36302 lines
1.1 MiB
36302 lines
1.1 MiB
/**
|
|
* @license
|
|
* Copyright 2010-2021 Three.js Authors
|
|
* SPDX-License-Identifier: MIT
|
|
*/
|
|
(function (global, factory) {
|
|
typeof exports === 'object' && typeof module !== 'undefined' ? factory(exports) :
|
|
typeof define === 'function' && define.amd ? define(['exports'], factory) :
|
|
(global = typeof globalThis !== 'undefined' ? globalThis : global || self, factory(global.THREE = {}));
|
|
}(this, (function (exports) { 'use strict';
|
|
|
|
const REVISION = '134dev';
|
|
const MOUSE = {
|
|
LEFT: 0,
|
|
MIDDLE: 1,
|
|
RIGHT: 2,
|
|
ROTATE: 0,
|
|
DOLLY: 1,
|
|
PAN: 2
|
|
};
|
|
const TOUCH = {
|
|
ROTATE: 0,
|
|
PAN: 1,
|
|
DOLLY_PAN: 2,
|
|
DOLLY_ROTATE: 3
|
|
};
|
|
const CullFaceNone = 0;
|
|
const CullFaceBack = 1;
|
|
const CullFaceFront = 2;
|
|
const CullFaceFrontBack = 3;
|
|
const BasicShadowMap = 0;
|
|
const PCFShadowMap = 1;
|
|
const PCFSoftShadowMap = 2;
|
|
const VSMShadowMap = 3;
|
|
const FrontSide = 0;
|
|
const BackSide = 1;
|
|
const DoubleSide = 2;
|
|
const FlatShading = 1;
|
|
const SmoothShading = 2;
|
|
const NoBlending = 0;
|
|
const NormalBlending = 1;
|
|
const AdditiveBlending = 2;
|
|
const SubtractiveBlending = 3;
|
|
const MultiplyBlending = 4;
|
|
const CustomBlending = 5;
|
|
const AddEquation = 100;
|
|
const SubtractEquation = 101;
|
|
const ReverseSubtractEquation = 102;
|
|
const MinEquation = 103;
|
|
const MaxEquation = 104;
|
|
const ZeroFactor = 200;
|
|
const OneFactor = 201;
|
|
const SrcColorFactor = 202;
|
|
const OneMinusSrcColorFactor = 203;
|
|
const SrcAlphaFactor = 204;
|
|
const OneMinusSrcAlphaFactor = 205;
|
|
const DstAlphaFactor = 206;
|
|
const OneMinusDstAlphaFactor = 207;
|
|
const DstColorFactor = 208;
|
|
const OneMinusDstColorFactor = 209;
|
|
const SrcAlphaSaturateFactor = 210;
|
|
const NeverDepth = 0;
|
|
const AlwaysDepth = 1;
|
|
const LessDepth = 2;
|
|
const LessEqualDepth = 3;
|
|
const EqualDepth = 4;
|
|
const GreaterEqualDepth = 5;
|
|
const GreaterDepth = 6;
|
|
const NotEqualDepth = 7;
|
|
const MultiplyOperation = 0;
|
|
const MixOperation = 1;
|
|
const AddOperation = 2;
|
|
const NoToneMapping = 0;
|
|
const LinearToneMapping = 1;
|
|
const ReinhardToneMapping = 2;
|
|
const CineonToneMapping = 3;
|
|
const ACESFilmicToneMapping = 4;
|
|
const CustomToneMapping = 5;
|
|
const UVMapping = 300;
|
|
const CubeReflectionMapping = 301;
|
|
const CubeRefractionMapping = 302;
|
|
const EquirectangularReflectionMapping = 303;
|
|
const EquirectangularRefractionMapping = 304;
|
|
const CubeUVReflectionMapping = 306;
|
|
const CubeUVRefractionMapping = 307;
|
|
const RepeatWrapping = 1000;
|
|
const ClampToEdgeWrapping = 1001;
|
|
const MirroredRepeatWrapping = 1002;
|
|
const NearestFilter = 1003;
|
|
const NearestMipmapNearestFilter = 1004;
|
|
const NearestMipMapNearestFilter = 1004;
|
|
const NearestMipmapLinearFilter = 1005;
|
|
const NearestMipMapLinearFilter = 1005;
|
|
const LinearFilter = 1006;
|
|
const LinearMipmapNearestFilter = 1007;
|
|
const LinearMipMapNearestFilter = 1007;
|
|
const LinearMipmapLinearFilter = 1008;
|
|
const LinearMipMapLinearFilter = 1008;
|
|
const UnsignedByteType = 1009;
|
|
const ByteType = 1010;
|
|
const ShortType = 1011;
|
|
const UnsignedShortType = 1012;
|
|
const IntType = 1013;
|
|
const UnsignedIntType = 1014;
|
|
const FloatType = 1015;
|
|
const HalfFloatType = 1016;
|
|
const UnsignedShort4444Type = 1017;
|
|
const UnsignedShort5551Type = 1018;
|
|
const UnsignedShort565Type = 1019;
|
|
const UnsignedInt248Type = 1020;
|
|
const AlphaFormat = 1021;
|
|
const RGBFormat = 1022;
|
|
const RGBAFormat = 1023;
|
|
const LuminanceFormat = 1024;
|
|
const LuminanceAlphaFormat = 1025;
|
|
const RGBEFormat = RGBAFormat;
|
|
const DepthFormat = 1026;
|
|
const DepthStencilFormat = 1027;
|
|
const RedFormat = 1028;
|
|
const RedIntegerFormat = 1029;
|
|
const RGFormat = 1030;
|
|
const RGIntegerFormat = 1031;
|
|
const RGBIntegerFormat = 1032;
|
|
const RGBAIntegerFormat = 1033;
|
|
const RGB_S3TC_DXT1_Format = 33776;
|
|
const RGBA_S3TC_DXT1_Format = 33777;
|
|
const RGBA_S3TC_DXT3_Format = 33778;
|
|
const RGBA_S3TC_DXT5_Format = 33779;
|
|
const RGB_PVRTC_4BPPV1_Format = 35840;
|
|
const RGB_PVRTC_2BPPV1_Format = 35841;
|
|
const RGBA_PVRTC_4BPPV1_Format = 35842;
|
|
const RGBA_PVRTC_2BPPV1_Format = 35843;
|
|
const RGB_ETC1_Format = 36196;
|
|
const RGB_ETC2_Format = 37492;
|
|
const RGBA_ETC2_EAC_Format = 37496;
|
|
const RGBA_ASTC_4x4_Format = 37808;
|
|
const RGBA_ASTC_5x4_Format = 37809;
|
|
const RGBA_ASTC_5x5_Format = 37810;
|
|
const RGBA_ASTC_6x5_Format = 37811;
|
|
const RGBA_ASTC_6x6_Format = 37812;
|
|
const RGBA_ASTC_8x5_Format = 37813;
|
|
const RGBA_ASTC_8x6_Format = 37814;
|
|
const RGBA_ASTC_8x8_Format = 37815;
|
|
const RGBA_ASTC_10x5_Format = 37816;
|
|
const RGBA_ASTC_10x6_Format = 37817;
|
|
const RGBA_ASTC_10x8_Format = 37818;
|
|
const RGBA_ASTC_10x10_Format = 37819;
|
|
const RGBA_ASTC_12x10_Format = 37820;
|
|
const RGBA_ASTC_12x12_Format = 37821;
|
|
const RGBA_BPTC_Format = 36492;
|
|
const SRGB8_ALPHA8_ASTC_4x4_Format = 37840;
|
|
const SRGB8_ALPHA8_ASTC_5x4_Format = 37841;
|
|
const SRGB8_ALPHA8_ASTC_5x5_Format = 37842;
|
|
const SRGB8_ALPHA8_ASTC_6x5_Format = 37843;
|
|
const SRGB8_ALPHA8_ASTC_6x6_Format = 37844;
|
|
const SRGB8_ALPHA8_ASTC_8x5_Format = 37845;
|
|
const SRGB8_ALPHA8_ASTC_8x6_Format = 37846;
|
|
const SRGB8_ALPHA8_ASTC_8x8_Format = 37847;
|
|
const SRGB8_ALPHA8_ASTC_10x5_Format = 37848;
|
|
const SRGB8_ALPHA8_ASTC_10x6_Format = 37849;
|
|
const SRGB8_ALPHA8_ASTC_10x8_Format = 37850;
|
|
const SRGB8_ALPHA8_ASTC_10x10_Format = 37851;
|
|
const SRGB8_ALPHA8_ASTC_12x10_Format = 37852;
|
|
const SRGB8_ALPHA8_ASTC_12x12_Format = 37853;
|
|
const LoopOnce = 2200;
|
|
const LoopRepeat = 2201;
|
|
const LoopPingPong = 2202;
|
|
const InterpolateDiscrete = 2300;
|
|
const InterpolateLinear = 2301;
|
|
const InterpolateSmooth = 2302;
|
|
const ZeroCurvatureEnding = 2400;
|
|
const ZeroSlopeEnding = 2401;
|
|
const WrapAroundEnding = 2402;
|
|
const NormalAnimationBlendMode = 2500;
|
|
const AdditiveAnimationBlendMode = 2501;
|
|
const TrianglesDrawMode = 0;
|
|
const TriangleStripDrawMode = 1;
|
|
const TriangleFanDrawMode = 2;
|
|
const LinearEncoding = 3000;
|
|
const sRGBEncoding = 3001;
|
|
const GammaEncoding = 3007;
|
|
const RGBEEncoding = 3002;
|
|
const LogLuvEncoding = 3003;
|
|
const RGBM7Encoding = 3004;
|
|
const RGBM16Encoding = 3005;
|
|
const RGBDEncoding = 3006;
|
|
const BasicDepthPacking = 3200;
|
|
const RGBADepthPacking = 3201;
|
|
const TangentSpaceNormalMap = 0;
|
|
const ObjectSpaceNormalMap = 1;
|
|
const ZeroStencilOp = 0;
|
|
const KeepStencilOp = 7680;
|
|
const ReplaceStencilOp = 7681;
|
|
const IncrementStencilOp = 7682;
|
|
const DecrementStencilOp = 7683;
|
|
const IncrementWrapStencilOp = 34055;
|
|
const DecrementWrapStencilOp = 34056;
|
|
const InvertStencilOp = 5386;
|
|
const NeverStencilFunc = 512;
|
|
const LessStencilFunc = 513;
|
|
const EqualStencilFunc = 514;
|
|
const LessEqualStencilFunc = 515;
|
|
const GreaterStencilFunc = 516;
|
|
const NotEqualStencilFunc = 517;
|
|
const GreaterEqualStencilFunc = 518;
|
|
const AlwaysStencilFunc = 519;
|
|
const StaticDrawUsage = 35044;
|
|
const DynamicDrawUsage = 35048;
|
|
const StreamDrawUsage = 35040;
|
|
const StaticReadUsage = 35045;
|
|
const DynamicReadUsage = 35049;
|
|
const StreamReadUsage = 35041;
|
|
const StaticCopyUsage = 35046;
|
|
const DynamicCopyUsage = 35050;
|
|
const StreamCopyUsage = 35042;
|
|
const GLSL1 = '100';
|
|
const GLSL3 = '300 es';
|
|
|
|
/**
|
|
* https://github.com/mrdoob/eventdispatcher.js/
|
|
*/
|
|
class EventDispatcher {
|
|
addEventListener(type, listener) {
|
|
if (this._listeners === undefined) this._listeners = {};
|
|
const listeners = this._listeners;
|
|
|
|
if (listeners[type] === undefined) {
|
|
listeners[type] = [];
|
|
}
|
|
|
|
if (listeners[type].indexOf(listener) === -1) {
|
|
listeners[type].push(listener);
|
|
}
|
|
}
|
|
|
|
hasEventListener(type, listener) {
|
|
if (this._listeners === undefined) return false;
|
|
const listeners = this._listeners;
|
|
return listeners[type] !== undefined && listeners[type].indexOf(listener) !== -1;
|
|
}
|
|
|
|
removeEventListener(type, listener) {
|
|
if (this._listeners === undefined) return;
|
|
const listeners = this._listeners;
|
|
const listenerArray = listeners[type];
|
|
|
|
if (listenerArray !== undefined) {
|
|
const index = listenerArray.indexOf(listener);
|
|
|
|
if (index !== -1) {
|
|
listenerArray.splice(index, 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
dispatchEvent(event) {
|
|
if (this._listeners === undefined) return;
|
|
const listeners = this._listeners;
|
|
const listenerArray = listeners[event.type];
|
|
|
|
if (listenerArray !== undefined) {
|
|
event.target = this; // Make a copy, in case listeners are removed while iterating.
