = true;
}
dispose() {
this.geometry.dispose();
this.material.dispose();
}
}
function setPoint(point, pointMap, geometry, camera, x, y, z) {
_vector.set(x, y, z).unproject(camera);
const points = pointMap[point];
if (points !== undefined) {
const position = geometry.getAttribute('position');
for (let i = 0, l = points.length; i < l; i++) {
position.setXYZ(points[i], _vector.x, _vector.y, _vector.z);
}
}
}
const _box = /*@__PURE__*/new Box3();
class BoxHelper extends LineSegments {
constructor(object, color = 0xffff00) {
const indices = new Uint16Array([0, 1, 1, 2, 2, 3, 3, 0, 4, 5, 5, 6, 6, 7, 7, 4, 0, 4, 1, 5, 2, 6, 3, 7]);
const positions = new Float32Array(8 * 3);
const geometry = new BufferGeometry();
geometry.setIndex(new BufferAttribute(indices, 1));
geometry.setAttribute('position', new BufferAttribute(positions, 3));
super(geometry, new LineBasicMaterial({
color: color,
toneMapped: false
}));
this.object = object;
this.type = 'BoxHelper';
this.matrixAutoUpdate = false;
this.update();
}
update(object) {
if (object !== undefined) {
console.warn('THREE.BoxHelper: .update() has no longer arguments.');
}
if (this.object !== undefined) {
_box.setFromObject(this.object);
}
if (_box.isEmpty()) return;
const min = _box.min;
const max = _box.max;
/*
5____4
1/___0/|
| 6__|_7
2/___3/
0: max.x, max.y, max.z
1: min.x, max.y, max.z
2: min.x, min.y, max.z
3: max.x, min.y, max.z
4: max.x, max.y, min.z
5: min.x, max.y, min.z
6: min.x, min.y, min.z
7: max.x, min.y, min.z
*/
const position = this.geometry.attributes.position;
const array = position.array;
array[0] = max.x;
array[1] = max.y;
array[2] = max.z;
array[3] = min.x;
array[4] = max.y;
array[5] = max.z;
array[6] = min.x;
array[7] = min.y;
array[8] = max.z;
array[9] = max.x;
array[10] = min.y;
array[11] = max.z;
array[12] = max.x;
array[13] = max.y;
array[14] = min.z;
array[15] = min.x;
array[16] = max.y;
array[17] = min.z;
array[18] = min.x;
array[19] = min.y;
array[20] = min.z;
array[21] = max.x;
array[22] = min.y;
array[23] = min.z;
position.needsUpdate = true;
this.geometry.computeBoundingSphere();
}
setFromObject(object) {
this.object = object;
this.update();
return this;
}
copy(source) {
LineSegments.prototype.copy.call(this, source);
this.object = source.object;
return this;
}
}
class Box3Helper extends LineSegments {
constructor(box, color = 0xffff00) {
const indices = new Uint16Array([0, 1, 1, 2, 2, 3, 3, 0, 4, 5, 5, 6, 6, 7, 7, 4, 0, 4, 1, 5, 2, 6, 3, 7]);
const positions = [1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, -1, -1, 1, -1, -1, -1, -1, 1, -1, -1];
const geometry = new BufferGeometry();
geometry.setIndex(new BufferAttribute(indices, 1));
geometry.setAttribute('position', new Float32BufferAttribute(positions, 3));
super(geometry, new LineBasicMaterial({
color: color,
toneMapped: false
}));
this.box = box;
this.type = 'Box3Helper';
this.geometry.computeBoundingSphere();
}
updateMatrixWorld(force) {
const box = this.box;
if (box.isEmpty()) return;
box.getCenter(this.position);
box.getSize(this.scale);
this.scale.multiplyScalar(0.5);
super.updateMatrixWorld(force);
}
}
class PlaneHelper extends Line {
constructor(plane, size = 1, hex = 0xffff00) {
const color = hex;
const positions = [1, -1, 1, -1, 1, 1, -1, -1, 1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0];
const geometry = new BufferGeometry();
geometry.setAttribute('position', new Float32BufferAttribute(positions, 3));
geometry.computeBoundingSphere();
super(geometry, new LineBasicMaterial({
color: color,
toneMapped: false
}));
this.type = 'PlaneHelper';
this.plane = plane;
this.size = size;
const positions2 = [1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, -1, 1];
const geometry2 = new BufferGeometry();
geometry2.setAttribute('position', new Float32BufferAttribute(positions2, 3));
geometry2.computeBoundingSphere();
this.add(new Mesh(geometry2, new MeshBasicMaterial({
color: color,
opacity: 0.2,
transparent: true,
depthWrite: false,
toneMapped: false
})));
}
updateMatrixWorld(force) {
let scale = -this.plane.constant;
if (Math.abs(scale) < 1e-8) scale = 1e-8; // sign does not matter
this.scale.set(0.5 * this.size, 0.5 * this.size, scale);
this.children[0].material.side = scale < 0 ? BackSide : FrontSide; // renderer flips side when determinant < 0; flipping not wanted here
this.lookAt(this.plane.normal);
super.updateMatrixWorld(force);
}
}
const _axis = /*@__PURE__*/new Vector3();
let _lineGeometry, _coneGeometry;
class ArrowHelper extends Object3D {
// dir is assumed to be normalized
constructor(dir = new Vector3(0, 0, 1), origin = new Vector3(0, 0, 0), length = 1, color = 0xffff00, headLength = length * 0.2, headWidth = headLength * 0.2) {
super();
this.type = 'ArrowHelper';
if (_lineGeometry === undefined) {
_lineGeometry = new BufferGeometry();
_lineGeometry.setAttribute('position', new Float32BufferAttribute([0, 0, 0, 0, 1, 0], 3));
_coneGeometry = new CylinderGeometry(0, 0.5, 1, 5, 1);
_coneGeometry.translate(0, -0.5, 0);
}
this.position.copy(origin);
this.line = new Line(_lineGeometry, new LineBasicMaterial({
color: color,
toneMapped: false
}));
this.line.matrixAutoUpdate = false;
this.add(this.line);
this.cone = new Mesh(_coneGeometry, new MeshBasicMaterial({
color: color,
toneMapped: false
}));
this.cone.matrixAutoUpdate = false;
this.add(this.cone);
this.setDirection(dir);
this.setLength(length, headLength, headWidth);
}
setDirection(dir) {
// dir is assumed to be normalized
if (dir.y > 0.99999) {
this.quaternion.set(0, 0, 0, 1);
} else if (dir.y < -0.99999) {
this.quaternion.set(1, 0, 0, 0);
} else {
_axis.set(dir.z, 0, -dir.x).normalize();
const radians = Math.acos(dir.y);
this.quaternion.setFromAxisAngle(_axis, radians);
}
}
setLength(length, headLength = length * 0.2, headWidth = headLength * 0.2) {
this.line.scale.set(1, Math.max(0.0001, length - headLength), 1); // see #17458
this.line.updateMatrix();
this.cone.scale.set(headWidth, headLength, headWidth);
this.cone.position.y = length;
this.cone.updateMatrix();
}
setColor(color) {
this.line.material.color.set(color);
this.cone.material.color.set(color);
}
copy(source) {
super.copy(source, false);
this.line.copy(source.line);
this.cone.copy(source.cone);
return this;
}
}
class AxesHelper extends LineSegments {
constructor(size = 1) {
const vertices = [0, 0, 0, size, 0, 0, 0, 0, 0, 0, size, 0, 0, 0, 0, 0, 0, size];
const colors = [1, 0, 0, 1, 0.6, 0, 0, 1, 0, 0.6, 1, 0, 0, 0, 1, 0, 0.6, 1];
const geometry = new BufferGeometry();
geometry.setAttribute('position', new Float32BufferAttribute(vertices, 3));
geometry.setAttribute('color', new Float32BufferAttribute(colors, 3));
const material = new LineBasicMaterial({
vertexColors: true,
toneMapped: false
});
super(geometry, material);
this.type = 'AxesHelper';
}
setColors(xAxisColor, yAxisColor, zAxisColor) {
const color = new Color();
const array = this.geometry.attributes.color.array;
color.set(xAxisColor);
color.toArray(array, 0);
color.toArray(array, 3);
color.set(yAxisColor);
color.toArray(array, 6);
color.toArray(array, 9);
color.set(zAxisColor);
color.toArray(array, 12);
color.toArray(array, 15);
this.geometry.attributes.color.needsUpdate = true;
return this;
}
dispose() {
this.geometry.dispose();
this.material.dispose();
}
}
class ShapePath {
constructor() {
this.type = 'ShapePath';
this.color = new Color();
this.subPaths = [];
this.currentPath = null;
}
moveTo(x, y) {
this.currentPath = new Path();
this.subPaths.push(this.currentPath);
this.currentPath.moveTo(x, y);
return this;
}
lineTo(x, y) {
this.currentPath.lineTo(x, y);
return this;
}
quadraticCurveTo(aCPx, aCPy, aX, aY) {
this.currentPath.quadraticCurveTo(aCPx, aCPy, aX, aY);
return this;
}
bezierCurveTo(aCP1x, aCP1y, aCP2x, aCP2y, aX, aY) {
this.currentPath.bezierCurveTo(aCP1x, aCP1y, aCP2x, aCP2y, aX, aY);
return this;
}
splineThru(pts) {
this.currentPath.splineThru(pts);
return this;
}
toShapes(isCCW, noHoles) {
function toShapesNoHoles(inSubpaths) {
const shapes = [];
for (let i = 0, l = inSubpaths.length; i < l; i++) {
const tmpPath = inSubpaths[i];
const tmpShape = new Shape();
tmpShape.curves = tmpPath.curves;
shapes.push(tmpShape);
}
return shapes;
}
function isPointInsidePolygon(inPt, inPolygon) {
const polyLen = inPolygon.length; // inPt on polygon contour => immediate success or
// toggling of inside/outside at every single! intersection point of an edge
// with the horizontal line through inPt, left of inPt
// not counting lowerY endpoints of edges and whole edges on that line
let inside = false;
for (let p = polyLen - 1, q = 0; q < polyLen; p = q++) {
let edgeLowPt = inPolygon[p];
let edgeHighPt = inPolygon[q];
let edgeDx = edgeHighPt.x - edgeLowPt.x;
let edgeDy = edgeHighPt.y - edgeLowPt.y;
if (Math.abs(edgeDy) > Number.EPSILON) {
// not parallel
if (edgeDy < 0) {
edgeLowPt = inPolygon[q];
edgeDx = -edgeDx;
edgeHighPt = inPolygon[p];
edgeDy = -edgeDy;
}
if (inPt.y < edgeLowPt.y || inPt.y > edgeHighPt.y) continue;
if (inPt.y === edgeLowPt.y) {
if (inPt.x === edgeLowPt.x) return true; // inPt is on contour ?
// continue; // no intersection or edgeLowPt => doesn't count !!!
} else {
const perpEdge = edgeDy * (inPt.x - edgeLowPt.x) - edgeDx * (inPt.y - edgeLowPt.y);
if (perpEdge === 0) return true; // inPt is on contour ?
if (perpEdge < 0) continue;
inside = !inside; // true intersection left of inPt
}
} else {
// parallel or collinear
if (inPt.y !== edgeLowPt.y) continue; // parallel
// edge lies on the same horizontal line as inPt
if (edgeHighPt.x <= inPt.x && inPt.x <= edgeLowPt.x || edgeLowPt.x <= inPt.x && inPt.x <= edgeHighPt.x) return true; // inPt: Point on contour !