|
|
|
|
const array = listenerArray.slice(0);
|
|
|
|
for (let i = 0, l = array.length; i < l; i++) {
|
|
array[i].call(this, event);
|
|
}
|
|
|
|
event.target = null;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
let _seed = 1234567;
|
|
const DEG2RAD = Math.PI / 180;
|
|
const RAD2DEG = 180 / Math.PI; //
|
|
|
|
const _lut = [];
|
|
|
|
for (let i = 0; i < 256; i++) {
|
|
_lut[i] = (i < 16 ? '0' : '') + i.toString(16);
|
|
}
|
|
|
|
const hasRandomUUID = typeof crypto !== 'undefined' && 'randomUUID' in crypto;
|
|
|
|
function generateUUID() {
|
|
if (hasRandomUUID) {
|
|
return crypto.randomUUID().toUpperCase();
|
|
} // TODO Remove this code when crypto.randomUUID() is available everywhere
|
|
// http://stackoverflow.com/questions/105034/how-to-create-a-guid-uuid-in-javascript/21963136#21963136
|
|
|
|
|
|
const d0 = Math.random() * 0xffffffff | 0;
|
|
const d1 = Math.random() * 0xffffffff | 0;
|
|
const d2 = Math.random() * 0xffffffff | 0;
|
|
const d3 = Math.random() * 0xffffffff | 0;
|
|
const uuid = _lut[d0 & 0xff] + _lut[d0 >> 8 & 0xff] + _lut[d0 >> 16 & 0xff] + _lut[d0 >> 24 & 0xff] + '-' + _lut[d1 & 0xff] + _lut[d1 >> 8 & 0xff] + '-' + _lut[d1 >> 16 & 0x0f | 0x40] + _lut[d1 >> 24 & 0xff] + '-' + _lut[d2 & 0x3f | 0x80] + _lut[d2 >> 8 & 0xff] + '-' + _lut[d2 >> 16 & 0xff] + _lut[d2 >> 24 & 0xff] + _lut[d3 & 0xff] + _lut[d3 >> 8 & 0xff] + _lut[d3 >> 16 & 0xff] + _lut[d3 >> 24 & 0xff]; // .toUpperCase() here flattens concatenated strings to save heap memory space.
|
|
|
|
return uuid.toUpperCase();
|
|
}
|
|
|
|
function clamp(value, min, max) {
|
|
return Math.max(min, Math.min(max, value));
|
|
} // compute euclidian modulo of m % n
|
|
// https://en.wikipedia.org/wiki/Modulo_operation
|
|
|
|
|
|
function euclideanModulo(n, m) {
|
|
return (n % m + m) % m;
|
|
} // Linear mapping from range <a1, a2> to range <b1, b2>
|
|
|
|
|
|
function mapLinear(x, a1, a2, b1, b2) {
|
|
return b1 + (x - a1) * (b2 - b1) / (a2 - a1);
|
|
} // https://www.gamedev.net/tutorials/programming/general-and-gameplay-programming/inverse-lerp-a-super-useful-yet-often-overlooked-function-r5230/
|
|
|
|
|
|
function inverseLerp(x, y, value) {
|
|
if (x !== y) {
|
|
return (value - x) / (y - x);
|
|
} else {
|
|
return 0;
|
|
}
|
|
} // https://en.wikipedia.org/wiki/Linear_interpolation
|
|
|
|
|
|
function lerp(x, y, t) {
|
|
return (1 - t) * x + t * y;
|
|
} // http://www.rorydriscoll.com/2016/03/07/frame-rate-independent-damping-using-lerp/
|
|
|
|
|
|
function damp(x, y, lambda, dt) {
|
|
return lerp(x, y, 1 - Math.exp(-lambda * dt));
|
|
} // https://www.desmos.com/calculator/vcsjnyz7x4
|
|
|
|
|
|
function pingpong(x, length = 1) {
|
|
return length - Math.abs(euclideanModulo(x, length * 2) - length);
|
|
} // http://en.wikipedia.org/wiki/Smoothstep
|
|
|
|
|
|
function smoothstep(x, min, max) {
|
|
if (x <= min) return 0;
|
|
if (x >= max) return 1;
|
|
x = (x - min) / (max - min);
|
|
return x * x * (3 - 2 * x);
|
|
}
|
|
|
|
function smootherstep(x, min, max) {
|
|
if (x <= min) return 0;
|
|
if (x >= max) return 1;
|
|
x = (x - min) / (max - min);
|
|
return x * x * x * (x * (x * 6 - 15) + 10);
|
|
} // Random integer from <low, high> interval
|
|
|
|
|
|
function randInt(low, high) {
|
|
return low + Math.floor(Math.random() * (high - low + 1));
|
|
} // Random float from <low, high> interval
|
|
|
|
|
|
function randFloat(low, high) {
|
|
return low + Math.random() * (high - low);
|
|
} // Random float from <-range/2, range/2> interval
|
|
|
|
|
|
function randFloatSpread(range) {
|
|
return range * (0.5 - Math.random());
|
|
} // Deterministic pseudo-random float in the interval [ 0, 1 ]
|
|
|
|
|
|
function seededRandom(s) {
|
|
if (s !== undefined) _seed = s % 2147483647; // Park-Miller algorithm
|
|
|
|
_seed = _seed * 16807 % 2147483647;
|
|
return (_seed - 1) / 2147483646;
|
|
}
|
|
|
|
function degToRad(degrees) {
|
|
return degrees * DEG2RAD;
|
|
}
|
|
|
|
function radToDeg(radians) {
|
|
return radians * RAD2DEG;
|
|
}
|
|
|
|
function isPowerOfTwo(value) {
|
|
return (value & value - 1) === 0 && value !== 0;
|
|
}
|
|
|
|
function ceilPowerOfTwo(value) {
|
|
return Math.pow(2, Math.ceil(Math.log(value) / Math.LN2));
|
|
}
|
|
|
|
function floorPowerOfTwo(value) {
|
|
return Math.pow(2, Math.floor(Math.log(value) / Math.LN2));
|
|
}
|
|
|
|
function setQuaternionFromProperEuler(q, a, b, c, order) {
|
|
// Intrinsic Proper Euler Angles - see https://en.wikipedia.org/wiki/Euler_angles
|
|
// rotations are applied to the axes in the order specified by 'order'
|
|
// rotation by angle 'a' is applied first, then by angle 'b', then by angle 'c'
|
|
// angles are in radians
|
|
const cos = Math.cos;
|
|
const sin = Math.sin;
|
|
const c2 = cos(b / 2);
|
|
const s2 = sin(b / 2);
|
|
const c13 = cos((a + c) / 2);
|
|
const s13 = sin((a + c) / 2);
|
|
const c1_3 = cos((a - c) / 2);
|
|
const s1_3 = sin((a - c) / 2);
|
|
const c3_1 = cos((c - a) / 2);
|
|
const s3_1 = sin((c - a) / 2);
|
|
|
|
switch (order) {
|
|
case 'XYX':
|
|
q.set(c2 * s13, s2 * c1_3, s2 * s1_3, c2 * c13);
|
|
break;
|
|
|
|
case 'YZY':
|
|
q.set(s2 * s1_3, c2 * s13, s2 * c1_3, c2 * c13);
|
|
break;
|
|
|
|
case 'ZXZ':
|
|
q.set(s2 * c1_3, s2 * s1_3, c2 * s13, c2 * c13);
|
|
break;
|
|
|
|
case 'XZX':
|
|
q.set(c2 * s13, s2 * s3_1, s2 * c3_1, c2 * c13);
|
|
break;
|
|
|
|
case 'YXY':
|
|
q.set(s2 * c3_1, c2 * s13, s2 * s3_1, c2 * c13);
|
|
break;
|
|
|
|
case 'ZYZ':
|
|
q.set(s2 * s3_1, s2 * c3_1, c2 * s13, c2 * c13);
|
|
break;
|
|
|
|
default:
|
|
console.warn('THREE.MathUtils: .setQuaternionFromProperEuler() encountered an unknown order: ' + order);
|
|
}
|
|
}
|
|
|
|
var MathUtils = /*#__PURE__*/Object.freeze({
|
|
__proto__: null,
|
|
DEG2RAD: DEG2RAD,
|
|
RAD2DEG: RAD2DEG,
|
|
generateUUID: generateUUID,
|
|
clamp: clamp,
|
|
euclideanModulo: euclideanModulo,
|
|
mapLinear: mapLinear,
|
|
inverseLerp: inverseLerp,
|
|
lerp: lerp,
|
|
damp: damp,
|
|
pingpong: pingpong,
|
|
smoothstep: smoothstep,
|
|
smootherstep: smootherstep,
|
|
randInt: randInt,
|
|
randFloat: randFloat,
|
|
randFloatSpread: randFloatSpread,
|
|
seededRandom: seededRandom,
|
|
degToRad: degToRad,
|
|
radToDeg: radToDeg,
|
|
isPowerOfTwo: isPowerOfTwo,
|
|
ceilPowerOfTwo: ceilPowerOfTwo,
|
|
floorPowerOfTwo: floorPowerOfTwo,
|
|
setQuaternionFromProperEuler: setQuaternionFromProperEuler
|
|
});
|
|
|
|
class Vector2 {
|
|
constructor(x = 0, y = 0) {
|
|
this.x = x;
|
|
this.y = y;
|
|
}
|
|
|
|
get width() {
|
|
return this.x;
|
|
}
|
|
|
|
set width(value) {
|
|
this.x = value;
|
|
}
|
|
|
|
get height() {
|
|
return this.y;
|
|
}
|
|
|
|
set height(value) {
|
|
this.y = value;
|
|
}
|
|
|
|
set(x, y) {
|
|
this.x = x;
|
|
this.y = y;
|
|
return this;
|
|
}
|
|
|
|
setScalar(scalar) {
|
|
this.x = scalar;
|
|
this.y = scalar;
|
|
return this;
|
|
}
|
|
|
|
setX(x) {
|
|
this.x = x;
|
|
return this;
|
|
}
|
|
|
|
setY(y) {
|
|
this.y = y;
|
|
return this;
|
|
}
|
|
|
|
setComponent(index, value) {
|
|
switch (index) {
|
|
case 0:
|
|
this.x = value;
|
|
break;
|
|
|
|
case 1:
|
|
this.y = value;
|
|
break;
|
|
|
|
default:
|
|
throw new Error('index is out of range: ' + index);
|
|
}
|
|
|
|
return this;
|
|
}
|
|
|
|
getComponent(index) {
|
|
switch (index) {
|
|
case 0:
|
|
return this.x;
|
|
|
|
case 1:
|
|
return this.y;
|
|
|
|
default:
|
|
throw new Error('index is out of range: ' + index);
|
|
}
|
|
}
|
|
|
|
clone() {
|
|
return new this.constructor(this.x, this.y);
|
|
}
|
|
|
|
copy(v) {
|
|
this.x = v.x;
|
|
this.y = v.y;
|
|
return this;
|
|
}
|
|
|
|
add(v, w) {
|
|
if (w !== undefined) {
|
|
console.warn('THREE.Vector2: .add() now only accepts one argument. Use .addVectors( a, b ) instead.');
|
|
return this.addVectors(v, w);
|
|
}
|
|
|
|
this.x += v.x;
|
|
this.y += v.y;
|
|
return this;
|
|
}
|
|
|
|
addScalar(s) {
|
|
this.x += s;
|
|
this.y += s;
|
|
return this;
|
|
}
|
|
|
|
addVectors(a, b) {
|
|
this.x = a.x + b.x;
|
|
this.y = a.y + b.y;
|
|
return this;
|
|
}
|
|
|
|
addScaledVector(v, s) {
|
|
this.x += v.x * s;
|
|
this.y += v.y * s;
|
|
return this;
|
|
}
|
|
|
|
sub(v, w) {
|
|
if (w !== undefined) {
|
|
console.warn('THREE.Vector2: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.');
|
|
return this.subVectors(v, w);
|
|
}
|
|
|
|
this.x -= v.x;
|
|
this.y -= v.y;
|
|
return this;
|
|
}
|
|
|
|
subScalar(s) {
|
|
this.x -= s;
|
|
this.y -= s;
|
|
return this;
|
|
}
|
|
|
|
subVectors(a, b) {
|
|
this.x = a.x - b.x;
|
|
this.y = a.y - b.y;
|
|
return this;
|
|
}
|
|
|
|
multiply(v) {
|
|
this.x *= v.x;
|
|
this.y *= v.y;
|
|
return this;
|
|
}
|
|
|
|
multiplyScalar(scalar) {
|
|
this.x *= scalar;
|
|
this.y *= scalar;
|
|
return this;
|
|
}
|
|
|
|
divide(v) {
|
|
this.x /= v.x;
|
|
this.y /= v.y;
|
|
return this;
|
|
}
|
|
|
|
divideScalar(scalar) {
|
|
return this.multiplyScalar(1 / scalar);
|
|
}
|
|
|
|
applyMatrix3(m) {
|
|
const x = this.x,
|
|
y = this.y;
|
|
const e = m.elements;
|
|
this.x = e[0] * x + e[3] * y + e[6];
|
|
this.y = e[1] * x + e[4] * y + e[7];
|
|
return this;
|
|
}
|
|
|
|
min(v) {
|
|
this.x = Math.min(this.x, v.x);
|
|
this.y = Math.min(this.y, v.y);
|
|
return this;
|
|
}
|
|
|
|
max(v) {
|
|
this.x = Math.max(this.x, v.x);
|
|
this.y = Math.max(this.y, v.y);
|
|
return this;
|
|
}
|
|
|
|
clamp(min, max) {
|
|
// assumes min < max, componentwise
|
|
this.x = Math.max(min.x, Math.min(max.x, this.x));
|
|
this.y = Math.max(min.y, Math.min(max.y, this.y));
|
|
return this;
|
|
}
|
|
|
|
clampScalar(minVal, maxVal) {
|
|
this.x = Math.max(minVal, Math.min(maxVal, this.x));
|
|
this.y = Math.max(minVal, Math.min(maxVal, this.y));
|
|
return this;
|
|
}
|
|
|
|
clampLength(min, max) {
|
|
const length = this.length();
|
|
return this.divideScalar(length || 1).multiplyScalar(Math.max(min, Math.min(max, length)));
|
|
}
|
|
|
|
floor() {
|
|
this.x = Math.floor(this.x);
|
|
this.y = Math.floor(this.y);
|
|
return this;
|
|
}
|
|
|
|
ceil() {
|
|
this.x = Math.ceil(this.x);
|
|
this.y = Math.ceil(this.y);
|
|
return this;
|
|
}
|
|
|
|
round() {
|
|
this.x = Math.round(this.x);
|
|
this.y = Math.round(this.y);
|
|
return this;
|
|
}
|
|
|
|
roundToZero() {
|
|
this.x = this.x < 0 ? Math.ceil(this.x) : Math.floor(this.x);
|
|
this.y = this.y < 0 ? Math.ceil(this.y) : Math.floor(this.y);
|
|
return this;
|
|
}
|
|
|
|
negate() {
|
|
this.x = -this.x;
|
|
this.y = -this.y;
|
|
return this;
|
|
}
|
|
|
|
dot(v) {
|
|
return this.x * v.x + this.y * v.y;
|
|
}
|
|
|
|
cross(v) {
|
|
return this.x * v.y - this.y * v.x;
|
|
}
|
|
|
|
lengthSq() {
|
|
return this.x * this.x + this.y * this.y;
|
|
}
|
|
|
|
length() {
|
|
return Math.sqrt(this.x * this.x + this.y * this.y);
|
|
}
|
|
|
|
manhattanLength() {
|
|
return Math.abs(this.x) + Math.abs(this.y);
|
|
}
|
|
|
|
normalize() {
|
|
return this.divideScalar(this.length() || 1);
|
|
}
|
|
|
|
angle() {
|
|
// computes the angle in radians with respect to the positive x-axis
|
|
const angle = Math.atan2(-this.y, -this.x) + Math.PI;
|
|
return angle;
|
|
}
|
|
|
|
distanceTo(v) {
|
|
return Math.sqrt(this.distanceToSquared(v));
|
|
}
|
|
|
|
distanceToSquared(v) {
|
|
const dx = this.x - v.x,
|
|
dy = this.y - v.y;
|
|
return dx * dx + dy * dy;
|
|
}
|
|
|
|
manhattanDistanceTo(v) {
|
|
return Math.abs(this.x - v.x) + Math.abs(this.y - v.y);
|
|
}
|
|
|
|
setLength(length) {
|
|
return this.normalize().multiplyScalar(length);
|
|
}
|
|
|
|
lerp(v, alpha) {
|
|
this.x += (v.x - this.x) * alpha;
|
|
this.y += (v.y - this.y) * alpha;
|
|
return this;
|
|
}
|
|
|
|
lerpVectors(v1, v2, alpha) {
|
|
this.x = v1.x + (v2.x - v1.x) * alpha;
|
|
this.y = v1.y + (v2.y - v1.y) * alpha;
|
|
return this;
|
|
}
|
|
|
|
equals(v) {
|
|
return v.x === this.x && v.y === this.y;
|
|
}
|
|
|
|
fromArray(array, offset = 0) {
|
|
this.x = array[offset];
|
|
this.y = array[offset + 1];
|
|
return this;
|
|
}
|
|
|
|
toArray(array = [], offset = 0) {
|
|
array[offset] = this.x;
|
|
array[offset + 1] = this.y;
|
|
return array;
|
|
}
|
|
|
|
fromBufferAttribute(attribute, index, offset) {
|
|
if (offset !== undefined) {
|
|
console.warn('THREE.Vector2: offset has been removed from .fromBufferAttribute().');
|
|
}
|
|
|
|
this.x = attribute.getX(index);
|
|
this.y = attribute.getY(index);
|
|
return this;
|
|
}
|
|
|
|
rotateAround(center, angle) {
|
|
const c = Math.cos(angle),
|
|
s = Math.sin(angle);
|
|
const x = this.x - center.x;
|
|
const y = this.y - center.y;
|
|
this.x = x * c - y * s + center.x;
|
|
this.y = x * s + y * c + center.y;
|
|
return this;
|
|
}
|
|
|
|
random() {
|
|
this.x = Math.random();
|
|
this.y = Math.random();
|
|
return this;
|
|
}
|
|
|
|
*[Symbol.iterator]() {
|
|
yield this.x;
|
|
yield this.y;
|
|
}
|
|
|
|
}
|
|
|
|
Vector2.prototype.isVector2 = true;
|
|
|
|
class Matrix3 {
|
|
constructor() {
|
|
this.elements = [1, 0, 0, 0, 1, 0, 0, 0, 1];
|
|
|
|
if (arguments.length > 0) {
|
|
console.error('THREE.Matrix3: the constructor no longer reads arguments. use .set() instead.');
|
|
}
|
|
}
|
|
|
|
set(n11, n12, n13, n21, n22, n23, n31, n32, n33) {
|
|
const te = this.elements;
|
|
te[0] = n11;
|
|
te[1] = n21;
|
|
te[2] = n31;
|
|
te[3] = n12;
|
|
te[4] = n22;
|
|
te[5] = n32;
|
|
te[6] = n13;
|
|
te[7] = n23;
|
|
te[8] = n33;
|
|
return this;
|
|
}
|
|
|
|
identity() {
|
|
this.set(1, 0, 0, 0, 1, 0, 0, 0, 1);
|
|
return this;
|
|
}
|
|
|
|
copy(m) {
|
|
const te = this.elements;
|
|
const me = m.elements;
|
|
te[0] = me[0];
|
|
te[1] = me[1];
|
|
te[2] = me[2];
|
|
te[3] = me[3];
|
|
te[4] = me[4];
|
|
te[5] = me[5];
|
|
te[6] = me[6];
|
|
te[7] = me[7];
|
|
te[8] = me[8];
|
|
return this;
|
|
}
|
|
|
|
extractBasis(xAxis, yAxis, zAxis) {
|
|
xAxis.setFromMatrix3Column(this, 0);
|
|
yAxis.setFromMatrix3Column(this, 1);
|
|
zAxis.setFromMatrix3Column(this, 2);
|
|
return this;
|
|
}
|
|
|
|
setFromMatrix4(m) {
|
|
const me = m.elements;
|
|
this.set(me[0], me[4], me[8], me[1], me[5], me[9], me[2], me[6], me[10]);
|
|
return this;
|
|
}
|
|
|
|
multiply(m) {
|
|
return this.multiplyMatrices(this, m);
|
|
}
|
|
|
|
premultiply(m) {
|
|
return this.multiplyMatrices(m, this);
|
|
}
|
|
|
|
multiplyMatrices(a, b) {
|
|
const ae = a.elements;
|
|
const be = b.elements;
|
|
const te = this.elements;
|
|
const a11 = ae[0],
|
|
a12 = ae[3],
|
|
a13 = ae[6];
|
|
const a21 = ae[1],
|
|
a22 = ae[4],
|
|
a23 = ae[7];
|
|
const a31 = ae[2],
|
|
a32 = ae[5],
|
|
a33 = ae[8];
|
|
const b11 = be[0],
|
|
b12 = be[3],
|
|
b13 = be[6];
|
|
const b21 = be[1],
|
|
b22 = be[4],
|
|
b23 = be[7];
|
|
const b31 = be[2],
|
|
b32 = be[5],
|
|
b33 = be[8];
|
|
te[0] = a11 * b11 + a12 * b21 + a13 * b31;
|
|
te[3] = a11 * b12 + a12 * b22 + a13 * b32;
|
|
te[6] = a11 * b13 + a12 * b23 + a13 * b33;
|
|
te[1] = a21 * b11 + a22 * b21 + a23 * b31;
|
|
te[4] = a21 * b12 + a22 * b22 + a23 * b32;
|
|
te[7] = a21 * b13 + a22 * b23 + a23 * b33;
|
|
te[2] = a31 * b11 + a32 * b21 + a33 * b31;
|
|
te[5] = a31 * b12 + a32 * b22 + a33 * b32;
|
|
te[8] = a31 * b13 + a32 * b23 + a33 * b33;
|
|
return this;
|
|
}
|
|
|
|
multiplyScalar(s) {
|
|
const te = this.elements;
|
|
te[0] *= s;
|
|
te[3] *= s;
|
|
te[6] *= s;
|
|
te[1] *= s;
|
|
te[4] *= s;
|
|
te[7] *= s;
|
|
te[2] *= s;
|
|
te[5] *= s;
|
|
te[8] *= s;
|
|
return this;
|
|
}
|
|
|
|
determinant() {
|
|
const te = this.elements;
|
|
const a = te[0],
|
|
b = te[1],
|
|
c = te[2],
|
|
d = te[3],
|
|
e = te[4],
|
|
f = te[5],
|
|
g = te[6],
|
|
h = te[7],
|
|
i = te[8];
|
|
return a * e * i - a * f * h - b * d * i + b * f * g + c * d * h - c * e * g;
|
|
}
|
|
|
|
invert() {
|
|
const te = this.elements,
|
|
n11 = te[0],
|
|
n21 = te[1],
|
|
n31 = te[2],
|
|
n12 = te[3],
|
|
n22 = te[4],
|
|
n32 = te[5],
|
|
n13 = te[6],
|
|
n23 = te[7],
|
|
n33 = te[8],
|
|
t11 = n33 * n22 - n32 * n23,
|
|
t12 = n32 * n13 - n33 * n12,
|
|
t13 = n23 * n12 - n22 * n13,
|
|
det = n11 * t11 + n21 * t12 + n31 * t13;
|
|
if (det === 0) return this.set(0, 0, 0, 0, 0, 0, 0, 0, 0);
|
|
const detInv = 1 / det;
|
|
te[0] = t11 * detInv;
|
|
te[1] = (n31 * n23 - n33 * n21) * detInv;
|
|
te[2] = (n32 * n21 - n31 * n22) * detInv;
|
|
te[3] = t12 * detInv;
|
|
te[4] = (n33 * n11 - n31 * n13) * detInv;
|
|
te[5] = (n31 * n12 - n32 * n11) * detInv;
|
|
te[6] = t13 * detInv;
|
|
te[7] = (n21 * n13 - n23 * n11) * detInv;
|
|
te[8] = (n22 * n11 - n21 * n12) * detInv;
|
|
return this;
|
|
}
|
|
|
|
transpose() {
|
|
let tmp;
|
|
const m = this.elements;
|
|
tmp = m[1];
|
|
m[1] = m[3];
|
|
m[3] = tmp;
|
|
tmp = m[2];
|
|
m[2] = m[6];
|
|
m[6] = tmp;
|
|
tmp = m[5];
|
|
m[5] = m[7];
|
|
m[7] = tmp;
|
|
return this;
|
|
}
|
|
|
|
getNormalMatrix(matrix4) {
|
|
return this.setFromMatrix4(matrix4).invert().transpose();
|
|
}
|
|
|
|
transposeIntoArray(r) {
|
|
const m = this.elements;
|
|
r[0] = m[0];
|
|
r[1] = m[3];
|
|
r[2] = m[6];
|
|
r[3] = m[1];
|
|
r[4] = m[4];
|
|
r[5] = m[7];
|
|
r[6] = m[2];
|
|
r[7] = m[5];
|
|
r[8] = m[8];
|
|
return this;
|
|
}
|
|
|
|
setUvTransform(tx, ty, sx, sy, rotation, cx, cy) {
|
|
const c = Math.cos(rotation);
|
|
const s = Math.sin(rotation);
|
|
this.set(sx * c, sx * s, -sx * (c * cx + s * cy) + cx + tx, -sy * s, sy * c, -sy * (-s * cx + c * cy) + cy + ty, 0, 0, 1);
|
|
return this;
|
|
}
|
|
|
|
scale(sx, sy) {
|
|
const te = this.elements;
|
|
te[0] *= sx;
|
|
te[3] *= sx;
|
|
te[6] *= sx;
|
|
te[1] *= sy;
|
|
te[4] *= sy;
|
|
te[7] *= sy;
|
|
return this;
|
|
}
|
|
|
|
rotate(theta) {
|
|
const c = Math.cos(theta);
|
|
const s = Math.sin(theta);
|
|
const te = this.elements;
|
|
const a11 = te[0],
|
|
a12 = te[3],
|
|
a13 = te[6];
|
|
const a21 = te[1],
|
|
a22 = te[4],
|
|
a23 = te[7];
|
|
te[0] = c * a11 + s * a21;
|
|
te[3] = c * a12 + s * a22;
|
|
te[6] = c * a13 + s * a23;
|
|
te[1] = -s * a11 + c * a21;
|
|
te[4] = -s * a12 + c * a22;
|
|
te[7] = -s * a13 + c * a23;
|
|
return this;
|
|
}
|
|
|
|
translate(tx, ty) {
|
|
const te = this.elements;
|
|
te[0] += tx * te[2];
|
|
te[3] += tx * te[5];
|
|
te[6] += tx * te[8];
|
|
te[1] += ty * te[2];
|
|
te[4] += ty * te[5];
|
|
te[7] += ty * te[8];
|
|
return this;
|
|
}
|
|
|
|
equals(matrix) {
|
|
const te = this.elements;
|
|
const me = matrix.elements;
|
|
|
|
for (let i = 0; i < 9; i++) {
|
|
if (te[i] !== me[i]) return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
fromArray(array, offset = 0) {
|
|
for (let i = 0; i < 9; i++) {
|
|
this.elements[i] = array[i + offset];
|
|
}
|
|
|
|
return this;
|
|
}
|
|
|
|
toArray(array = [], offset = 0) {
|
|
const te = this.elements;
|
|
array[offset] = te[0];
|
|
array[offset + 1] = te[1];
|
|
array[offset + 2] = te[2];
|
|
array[offset + 3] = te[3];
|
|
array[offset + 4] = te[4];
|
|
array[offset + 5] = te[5];
|
|
array[offset + 6] = te[6];
|
|
array[offset + 7] = te[7];
|
|
array[offset + 8] = te[8];
|
|
return array;
|
|
}
|
|
|
|
clone() {
|
|
return new this.constructor().fromArray(this.elements);
|
|
}
|
|
|
|
}
|
|
|
|
Matrix3.prototype.isMatrix3 = true;
|
|
|
|
function arrayMax(array) {
|
|
if (array.length === 0) return -Infinity;
|
|
let max = array[0];
|
|
|
|
for (let i = 1, l = array.length; i < l; ++i) {
|
|
if (array[i] > max) max = array[i];
|
|
}
|
|
|
|
return max;
|
|
}
|
|
|
|
const TYPED_ARRAYS = {
|
|
Int8Array: Int8Array,
|
|
Uint8Array: Uint8Array,
|
|
Uint8ClampedArray: Uint8ClampedArray,
|
|
Int16Array: Int16Array,
|
|
Uint16Array: Uint16Array,
|
|
Int32Array: Int32Array,
|
|
Uint32Array: Uint32Array,
|
|
Float32Array: Float32Array,
|
|
Float64Array: Float64Array
|
|
};
|
|
|
|
function getTypedArray(type, buffer) {
|
|
return new TYPED_ARRAYS[type](buffer);
|
|
}
|
|
|
|
function createElementNS(name) {
|
|
return document.createElementNS('http://www.w3.org/1999/xhtml', name);
|
|
}
|
|
/**
|
|
* cyrb53 hash for string from: https://stackoverflow.com/a/52171480
|
|
*
|
|
* Public Domain, @bryc - https://stackoverflow.com/users/815680/bryc
|
|
*
|
|
* It is roughly similar to the well-known MurmurHash/xxHash algorithms. It uses a combination
|
|
* of multiplication and Xorshift to generate the hash, but not as thorough. As a result it's
|
|
* faster than either would be in JavaScript and significantly simpler to implement. Keep in
|
|
* mind this is not a secure algorithm, if privacy/security is a concern, this is not for you.