// continue;
}
}
return inside;
}
const isClockWise = ShapeUtils.isClockWise;
const subPaths = this.subPaths;
if (subPaths.length === 0) return [];
if (noHoles === true) return toShapesNoHoles(subPaths);
let solid, tmpPath, tmpShape;
const shapes = [];
if (subPaths.length === 1) {
tmpPath = subPaths[0];
tmpShape = new Shape();
tmpShape.curves = tmpPath.curves;
shapes.push(tmpShape);
return shapes;
}
let holesFirst = !isClockWise(subPaths[0].getPoints());
holesFirst = isCCW ? !holesFirst : holesFirst; // console.log("Holes first", holesFirst);
const betterShapeHoles = [];
const newShapes = [];
let newShapeHoles = [];
let mainIdx = 0;
let tmpPoints;
newShapes[mainIdx] = undefined;
newShapeHoles[mainIdx] = [];
for (let i = 0, l = subPaths.length; i < l; i++) {
tmpPath = subPaths[i];
tmpPoints = tmpPath.getPoints();
solid = isClockWise(tmpPoints);
solid = isCCW ? !solid : solid;
if (solid) {
if (!holesFirst && newShapes[mainIdx]) mainIdx++;
newShapes[mainIdx] = {
s: new Shape(),
p: tmpPoints
};
newShapes[mainIdx].s.curves = tmpPath.curves;
if (holesFirst) mainIdx++;
newShapeHoles[mainIdx] = []; //console.log('cw', i);
} else {
newShapeHoles[mainIdx].push({
h: tmpPath,
p: tmpPoints[0]
}); //console.log('ccw', i);
}
} // only Holes? -> probably all Shapes with wrong orientation
if (!newShapes[0]) return toShapesNoHoles(subPaths);
if (newShapes.length > 1) {
let ambiguous = false;
const toChange = [];
for (let sIdx = 0, sLen = newShapes.length; sIdx < sLen; sIdx++) {
betterShapeHoles[sIdx] = [];
}
for (let sIdx = 0, sLen = newShapes.length; sIdx < sLen; sIdx++) {
const sho = newShapeHoles[sIdx];
for (let hIdx = 0; hIdx < sho.length; hIdx++) {
const ho = sho[hIdx];
let hole_unassigned = true;
for (let s2Idx = 0; s2Idx < newShapes.length; s2Idx++) {
if (isPointInsidePolygon(ho.p, newShapes[s2Idx].p)) {
if (sIdx !== s2Idx) toChange.push({
froms: sIdx,
tos: s2Idx,
hole: hIdx
});
if (hole_unassigned) {
hole_unassigned = false;
betterShapeHoles[s2Idx].push(ho);
} else {
ambiguous = true;
}
}
}
if (hole_unassigned) {
betterShapeHoles[sIdx].push(ho);
}
}
} // console.log("ambiguous: ", ambiguous);
if (toChange.length > 0) {
// console.log("to change: ", toChange);
if (!ambiguous) newShapeHoles = betterShapeHoles;
}
}
let tmpHoles;
for (let i = 0, il = newShapes.length; i < il; i++) {
tmpShape = newShapes[i].s;
shapes.push(tmpShape);
tmpHoles = newShapeHoles[i];
for (let j = 0, jl = tmpHoles.length; j < jl; j++) {
tmpShape.holes.push(tmpHoles[j].h);
}
} //console.log("shape", shapes);
return shapes;
}
}
const _floatView = new Float32Array(1);
const _int32View = new Int32Array(_floatView.buffer);
class DataUtils {
// Converts float32 to float16 (stored as uint16 value).
static toHalfFloat(val) {
if (val > 65504) {
console.warn('THREE.DataUtils.toHalfFloat(): value exceeds 65504.');
val = 65504; // maximum representable value in float16
} // Source: http://gamedev.stackexchange.com/questions/17326/conversion-of-a-number-from-single-precision-floating-point-representation-to-a/17410#17410
/* This method is faster than the OpenEXR implementation (very often
* used, eg. in Ogre), with the additional benefit of rounding, inspired
* by James Tursa?s half-precision code. */
_floatView[0] = val;
const x = _int32View[0];
let bits = x >> 16 & 0x8000;
/* Get the sign */
let m = x >> 12 & 0x07ff;
/* Keep one extra bit for rounding */
const e = x >> 23 & 0xff;
/* Using int is faster here */
/* If zero, or denormal, or exponent underflows too much for a denormal
* half, return signed zero. */
if (e < 103) return bits;
/* If NaN, return NaN. If Inf or exponent overflow, return Inf. */
if (e > 142) {
bits |= 0x7c00;
/* If exponent was 0xff and one mantissa bit was set, it means NaN,
* not Inf, so make sure we set one mantissa bit too. */
bits |= (e == 255 ? 0 : 1) && x & 0x007fffff;
return bits;
}
/* If exponent underflows but not too much, return a denormal */
if (e < 113) {
m |= 0x0800;
/* Extra rounding may overflow and set mantissa to 0 and exponent
* to 1, which is OK. */
bits |= (m >> 114 - e) + (m >> 113 - e & 1);
return bits;
}
bits |= e - 112 << 10 | m >> 1;
/* Extra rounding. An overflow will set mantissa to 0 and increment
* the exponent, which is OK. */
bits += m & 1;
return bits;
}
}
const LineStrip = 0;
const LinePieces = 1;
const NoColors = 0;
const FaceColors = 1;
const VertexColors = 2;
function MeshFaceMaterial(materials) {
console.warn('THREE.MeshFaceMaterial has been removed. Use an Array instead.');
return materials;
}
function MultiMaterial(materials = []) {
console.warn('THREE.MultiMaterial has been removed. Use an Array instead.');
materials.isMultiMaterial = true;
materials.materials = materials;
materials.clone = function () {
return materials.slice();
};
return materials;
}
function PointCloud(geometry, material) {
console.warn('THREE.PointCloud has been renamed to THREE.Points.');
return new Points(geometry, material);
}
function Particle(material) {
console.warn('THREE.Particle has been renamed to THREE.Sprite.');
return new Sprite(material);
}
function ParticleSystem(geometry, material) {
console.warn('THREE.ParticleSystem has been renamed to THREE.Points.');
return new Points(geometry, material);
}
function PointCloudMaterial(parameters) {
console.warn('THREE.PointCloudMaterial has been renamed to THREE.PointsMaterial.');
return new PointsMaterial(parameters);
}
function ParticleBasicMaterial(parameters) {
console.warn('THREE.ParticleBasicMaterial has been renamed to THREE.PointsMaterial.');
return new PointsMaterial(parameters);
}
function ParticleSystemMaterial(parameters) {
console.warn('THREE.ParticleSystemMaterial has been renamed to THREE.PointsMaterial.');
return new PointsMaterial(parameters);
}
function Vertex(x, y, z) {
console.warn('THREE.Vertex has been removed. Use THREE.Vector3 instead.');
return new Vector3(x, y, z);
} //
function DynamicBufferAttribute(array, itemSize) {
console.warn('THREE.DynamicBufferAttribute has been removed. Use new THREE.BufferAttribute().setUsage( THREE.DynamicDrawUsage ) instead.');
return new BufferAttribute(array, itemSize).setUsage(DynamicDrawUsage);
}
function Int8Attribute(array, itemSize) {
console.warn('THREE.Int8Attribute has been removed. Use new THREE.Int8BufferAttribute() instead.');
return new Int8BufferAttribute(array, itemSize);
}
function Uint8Attribute(array, itemSize) {
console.warn('THREE.Uint8Attribute has been removed. Use new THREE.Uint8BufferAttribute() instead.');
return new Uint8BufferAttribute(array, itemSize);
}
function Uint8ClampedAttribute(array, itemSize) {
console.warn('THREE.Uint8ClampedAttribute has been removed. Use new THREE.Uint8ClampedBufferAttribute() instead.');
return new Uint8ClampedBufferAttribute(array, itemSize);
}
function Int16Attribute(array, itemSize) {
console.warn('THREE.Int16Attribute has been removed. Use new THREE.Int16BufferAttribute() instead.');
return new Int16BufferAttribute(array, itemSize);
}
function Uint16Attribute(array, itemSize) {
console.warn('THREE.Uint16Attribute has been removed. Use new THREE.Uint16BufferAttribute() instead.');
return new Uint16BufferAttribute(array, itemSize);
}
function Int32Attribute(array, itemSize) {
console.warn('THREE.Int32Attribute has been removed. Use new THREE.Int32BufferAttribute() instead.');
return new Int32BufferAttribute(array, itemSize);
}
function Uint32Attribute(array, itemSize) {
console.warn('THREE.Uint32Attribute has been removed. Use new THREE.Uint32BufferAttribute() instead.');
return new Uint32BufferAttribute(array, itemSize);
}
function Float32Attribute(array, itemSize) {
console.warn('THREE.Float32Attribute has been removed. Use new THREE.Float32BufferAttribute() instead.');
return new Float32BufferAttribute(array, itemSize);
}
function Float64Attribute(array, itemSize) {
console.warn('THREE.Float64Attribute has been removed. Use new THREE.Float64BufferAttribute() instead.');
return new Float64BufferAttribute(array, itemSize);
} //
Curve.create = function (construct, getPoint) {
console.log('THREE.Curve.create() has been deprecated');
construct.prototype = Object.create(Curve.prototype);
construct.prototype.constructor = construct;
construct.prototype.getPoint = getPoint;
return construct;
}; //
Path.prototype.fromPoints = function (points) {
console.warn('THREE.Path: .fromPoints() has been renamed to .setFromPoints().');
return this.setFromPoints(points);
}; //
function AxisHelper(size) {
console.warn('THREE.AxisHelper has been renamed to THREE.AxesHelper.');
return new AxesHelper(size);
}
function BoundingBoxHelper(object, color) {
console.warn('THREE.BoundingBoxHelper has been deprecated. Creating a THREE.BoxHelper instead.');
return new BoxHelper(object, color);
}
function EdgesHelper(object, hex) {
console.warn('THREE.EdgesHelper has been removed. Use THREE.EdgesGeometry instead.');
return new LineSegments(new EdgesGeometry(object.geometry), new LineBasicMaterial({
color: hex !== undefined ? hex : 0xffffff
}));
}
GridHelper.prototype.setColors = function () {
console.error('THREE.GridHelper: setColors() has been deprecated, pass them in the constructor instead.');
};
SkeletonHelper.prototype.update = function () {
console.error('THREE.SkeletonHelper: update() no longer needs to be called.');
};
function WireframeHelper(object, hex) {
console.warn('THREE.WireframeHelper has been removed. Use THREE.WireframeGeometry instead.');
return new LineSegments(new WireframeGeometry(object.geometry), new LineBasicMaterial({
color: hex !== undefined ? hex : 0xffffff
}));
} //
Loader.prototype.extractUrlBase = function (url) {