|
|
*
|
|
* @param {string} str
|
|
* @param {number} seed, default 0
|
|
* @returns number
|
|
*/
|
|
|
|
|
|
function hashString(str, seed = 0) {
|
|
let h1 = 0xdeadbeef ^ seed,
|
|
h2 = 0x41c6ce57 ^ seed;
|
|
|
|
for (let i = 0, ch; i < str.length; i++) {
|
|
ch = str.charCodeAt(i);
|
|
h1 = Math.imul(h1 ^ ch, 2654435761);
|
|
h2 = Math.imul(h2 ^ ch, 1597334677);
|
|
}
|
|
|
|
h1 = Math.imul(h1 ^ h1 >>> 16, 2246822507) ^ Math.imul(h2 ^ h2 >>> 13, 3266489909);
|
|
h2 = Math.imul(h2 ^ h2 >>> 16, 2246822507) ^ Math.imul(h1 ^ h1 >>> 13, 3266489909);
|
|
return 4294967296 * (2097151 & h2) + (h1 >>> 0);
|
|
}
|
|
|
|
let _canvas;
|
|
|
|
class ImageUtils {
|
|
static getDataURL(image) {
|
|
if (/^data:/i.test(image.src)) {
|
|
return image.src;
|
|
}
|
|
|
|
if (typeof HTMLCanvasElement == 'undefined') {
|
|
return image.src;
|
|
}
|
|
|
|
let canvas;
|
|
|
|
if (image instanceof HTMLCanvasElement) {
|
|
canvas = image;
|
|
} else {
|
|
if (_canvas === undefined) _canvas = createElementNS('canvas');
|
|
_canvas.width = image.width;
|
|
_canvas.height = image.height;
|
|
|
|
const context = _canvas.getContext('2d');
|
|
|
|
if (image instanceof ImageData) {
|
|
context.putImageData(image, 0, 0);
|
|
} else {
|
|
context.drawImage(image, 0, 0, image.width, image.height);
|
|
}
|
|
|
|
canvas = _canvas;
|
|
}
|
|
|
|
if (canvas.width > 2048 || canvas.height > 2048) {
|
|
console.warn('THREE.ImageUtils.getDataURL: Image converted to jpg for performance reasons', image);
|
|
return canvas.toDataURL('image/jpeg', 0.6);
|
|
} else {
|
|
return canvas.toDataURL('image/png');
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
let textureId = 0;
|
|
|
|
class Texture extends EventDispatcher {
|
|
constructor(image = Texture.DEFAULT_IMAGE, mapping = Texture.DEFAULT_MAPPING, wrapS = ClampToEdgeWrapping, wrapT = ClampToEdgeWrapping, magFilter = LinearFilter, minFilter = LinearMipmapLinearFilter, format = RGBAFormat, type = UnsignedByteType, anisotropy = 1, encoding = LinearEncoding) {
|
|
super();
|
|
Object.defineProperty(this, 'id', {
|
|
value: textureId++
|
|
});
|
|
this.uuid = generateUUID();
|
|
this.name = '';
|
|
this.image = image;
|
|
this.mipmaps = [];
|
|
this.mapping = mapping;
|
|
this.wrapS = wrapS;
|
|
this.wrapT = wrapT;
|
|
this.magFilter = magFilter;
|
|
this.minFilter = minFilter;
|
|
this.anisotropy = anisotropy;
|
|
this.format = format;
|
|
this.internalFormat = null;
|
|
this.type = type;
|
|
this.offset = new Vector2(0, 0);
|
|
this.repeat = new Vector2(1, 1);
|
|
this.center = new Vector2(0, 0);
|
|
this.rotation = 0;
|
|
this.matrixAutoUpdate = true;
|
|
this.matrix = new Matrix3();
|
|
this.generateMipmaps = true;
|
|
this.premultiplyAlpha = false;
|
|
this.flipY = true;
|
|
this.unpackAlignment = 4; // valid values: 1, 2, 4, 8 (see http://www.khronos.org/opengles/sdk/docs/man/xhtml/glPixelStorei.xml)
|
|
// Values of encoding !== THREE.LinearEncoding only supported on map, envMap and emissiveMap.
|
|
//
|
|
// Also changing the encoding after already used by a Material will not automatically make the Material
|
|
// update. You need to explicitly call Material.needsUpdate to trigger it to recompile.
|
|
|
|
this.encoding = encoding;
|
|
this.version = 0;
|
|
this.onUpdate = null;
|
|
this.isRenderTargetTexture = false;
|
|
}
|
|
|
|
updateMatrix() {
|
|
this.matrix.setUvTransform(this.offset.x, this.offset.y, this.repeat.x, this.repeat.y, this.rotation, this.center.x, this.center.y);
|
|
}
|
|
|
|
clone() {
|
|
return new this.constructor().copy(this);
|
|
}
|
|
|
|
copy(source) {
|
|
this.name = source.name;
|
|
this.image = source.image;
|
|
this.mipmaps = source.mipmaps.slice(0);
|
|
this.mapping = source.mapping;
|
|
this.wrapS = source.wrapS;
|
|
this.wrapT = source.wrapT;
|
|
this.magFilter = source.magFilter;
|
|
this.minFilter = source.minFilter;
|
|
this.anisotropy = source.anisotropy;
|
|
this.format = source.format;
|
|
this.internalFormat = source.internalFormat;
|
|
this.type = source.type;
|
|
this.offset.copy(source.offset);
|
|
this.repeat.copy(source.repeat);
|
|
this.center.copy(source.center);
|
|
this.rotation = source.rotation;
|
|
this.matrixAutoUpdate = source.matrixAutoUpdate;
|
|
this.matrix.copy(source.matrix);
|
|
this.generateMipmaps = source.generateMipmaps;
|
|
this.premultiplyAlpha = source.premultiplyAlpha;
|
|
this.flipY = source.flipY;
|
|
this.unpackAlignment = source.unpackAlignment;
|
|
this.encoding = source.encoding;
|
|
return this;
|
|
}
|
|
|
|
toJSON(meta) {
|
|
const isRootObject = meta === undefined || typeof meta === 'string';
|
|
|
|
if (!isRootObject && meta.textures[this.uuid] !== undefined) {
|
|
return meta.textures[this.uuid];
|
|
}
|
|
|
|
const output = {
|
|
metadata: {
|
|
version: 4.5,
|
|
type: 'Texture',
|
|
generator: 'Texture.toJSON'
|
|
},
|
|
uuid: this.uuid,
|
|
name: this.name,
|
|
mapping: this.mapping,
|
|
repeat: [this.repeat.x, this.repeat.y],
|
|
offset: [this.offset.x, this.offset.y],
|
|
center: [this.center.x, this.center.y],
|
|
rotation: this.rotation,
|
|
wrap: [this.wrapS, this.wrapT],
|
|
format: this.format,
|
|
type: this.type,
|
|
encoding: this.encoding,
|
|
minFilter: this.minFilter,
|
|
magFilter: this.magFilter,
|
|
anisotropy: this.anisotropy,
|
|
flipY: this.flipY,
|
|
premultiplyAlpha: this.premultiplyAlpha,
|
|
unpackAlignment: this.unpackAlignment
|
|
};
|
|
|
|
if (this.image !== undefined) {
|
|
// TODO: Move to THREE.Image
|
|
const image = this.image;
|
|
|
|
if (image.uuid === undefined) {
|
|
image.uuid = generateUUID(); // UGH
|
|
}
|
|
|
|
if (!isRootObject && meta.images[image.uuid] === undefined) {
|
|
let url;
|
|
|
|
if (Array.isArray(image)) {
|
|
// process array of images e.g. CubeTexture
|
|
url = [];
|
|
|
|
for (let i = 0, l = image.length; i < l; i++) {
|
|
// check cube texture with data textures
|
|
if (image[i].isDataTexture) {
|
|
url.push(serializeImage(image[i].image));
|
|
} else {
|
|
url.push(serializeImage(image[i]));
|
|
}
|
|
}
|
|
} else {
|
|
// process single image
|
|
url = serializeImage(image);
|
|
}
|
|
|
|
meta.images[image.uuid] = {
|
|
uuid: image.uuid,
|
|
url: url
|
|
};
|
|
}
|
|
|
|
output.image = image.uuid;
|
|
}
|
|
|
|
if (!isRootObject) {
|
|
meta.textures[this.uuid] = output;
|
|
}
|
|
|
|
return output;
|
|
}
|
|
|
|
dispose() {
|
|
this.dispatchEvent({
|
|
type: 'dispose'
|
|
});
|
|
}
|
|
|
|
transformUv(uv) {
|
|
if (this.mapping !== UVMapping) return uv;
|
|
uv.applyMatrix3(this.matrix);
|
|
|
|
if (uv.x < 0 || uv.x > 1) {
|
|
switch (this.wrapS) {
|
|
case RepeatWrapping:
|
|
uv.x = uv.x - Math.floor(uv.x);
|
|
break;
|
|
|
|
case ClampToEdgeWrapping:
|
|
uv.x = uv.x < 0 ? 0 : 1;
|
|
break;
|
|
|
|
case MirroredRepeatWrapping:
|
|
if (Math.abs(Math.floor(uv.x) % 2) === 1) {
|
|
uv.x = Math.ceil(uv.x) - uv.x;
|
|
} else {
|
|
uv.x = uv.x - Math.floor(uv.x);
|
|
}
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (uv.y < 0 || uv.y > 1) {
|
|
switch (this.wrapT) {
|
|
case RepeatWrapping:
|
|
uv.y = uv.y - Math.floor(uv.y);
|
|
break;
|
|
|
|
case ClampToEdgeWrapping:
|
|
uv.y = uv.y < 0 ? 0 : 1;
|
|
break;
|
|
|
|
case MirroredRepeatWrapping:
|
|
if (Math.abs(Math.floor(uv.y) % 2) === 1) {
|
|
uv.y = Math.ceil(uv.y) - uv.y;
|
|
} else {
|
|
uv.y = uv.y - Math.floor(uv.y);
|
|
}
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (this.flipY) {
|
|
uv.y = 1 - uv.y;
|
|
}
|
|
|
|
return uv;
|
|
}
|
|
|
|
set needsUpdate(value) {
|
|
if (value === true) this.version++;
|
|
}
|
|
|
|
}
|
|
|
|
Texture.DEFAULT_IMAGE = undefined;
|
|
Texture.DEFAULT_MAPPING = UVMapping;
|
|
Texture.prototype.isTexture = true;
|
|
|
|
function serializeImage(image) {
|
|
if (typeof HTMLImageElement !== 'undefined' && image instanceof HTMLImageElement || typeof HTMLCanvasElement !== 'undefined' && image instanceof HTMLCanvasElement || typeof ImageBitmap !== 'undefined' && image instanceof ImageBitmap) {
|
|
// default images
|
|
return ImageUtils.getDataURL(image);
|
|
} else {
|
|
if (image.data) {
|
|
// images of DataTexture
|
|
return {
|
|
data: Array.prototype.slice.call(image.data),
|
|
width: image.width,
|
|
height: image.height,
|
|
type: image.data.constructor.name
|
|
};
|
|
} else {
|
|
console.warn('THREE.Texture: Unable to serialize Texture.');
|
|
return {};
|
|
}
|
|
}
|
|
}
|
|
|
|
class Vector4 {
|
|
constructor(x = 0, y = 0, z = 0, w = 1) {
|
|
this.x = x;
|
|
this.y = y;
|
|
this.z = z;
|
|
this.w = w;
|
|
}
|
|
|
|
get width() {
|
|
return this.z;
|
|
}
|
|
|
|
set width(value) {
|
|
this.z = value;
|
|
}
|
|
|
|
get height() {
|
|
return this.w;
|
|
}
|
|
|
|
set height(value) {
|
|
this.w = value;
|
|
}
|
|
|
|
set(x, y, z, w) {
|
|
this.x = x;
|
|
this.y = y;
|
|
this.z = z;
|
|
this.w = w;
|
|
return this;
|
|
}
|
|
|
|
setScalar(scalar) {
|
|
this.x = scalar;
|
|
this.y = scalar;
|
|
this.z = scalar;
|
|
this.w = scalar;
|
|
return this;
|
|
}
|
|
|
|
setX(x) {
|
|
this.x = x;
|
|
return this;
|
|
}
|
|
|
|
setY(y) {
|
|
this.y = y;
|
|
return this;
|
|
}
|
|
|
|
setZ(z) {
|
|
this.z = z;
|
|
return this;
|
|
}
|
|
|
|
setW(w) {
|
|
this.w = w;
|
|
return this;
|
|
}
|
|
|
|
setComponent(index, value) {
|
|
switch (index) {
|
|
case 0:
|
|
this.x = value;
|
|
break;
|
|
|
|
case 1:
|
|
this.y = value;
|
|
break;
|
|
|
|
case 2:
|
|
this.z = value;
|
|
break;
|
|
|
|
case 3:
|
|
this.w = value;
|
|
break;
|
|
|
|
default:
|
|
throw new Error('index is out of range: ' + index);
|
|
}
|
|
|
|
return this;
|
|
}
|
|
|
|
getComponent(index) {
|
|
switch (index) {
|
|
case 0:
|
|
return this.x;
|
|
|
|
case 1:
|
|
return this.y;
|
|
|
|
case 2:
|
|
return this.z;
|
|
|
|
case 3:
|
|
return this.w;
|
|
|
|
default:
|
|
throw new Error('index is out of range: ' + index);
|
|
}
|
|
}
|
|
|
|
clone() {
|
|
return new this.constructor(this.x, this.y, this.z, this.w);
|
|
}
|
|
|
|
copy(v) {
|
|
this.x = v.x;
|
|
this.y = v.y;
|
|
this.z = v.z;
|
|
this.w = v.w !== undefined ? v.w : 1;
|
|
return this;
|
|
}
|
|
|
|
add(v, w) {
|
|
if (w !== undefined) {
|
|
console.warn('THREE.Vector4: .add() now only accepts one argument. Use .addVectors( a, b ) instead.');
|
|
return this.addVectors(v, w);
|
|
}
|
|
|
|
this.x += v.x;
|
|
this.y += v.y;
|
|
this.z += v.z;
|
|
this.w += v.w;
|
|
return this;
|
|
}
|
|
|
|
addScalar(s) {
|
|
this.x += s;
|
|
this.y += s;
|
|
this.z += s;
|
|
this.w += s;
|
|
return this;
|
|
}
|
|
|
|
addVectors(a, b) {
|
|
this.x = a.x + b.x;
|
|
this.y = a.y + b.y;
|
|
this.z = a.z + b.z;
|
|
this.w = a.w + b.w;
|
|
return this;
|
|
}
|
|
|
|
addScaledVector(v, s) {
|
|
this.x += v.x * s;
|
|
this.y += v.y * s;
|
|
this.z += v.z * s;
|
|
this.w += v.w * s;
|
|
return this;
|
|
}
|
|
|
|
sub(v, w) {
|
|
if (w !== undefined) {
|
|
console.warn('THREE.Vector4: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.');
|
|
return this.subVectors(v, w);
|
|
}
|
|
|
|
this.x -= v.x;
|
|
this.y -= v.y;
|
|
this.z -= v.z;
|
|
this.w -= v.w;
|
|
return this;
|
|
}
|
|
|
|
subScalar(s) {
|
|
this.x -= s;
|
|
this.y -= s;
|
|
this.z -= s;
|
|
this.w -= s;
|
|
return this;
|
|
}
|
|
|
|
subVectors(a, b) {
|
|
this.x = a.x - b.x;
|
|
this.y = a.y - b.y;
|
|
this.z = a.z - b.z;
|
|
this.w = a.w - b.w;
|
|
return this;
|
|
}
|
|
|
|
multiply(v) {
|
|
this.x *= v.x;
|
|
this.y *= v.y;
|
|
this.z *= v.z;
|
|
this.w *= v.w;
|
|
return this;
|
|
}
|
|
|
|
multiplyScalar(scalar) {
|
|
this.x *= scalar;
|
|
this.y *= scalar;
|
|
this.z *= scalar;
|
|
this.w *= scalar;
|
|
return this;
|
|
}
|
|
|
|
applyMatrix4(m) {
|
|
const x = this.x,
|
|
y = this.y,
|
|
z = this.z,
|
|
w = this.w;
|
|
const e = m.elements;
|
|
this.x = e[0] * x + e[4] * y + e[8] * z + e[12] * w;
|
|
this.y = e[1] * x + e[5] * y + e[9] * z + e[13] * w;
|
|
this.z = e[2] * x + e[6] * y + e[10] * z + e[14] * w;
|
|
this.w = e[3] * x + e[7] * y + e[11] * z + e[15] * w;
|
|
return this;
|
|
}
|
|
|
|
divideScalar(scalar) {
|
|
return this.multiplyScalar(1 / scalar);
|
|
}
|
|
|
|
setAxisAngleFromQuaternion(q) {
|
|
// http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm
|
|
// q is assumed to be normalized
|
|
this.w = 2 * Math.acos(q.w);
|
|
const s = Math.sqrt(1 - q.w * q.w);
|
|
|
|
if (s < 0.0001) {
|
|
this.x = 1;
|
|
this.y = 0;
|
|
this.z = 0;
|
|
} else {
|
|
this.x = q.x / s;
|
|
this.y = q.y / s;
|
|
this.z = q.z / s;
|
|
}
|
|
|
|
return this;
|
|
}
|
|
|
|
setAxisAngleFromRotationMatrix(m) {
|
|
// http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToAngle/index.htm
|
|
// assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)
|
|
let angle, x, y, z; // variables for result
|
|
|
|
const epsilon = 0.01,
|
|
// margin to allow for rounding errors
|
|
epsilon2 = 0.1,
|
|
// margin to distinguish between 0 and 180 degrees
|
|
te = m.elements,
|
|
m11 = te[0],
|
|
m12 = te[4],
|
|
m13 = te[8],
|
|
m21 = te[1],
|
|
m22 = te[5],
|
|
m23 = te[9],
|
|
m31 = te[2],
|
|
m32 = te[6],
|
|
m33 = te[10];
|
|
|
|
if (Math.abs(m12 - m21) < epsilon && Math.abs(m13 - m31) < epsilon && Math.abs(m23 - m32) < epsilon) {
|
|
// singularity found
|
|
// first check for identity matrix which must have +1 for all terms
|
|
// in leading diagonal and zero in other terms
|
|
if (Math.abs(m12 + m21) < epsilon2 && Math.abs(m13 + m31) < epsilon2 && Math.abs(m23 + m32) < epsilon2 && Math.abs(m11 + m22 + m33 - 3) < epsilon2) {
|
|
// this singularity is identity matrix so angle = 0
|
|
this.set(1, 0, 0, 0);
|
|
return this; // zero angle, arbitrary axis
|
|
} // otherwise this singularity is angle = 180
|
|
|
|
|
|
angle = Math.PI;
|
|
const xx = (m11 + 1) / 2;
|
|
const yy = (m22 + 1) / 2;
|
|
const zz = (m33 + 1) / 2;
|
|
const xy = (m12 + m21) / 4;
|
|
const xz = (m13 + m31) / 4;
|
|
const yz = (m23 + m32) / 4;
|
|
|
|
if (xx > yy && xx > zz) {
|
|
// m11 is the largest diagonal term
|
|
if (xx < epsilon) {
|
|
x = 0;
|
|
y = 0.707106781;
|
|
z = 0.707106781;
|
|
} else {
|
|
x = Math.sqrt(xx);
|
|
y = xy / x;
|
|
z = xz / x;
|
|
}
|
|
} else if (yy > zz) {
|
|
// m22 is the largest diagonal term
|
|
if (yy < epsilon) {
|
|
x = 0.707106781;
|
|
y = 0;
|
|
z = 0.707106781;
|
|
} else {
|
|
y = Math.sqrt(yy);
|
|
x = xy / y;
|
|
z = yz / y;
|
|
}
|
|
} else {
|
|
// m33 is the largest diagonal term so base result on this
|
|
if (zz < epsilon) {
|
|
x = 0.707106781;
|
|
y = 0.707106781;
|
|
z = 0;
|
|
} else {
|
|
z = Math.sqrt(zz);
|
|
x = xz / z;
|
|
y = yz / z;
|
|
}
|
|
}
|
|
|
|
this.set(x, y, z, angle);
|
|
return this; // return 180 deg rotation
|
|
} // as we have reached here there are no singularities so we can handle normally
|
|
|
|
|
|
let s = Math.sqrt((m32 - m23) * (m32 - m23) + (m13 - m31) * (m13 - m31) + (m21 - m12) * (m21 - m12)); // used to normalize
|
|
|
|
if (Math.abs(s) < 0.001) s = 1; // prevent divide by zero, should not happen if matrix is orthogonal and should be
|
|
// caught by singularity test above, but I've left it in just in case
|
|
|
|
this.x = (m32 - m23) / s;
|
|
this.y = (m13 - m31) / s;
|
|
this.z = (m21 - m12) / s;
|
|
this.w = Math.acos((m11 + m22 + m33 - 1) / 2);
|
|
return this;
|
|
}
|
|
|
|
min(v) {
|
|
this.x = Math.min(this.x, v.x);
|
|
this.y = Math.min(this.y, v.y);
|
|
this.z = Math.min(this.z, v.z);
|
|
this.w = Math.min(this.w, v.w);
|
|
return this;
|
|
}
|
|
|
|
max(v) {
|
|
this.x = Math.max(this.x, v.x);
|
|
this.y = Math.max(this.y, v.y);
|
|
this.z = Math.max(this.z, v.z);
|
|
this.w = Math.max(this.w, v.w);
|
|
return this;
|
|
}
|
|
|
|
clamp(min, max) {
|
|
// assumes min < max, componentwise
|
|
this.x = Math.max(min.x, Math.min(max.x, this.x));
|
|
this.y = Math.max(min.y, Math.min(max.y, this.y));
|
|
this.z = Math.max(min.z, Math.min(max.z, this.z));
|
|
this.w = Math.max(min.w, Math.min(max.w, this.w));
|
|
return this;
|
|
}
|
|
|
|
clampScalar(minVal, maxVal) {
|
|
this.x = Math.max(minVal, Math.min(maxVal, this.x));
|
|
this.y = Math.max(minVal, Math.min(maxVal, this.y));
|
|
this.z = Math.max(minVal, Math.min(maxVal, this.z));
|
|
this.w = Math.max(minVal, Math.min(maxVal, this.w));
|
|
return this;
|
|
}
|
|
|
|
clampLength(min, max) {
|
|
const length = this.length();
|
|
return this.divideScalar(length || 1).multiplyScalar(Math.max(min, Math.min(max, length)));
|
|
}
|
|
|
|
floor() {
|
|
this.x = Math.floor(this.x);
|
|
this.y = Math.floor(this.y);
|
|
this.z = Math.floor(this.z);
|
|
this.w = Math.floor(this.w);
|
|
return this;
|
|
}
|
|
|
|
ceil() {
|
|
this.x = Math.ceil(this.x);
|
|
this.y = Math.ceil(this.y);
|
|
this.z = Math.ceil(this.z);
|
|
this.w = Math.ceil(this.w);
|
|
return this;
|
|
}
|
|
|
|
round() {
|
|
this.x = Math.round(this.x);
|
|
this.y = Math.round(this.y);
|
|
this.z = Math.round(this.z);
|
|
this.w = Math.round(this.w);
|
|
return this;
|
|
}
|
|
|
|
roundToZero() {
|
|
this.x = this.x < 0 ? Math.ceil(this.x) : Math.floor(this.x);
|
|
this.y = this.y < 0 ? Math.ceil(this.y) : Math.floor(this.y);
|
|
this.z = this.z < 0 ? Math.ceil(this.z) : Math.floor(this.z);
|
|
this.w = this.w < 0 ? Math.ceil(this.w) : Math.floor(this.w);
|
|
return this;
|
|
}
|
|
|
|
negate() {
|
|
this.x = -this.x;
|
|
this.y = -this.y;
|
|
this.z = -this.z;
|
|
this.w = -this.w;
|
|
return this;
|
|
}
|
|
|
|
dot(v) {
|
|
return this.x * v.x + this.y * v.y + this.z * v.z + this.w * v.w;
|
|
}
|
|
|
|
lengthSq() {
|
|
return this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w;
|
|
}
|
|
|
|
length() {
|
|
return Math.sqrt(this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w);
|
|
}
|
|
|
|
manhattanLength() {
|
|
return Math.abs(this.x) + Math.abs(this.y) + Math.abs(this.z) + Math.abs(this.w);
|
|
}
|
|
|
|
normalize() {
|
|
return this.divideScalar(this.length() || 1);
|
|
}
|
|
|
|
setLength(length) {
|
|
return this.normalize().multiplyScalar(length);
|
|
}
|
|
|
|
lerp(v, alpha) {
|
|
this.x += (v.x - this.x) * alpha;
|
|
this.y += (v.y - this.y) * alpha;
|
|
this.z += (v.z - this.z) * alpha;
|
|
this.w += (v.w - this.w) * alpha;
|
|
return this;
|
|
}
|
|
|
|
lerpVectors(v1, v2, alpha) {
|
|
this.x = v1.x + (v2.x - v1.x) * alpha;
|
|
this.y = v1.y + (v2.y - v1.y) * alpha;
|
|
this.z = v1.z + (v2.z - v1.z) * alpha;
|
|
this.w = v1.w + (v2.w - v1.w) * alpha;
|
|
return this;
|
|
}
|
|
|
|
equals(v) {
|
|
return v.x === this.x && v.y === this.y && v.z === this.z && v.w === this.w;
|
|
}
|
|
|
|
fromArray(array, offset = 0) {
|
|
this.x = array[offset];
|
|
this.y = array[offset + 1];
|
|
this.z = array[offset + 2];
|
|
this.w = array[offset + 3];
|
|
return this;
|
|
}
|
|
|
|
toArray(array = [], offset = 0) {
|
|
array[offset] = this.x;
|
|
array[offset + 1] = this.y;
|
|
array[offset + 2] = this.z;
|
|
array[offset + 3] = this.w;
|
|
return array;
|
|
}
|
|
|
|
fromBufferAttribute(attribute, index, offset) {
|
|
if (offset !== undefined) {
|
|
console.warn('THREE.Vector4: offset has been removed from .fromBufferAttribute().');
|
|
}
|
|
|
|
this.x = attribute.getX(index);
|
|
this.y = attribute.getY(index);
|
|
this.z = attribute.getZ(index);
|
|
this.w = attribute.getW(index);
|
|
return this;
|
|
}
|
|
|
|
random() {
|
|
this.x = Math.random();
|
|
this.y = Math.random();
|
|
this.z = Math.random();
|
|
this.w = Math.random();
|
|
return this;
|
|
}
|
|
|
|
*[Symbol.iterator]() {
|
|
yield this.x;
|
|
yield this.y;
|
|
yield this.z;
|
|
yield this.w;
|
|
}
|
|
|
|
}
|
|
|
|
Vector4.prototype.isVector4 = true;
|
|
|
|
/*
|
|
In options, we can specify:
|
|
* Texture parameters for an auto-generated target texture
|
|
* depthBuffer/stencilBuffer: Booleans to indicate if we should generate these buffers
|
|
*/
|
|
|
|
class WebGLRenderTarget extends EventDispatcher {
|
|
constructor(width, height, options = {}) {
|
|
super();
|
|
this.width = width;
|
|
this.height = height;
|
|
this.depth = 1;
|
|
this.scissor = new Vector4(0, 0, width, height);
|
|
this.scissorTest = false;
|
|
this.viewport = new Vector4(0, 0, width, height);
|
|
this.texture = new Texture(undefined, options.mapping, options.wrapS, options.wrapT, options.magFilter, options.minFilter, options.format, options.type, options.anisotropy, options.encoding);
|
|
this.texture.isRenderTargetTexture = true;
|
|
this.texture.image = {
|
|
width: width,
|
|
height: height,
|
|
depth: 1
|
|
};
|
|
this.texture.generateMipmaps = options.generateMipmaps !== undefined ? options.generateMipmaps : false;
|
|
this.texture.internalFormat = options.internalFormat !== undefined ? options.internalFormat : null;
|
|
this.texture.minFilter = options.minFilter !== undefined ? options.minFilter : LinearFilter;
|
|
this.depthBuffer = options.depthBuffer !== undefined ? options.depthBuffer : true;
|
|
this.stencilBuffer = options.stencilBuffer !== undefined ? options.stencilBuffer : false;
|
|
this.depthTexture = options.depthTexture !== undefined ? options.depthTexture : null;
|
|
}
|
|
|
|
setTexture(texture) {
|
|
texture.image = {
|
|
width: this.width,
|
|
height: this.height,
|
|
depth: this.depth
|
|
};
|
|
this.texture = texture;
|
|
}
|
|
|
|
setSize(width, height, depth = 1) {
|
|
if (this.width !== width || this.height !== height || this.depth !== depth) {
|
|
this.width = width;
|
|
this.height = height;
|
|
this.depth = depth;
|
|
this.texture.image.width = width;
|
|
this.texture.image.height = height;
|
|
this.texture.image.depth = depth;
|
|
this.dispose();
|
|
}
|
|
|
|
this.viewport.set(0, 0, width, height);
|
|
this.scissor.set(0, 0, width, height);
|
|
}
|
|
|
|
clone() {
|
|
return new this.constructor().copy(this);
|
|
}
|
|
|
|
copy(source) {
|
|
this.width = source.width;
|
|
this.height = source.height;
|
|
this.depth = source.depth;
|
|
this.viewport.copy(source.viewport);
|
|
this.texture = source.texture.clone();
|
|
this.texture.image = { ...this.texture.image
|
|
}; // See #20328.