console.warn('THREE.Loader: .extractUrlBase() has been deprecated. Use THREE.LoaderUtils.extractUrlBase() instead.');
return LoaderUtils.extractUrlBase(url);
};
Loader.Handlers = {
add: function () {
console.error('THREE.Loader: Handlers.add() has been removed. Use LoadingManager.addHandler() instead.');
},
get: function () {
console.error('THREE.Loader: Handlers.get() has been removed. Use LoadingManager.getHandler() instead.');
}
};
function XHRLoader(manager) {
console.warn('THREE.XHRLoader has been renamed to THREE.FileLoader.');
return new FileLoader(manager);
}
function BinaryTextureLoader(manager) {
console.warn('THREE.BinaryTextureLoader has been renamed to THREE.DataTextureLoader.');
return new DataTextureLoader(manager);
} //
Box2.prototype.center = function (optionalTarget) {
console.warn('THREE.Box2: .center() has been renamed to .getCenter().');
return this.getCenter(optionalTarget);
};
Box2.prototype.empty = function () {
console.warn('THREE.Box2: .empty() has been renamed to .isEmpty().');
return this.isEmpty();
};
Box2.prototype.isIntersectionBox = function (box) {
console.warn('THREE.Box2: .isIntersectionBox() has been renamed to .intersectsBox().');
return this.intersectsBox(box);
};
Box2.prototype.size = function (optionalTarget) {
console.warn('THREE.Box2: .size() has been renamed to .getSize().');
return this.getSize(optionalTarget);
}; //
Box3.prototype.center = function (optionalTarget) {
console.warn('THREE.Box3: .center() has been renamed to .getCenter().');
return this.getCenter(optionalTarget);
};
Box3.prototype.empty = function () {
console.warn('THREE.Box3: .empty() has been renamed to .isEmpty().');
return this.isEmpty();
};
Box3.prototype.isIntersectionBox = function (box) {
console.warn('THREE.Box3: .isIntersectionBox() has been renamed to .intersectsBox().');
return this.intersectsBox(box);
};
Box3.prototype.isIntersectionSphere = function (sphere) {
console.warn('THREE.Box3: .isIntersectionSphere() has been renamed to .intersectsSphere().');
return this.intersectsSphere(sphere);
};
Box3.prototype.size = function (optionalTarget) {
console.warn('THREE.Box3: .size() has been renamed to .getSize().');
return this.getSize(optionalTarget);
}; //
Sphere.prototype.empty = function () {
console.warn('THREE.Sphere: .empty() has been renamed to .isEmpty().');
return this.isEmpty();
}; //
Frustum.prototype.setFromMatrix = function (m) {
console.warn('THREE.Frustum: .setFromMatrix() has been renamed to .setFromProjectionMatrix().');
return this.setFromProjectionMatrix(m);
}; //
Line3.prototype.center = function (optionalTarget) {
console.warn('THREE.Line3: .center() has been renamed to .getCenter().');
return this.getCenter(optionalTarget);
}; //
Matrix3.prototype.flattenToArrayOffset = function (array, offset) {
console.warn('THREE.Matrix3: .flattenToArrayOffset() has been deprecated. Use .toArray() instead.');
return this.toArray(array, offset);
};
Matrix3.prototype.multiplyVector3 = function (vector) {
console.warn('THREE.Matrix3: .multiplyVector3() has been removed. Use vector.applyMatrix3( matrix ) instead.');
return vector.applyMatrix3(this);
};
Matrix3.prototype.multiplyVector3Array = function () {
console.error('THREE.Matrix3: .multiplyVector3Array() has been removed.');
};
Matrix3.prototype.applyToBufferAttribute = function (attribute) {
console.warn('THREE.Matrix3: .applyToBufferAttribute() has been removed. Use attribute.applyMatrix3( matrix ) instead.');
return attribute.applyMatrix3(this);
};
Matrix3.prototype.applyToVector3Array = function () {
console.error('THREE.Matrix3: .applyToVector3Array() has been removed.');
};
Matrix3.prototype.getInverse = function (matrix) {
console.warn('THREE.Matrix3: .getInverse() has been removed. Use matrixInv.copy( matrix ).invert(); instead.');
return this.copy(matrix).invert();
}; //
Matrix4.prototype.extractPosition = function (m) {
console.warn('THREE.Matrix4: .extractPosition() has been renamed to .copyPosition().');
return this.copyPosition(m);
};
Matrix4.prototype.flattenToArrayOffset = function (array, offset) {
console.warn('THREE.Matrix4: .flattenToArrayOffset() has been deprecated. Use .toArray() instead.');
return this.toArray(array, offset);
};
Matrix4.prototype.getPosition = function () {
console.warn('THREE.Matrix4: .getPosition() has been removed. Use Vector3.setFromMatrixPosition( matrix ) instead.');
return new Vector3().setFromMatrixColumn(this, 3);
};
Matrix4.prototype.setRotationFromQuaternion = function (q) {
console.warn('THREE.Matrix4: .setRotationFromQuaternion() has been renamed to .makeRotationFromQuaternion().');
return this.makeRotationFromQuaternion(q);
};
Matrix4.prototype.multiplyToArray = function () {
console.warn('THREE.Matrix4: .multiplyToArray() has been removed.');
};
Matrix4.prototype.multiplyVector3 = function (vector) {
console.warn('THREE.Matrix4: .multiplyVector3() has been removed. Use vector.applyMatrix4( matrix ) instead.');
return vector.applyMatrix4(this);
};
Matrix4.prototype.multiplyVector4 = function (vector) {
console.warn('THREE.Matrix4: .multiplyVector4() has been removed. Use vector.applyMatrix4( matrix ) instead.');
return vector.applyMatrix4(this);
};
Matrix4.prototype.multiplyVector3Array = function () {
console.error('THREE.Matrix4: .multiplyVector3Array() has been removed.');
};
Matrix4.prototype.rotateAxis = function (v) {
console.warn('THREE.Matrix4: .rotateAxis() has been removed. Use Vector3.transformDirection( matrix ) instead.');
v.transformDirection(this);
};
Matrix4.prototype.crossVector = function (vector) {
console.warn('THREE.Matrix4: .crossVector() has been removed. Use vector.applyMatrix4( matrix ) instead.');
return vector.applyMatrix4(this);
};
Matrix4.prototype.translate = function () {
console.error('THREE.Matrix4: .translate() has been removed.');
};
Matrix4.prototype.rotateX = function () {
console.error('THREE.Matrix4: .rotateX() has been removed.');
};
Matrix4.prototype.rotateY = function () {
console.error('THREE.Matrix4: .rotateY() has been removed.');
};
Matrix4.prototype.rotateZ = function () {
console.error('THREE.Matrix4: .rotateZ() has been removed.');
};
Matrix4.prototype.rotateByAxis = function () {
console.error('THREE.Matrix4: .rotateByAxis() has been removed.');
};
Matrix4.prototype.applyToBufferAttribute = function (attribute) {
console.warn('THREE.Matrix4: .applyToBufferAttribute() has been removed. Use attribute.applyMatrix4( matrix ) instead.');
return attribute.applyMatrix4(this);
};
Matrix4.prototype.applyToVector3Array = function () {
console.error('THREE.Matrix4: .applyToVector3Array() has been removed.');
};
Matrix4.prototype.makeFrustum = function (left, right, bottom, top, near, far) {
console.warn('THREE.Matrix4: .makeFrustum() has been removed. Use .makePerspective( left, right, top, bottom, near, far ) instead.');
return this.makePerspective(left, right, top, bottom, near, far);
};
Matrix4.prototype.getInverse = function (matrix) {
console.warn('THREE.Matrix4: .getInverse() has been removed. Use matrixInv.copy( matrix ).invert(); instead.');
return this.copy(matrix).invert();
}; //
Plane.prototype.isIntersectionLine = function (line) {
console.warn('THREE.Plane: .isIntersectionLine() has been renamed to .intersectsLine().');
return this.intersectsLine(line);
}; //
Quaternion.prototype.multiplyVector3 = function (vector) {
console.warn('THREE.Quaternion: .multiplyVector3() has been removed. Use is now vector.applyQuaternion( quaternion ) instead.');
return vector.applyQuaternion(this);
};
Quaternion.prototype.inverse = function () {
console.warn('THREE.Quaternion: .inverse() has been renamed to invert().');
return this.invert();
}; //
Ray.prototype.isIntersectionBox = function (box) {
console.warn('THREE.Ray: .isIntersectionBox() has been renamed to .intersectsBox().');
return this.intersectsBox(box);
};
Ray.prototype.isIntersectionPlane = function (plane) {
console.warn('THREE.Ray: .isIntersectionPlane() has been renamed to .intersectsPlane().');
return this.intersectsPlane(plane);
};
Ray.prototype.isIntersectionSphere = function (sphere) {
console.warn('THREE.Ray: .isIntersectionSphere() has been renamed to .intersectsSphere().');
return this.intersectsSphere(sphere);
}; //
Triangle.prototype.area = function () {
console.warn('THREE.Triangle: .area() has been renamed to .getArea().');
return this.getArea();
};
Triangle.prototype.barycoordFromPoint = function (point, target) {
console.warn('THREE.Triangle: .barycoordFromPoint() has been renamed to .getBarycoord().');
return this.getBarycoord(point, target);
};
Triangle.prototype.midpoint = function (target) {
console.warn('THREE.Triangle: .midpoint() has been renamed to .getMidpoint().');
return this.getMidpoint(target);
};
Triangle.prototypenormal = function (target) {
console.warn('THREE.Triangle: .normal() has been renamed to .getNormal().');
return this.getNormal(target);
};
Triangle.prototype.plane = function (target) {
console.warn('THREE.Triangle: .plane() has been renamed to .getPlane().');
return this.getPlane(target);
};
Triangle.barycoordFromPoint = function (point, a, b, c, target) {
console.warn('THREE.Triangle: .barycoordFromPoint() has been renamed to .getBarycoord().');
return Triangle.getBarycoord(point, a, b, c, target);
};
Triangle.normal = function (a, b, c, target) {
console.warn('THREE.Triangle: .normal() has been renamed to .getNormal().');
return Triangle.getNormal(a, b, c, target);
}; //
Shape.prototype.extractAllPoints = function (divisions) {
console.warn('THREE.Shape: .extractAllPoints() has been removed. Use .extractPoints() instead.');
return this.extractPoints(divisions);
};
Shape.prototype.extrude = function (options) {
console.warn('THREE.Shape: .extrude() has been removed. Use ExtrudeGeometry() instead.');
return new ExtrudeGeometry(this, options);
};
Shape.prototype.makeGeometry = function (options) {
console.warn('THREE.Shape: .makeGeometry() has been removed. Use ShapeGeometry() instead.');
return new ShapeGeometry(this, options);
}; //
Vector2.prototype.fromAttribute = function (attribute, index, offset) {
console.warn('THREE.Vector2: .fromAttribute() has been renamed to .fromBufferAttribute().');
return this.fromBufferAttribute(attribute, index, offset);
};
Vector2.prototype.distanceToManhattan = function (v) {
console.warn('THREE.Vector2: .distanceToManhattan() has been renamed to .manhattanDistanceTo().');
return this.manhattanDistanceTo(v);
};
Vector2.prototype.lengthManhattan = function () {
console.warn('THREE.Vector2: .lengthManhattan() has been renamed to .manhattanLength().');
return this.manhattanLength();
}; //
Vector3.prototype.setEulerFromRotationMatrix = function () {
console.error('THREE.Vector3: .setEulerFromRotationMatrix() has been removed. Use Euler.setFromRotationMatrix() instead.');
};
Vector3.prototype.setEulerFromQuaternion = function () {
console.error('THREE.Vector3: .setEulerFromQuaternion() has been removed. Use Euler.setFromQuaternion() instead.');
};
Vector3.prototype.getPositionFromMatrix = function (m) {
console.warn('THREE.Vector3: .getPositionFromMatrix() has been renamed to .setFromMatrixPosition().');
return this.setFromMatrixPosition(m);
};
Vector3.prototype.getScaleFromMatrix = function (m) {
console.warn('THREE.Vector3: .getScaleFromMatrix() has been renamed to .setFromMatrixScale().');
return this.setFromMatrixScale(m);
};
Vector3.prototype.getColumnFromMatrix = function (index, matrix) {
console.warn('THREE.Vector3: .getColumnFromMatrix() has been renamed to .setFromMatrixColumn().');
return this.setFromMatrixColumn(matrix, index);
};
Vector3.prototype.applyProjection = function (m) {
console.warn('THREE.Vector3: .applyProjection() has been removed. Use .applyMatrix4( m ) instead.');
return this.applyMatrix4(m);
};
Vector3.prototype.fromAttribute = function (attribute, index, offset) {
console.warn('THREE.Vector3: .fromAttribute() has been renamed to .fromBufferAttribute().');
return this.fromBufferAttribute(attribute, index, offset);
};
Vector3.prototype.distanceToManhattan = function (v) {
console.warn('THREE.Vector3: .distanceToManhattan() has been renamed to .manhattanDistanceTo().');
return this.manhattanDistanceTo(v);
};
Vector3.prototype.lengthManhattan = function () {
console.warn('THREE.Vector3: .lengthManhattan() has been renamed to .manhattanLength().');
return this.manhattanLength();
}; //
Vector4.prototype.fromAttribute = function (attribute, index, offset) {
console.warn('THREE.Vector4: .fromAttribute() has been renamed to .fromBufferAttribute().');
return this.fromBufferAttribute(attribute, index, offset);
};
Vector4.prototype.lengthManhattan = function () {
console.warn('THREE.Vector4: .lengthManhattan() has been renamed to .manhattanLength().');
return this.manhattanLength();
}; //
Object3D.prototype.getChildByName = function (name) {
console.warn('THREE.Object3D: .getChildByName() has been renamed to .getObjectByName().');
return this.getObjectByName(name);
};
Object3D.prototype.renderDepth = function () {
console.warn('THREE.Object3D: .renderDepth has been removed. Use .renderOrder, instead.');
};
Object3D.prototype.translate = function (distance, axis) {
console.warn('THREE.Object3D: .translate() has been removed. Use .translateOnAxis( axis, distance ) instead.');
return this.translateOnAxis(axis, distance);
};
Object3D.prototype.getWorldRotation = function () {
console.error('THREE.Object3D: .getWorldRotation() has been removed. Use THREE.Object3D.getWorldQuaternion( target ) instead.');
};
Object3D.prototype.applyMatrix = function (matrix) {
console.warn('THREE.Object3D: .applyMatrix() has been renamed to .applyMatrix4().');
return this.applyMatrix4(matrix);
};
Object.defineProperties(Object3D.prototype, {
eulerOrder: {
get: function () {
console.warn('THREE.Object3D: .eulerOrder is now .rotation.order.');
return this.rotation.order;
},
set: function (value) {
console.warn('THREE.Object3D: .eulerOrder is now .rotation.order.');
this.rotation.order = value;
}
},
useQuaternion: {
get: function () {
console.warn('THREE.Object3D: .useQuaternion has been removed. The library now uses quaternions by default.');
},
set: function () {
console.warn('THREE.Object3D: .useQuaternion has been removed. The library now uses quaternions by default.');
}
}
});
Mesh.prototype.setDrawMode = function () {
console.error('THREE.Mesh: .setDrawMode() has been removed. The renderer now always assumes THREE.TrianglesDrawMode. Transform your geometry via BufferGeometryUtils.toTrianglesDrawMode() if necessary.');
};
Object.defineProperties(Mesh.prototype, {
drawMode: {
get: function () {
console.error('THREE.Mesh: .drawMode has been removed. The renderer now always assumes THREE.TrianglesDrawMode.');
return TrianglesDrawMode;
},
set: function () {
console.error('THREE.Mesh: .drawMode has been removed. The renderer now always assumes THREE.TrianglesDrawMode. Transform your geometry via BufferGeometryUtils.toTrianglesDrawMode() if necessary.');
}
}
});
SkinnedMesh.prototype.initBones = function () {
console.error('THREE.SkinnedMesh: initBones() has been removed.');
}; //
PerspectiveCamera.prototype.setLens = function (focalLength, filmGauge) {
console.warn('THREE.PerspectiveCamera.setLens is deprecated. ' + 'Use .setFocalLength and .filmGauge for a photographic setup.');
if (filmGauge !== undefined) this.filmGauge = filmGauge;
this.setFocalLength(focalLength);
}; //
Object.defineProperties(Light.prototype, {
onlyShadow: {
set: function () {
console.warn('THREE.Light: .onlyShadow has been removed.');
}
},
shadowCameraFov: {
set: function (value) {
console.warn('THREE.Light: .shadowCameraFov is now .shadow.camera.fov.');
this.shadow.camera.fov = value;
}
},
shadowCameraLeft: {
set: function (value) {
console.warn('THREE.Light: .shadowCameraLeft is now .shadow.camera.left.');
this.shadow.camera.left = value;
}
},
shadowCameraRight: {
set: function (value) {
console.warn('THREE.Light: .shadowCameraRight is now .shadow.camera.right.');
this.shadow.camera.right = value;
}
},
shadowCameraTop: {
set: function (value) {
console.warn('THREE.Light: .shadowCameraTop is now .shadow.camera.top.');
this.shadow.camera.top = value;
}
},
shadowCameraBottom: {
set: function (value) {
console.warn('THREE.Light: .shadowCameraBottom is now .shadow.camera.bottom.');
this.shadow.camera.bottom = value;
}
},
shadowCameraNear: {
set: function (value) {
console.warn('THREE.Light: .shadowCameraNear is now .shadow.camera.near.');
this.shadow.camera.near = value;
}
},
shadowCameraFar: {
set: function (value) {
console.warn('THREE.Light: .shadowCameraFar is now .shadow.camera.far.');
this.shadow.camera.far = value;
}
},
shadowCameraVisible: {
set: function () {
console.warn('THREE.Light: .shadowCameraVisible has been removed. Use new THREE.CameraHelper( light.shadow.camera ) instead.');
}
},
shadowBias: {
set: function (value) {
console.warn('THREE.Light: .shadowBias is now .shadow.bias.');
this.shadow.bias = value;
}
},
shadowDarkness: {
set: function () {
console.warn('THREE.Light: .shadowDarkness has been removed.');
}
},
shadowMapWidth: {
set: function (value) {
console.warn('THREE.Light: .shadowMapWidth is now .shadow.mapSize.width.');
this.shadow.mapSize.width = value;
}
},
shadowMapHeight: {
set: function (value) {
console.warn('THREE.Light: .shadowMapHeight is now .shadow.mapSize.height.');
this.shadow.mapSize.height = value;
}
}
}); //
Object.defineProperties(BufferAttribute.prototype, {
length: {
get: function () {
console.warn('THREE.BufferAttribute: .length has been deprecated. Use .count instead.');
return this.array.length;
}
},
dynamic: {
get: function () {
console.warn('THREE.BufferAttribute: .dynamic has been deprecated. Use .usage instead.');
return this.usage === DynamicDrawUsage;
},
set: function () {
console.warn('THREE.BufferAttribute: .dynamic has been deprecated. Use .usage instead.');
this.setUsage(DynamicDrawUsage);
}
}
});
BufferAttribute.prototype.setDynamic = function (value) {
console.warn('THREE.BufferAttribute: .setDynamic() has been deprecated. Use .setUsage() instead.');
this.setUsage(value === true ? DynamicDrawUsage : StaticDrawUsage);
return this;
};
BufferAttribute.prototype.copyIndicesArray = function () {
console.error('THREE.BufferAttribute: .copyIndicesArray() has been removed.');
}, BufferAttribute.prototype.setArray = function () {
console.error('THREE.BufferAttribute: .setArray has been removed. Use BufferGeometry .setAttribute to replace/resize attribute buffers');
}; //
BufferGeometry.prototype.addIndex = function (index) {
console.warn('THREE.BufferGeometry: .addIndex() has been renamed to .setIndex().');
this.setIndex(index);
};
BufferGeometry.prototype.addAttribute = function (name, attribute) {
console.warn('THREE.BufferGeometry: .addAttribute() has been renamed to .setAttribute().');
if (!(attribute && attribute.isBufferAttribute) && !(attribute && attribute.isInterleavedBufferAttribute)) {
console.warn('THREE.BufferGeometry: .addAttribute() now expects ( name, attribute ).');
return this.setAttribute(name, new BufferAttribute(arguments[1], arguments[2]));
}
if (name === 'index') {
console.warn('THREE.BufferGeometry.addAttribute: Use .setIndex() for index attribute.');
this.setIndex(attribute);
return this;
}
return this.setAttribute(name, attribute);
};