|
|
|
|
this.depthBuffer = source.depthBuffer;
|
|
this.stencilBuffer = source.stencilBuffer;
|
|
this.depthTexture = source.depthTexture;
|
|
return this;
|
|
}
|
|
|
|
dispose() {
|
|
this.dispatchEvent({
|
|
type: 'dispose'
|
|
});
|
|
}
|
|
|
|
}
|
|
|
|
WebGLRenderTarget.prototype.isWebGLRenderTarget = true;
|
|
|
|
class WebGLMultipleRenderTargets extends WebGLRenderTarget {
|
|
constructor(width, height, count) {
|
|
super(width, height);
|
|
const texture = this.texture;
|
|
this.texture = [];
|
|
|
|
for (let i = 0; i < count; i++) {
|
|
this.texture[i] = texture.clone();
|
|
}
|
|
}
|
|
|
|
setSize(width, height, depth = 1) {
|
|
if (this.width !== width || this.height !== height || this.depth !== depth) {
|
|
this.width = width;
|
|
this.height = height;
|
|
this.depth = depth;
|
|
|
|
for (let i = 0, il = this.texture.length; i < il; i++) {
|
|
this.texture[i].image.width = width;
|
|
this.texture[i].image.height = height;
|
|
this.texture[i].image.depth = depth;
|
|
}
|
|
|
|
this.dispose();
|
|
}
|
|
|
|
this.viewport.set(0, 0, width, height);
|
|
this.scissor.set(0, 0, width, height);
|
|
return this;
|
|
}
|
|
|
|
copy(source) {
|
|
this.dispose();
|
|
this.width = source.width;
|
|
this.height = source.height;
|
|
this.depth = source.depth;
|
|
this.viewport.set(0, 0, this.width, this.height);
|
|
this.scissor.set(0, 0, this.width, this.height);
|
|
this.depthBuffer = source.depthBuffer;
|
|
this.stencilBuffer = source.stencilBuffer;
|
|
this.depthTexture = source.depthTexture;
|
|
this.texture.length = 0;
|
|
|
|
for (let i = 0, il = source.texture.length; i < il; i++) {
|
|
this.texture[i] = source.texture[i].clone();
|
|
}
|
|
|
|
return this;
|
|
}
|
|
|
|
}
|
|
|
|
WebGLMultipleRenderTargets.prototype.isWebGLMultipleRenderTargets = true;
|
|
|
|
class WebGLMultisampleRenderTarget extends WebGLRenderTarget {
|
|
constructor(width, height, options) {
|
|
super(width, height, options);
|
|
this.samples = 4;
|
|
}
|
|
|
|
copy(source) {
|
|
super.copy.call(this, source);
|
|
this.samples = source.samples;
|
|
return this;
|
|
}
|
|
|
|
}
|
|
|
|
WebGLMultisampleRenderTarget.prototype.isWebGLMultisampleRenderTarget = true;
|
|
|
|
class Quaternion {
|
|
constructor(x = 0, y = 0, z = 0, w = 1) {
|
|
this._x = x;
|
|
this._y = y;
|
|
this._z = z;
|
|
this._w = w;
|
|
}
|
|
|
|
static slerp(qa, qb, qm, t) {
|
|
console.warn('THREE.Quaternion: Static .slerp() has been deprecated. Use qm.slerpQuaternions( qa, qb, t ) instead.');
|
|
return qm.slerpQuaternions(qa, qb, t);
|
|
}
|
|
|
|
static slerpFlat(dst, dstOffset, src0, srcOffset0, src1, srcOffset1, t) {
|
|
// fuzz-free, array-based Quaternion SLERP operation
|
|
let x0 = src0[srcOffset0 + 0],
|
|
y0 = src0[srcOffset0 + 1],
|
|
z0 = src0[srcOffset0 + 2],
|
|
w0 = src0[srcOffset0 + 3];
|
|
const x1 = src1[srcOffset1 + 0],
|
|
y1 = src1[srcOffset1 + 1],
|
|
z1 = src1[srcOffset1 + 2],
|
|
w1 = src1[srcOffset1 + 3];
|
|
|
|
if (t === 0) {
|
|
dst[dstOffset + 0] = x0;
|
|
dst[dstOffset + 1] = y0;
|
|
dst[dstOffset + 2] = z0;
|
|
dst[dstOffset + 3] = w0;
|
|
return;
|
|
}
|
|
|
|
if (t === 1) {
|
|
dst[dstOffset + 0] = x1;
|
|
dst[dstOffset + 1] = y1;
|
|
dst[dstOffset + 2] = z1;
|
|
dst[dstOffset + 3] = w1;
|
|
return;
|
|
}
|
|
|
|
if (w0 !== w1 || x0 !== x1 || y0 !== y1 || z0 !== z1) {
|
|
let s = 1 - t;
|
|
const cos = x0 * x1 + y0 * y1 + z0 * z1 + w0 * w1,
|
|
dir = cos >= 0 ? 1 : -1,
|
|
sqrSin = 1 - cos * cos; // Skip the Slerp for tiny steps to avoid numeric problems:
|
|
|
|
if (sqrSin > Number.EPSILON) {
|
|
const sin = Math.sqrt(sqrSin),
|
|
len = Math.atan2(sin, cos * dir);
|
|
s = Math.sin(s * len) / sin;
|
|
t = Math.sin(t * len) / sin;
|
|
}
|
|
|
|
const tDir = t * dir;
|
|
x0 = x0 * s + x1 * tDir;
|
|
y0 = y0 * s + y1 * tDir;
|
|
z0 = z0 * s + z1 * tDir;
|
|
w0 = w0 * s + w1 * tDir; // Normalize in case we just did a lerp:
|
|
|
|
if (s === 1 - t) {
|
|
const f = 1 / Math.sqrt(x0 * x0 + y0 * y0 + z0 * z0 + w0 * w0);
|
|
x0 *= f;
|
|
y0 *= f;
|
|
z0 *= f;
|
|
w0 *= f;
|
|
}
|
|
}
|
|
|
|
dst[dstOffset] = x0;
|
|
dst[dstOffset + 1] = y0;
|
|
dst[dstOffset + 2] = z0;
|
|
dst[dstOffset + 3] = w0;
|
|
}
|
|
|
|
static multiplyQuaternionsFlat(dst, dstOffset, src0, srcOffset0, src1, srcOffset1) {
|
|
const x0 = src0[srcOffset0];
|
|
const y0 = src0[srcOffset0 + 1];
|
|
const z0 = src0[srcOffset0 + 2];
|
|
const w0 = src0[srcOffset0 + 3];
|
|
const x1 = src1[srcOffset1];
|
|
const y1 = src1[srcOffset1 + 1];
|
|
const z1 = src1[srcOffset1 + 2];
|
|
const w1 = src1[srcOffset1 + 3];
|
|
dst[dstOffset] = x0 * w1 + w0 * x1 + y0 * z1 - z0 * y1;
|
|
dst[dstOffset + 1] = y0 * w1 + w0 * y1 + z0 * x1 - x0 * z1;
|
|
dst[dstOffset + 2] = z0 * w1 + w0 * z1 + x0 * y1 - y0 * x1;
|
|
dst[dstOffset + 3] = w0 * w1 - x0 * x1 - y0 * y1 - z0 * z1;
|
|
return dst;
|
|
}
|
|
|
|
get x() {
|
|
return this._x;
|
|
}
|
|
|
|
set x(value) {
|
|
this._x = value;
|
|
|
|
this._onChangeCallback();
|
|
}
|
|
|
|
get y() {
|
|
return this._y;
|
|
}
|
|
|
|
set y(value) {
|
|
this._y = value;
|
|
|
|
this._onChangeCallback();
|
|
}
|
|
|
|
get z() {
|
|
return this._z;
|
|
}
|
|
|
|
set z(value) {
|
|
this._z = value;
|
|
|
|
this._onChangeCallback();
|
|
}
|
|
|
|
get w() {
|
|
return this._w;
|
|
}
|
|
|
|
set w(value) {
|
|
this._w = value;
|
|
|
|
this._onChangeCallback();
|
|
}
|
|
|
|
set(x, y, z, w) {
|
|
this._x = x;
|
|
this._y = y;
|
|
this._z = z;
|
|
this._w = w;
|
|
|
|
this._onChangeCallback();
|
|
|
|
return this;
|
|
}
|
|
|
|
clone() {
|
|
return new this.constructor(this._x, this._y, this._z, this._w);
|
|
}
|
|
|
|
copy(quaternion) {
|
|
this._x = quaternion.x;
|
|
this._y = quaternion.y;
|
|
this._z = quaternion.z;
|
|
this._w = quaternion.w;
|
|
|
|
this._onChangeCallback();
|
|
|
|
return this;
|
|
}
|
|
|
|
setFromEuler(euler, update) {
|
|
if (!(euler && euler.isEuler)) {
|
|
throw new Error('THREE.Quaternion: .setFromEuler() now expects an Euler rotation rather than a Vector3 and order.');
|
|
}
|
|
|
|
const x = euler._x,
|
|
y = euler._y,
|
|
z = euler._z,
|
|
order = euler._order; // http://www.mathworks.com/matlabcentral/fileexchange/
|
|
// 20696-function-to-convert-between-dcm-euler-angles-quaternions-and-euler-vectors/
|
|
// content/SpinCalc.m
|
|
|
|
const cos = Math.cos;
|
|
const sin = Math.sin;
|
|
const c1 = cos(x / 2);
|
|
const c2 = cos(y / 2);
|
|
const c3 = cos(z / 2);
|
|
const s1 = sin(x / 2);
|
|
const s2 = sin(y / 2);
|
|
const s3 = sin(z / 2);
|
|
|
|
switch (order) {
|
|
case 'XYZ':
|
|
this._x = s1 * c2 * c3 + c1 * s2 * s3;
|
|
this._y = c1 * s2 * c3 - s1 * c2 * s3;
|
|
this._z = c1 * c2 * s3 + s1 * s2 * c3;
|
|
this._w = c1 * c2 * c3 - s1 * s2 * s3;
|
|
break;
|
|
|
|
case 'YXZ':
|
|
this._x = s1 * c2 * c3 + c1 * s2 * s3;
|
|
this._y = c1 * s2 * c3 - s1 * c2 * s3;
|
|
this._z = c1 * c2 * s3 - s1 * s2 * c3;
|
|
this._w = c1 * c2 * c3 + s1 * s2 * s3;
|
|
break;
|
|
|
|
case 'ZXY':
|
|
this._x = s1 * c2 * c3 - c1 * s2 * s3;
|
|
this._y = c1 * s2 * c3 + s1 * c2 * s3;
|
|
this._z = c1 * c2 * s3 + s1 * s2 * c3;
|
|
this._w = c1 * c2 * c3 - s1 * s2 * s3;
|
|