BufferGeometry.prototype.addDrawCall = function (start, count, indexOffset) {
if (indexOffset !== undefined) {
console.warn('THREE.BufferGeometry: .addDrawCall() no longer supports indexOffset.');
}
console.warn('THREE.BufferGeometry: .addDrawCall() is now .addGroup().');
this.addGroup(start, count);
};
BufferGeometry.prototype.clearDrawCalls = function () {
console.warn('THREE.BufferGeometry: .clearDrawCalls() is now .clearGroups().');
this.clearGroups();
};
BufferGeometry.prototype.computeOffsets = function () {
console.warn('THREE.BufferGeometry: .computeOffsets() has been removed.');
};
BufferGeometry.prototype.removeAttribute = function (name) {
console.warn('THREE.BufferGeometry: .removeAttribute() has been renamed to .deleteAttribute().');
return this.deleteAttribute(name);
};
BufferGeometry.prototype.applyMatrix = function (matrix) {
console.warn('THREE.BufferGeometry: .applyMatrix() has been renamed to .applyMatrix4().');
return this.applyMatrix4(matrix);
};
Object.defineProperties(BufferGeometry.prototype, {
drawcalls: {
get: function () {
console.error('THREE.BufferGeometry: .drawcalls has been renamed to .groups.');
return this.groups;
}
},
offsets: {
get: function () {
console.warn('THREE.BufferGeometry: .offsets has been renamed to .groups.');
return this.groups;
}
}
});
InterleavedBuffer.prototype.setDynamic = function (value) {
console.warn('THREE.InterleavedBuffer: .setDynamic() has been deprecated. Use .setUsage() instead.');
this.setUsage(value === true ? DynamicDrawUsage : StaticDrawUsage);
return this;
};
InterleavedBuffer.prototype.setArray = function () {
console.error('THREE.InterleavedBuffer: .setArray has been removed. Use BufferGeometry .setAttribute to replace/resize attribute buffers');
}; //
ExtrudeGeometry.prototype.getArrays = function () {
console.error('THREE.ExtrudeGeometry: .getArrays() has been removed.');
};
ExtrudeGeometry.prototype.addShapeList = function () {
console.error('THREE.ExtrudeGeometry: .addShapeList() has been removed.');
};
ExtrudeGeometry.prototype.addShape = function () {
console.error('THREE.ExtrudeGeometry: .addShape() has been removed.');
}; //
Scene.prototype.dispose = function () {
console.error('THREE.Scene: .dispose() has been removed.');
}; //
Uniform.prototype.onUpdate = function () {
console.warn('THREE.Uniform: .onUpdate() has been removed. Use object.onBeforeRender() instead.');
return this;
}; //
Object.defineProperties(Material.prototype, {
wrapAround: {
get: function () {
console.warn('THREE.Material: .wrapAround has been removed.');
},
set: function () {
console.warn('THREE.Material: .wrapAround has been removed.');
}
},
overdraw: {
get: function () {
console.warn('THREE.Material: .overdraw has been removed.');
},
set: function () {
console.warn('THREE.Material: .overdraw has been removed.');
}
},
wrapRGB: {
get: function () {
console.warn('THREE.Material: .wrapRGB has been removed.');
return new Color();
}
},
shading: {
get: function () {
console.error('THREE.' + this.type + ': .shading has been removed. Use the boolean .flatShading instead.');
},
set: function (value) {
console.warn('THREE.' + this.type + ': .shading has been removed. Use the boolean .flatShading instead.');
this.flatShading = value === FlatShading;
}
},
stencilMask: {
get: function () {
console.warn('THREE.' + this.type + ': .stencilMask has been removed. Use .stencilFuncMask instead.');
return this.stencilFuncMask;
},
set: function (value) {
console.warn('THREE.' + this.type + ': .stencilMask has been removed. Use .stencilFuncMask instead.');
this.stencilFuncMask = value;
}
},
vertexTangents: {
get: function () {
console.warn('THREE.' + this.type + ': .vertexTangents has been removed.');
},
set: function () {
console.warn('THREE.' + this.type + ': .vertexTangents has been removed.');
}
}
});
Object.defineProperties(ShaderMaterial.prototype, {
derivatives: {
get: function () {
console.warn('THREE.ShaderMaterial: .derivatives has been moved to .extensions.derivatives.');
return this.extensions.derivatives;
},
set: function (value) {
console.warn('THREE. ShaderMaterial: .derivatives has been moved to .extensions.derivatives.');
this.extensions.derivatives = value;
}
}
}); //
WebGLRenderer.prototype.clearTarget = function (renderTarget, color, depth, stencil) {
console.warn('THREE.WebGLRenderer: .clearTarget() has been deprecated. Use .setRenderTarget() and .clear() instead.');
this.setRenderTarget(renderTarget);
this.clear(color, depth, stencil);
};
WebGLRenderer.prototype.animate = function (callback) {
console.warn('THREE.WebGLRenderer: .animate() is now .setAnimationLoop().');
this.setAnimationLoop(callback);
};
WebGLRenderer.prototype.getCurrentRenderTarget = function () {
console.warn('THREE.WebGLRenderer: .getCurrentRenderTarget() is now .getRenderTarget().');
return this.getRenderTarget();
};
WebGLRenderer.prototype.getMaxAnisotropy = function () {
console.warn('THREE.WebGLRenderer: .getMaxAnisotropy() is now .capabilities.getMaxAnisotropy().');
return this.capabilities.getMaxAnisotropy();
};
WebGLRenderer.prototype.getPrecision = function () {
console.warn('THREE.WebGLRenderer: .getPrecision() is now .capabilities.precision.');
return this.capabilities.precision;
};
WebGLRenderer.prototype.resetGLState = function () {
console.warn('THREE.WebGLRenderer: .resetGLState() is now .state.reset().');
return this.state.reset();
};
WebGLRenderer.prototype.supportsFloatTextures = function () {
console.warn('THREE.WebGLRenderer: .supportsFloatTextures() is now .extensions.get( \'OES_texture_float\' ).');
return this.extensions.get('OES_texture_float');
};
WebGLRenderer.prototype.supportsHalfFloatTextures = function () {
console.warn('THREE.WebGLRenderer: .supportsHalfFloatTextures() is now .extensions.get( \'OES_texture_half_float\' ).');
return this.extensions.get('OES_texture_half_float');
};
WebGLRenderer.prototype.supportsStandardDerivatives = function () {
console.warn('THREE.WebGLRenderer: .supportsStandardDerivatives() is now .extensions.get( \'OES_standard_derivatives\' ).');
return this.extensions.get('OES_standard_derivatives');
};
WebGLRenderer.prototype.supportsCompressedTextureS3TC = function () {
console.warn('THREE.WebGLRenderer: .supportsCompressedTextureS3TC() is now .extensions.get( \'WEBGL_compressed_texture_s3tc\' ).');
return this.extensions.get('WEBGL_compressed_texture_s3tc');
};
WebGLRenderer.prototype.supportsCompressedTexturePVRTC = function () {
console.warn('THREE.WebGLRenderer: .supportsCompressedTexturePVRTC() is now .extensions.get( \'WEBGL_compressed_texture_pvrtc\' ).');
return this.extensions.get('WEBGL_compressed_texture_pvrtc');
};
WebGLRenderer.prototype.supportsBlendMinMax = function () {
console.warn('THREE.WebGLRenderer: .supportsBlendMinMax() is now .extensions.get( \'EXT_blend_minmax\' ).');
return this.extensions.get('EXT_blend_minmax');
};
WebGLRenderer.prototype.supportsVertexTextures = function () {
console.warn('THREE.WebGLRenderer: .supportsVertexTextures() is now .capabilities.vertexTextures.');
return this.capabilities.vertexTextures;
};
WebGLRenderer.prototype.supportsInstancedArrays = function () {
console.warn('THREE.WebGLRenderer: .supportsInstancedArrays() is now .extensions.get( \'ANGLE_instanced_arrays\' ).');
return this.extensions.get('ANGLE_instanced_arrays');
};
WebGLRenderer.prototype.enableScissorTest = function (boolean) {
console.warn('THREE.WebGLRenderer: .enableScissorTest() is now .setScissorTest().');
this.setScissorTest(boolean);
};
WebGLRenderer.prototype.initMaterial = function () {
console.warn('THREE.WebGLRenderer: .initMaterial() has been removed.');
};
WebGLRenderer.prototype.addPrePlugin = function () {
console.warn('THREE.WebGLRenderer: .addPrePlugin() has been removed.');
};
WebGLRenderer.prototype.addPostPlugin = function () {
console.warn('THREE.WebGLRenderer: .addPostPlugin() has been removed.');
};
WebGLRenderer.prototype.updateShadowMap = function () {
console.warn('THREE.WebGLRenderer: .updateShadowMap() has been removed.');
};
WebGLRenderer.prototype.setFaceCulling = function () {
console.warn('THREE.WebGLRenderer: .setFaceCulling() has been removed.');
};
WebGLRenderer.prototype.allocTextureUnit = function () {
console.warn('THREE.WebGLRenderer: .allocTextureUnit() has been removed.');
};
WebGLRenderer.prototype.setTexture = function () {
console.warn('THREE.WebGLRenderer: .setTexture() has been removed.');
};
WebGLRenderer.prototype.setTexture2D = function () {
console.warn('THREE.WebGLRenderer: .setTexture2D() has been removed.');
};
WebGLRenderer.prototype.setTextureCube = function () {
console.warn('THREE.WebGLRenderer: .setTextureCube() has been removed.');
};
WebGLRenderer.prototype.getActiveMipMapLevel = function () {
console.warn('THREE.WebGLRenderer: .getActiveMipMapLevel() is now .getActiveMipmapLevel().');
return this.getActiveMipmapLevel();
};
Object.defineProperties(WebGLRenderer.prototype, {
shadowMapEnabled: {
get: function () {
return this.shadowMap.enabled;
},
set: function (value) {
console.warn('THREE.WebGLRenderer: .shadowMapEnabled is now .shadowMap.enabled.');
this.shadowMap.enabled = value;
}
},
shadowMapType: {
get: function () {
return this.shadowMap.type;
},
set: function (value) {
console.warn('THREE.WebGLRenderer: .shadowMapType is now .shadowMap.type.');
this.shadowMap.type = value;
}
},
shadowMapCullFace: {
get: function () {
console.warn('THREE.WebGLRenderer: .shadowMapCullFace has been removed. Set Material.shadowSide instead.');
return undefined;
},
set: function () {
console.warn('THREE.WebGLRenderer: .shadowMapCullFace has been removed. Set Material.shadowSide instead.');
}
},
context: {
get: function () {
console.warn('THREE.WebGLRenderer: .context has been removed. Use .getContext() instead.');
return this.getContext();
}
},
vr: {
get: function () {
console.warn('THREE.WebGLRenderer: .vr has been renamed to .xr');
return this.xr;
}
},
gammaInput: {
get: function () {
console.warn('THREE.WebGLRenderer: .gammaInput has been removed. Set the encoding for textures via Texture.encoding instead.');
return false;
},
set: function () {
console.warn('THREE.WebGLRenderer: .gammaInput has been removed. Set the encoding for textures via Texture.encoding instead.');
}
},
gammaOutput: {
get: function () {
console.warn('THREE.WebGLRenderer: .gammaOutput has been removed. Set WebGLRenderer.outputEncoding instead.');
return false;
},
set: function (value) {
console.warn('THREE.WebGLRenderer: .gammaOutput has been removed. Set WebGLRenderer.outputEncoding instead.');
this.outputEncoding = value === true ? sRGBEncoding : LinearEncoding;
}
},
toneMappingWhitePoint: {
get: function () {
console.warn('THREE.WebGLRenderer: .toneMappingWhitePoint has been removed.');
return 1.0;
},
set: function () {
console.warn('THREE.WebGLRenderer: .toneMappingWhitePoint has been removed.');
}
}
});
Object.defineProperties(WebGLShadowMap.prototype, {
cullFace: {
get: function () {
console.warn('THREE.WebGLRenderer: .shadowMap.cullFace has been removed. Set Material.shadowSide instead.');
return undefined;
},
set: function () {
console.warn('THREE.WebGLRenderer: .shadowMap.cullFace has been removed. Set Material.shadowSide instead.');
}
},
renderReverseSided: {
get: function () {
console.warn('THREE.WebGLRenderer: .shadowMap.renderReverseSided has been removed. Set Material.shadowSide instead.');
return undefined;
},
set: function () {
console.warn('THREE.WebGLRenderer: .shadowMap.renderReverseSided has been removed. Set Material.shadowSide instead.');
}
},
renderSingleSided: {
get: function () {
console.warn('THREE.WebGLRenderer: .shadowMap.renderSingleSided has been removed. Set Material.shadowSide instead.');
return undefined;
},
set: function () {
console.warn('THREE.WebGLRenderer: .shadowMap.renderSingleSided has been removed. Set Material.shadowSide instead.');
}
}
});
function WebGLRenderTargetCube(width, height, options) {
console.warn('THREE.WebGLRenderTargetCube( width, height, options ) is now WebGLCubeRenderTarget( size, options ).');
return new WebGLCubeRenderTarget(width, options);
} //
Object.defineProperties(WebGLRenderTarget.prototype, {
wrapS: {
get: function () {
console.warn('THREE.WebGLRenderTarget: .wrapS is now .texture.wrapS.');
return this.texture.wrapS;
},
set: function (value) {
console.warn('THREE.WebGLRenderTarget: .wrapS is now .texture.wrapS.');
this.texture.wrapS = value;
}
},
wrapT: {
get: function () {
console.warn('THREE.WebGLRenderTarget: .wrapT is now .texture.wrapT.');
return this.texture.wrapT;
},
set: function (value) {
console.warn('THREE.WebGLRenderTarget: .wrapT is now .texture.wrapT.');
this.texture.wrapT = value;
}
},
magFilter: {
get: function () {
console.warn('THREE.WebGLRenderTarget: .magFilter is now .texture.magFilter.');
return this.texture.magFilter;
},
set: function (value) {
console.warn('THREE.WebGLRenderTarget: .magFilter is now .texture.magFilter.');
this.texture.magFilter = value;
}
},
minFilter: {
get: function () {
console.warn('THREE.WebGLRenderTarget: .minFilter is now .texture.minFilter.');
return this.texture.minFilter;
},
set: function (value) {
console.warn('THREE.WebGLRenderTarget: .minFilter is now .texture.minFilter.');
this.texture.minFilter = value;
}
},
anisotropy: {
get: function () {
console.warn('THREE.WebGLRenderTarget: .anisotropy is now .texture.anisotropy.');
return this.texture.anisotropy;
},
set: function (value) {
console.warn('THREE.WebGLRenderTarget: .anisotropy is now .texture.anisotropy.');
this.texture.anisotropy = value;
}
},
offset: {
get: function () {
console.warn('THREE.WebGLRenderTarget: .offset is now .texture.offset.');
return this.texture.offset;
},
set: function (value) {
console.warn('THREE.WebGLRenderTarget: .offset is now .texture.offset.');
this.texture.offset = value;
}
},
repeat: {
get: function () {
console.warn('THREE.WebGLRenderTarget: .repeat is now .texture.repeat.');
return this.texture.repeat;
},
set: function (value) {
console.warn('THREE.WebGLRenderTarget: .repeat is now .texture.repeat.');
this.texture.repeat = value;
}
},
format: {
get: function () {
console.warn('THREE.WebGLRenderTarget: .format is now .texture.format.');
return this.texture.format;
},
set: function (value) {
console.warn('THREE.WebGLRenderTarget: .format is now .texture.format.');
this.texture.format = value;
}
},
type: {
get: function () {
console.warn('THREE.WebGLRenderTarget: .type is now .texture.type.');
return this.texture.type;
},
set: function (value) {
console.warn('THREE.WebGLRenderTarget: .type is now .texture.type.');
this.texture.type = value;
}
},
generateMipmaps: {
get: function () {
console.warn('THREE.WebGLRenderTarget: .generateMipmaps is now .texture.generateMipmaps.');
return this.texture.generateMipmaps;
},
set: function (value) {
console.warn('THREE.WebGLRenderTarget: .generateMipmaps is now .texture.generateMipmaps.');
this.texture.generateMipmaps = value;
}
}
}); //
Audio.prototype.load = function (file) {
console.warn('THREE.Audio: .load has been deprecated. Use THREE.AudioLoader instead.');
const scope = this;
const audioLoader = new AudioLoader();
audioLoader.load(file, function (buffer) {
scope.setBuffer(buffer);
});
return this;
};
AudioAnalyser.prototype.getData = function () {
console.warn('THREE.AudioAnalyser: .getData() is now .getFrequencyData().');
return this.getFrequencyData();
}; //
CubeCamera.prototype.updateCubeMap = function (renderer, scene) {
console.warn('THREE.CubeCamera: .updateCubeMap() is now .update().');
return this.update(renderer, scene);
};
CubeCamera.prototype.clear = function (renderer, color, depth, stencil) {
console.warn('THREE.CubeCamera: .clear() is now .renderTarget.clear().');
return this.renderTarget.clear(renderer, color, depth, stencil);
};
ImageUtils.crossOrigin = undefined;
ImageUtils.loadTexture = function (url, mapping, onLoad, onError) {
console.warn('THREE.ImageUtils.loadTexture has been deprecated. Use THREE.TextureLoader() instead.');
const loader = new TextureLoader();
loader.setCrossOrigin(this.crossOrigin);
const texture = loader.load(url, onLoad, undefined, onError);
if (mapping) texture.mapping = mapping;
return texture;
};
ImageUtils.loadTextureCube = function (urls, mapping, onLoad, onError) {
console.warn('THREE.ImageUtils.loadTextureCube has been deprecated. Use THREE.CubeTextureLoader() instead.');
const loader = new CubeTextureLoader();
loader.setCrossOrigin(this.crossOrigin);
const texture = loader.load(urls, onLoad, undefined, onError);
if (mapping) texture.mapping = mapping;
return texture;
};
ImageUtils.loadCompressedTexture = function () {
console.error('THREE.ImageUtils.loadCompressedTexture has been removed. Use THREE.DDSLoader instead.');
};
ImageUtils.loadCompressedTextureCube = function () {
console.error('THREE.ImageUtils.loadCompressedTextureCube has been removed. Use THREE.DDSLoader instead.');
}; //
function CanvasRenderer() {
console.error('THREE.CanvasRenderer has been removed');
} //
function JSONLoader() {
console.error('THREE.JSONLoader has been removed.');
} //
const SceneUtils = {
createMultiMaterialObject: function () {
console.error('THREE.SceneUtils has been moved to /examples/jsm/utils/SceneUtils.js');
},
detach: function () {
console.error('THREE.SceneUtils has been moved to /examples/jsm/utils/SceneUtils.js');
},
attach: function () {
console.error('THREE.SceneUtils has been moved to /examples/jsm/utils/SceneUtils.js');
}
}; //
function LensFlare() {
console.error('THREE.LensFlare has been moved to /examples/jsm/objects/Lensflare.js');
} //
function ParametricGeometry() {
console.error('THREE.ParametricGeometry has been moved to /examples/jsm/geometries/ParametricGeometry.js');
return new BufferGeometry();
}
function TextGeometry() {
console.error('THREE.TextGeometry has been moved to /examples/jsm/geometries/TextGeometry.js');
return new BufferGeometry();
}
function FontLoader() {
console.error('THREE.FontLoader has been moved to /examples/jsm/loaders/FontLoader.js');
}
function Font() {
console.error('THREE.Font has been moved to /examples/jsm/loaders/FontLoader.js');
}
function ImmediateRenderObject() {
console.error('THREE.ImmediateRenderObject has been removed.');
}
if (typeof __THREE_DEVTOOLS__ !== 'undefined') {
/* eslint-disable no-undef */
__THREE_DEVTOOLS__.dispatchEvent(new CustomEvent('register', {
detail: {
revision: REVISION
}
}));
/* eslint-enable no-undef */
}
if (typeof window !== 'undefined') {
if (window.__THREE__) {
console.warn('WARNING: Multiple instances of Three.js being imported.');
} else {
window.__THREE__ = REVISION;
}
}
exports.ACESFilmicToneMapping = ACESFilmicToneMapping;
exports.AddEquation = AddEquation;
exports.AddOperation = AddOperation;
exports.AdditiveAnimationBlendMode = AdditiveAnimationBlendMode;
exports.AdditiveBlending = AdditiveBlending;
exports.AlphaFormat = AlphaFormat;
exports.AlwaysDepth = AlwaysDepth;
exports.AlwaysStencilFunc = AlwaysStencilFunc;
exports.AmbientLight = AmbientLight;
exports.AmbientLightProbe = AmbientLightProbe;
exports.AnimationClip = AnimationClip;
exports.AnimationLoader = AnimationLoader;
exports.AnimationMixer = AnimationMixer;
exports.AnimationObjectGroup = AnimationObjectGroup;
exports.AnimationUtils = AnimationUtils;
exports.ArcCurve = ArcCurve;
exports.ArrayCamera = ArrayCamera;
exports.ArrowHelper = ArrowHelper;