break;
|
|
|
|
case 'ZYX':
|
|
this._x = s1 * c2 * c3 - c1 * s2 * s3;
|
|
this._y = c1 * s2 * c3 + s1 * c2 * s3;
|
|
this._z = c1 * c2 * s3 - s1 * s2 * c3;
|
|
this._w = c1 * c2 * c3 + s1 * s2 * s3;
|
|
break;
|
|
|
|
case 'YZX':
|
|
this._x = s1 * c2 * c3 + c1 * s2 * s3;
|
|
this._y = c1 * s2 * c3 + s1 * c2 * s3;
|
|
this._z = c1 * c2 * s3 - s1 * s2 * c3;
|
|
this._w = c1 * c2 * c3 - s1 * s2 * s3;
|
|
break;
|
|
|
|
case 'XZY':
|
|
this._x = s1 * c2 * c3 - c1 * s2 * s3;
|
|
this._y = c1 * s2 * c3 - s1 * c2 * s3;
|
|
this._z = c1 * c2 * s3 + s1 * s2 * c3;
|
|
this._w = c1 * c2 * c3 + s1 * s2 * s3;
|
|
break;
|
|
|
|
default:
|
|
console.warn('THREE.Quaternion: .setFromEuler() encountered an unknown order: ' + order);
|
|
}
|
|
|
|
if (update !== false) this._onChangeCallback();
|
|
return this;
|
|
}
|
|
|
|
setFromAxisAngle(axis, angle) {
|
|
// http://www.euclideanspace.com/maths/geometry/rotations/conversions/angleToQuaternion/index.htm
|
|
// assumes axis is normalized
|
|
const halfAngle = angle / 2,
|
|
s = Math.sin(halfAngle);
|
|
this._x = axis.x * s;
|
|
this._y = axis.y * s;
|
|
this._z = axis.z * s;
|
|
this._w = Math.cos(halfAngle);
|
|
|
|
this._onChangeCallback();
|
|
|
|
return this;
|
|
}
|
|
|
|
setFromRotationMatrix(m) {
|
|
// http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm
|
|
// assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)
|
|
const te = m.elements,
|
|
m11 = te[0],
|
|
m12 = te[4],
|
|
m13 = te[8],
|
|
m21 = te[1],
|
|
m22 = te[5],
|
|
m23 = te[9],
|
|
m31 = te[2],
|
|
m32 = te[6],
|
|
m33 = te[10],
|
|
trace = m11 + m22 + m33;
|
|
|
|
if (trace > 0) {
|
|
const s = 0.5 / Math.sqrt(trace + 1.0);
|
|
this._w = 0.25 / s;
|
|
this._x = (m32 - m23) * s;
|
|
this._y = (m13 - m31) * s;
|
|
this._z = (m21 - m12) * s;
|
|
} else if (m11 > m22 && m11 > m33) {
|
|
const s = 2.0 * Math.sqrt(1.0 + m11 - m22 - m33);
|
|
this._w = (m32 - m23) / s;
|
|
this._x = 0.25 * s;
|
|
this._y = (m12 + m21) / s;
|
|
this._z = (m13 + m31) / s;
|
|
} else if (m22 > m33) {
|
|
const s = 2.0 * Math.sqrt(1.0 + m22 - m11 - m33);
|
|
this._w = (m13 - m31) / s;
|
|
this._x = (m12 + m21) / s;
|
|
this._y = 0.25 * s;
|
|
this._z = (m23 + m32) / s;
|
|
} else {
|
|
const s = 2.0 * Math.sqrt(1.0 + m33 - m11 - m22);
|
|
this._w = (m21 - m12) / s;
|
|
this._x = (m13 + m31) / s;
|
|
this._y = (m23 + m32) / s;
|
|
this._z = 0.25 * s;
|
|
}
|
|
|
|
this._onChangeCallback();
|
|
|
|
return this;
|
|
}
|
|
|
|
setFromUnitVectors(vFrom, vTo) {
|
|
// assumes direction vectors vFrom and vTo are normalized
|
|
let r = vFrom.dot(vTo) + 1;
|
|
|
|
if (r < Number.EPSILON) {
|
|
// vFrom and vTo point in opposite directions
|
|
r = 0;
|
|
|
|
if (Math.abs(vFrom.x) > Math.abs(vFrom.z)) {
|
|
this._x = -vFrom.y;
|
|
this._y = vFrom.x;
|
|
this._z = 0;
|
|
this._w = r;
|
|
} else {
|
|
this._x = 0;
|
|
this._y = -vFrom.z;
|
|
this._z = vFrom.y;
|
|
this._w = r;
|
|
}
|
|
} else {
|
|
// crossVectors( vFrom, vTo ); // inlined to avoid cyclic dependency on Vector3
|
|
this._x = vFrom.y * vTo.z - vFrom.z * vTo.y;
|
|
this._y = vFrom.z * vTo.x - vFrom.x * vTo.z;
|
|
this._z = vFrom.x * vTo.y - vFrom.y * vTo.x;
|
|
this._w = r;
|
|
}
|
|
|
|
return this.normalize();
|
|
}
|
|
|
|
angleTo(q) {
|
|
return 2 * Math.acos(Math.abs(clamp(this.dot(q), -1, 1)));
|
|
}
|
|
|
|
rotateTowards(q, step) {
|
|
const angle = this.angleTo(q);
|
|
if (angle === 0) return this;
|
|
const t = Math.min(1, step / angle);
|
|
this.slerp(q, t);
|
|
return this;
|
|
}
|
|
|
|
identity() {
|
|
return this.set(0, 0, 0, 1);
|
|
}
|
|
|
|
invert() {
|
|
// quaternion is assumed to have unit length
|
|
return this.conjugate();
|
|
}
|
|
|
|
conjugate() {
|
|
this._x *= -1;
|
|
this._y *= -1;
|
|
this._z *= -1;
|
|
|
|
this._onChangeCallback();
|
|
|
|
return this;
|
|
}
|
|
|
|
dot(v) {
|
|
return this._x * v._x + this._y * v._y + this._z * v._z + this._w * v._w;
|
|
}
|
|
|
|
lengthSq() {
|
|
return this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w;
|
|
}
|
|
|
|
length() {
|
|
return Math.sqrt(this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w);
|
|
}
|
|
|
|
normalize() {
|
|
let l = this.length();
|
|
|
|
if (l === 0) {
|
|
this._x = 0;
|
|
this._y = 0;
|
|
this._z = 0;
|
|
this._w = 1;
|
|
} else {
|
|
l = 1 / l;
|
|
this._x = this._x * l;
|
|
this._y = this._y * l;
|
|
this._z = this._z * l;
|
|
this._w = this._w * l;
|
|
}
|
|
|
|
this._onChangeCallback();
|
|
|
|
return this;
|
|
}
|
|
|
|
multiply(q, p) {
|
|
if (p !== undefined) {
|
|
console.warn('THREE.Quaternion: .multiply() now only accepts one argument. Use .multiplyQuaternions( a, b ) instead.');
|
|
return this.multiplyQuaternions(q, p);
|
|
}
|
|
|
|
return this.multiplyQuaternions(this, q);
|
|
}
|
|
|
|
premultiply(q) {
|
|
return this.multiplyQuaternions(q, this);
|
|
}
|
|
|
|
multiplyQuaternions(a, b) {
|
|
// from http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/code/index.htm
|
|
const qax = a._x,
|
|
qay = a._y,
|
|
qaz = a._z,
|
|
qaw = a._w;
|
|
const qbx = b._x,
|
|
qby = b._y,
|
|
qbz = b._z,
|
|
qbw = b._w;
|
|
this._x = qax * qbw + qaw * qbx + qay * qbz - qaz * qby;
|
|
this._y = qay * qbw + qaw * qby + qaz * qbx - qax * qbz;
|
|
this._z = qaz * qbw + qaw * qbz + qax * qby - qay * qbx;
|
|
this._w = qaw * qbw - qax * qbx - qay * qby - qaz * qbz;
|
|
|
|
this._onChangeCallback();
|
|
|
|
return this;
|
|
}
|
|
|
|
slerp(qb, t) {
|
|
if (t === 0) return this;
|
|
if (t === 1) return this.copy(qb);
|
|
const x = this._x,
|
|
y = this._y,
|
|
z = this._z,
|
|
w = this._w; // http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/slerp/
|
|
|
|
let cosHalfTheta = w * qb._w + x * qb._x + y * qb._y + z * qb._z;
|
|
|
|
if (cosHalfTheta < 0) {
|
|
this._w = -qb._w;
|
|
this._x = -qb._x;
|
|
this._y = -qb._y;
|
|
this._z = -qb._z;
|
|
cosHalfTheta = -cosHalfTheta;
|
|
} else {
|
|
this.copy(qb);
|
|
}
|
|
|
|
if (cosHalfTheta >= 1.0) {
|
|
this._w = w;
|
|
this._x = x;
|
|
this._y = y;
|
|
this._z = z;
|
|
return this;
|
|
}
|
|
|
|
const sqrSinHalfTheta = 1.0 - cosHalfTheta * cosHalfTheta;
|
|
|
|
if (sqrSinHalfTheta <= Number.EPSILON) {
|
|
const s = 1 - t;
|
|
this._w = s * w + t * this._w;
|
|
this._x = s * x + t * this._x;
|
|
this._y = s * y + t * this._y;
|
|
this._z = s * z + t * this._z;
|
|
this.normalize();
|
|
|
|
this._onChangeCallback();
|
|
|
|
return this;
|
|
}
|
|
|
|
const sinHalfTheta = Math.sqrt(sqrSinHalfTheta);
|
|
const halfTheta = Math.atan2(sinHalfTheta, cosHalfTheta);
|
|
const ratioA = Math.sin((1 - t) * halfTheta) / sinHalfTheta,
|
|
ratioB = Math.sin(t * halfTheta) / sinHalfTheta;
|
|
this._w = w * ratioA + this._w * ratioB;
|
|
this._x = x * ratioA + this._x * ratioB;
|
|
this._y = y * ratioA + this._y * ratioB;
|
|
this._z = z * ratioA + this._z * ratioB;
|
|
|
|
this._onChangeCallback();
|
|
|
|
return this;
|
|
}
|
|
|
|
slerpQuaternions(qa, qb, t) {
|
|
this.copy(qa).slerp(qb, t);
|
|
}
|
|
|
|
random() {
|
|
// Derived from http://planning.cs.uiuc.edu/node198.html
|
|
// Note, this source uses w, x, y, z ordering,
|
|
// so we swap the order below.