exports.Audio = Audio;
exports.AudioAnalyser = AudioAnalyser;
exports.AudioContext = AudioContext;
exports.AudioListener = AudioListener;
exports.AudioLoader = AudioLoader;
exports.AxesHelper = AxesHelper;
exports.AxisHelper = AxisHelper;
exports.BackSide = BackSide;
exports.BasicDepthPacking = BasicDepthPacking;
exports.BasicShadowMap = BasicShadowMap;
exports.BinaryTextureLoader = BinaryTextureLoader;
exports.Bone = Bone;
exports.BooleanKeyframeTrack = BooleanKeyframeTrack;
exports.BoundingBoxHelper = BoundingBoxHelper;
exports.Box2 = Box2;
exports.Box3 = Box3;
exports.Box3Helper = Box3Helper;
exports.BoxBufferGeometry = BoxGeometry;
exports.BoxGeometry = BoxGeometry;
exports.BoxHelper = BoxHelper;
exports.BufferAttribute = BufferAttribute;
exports.BufferGeometry = BufferGeometry;
exports.BufferGeometryLoader = BufferGeometryLoader;
exports.ByteType = ByteType;
exports.Cache = Cache;
exports.Camera = Camera;
exports.CameraHelper = CameraHelper;
exports.CanvasRenderer = CanvasRenderer;
exports.CanvasTexture = CanvasTexture;
exports.CatmullRomCurve3 = CatmullRomCurve3;
exports.CineonToneMapping = CineonToneMapping;
exports.CircleBufferGeometry = CircleGeometry;
exports.CircleGeometry = CircleGeometry;
exports.ClampToEdgeWrapping = ClampToEdgeWrapping;
exports.Clock = Clock;
exports.Color = Color;
exports.ColorKeyframeTrack = ColorKeyframeTrack;
exports.CompressedTexture = CompressedTexture;
exports.CompressedTextureLoader = CompressedTextureLoader;
exports.ConeBufferGeometry = ConeGeometry;
exports.ConeGeometry = ConeGeometry;
exports.CubeCamera = CubeCamera;
exports.CubeReflectionMapping = CubeReflectionMapping;
exports.CubeRefractionMapping = CubeRefractionMapping;
exports.CubeTexture = CubeTexture;
exports.CubeTextureLoader = CubeTextureLoader;
exports.CubeUVReflectionMapping = CubeUVReflectionMapping;
exports.CubeUVRefractionMapping = CubeUVRefractionMapping;
exports.CubicBezierCurve = CubicBezierCurve;
exports.CubicBezierCurve3 = CubicBezierCurve3;
exports.CubicInterpolant = CubicInterpolant;
exports.CullFaceBack = CullFaceBack;
exports.CullFaceFront = CullFaceFront;
exports.CullFaceFrontBack = CullFaceFrontBack;
exports.CullFaceNone = CullFaceNone;
exports.Curve = Curve;
exports.CurvePath = CurvePath;
exports.CustomBlending = CustomBlending;
exports.CustomToneMapping = CustomToneMapping;
exports.CylinderBufferGeometry = CylinderGeometry;
exports.CylinderGeometry = CylinderGeometry;
exports.Cylindrical = Cylindrical;
exports.DataTexture = DataTexture;
exports.DataTexture2DArray = DataTexture2DArray;
exports.DataTexture3D = DataTexture3D;
exports.DataTextureLoader = DataTextureLoader;
exports.DataUtils = DataUtils;
exports.DecrementStencilOp = DecrementStencilOp;
exports.DecrementWrapStencilOp = DecrementWrapStencilOp;
exports.DefaultLoadingManager = DefaultLoadingManager;
exports.DepthFormat = DepthFormat;
exports.DepthStencilFormat = DepthStencilFormat;
exports.DepthTexture = DepthTexture;
exports.DirectionalLight = DirectionalLight;
exports.DirectionalLightHelper = DirectionalLightHelper;
exports.DiscreteInterpolant = DiscreteInterpolant;
exports.DodecahedronBufferGeometry = DodecahedronGeometry;
exports.DodecahedronGeometry = DodecahedronGeometry;
exports.DoubleSide = DoubleSide;
exports.DstAlphaFactor = DstAlphaFactor;
exports.DstColorFactor = DstColorFactor;
exports.DynamicBufferAttribute = DynamicBufferAttribute;
exports.DynamicCopyUsage = DynamicCopyUsage;
exports.DynamicDrawUsage = DynamicDrawUsage;
exports.DynamicReadUsage = DynamicReadUsage;
exports.EdgesGeometry = EdgesGeometry;
exports.EdgesHelper = EdgesHelper;
exports.EllipseCurve = EllipseCurve;
exports.EqualDepth = EqualDepth;
exports.EqualStencilFunc = EqualStencilFunc;
exports.EquirectangularReflectionMapping = EquirectangularReflectionMapping;
exports.EquirectangularRefractionMapping = EquirectangularRefractionMapping;
exports.Euler = Euler;
exports.EventDispatcher = EventDispatcher;
exports.ExtrudeBufferGeometry = ExtrudeGeometry;
exports.ExtrudeGeometry = ExtrudeGeometry;
exports.FaceColors = FaceColors;
exports.FileLoader = FileLoader;
exports.FlatShading = FlatShading;
exports.Float16BufferAttribute = Float16BufferAttribute;
exports.Float32Attribute = Float32Attribute;
exports.Float32BufferAttribute = Float32BufferAttribute;
exports.Float64Attribute = Float64Attribute;
exports.Float64BufferAttribute = Float64BufferAttribute;
exports.FloatType = FloatType;
exports.Fog = Fog;
exports.FogExp2 = FogExp2;
exports.Font = Font;
exports.FontLoader = FontLoader;
exports.FrontSide = FrontSide;
exports.Frustum = Frustum;
exports.GLBufferAttribute = GLBufferAttribute;
exports.GLSL1 = GLSL1;
exports.GLSL3 = GLSL3;
exports.GammaEncoding = GammaEncoding;
exports.GreaterDepth = GreaterDepth;
exports.GreaterEqualDepth = GreaterEqualDepth;
exports.GreaterEqualStencilFunc = GreaterEqualStencilFunc;
exports.GreaterStencilFunc = GreaterStencilFunc;
exports.GridHelper = GridHelper;
exports.Group = Group;
exports.HalfFloatType = HalfFloatType;
exports.HemisphereLight = HemisphereLight;
exports.HemisphereLightHelper = HemisphereLightHelper;
exports.HemisphereLightProbe = HemisphereLightProbe;
exports.IcosahedronBufferGeometry = IcosahedronGeometry;
exports.IcosahedronGeometry = IcosahedronGeometry;
exports.ImageBitmapLoader = ImageBitmapLoader;
exports.ImageLoader = ImageLoader;
exports.ImageUtils = ImageUtils;
exports.ImmediateRenderObject = ImmediateRenderObject;
exports.IncrementStencilOp = IncrementStencilOp;
exports.IncrementWrapStencilOp = IncrementWrapStencilOp;
exports.InstancedBufferAttribute = InstancedBufferAttribute;
exports.InstancedBufferGeometry = InstancedBufferGeometry;
exports.InstancedInterleavedBuffer = InstancedInterleavedBuffer;
exports.InstancedMesh = InstancedMesh;
exports.Int16Attribute = Int16Attribute;
exports.Int16BufferAttribute = Int16BufferAttribute;
exports.Int32Attribute = Int32Attribute;
exports.Int32BufferAttribute = Int32BufferAttribute;
exports.Int8Attribute = Int8Attribute;
exports.Int8BufferAttribute = Int8BufferAttribute;
exports.IntType = IntType;
exports.InterleavedBuffer = InterleavedBuffer;
exports.InterleavedBufferAttribute = InterleavedBufferAttribute;
exports.Interpolant = Interpolant;
exports.InterpolateDiscrete = InterpolateDiscrete;
exports.InterpolateLinear = InterpolateLinear;
exports.InterpolateSmooth = InterpolateSmooth;
exports.InvertStencilOp = InvertStencilOp;
exports.JSONLoader = JSONLoader;
exports.KeepStencilOp = KeepStencilOp;
exports.KeyframeTrack = KeyframeTrack;
exports.LOD = LOD;
exports.LatheBufferGeometry = LatheGeometry;
exports.LatheGeometry = LatheGeometry;
exports.Layers = Layers;
exports.LensFlare = LensFlare;
exports.LessDepth = LessDepth;
exports.LessEqualDepth = LessEqualDepth;
exports.LessEqualStencilFunc = LessEqualStencilFunc;
exports.LessStencilFunc = LessStencilFunc;
exports.Light = Light;
exports.LightProbe = LightProbe;
exports.Line = Line;
exports.Line3 = Line3;
exports.LineBasicMaterial = LineBasicMaterial;
exports.LineCurve = LineCurve;
exports.LineCurve3 = LineCurve3;
exports.LineDashedMaterial = LineDashedMaterial;
exports.LineLoop = LineLoop;
exports.LinePieces = LinePieces;
exports.LineSegments = LineSegments;
exports.LineStrip = LineStrip;
exports.LinearEncoding = LinearEncoding;
exports.LinearFilter = LinearFilter;
exports.LinearInterpolant = LinearInterpolant;
exports.LinearMipMapLinearFilter = LinearMipMapLinearFilter;
exports.LinearMipMapNearestFilter = LinearMipMapNearestFilter;
exports.LinearMipmapLinearFilter = LinearMipmapLinearFilter;
exports.LinearMipmapNearestFilter = LinearMipmapNearestFilter;
exports.LinearToneMapping = LinearToneMapping;
exports.Loader = Loader;
exports.LoaderUtils = LoaderUtils;
exports.LoadingManager = LoadingManager;
exports.LogLuvEncoding = LogLuvEncoding;
exports.LoopOnce = LoopOnce;
exports.LoopPingPong = LoopPingPong;
exports.LoopRepeat = LoopRepeat;
exports.LuminanceAlphaFormat = LuminanceAlphaFormat;
exports.LuminanceFormat = LuminanceFormat;
exports.MOUSE = MOUSE;
exports.Material = Material;
exports.MaterialLoader = MaterialLoader;
exports.Math = MathUtils;
exports.MathUtils = MathUtils;
exports.Matrix3 = Matrix3;
exports.Matrix4 = Matrix4;
exports.MaxEquation = MaxEquation;
exports.Mesh = Mesh;
exports.MeshBasicMaterial = MeshBasicMaterial;
exports.MeshDepthMaterial = MeshDepthMaterial;
exports.MeshDistanceMaterial = MeshDistanceMaterial;
exports.MeshFaceMaterial = MeshFaceMaterial;
exports.MeshLambertMaterial = MeshLambertMaterial;
exports.MeshMatcapMaterial = MeshMatcapMaterial;
exports.MeshNormalMaterial = MeshNormalMaterial;
exports.MeshPhongMaterial = MeshPhongMaterial;
exports.MeshPhysicalMaterial = MeshPhysicalMaterial;
exports.MeshStandardMaterial = MeshStandardMaterial;
exports.MeshToonMaterial = MeshToonMaterial;
exports.MinEquation = MinEquation;
exports.MirroredRepeatWrapping = MirroredRepeatWrapping;
exports.MixOperation = MixOperation;
exports.MultiMaterial = MultiMaterial;
exports.MultiplyBlending = MultiplyBlending;
exports.MultiplyOperation = MultiplyOperation;
exports.NearestFilter = NearestFilter;
exports.NearestMipMapLinearFilter = NearestMipMapLinearFilter;
exports.NearestMipMapNearestFilter = NearestMipMapNearestFilter;
exports.NearestMipmapLinearFilter = NearestMipmapLinearFilter;
exports.NearestMipmapNearestFilter = NearestMipmapNearestFilter;
exports.NeverDepth = NeverDepth;
exports.NeverStencilFunc = NeverStencilFunc;
exports.NoBlending = NoBlending;
exports.NoColors = NoColors;
exports.NoToneMapping = NoToneMapping;
exports.NormalAnimationBlendMode = NormalAnimationBlendMode;
exports.NormalBlending = NormalBlending;
exports.NotEqualDepth = NotEqualDepth;
exports.NotEqualStencilFunc = NotEqualStencilFunc;
exports.NumberKeyframeTrack = NumberKeyframeTrack;
exports.Object3D = Object3D;
exports.ObjectLoader = ObjectLoader;
exports.ObjectSpaceNormalMap = ObjectSpaceNormalMap;
exports.OctahedronBufferGeometry = OctahedronGeometry;
exports.OctahedronGeometry = OctahedronGeometry;
exports.OneFactor = OneFactor;
exports.OneMinusDstAlphaFactor = OneMinusDstAlphaFactor;
exports.OneMinusDstColorFactor = OneMinusDstColorFactor;
exports.OneMinusSrcAlphaFactor = OneMinusSrcAlphaFactor;
exports.OneMinusSrcColorFactor = OneMinusSrcColorFactor;
exports.OrthographicCamera = OrthographicCamera;
exports.PCFShadowMap = PCFShadowMap;
exports.PCFSoftShadowMap = PCFSoftShadowMap;
exports.PMREMGenerator = PMREMGenerator;
exports.ParametricGeometry = ParametricGeometry;
exports.Particle = Particle;
exports.ParticleBasicMaterial = ParticleBasicMaterial;
exports.ParticleSystem = ParticleSystem;
exports.ParticleSystemMaterial = ParticleSystemMaterial;
exports.Path = Path;
exports.PerspectiveCamera = PerspectiveCamera;
exports.Plane = Plane;
exports.PlaneBufferGeometry = PlaneGeometry;
exports.PlaneGeometry = PlaneGeometry;
exports.PlaneHelper = PlaneHelper;
exports.PointCloud = PointCloud;
exports.PointCloudMaterial = PointCloudMaterial;
exports.PointLight = PointLight;
exports.PointLightHelper = PointLightHelper;
exports.Points = Points;
exports.PointsMaterial = PointsMaterial;
exports.PolarGridHelper = PolarGridHelper;
exports.PolyhedronBufferGeometry = PolyhedronGeometry;
exports.PolyhedronGeometry = PolyhedronGeometry;
exports.PositionalAudio = PositionalAudio;
exports.PropertyBinding = PropertyBinding;
exports.PropertyMixer = PropertyMixer;
exports.QuadraticBezierCurve = QuadraticBezierCurve;
exports.QuadraticBezierCurve3 = QuadraticBezierCurve3;
exports.Quaternion = Quaternion;
exports.QuaternionKeyframeTrack = QuaternionKeyframeTrack;
exports.QuaternionLinearInterpolant = QuaternionLinearInterpolant;
exports.REVISION = REVISION;
exports.RGBADepthPacking = RGBADepthPacking;
exports.RGBAFormat = RGBAFormat;
exports.RGBAIntegerFormat = RGBAIntegerFormat;
exports.RGBA_ASTC_10x10_Format = RGBA_ASTC_10x10_Format;
exports.RGBA_ASTC_10x5_Format = RGBA_ASTC_10x5_Format;
exports.RGBA_ASTC_10x6_Format = RGBA_ASTC_10x6_Format;
exports.RGBA_ASTC_10x8_Format = RGBA_ASTC_10x8_Format;
exports.RGBA_ASTC_12x10_Format = RGBA_ASTC_12x10_Format;
exports.RGBA_ASTC_12x12_Format = RGBA_ASTC_12x12_Format;
exports.RGBA_ASTC_4x4_Format = RGBA_ASTC_4x4_Format;
exports.RGBA_ASTC_5x4_Format = RGBA_ASTC_5x4_Format;
exports.RGBA_ASTC_5x5_Format = RGBA_ASTC_5x5_Format;
exports.RGBA_ASTC_6x5_Format = RGBA_ASTC_6x5_Format;
exports.RGBA_ASTC_6x6_Format = RGBA_ASTC_6x6_Format;
exports.RGBA_ASTC_8x5_Format = RGBA_ASTC_8x5_Format;
exports.RGBA_ASTC_8x6_Format = RGBA_ASTC_8x6_Format;
exports.RGBA_ASTC_8x8_Format = RGBA_ASTC_8x8_Format;
exports.RGBA_BPTC_Format = RGBA_BPTC_Format;
exports.RGBA_ETC2_EAC_Format = RGBA_ETC2_EAC_Format;
exports.RGBA_PVRTC_2BPPV1_Format = RGBA_PVRTC_2BPPV1_Format;
exports.RGBA_PVRTC_4BPPV1_Format = RGBA_PVRTC_4BPPV1_Format;
exports.RGBA_S3TC_DXT1_Format = RGBA_S3TC_DXT1_Format;
exports.RGBA_S3TC_DXT3_Format = RGBA_S3TC_DXT3_Format;
exports.RGBA_S3TC_DXT5_Format = RGBA_S3TC_DXT5_Format;
exports.RGBDEncoding = RGBDEncoding;
exports.RGBEEncoding = RGBEEncoding;
exports.RGBEFormat = RGBEFormat;
exports.RGBFormat = RGBFormat;
exports.RGBIntegerFormat = RGBIntegerFormat;
exports.RGBM16Encoding = RGBM16Encoding;
exports.RGBM7Encoding = RGBM7Encoding;
exports.RGB_ETC1_Format = RGB_ETC1_Format;
exports.RGB_ETC2_Format = RGB_ETC2_Format;
exports.RGB_PVRTC_2BPPV1_Format = RGB_PVRTC_2BPPV1_Format;
exports.RGB_PVRTC_4BPPV1_Format = RGB_PVRTC_4BPPV1_Format;
exports.RGB_S3TC_DXT1_Format = RGB_S3TC_DXT1_Format;
exports.RGFormat = RGFormat;
exports.RGIntegerFormat = RGIntegerFormat;
exports.RawShaderMaterial = RawShaderMaterial;
exports.Ray = Ray;
exports.Raycaster = Raycaster;
exports.RectAreaLight = RectAreaLight;
exports.RedFormat = RedFormat;
exports.RedIntegerFormat = RedIntegerFormat;
exports.ReinhardToneMapping = ReinhardToneMapping;
exports.RepeatWrapping = RepeatWrapping;
exports.ReplaceStencilOp = ReplaceStencilOp;
exports.ReverseSubtractEquation = ReverseSubtractEquation;
exports.RingBufferGeometry = RingGeometry;
exports.RingGeometry = RingGeometry;
exports.SRGB8_ALPHA8_ASTC_10x10_Format = SRGB8_ALPHA8_ASTC_10x10_Format;
exports.SRGB8_ALPHA8_ASTC_10x5_Format = SRGB8_ALPHA8_ASTC_10x5_Format;
exports.SRGB8_ALPHA8_ASTC_10x6_Format = SRGB8_ALPHA8_ASTC_10x6_Format;
exports.SRGB8_ALPHA8_ASTC_10x8_Format = SRGB8_ALPHA8_ASTC_10x8_Format;
exports.SRGB8_ALPHA8_ASTC_12x10_Format = SRGB8_ALPHA8_ASTC_12x10_Format;
exports.SRGB8_ALPHA8_ASTC_12x12_Format = SRGB8_ALPHA8_ASTC_12x12_Format;
exports.SRGB8_ALPHA8_ASTC_4x4_Format = SRGB8_ALPHA8_ASTC_4x4_Format;
exports.SRGB8_ALPHA8_ASTC_5x4_Format = SRGB8_ALPHA8_ASTC_5x4_Format;
exports.SRGB8_ALPHA8_ASTC_5x5_Format = SRGB8_ALPHA8_ASTC_5x5_Format;
exports.SRGB8_ALPHA8_ASTC_6x5_Format = SRGB8_ALPHA8_ASTC_6x5_Format;
exports.SRGB8_ALPHA8_ASTC_6x6_Format = SRGB8_ALPHA8_ASTC_6x6_Format;
exports.SRGB8_ALPHA8_ASTC_8x5_Format = SRGB8_ALPHA8_ASTC_8x5_Format;
exports.SRGB8_ALPHA8_ASTC_8x6_Format = SRGB8_ALPHA8_ASTC_8x6_Format;
exports.SRGB8_ALPHA8_ASTC_8x8_Format = SRGB8_ALPHA8_ASTC_8x8_Format;
exports.Scene = Scene;
exports.SceneUtils = SceneUtils;
exports.ShaderChunk = ShaderChunk;
exports.ShaderLib = ShaderLib;
exports.ShaderMaterial = ShaderMaterial;
exports.ShadowMaterial = ShadowMaterial;
exports.Shape = Shape;
exports.ShapeBufferGeometry = ShapeGeometry;
exports.ShapeGeometry = ShapeGeometry;
exports.ShapePath = ShapePath;
exports.ShapeUtils = ShapeUtils;
exports.ShortType = ShortType;
exports.Skeleton = Skeleton;
exports.SkeletonHelper = SkeletonHelper;
exports.SkinnedMesh = SkinnedMesh;
exports.SmoothShading = SmoothShading;
exports.Sphere = Sphere;
exports.SphereBufferGeometry = SphereGeometry;
exports.SphereGeometry = SphereGeometry;
exports.Spherical = Spherical;
exports.SphericalHarmonics3 = SphericalHarmonics3;
exports.SplineCurve = SplineCurve;
exports.SpotLight = SpotLight;
exports.SpotLightHelper = SpotLightHelper;
exports.Sprite = Sprite;
exports.SpriteMaterial = SpriteMaterial;
exports.SrcAlphaFactor = SrcAlphaFactor;
exports.SrcAlphaSaturateFactor = SrcAlphaSaturateFactor;
exports.SrcColorFactor = SrcColorFactor;
exports.StaticCopyUsage = StaticCopyUsage;
exports.StaticDrawUsage = StaticDrawUsage;
exports.StaticReadUsage = StaticReadUsage;
exports.StereoCamera = StereoCamera;
exports.StreamCopyUsage = StreamCopyUsage;
exports.StreamDrawUsage = StreamDrawUsage;
exports.StreamReadUsage = StreamReadUsage;
exports.StringKeyframeTrack = StringKeyframeTrack;
exports.SubtractEquation = SubtractEquation;
exports.SubtractiveBlending = SubtractiveBlending;
exports.TOUCH = TOUCH;
exports.TangentSpaceNormalMap = TangentSpaceNormalMap;
exports.TetrahedronBufferGeometry = TetrahedronGeometry;
exports.TetrahedronGeometry = TetrahedronGeometry;
exports.TextGeometry = TextGeometry;
exports.Texture = Texture;
exports.TextureLoader = TextureLoader;
exports.TorusBufferGeometry = TorusGeometry;
exports.TorusGeometry = TorusGeometry;
exports.TorusKnotBufferGeometry = TorusKnotGeometry;
exports.TorusKnotGeometry = TorusKnotGeometry;
exports.Triangle = Triangle;
exports.TriangleFanDrawMode = TriangleFanDrawMode;
exports.TriangleStripDrawMode = TriangleStripDrawMode;
exports.TrianglesDrawMode = TrianglesDrawMode;
exports.TubeBufferGeometry = TubeGeometry;
exports.TubeGeometry = TubeGeometry;
exports.UVMapping = UVMapping;
exports.Uint16Attribute = Uint16Attribute;
exports.Uint16BufferAttribute = Uint16BufferAttribute;
exports.Uint32Attribute = Uint32Attribute;
exports.Uint32BufferAttribute = Uint32BufferAttribute;
exports.Uint8Attribute = Uint8Attribute;
exports.Uint8BufferAttribute = Uint8BufferAttribute;
exports.Uint8ClampedAttribute = Uint8ClampedAttribute;
exports.Uint8ClampedBufferAttribute = Uint8ClampedBufferAttribute;
exports.Uniform = Uniform;
exports.UniformsLib = UniformsLib;
exports.UniformsUtils = UniformsUtils;
exports.UnsignedByteType = UnsignedByteType;
exports.UnsignedInt248Type = UnsignedInt248Type;
exports.UnsignedIntType = UnsignedIntType;
exports.UnsignedShort4444Type = UnsignedShort4444Type;
exports.UnsignedShort5551Type = UnsignedShort5551Type;
exports.UnsignedShort565Type = UnsignedShort565Type;
exports.UnsignedShortType = UnsignedShortType;
exports.VSMShadowMap = VSMShadowMap;
exports.Vector2 = Vector2;
exports.Vector3 = Vector3;
exports.Vector4 = Vector4;
exports.VectorKeyframeTrack = VectorKeyframeTrack;
exports.Vertex = Vertex;
exports.VertexColors = VertexColors;
exports.VideoTexture = VideoTexture;
exports.WebGL1Renderer = WebGL1Renderer;
exports.WebGLCubeRenderTarget = WebGLCubeRenderTarget;
exports.WebGLMultipleRenderTargets = WebGLMultipleRenderTargets;
exports.WebGLMultisampleRenderTarget = WebGLMultisampleRenderTarget;
exports.WebGLRenderTarget = WebGLRenderTarget;
exports.WebGLRenderTargetCube = WebGLRenderTargetCube;
exports.WebGLRenderer = WebGLRenderer;
exports.WebGLUtils = WebGLUtils;
exports.WireframeGeometry = WireframeGeometry;
exports.WireframeHelper = WireframeHelper;
exports.WrapAroundEnding = WrapAroundEnding;
exports.XHRLoader = XHRLoader;
exports.ZeroCurvatureEnding = ZeroCurvatureEnding;
exports.ZeroFactor = ZeroFactor;
exports.ZeroSlopeEnding = ZeroSlopeEnding;
exports.ZeroStencilOp = ZeroStencilOp;
exports.sRGBEncoding = sRGBEncoding;
Object.defineProperty(exports, '__esModule', { value: true });
})));