|
|
const u1 = Math.random();
|
|
const sqrt1u1 = Math.sqrt(1 - u1);
|
|
const sqrtu1 = Math.sqrt(u1);
|
|
const u2 = 2 * Math.PI * Math.random();
|
|
const u3 = 2 * Math.PI * Math.random();
|
|
return this.set(sqrt1u1 * Math.cos(u2), sqrtu1 * Math.sin(u3), sqrtu1 * Math.cos(u3), sqrt1u1 * Math.sin(u2));
|
|
}
|
|
|
|
equals(quaternion) {
|
|
return quaternion._x === this._x && quaternion._y === this._y && quaternion._z === this._z && quaternion._w === this._w;
|
|
}
|
|
|
|
fromArray(array, offset = 0) {
|
|
this._x = array[offset];
|
|
this._y = array[offset + 1];
|
|
this._z = array[offset + 2];
|
|
this._w = array[offset + 3];
|
|
|
|
this._onChangeCallback();
|
|
|
|
return this;
|
|
}
|
|
|
|
toArray(array = [], offset = 0) {
|
|
array[offset] = this._x;
|
|
array[offset + 1] = this._y;
|
|
array[offset + 2] = this._z;
|
|
array[offset + 3] = this._w;
|
|
return array;
|
|
}
|
|
|
|
fromBufferAttribute(attribute, index) {
|
|
this._x = attribute.getX(index);
|
|
this._y = attribute.getY(index);
|
|
this._z = attribute.getZ(index);
|
|
this._w = attribute.getW(index);
|
|
return this;
|
|
}
|
|
|
|
_onChange(callback) {
|
|
this._onChangeCallback = callback;
|
|
return this;
|
|
}
|
|
|
|
_onChangeCallback() {}
|
|
|
|
}
|
|
|
|
Quaternion.prototype.isQuaternion = true;
|
|
|
|
class Vector3 {
|
|
constructor(x = 0, y = 0, z = 0) {
|
|
this.x = x;
|
|
this.y = y;
|
|
this.z = z;
|
|
}
|
|
|
|
set(x, y, z) {
|
|
if (z === undefined) z = this.z; // sprite.scale.set(x,y)
|
|
|
|
this.x = x;
|
|
this.y = y;
|
|
this.z = z;
|
|
return this;
|
|
}
|
|
|
|
setScalar(scalar) {
|
|
this.x = scalar;
|
|
this.y = scalar;
|
|
this.z = scalar;
|
|
return this;
|
|
}
|
|
|
|
setX(x) {
|
|
this.x = x;
|
|
return this;
|
|
}
|
|
|
|
setY(y) {
|
|
this.y = y;
|
|
return this;
|
|
}
|
|
|
|
setZ(z) {
|
|
this.z = z;
|
|
return this;
|
|
}
|
|
|
|
setComponent(index, value) {
|
|
switch (index) {
|
|
case 0:
|
|
this.x = value;
|
|
break;
|
|
|
|
case 1:
|
|
this.y = value;
|
|
break;
|
|
|
|
case 2:
|
|
this.z = value;
|
|
break;
|
|
|
|
default:
|
|
throw new Error('index is out of range: ' + index);
|
|
}
|
|
|
|
return this;
|
|
}
|
|
|
|
getComponent(index) {
|
|
switch (index) {
|
|
case 0:
|
|
return this.x;
|
|
|
|
case 1:
|
|
return this.y;
|
|
|
|
case 2:
|
|
return this.z;
|
|
|
|
default:
|
|
throw new Error('index is out of range: ' + index);
|
|
}
|
|
}
|
|
|
|
clone() {
|
|
return new this.constructor(this.x, this.y, this.z);
|
|
}
|
|
|
|
copy(v) {
|
|
this.x = v.x;
|
|
this.y = v.y;
|
|
this.z = v.z;
|
|
return this;
|
|
}
|
|
|
|
add(v, w) {
|
|
if (w !== undefined) {
|
|
console.warn('THREE.Vector3: .add() now only accepts one argument. Use .addVectors( a, b ) instead.');
|
|
return this.addVectors(v, w);
|
|
}
|
|
|
|
this.x += v.x;
|
|
this.y += v.y;
|
|
this.z += v.z;
|
|
return this;
|
|
}
|
|
|
|
addScalar(s) {
|
|
this.x += s;
|
|
this.y += s;
|
|
this.z += s;
|
|
return this;
|
|
}
|
|
|
|
addVectors(a, b) {
|
|
this.x = a.x + b.x;
|
|
this.y = a.y + b.y;
|
|
this.z = a.z + b.z;
|
|
return this;
|
|
}
|
|
|
|
addScaledVector(v, s) {
|
|
this.x += v.x * s;
|
|
this.y += v.y * s;
|
|
this.z += v.z * s;
|
|
return this;
|
|
}
|
|
|
|
sub(v, w) {
|
|
if (w !== undefined) {
|
|
console.warn('THREE.Vector3: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.');
|
|
return this.subVectors(v, w);
|
|
}
|
|
|
|
this.x -= v.x;
|
|
this.y -= v.y;
|
|
this.z -= v.z;
|
|
return this;
|
|
}
|
|
|
|
subScalar(s) {
|
|
this.x -= s;
|
|
this.y -= s;
|
|
this.z -= s;
|
|
return this;
|
|
}
|
|
|
|
subVectors(a, b) {
|
|
this.x = a.x - b.x;
|
|
this.y = a.y - b.y;
|
|
this.z = a.z - b.z;
|
|
return this;
|
|
}
|
|
|
|
multiply(v, w) {
|
|
if (w !== undefined) {
|
|
console.warn('THREE.Vector3: .multiply() now only accepts one argument. Use .multiplyVectors( a, b ) instead.');
|
|
return this.multiplyVectors(v, w);
|
|
}
|
|
|
|
this.x *= v.x;
|
|
this.y *= v.y;
|
|
this.z *= v.z;
|
|
return this;
|
|
}
|
|
|
|
multiplyScalar(scalar) {
|
|
this.x *= scalar;
|
|
this.y *= scalar;
|
|
this.z *= scalar;
|
|
return this;
|
|
}
|
|
|
|
multiplyVectors(a, b) {
|
|
this.x = a.x * b.x;
|
|
this.y = a.y * b.y;
|
|
this.z = a.z * b.z;
|
|
return this;
|
|
}
|
|
|
|
applyEuler(euler) {
|
|
if (!(euler && euler.isEuler)) {
|
|
console.error('THREE.Vector3: .applyEuler() now expects an Euler rotation rather than a Vector3 and order.');
|
|
}
|
|
|
|
return this.applyQuaternion(_quaternion$4.setFromEuler(euler));
|
|
}
|
|
|
|
applyAxisAngle(axis, angle) {
|
|
return this.applyQuaternion(_quaternion$4.setFromAxisAngle(axis, angle));
|
|
}
|
|
|
|
applyMatrix3(m) {
|
|
const x = this.x,
|
|
y = this.y,
|
|
z = this.z;
|
|
const e = m.elements;
|
|
this.x = e[0] * x + e[3] * y + e[6] * z;
|
|
this.y = e[1] * x + e[4] * y + e[7] * z;
|
|
this.z = e[2] * x + e[5] * y + e[8] * z;
|
|
return this;
|
|
}
|
|
|
|
applyNormalMatrix(m) {
|
|
return this.applyMatrix3(m).normalize();
|
|
}
|
|
|
|
applyMatrix4(m) {
|
|
const x = this.x,
|
|
y = this.y,
|
|
z = this.z;
|
|
const e = m.elements;
|
|
const w = 1 / (e[3] * x + e[7] * y + e[11] * z + e[15]);
|
|
this.x = (e[0] * x + e[4] * y + e[8] * z + e[12]) * w;
|
|
this.y = (e[1] * x + e[5] * y + e[9] * z + e[13]) * w;
|
|
this.z = (e[2] * x + e[6] * y + e[10] * z + e[14]) * w;
|
|
return this;
|
|
}
|
|
|
|
applyQuaternion(q) {
|
|
const x = this.x,
|
|
y = this.y,
|
|
z = this.z;
|
|
const qx = q.x,
|
|
qy = q.y,
|
|
qz = q.z,
|
|
qw = q.w; // calculate quat * vector
|
|
|
|
const ix = qw * x + qy * z - qz * y;
|
|
const iy = qw * y + qz * x - qx * z;
|
|
const iz = qw * z + qx * y - qy * x;
|
|
const iw = -qx * x - qy * y - qz * z; // calculate result * inverse quat
|
|
|
|
this.x = ix * qw + iw * -qx + iy * -qz - iz * -qy;
|
|
this.y = iy * qw + iw * -qy + iz * -qx - ix * -qz;
|
|
this.z = iz * qw + iw * -qz + ix * -qy - iy * -qx;
|
|
return this;
|
|
}
|
|
|
|
project(camera) {
|
|
return this.applyMatrix4(camera.matrixWorldInverse).applyMatrix4(camera.projectionMatrix);
|
|
}
|
|
|
|
unproject(camera) {
|
|
return this.applyMatrix4(camera.projectionMatrixInverse).applyMatrix4(camera.matrixWorld);
|
|
}
|
|
|
|
transformDirection(m) {
|
|
// input: THREE.Matrix4 affine matrix
|
|
// vector interpreted as a direction
|
|
const x = this.x,
|
|
y = this.y,
|
|
z = this.z;
|
|
const e = m.elements;
|
|
this.x = e[0] * x + e[4] * y + e[8] * z;
|
|
this.y = e[1] * x + e[5] * y + e[9] * z;
|
|
this.z = e[2] * x + e[6] * y + e[10] * z;
|
|
return this.normalize();
|
|
}
|
|
|
|
divide(v) {
|
|
this.x /= v.x;
|
|
this.y /= v.y;
|
|
this.z /= v.z;
|
|
return this;
|
|
}
|
|
|
|
divideScalar(scalar) {
|
|
return this.multiplyScalar(1 / scalar);
|
|
}
|
|
|
|
min(v) {
|
|
this.x = Math.min(this.x, v.x);
|
|
this.y = Math.min(this.y, v.y);
|
|
this.z = Math.min(this.z, v.z);
|
|
return this;
|
|
}
|
|
|
|
max(v) {
|
|
this.x = Math.max(this.x, v.x);
|
|
this.y = Math.max(this.y, v.y);
|
|
this.z = Math.max(this.z, v.z);
|
|
return this;
|
|
}
|
|
|
|
clamp(min, max) {
|
|
// assumes min < max, componentwise
|
|
this.x = Math.max(min.x, Math.min(max.x, this.x));
|
|
this.y = Math.max(min.y, Math.min(max.y, this.y));
|
|
this.z = Math.max(min.z, Math.min(max.z, this.z));
|
|
return this;
|
|
}
|
|
|
|
clampScalar(minVal, maxVal) {
|
|
this.x = Math.max(minVal, Math.min(maxVal, this.x));
|
|
this.y = Math.max(minVal, Math.min(maxVal, this.y));
|
|
this.z = Math.max(minVal, Math.min(maxVal, this.z));
|
|
return this;
|
|
}
|
|
|
|
clampLength(min, max) {
|
|
const length = this.length();
|
|
return this.divideScalar(length || 1).multiplyScalar(Math.max(min, Math.min(max, length)));
|
|
}
|
|
|
|
floor() {
|
|
this.x = Math.floor(this.x);
|
|
this.y = Math.floor(this.y);
|
|
this.z = Math.floor(this.z);
|
|
return this;
|
|
}
|
|
|
|
ceil() {
|
|
this.x = Math.ceil(this.x);
|
|
this.y = Math.ceil(this.y);
|
|
this.z = Math.ceil(this.z);
|
|
return this;
|
|
}
|
|
|
|
round() {
|
|
this.x = Math.round(this.x);
|
|
this.y = Math.round(this.y);
|
|
this.z = Math.round(this.z);
|
|
return this;
|
|
}
|
|
|
|
roundToZero() {
|
|
this.x = this.x < 0 ? Math.ceil(this.x) : Math.floor(this.x);
|
|
this.y = this.y < 0 ? Math.ceil(this.y) : Math.floor(this.y);
|
|
this.z = this.z < 0 ? Math.ceil(this.z) : Math.floor(this.z);
|
|
return this;
|
|
}
|
|
|
|
negate() {
|
|
this.x = -this.x;
|
|
this.y = -this.y;
|
|
this.z = -this.z;
|
|
return this;
|
|
}
|
|
|
|
dot(v) {
|
|
return this.x * v.x + this.y * v.y + this.z * v.z;
|
|
} // TODO lengthSquared?
|
|
|
|
|
|
lengthSq() {
|
|
return this.x * this.x + this.y * this.y + this.z * this.z;
|
|
}
|
|
|
|
length() {
|
|
return Math.sqrt(this.x * this.x + this.y * this.y + this.z * this.z);
|
|
}
|
|
|
|
manhattanLength() {
|
|
return Math.abs(this.x) + Math.abs(this.y) + Math.abs(this.z);
|
|
}
|
|
|
|
normalize() {
|
|
return this.divideScalar(this.length() || 1);
|
|
}
|
|
|
|
setLength(length) {
|
|
return this.normalize().multiplyScalar(length);
|
|
}
|
|
|
|
lerp(v, alpha) {
|
|
this.x += (v.x - this.x) * alpha;
|
|
this.y += (v.y - this.y) * alpha;
|
|
this.z += (v.z - this.z) * alpha;
|
|
return this;
|
|
}
|
|
|
|
lerpVectors(v1, v2, alpha) {
|
|
this.x = v1.x + (v2.x - v1.x) * alpha;
|
|
this.y = v1.y + (v2.y - v1.y) * alpha;
|
|
this.z = v1.z + (v2.z - v1.z) * alpha;
|
|
return this;
|
|
}
|
|
|
|
cross(v, w) {
|
|
if (w !== undefined) {
|
|
console.warn('THREE.Vector3: .cross() now only accepts one argument. Use .crossVectors( a, b ) instead.');
|
|
return this.crossVectors(v, w);
|
|
}
|
|
|
|
return this.crossVectors(this, v);
|
|
}
|
|
|
|
crossVectors(a, b) {
|
|
const ax = a.x,
|
|
ay = a.y,
|
|
az = a.z;
|
|
const bx = b.x,
|
|
by = b.y,
|
|
bz = b.z;
|
|
this.x = ay * bz - az * by;
|
|
this.y = az * bx - ax * bz;
|
|
this.z = ax * by - ay * bx;
|
|
return this;
|
|
}
|
|
|
|
projectOnVector(v) {
|
|
const denominator = v.lengthSq();
|
|
if (denominator === 0) return this.set(0, 0, 0);
|
|
const scalar = v.dot(this) / denominator;
|
|
return this.copy(v).multiplyScalar(scalar);
|
|
}
|
|
|
|
projectOnPlane(planeNormal) {
|
|
_vector$c.copy(this).projectOnVector(planeNormal);
|
|
|
|
return this.sub(_vector$c);
|
|
}
|
|
|
|
reflect(normal) {
|
|
// reflect incident vector off plane orthogonal to normal
|
|
// normal is assumed to have unit length
|
|
return this.sub(_vector$c.copy(normal).multiplyScalar(2 * this.dot(normal)));
|
|
}
|
|
|
|
angleTo(v) {
|
|
const denominator = Math.sqrt(this.lengthSq() * v.lengthSq());
|
|
if (denominator === 0) return Math.PI / 2;
|
|
const theta = this.dot(v) / denominator; // clamp, to handle numerical problems
|
|
|
|
return Math.acos(clamp(theta, -1, 1));
|
|
}
|
|
|
|
distanceTo(v) {
|
|
return Math.sqrt(this.distanceToSquared(v));
|
|
}
|
|
|
|
distanceToSquared(v) {
|
|
const dx = this.x - v.x,
|
|
dy = this.y - v.y,
|
|
dz = this.z - v.z;
|
|
return dx * dx + dy * dy + dz * dz;
|
|
}
|
|
|
|
manhattanDistanceTo(v) {
|
|
return Math.abs(this.x - v.x) + Math.abs(this.y - v.y) + Math.abs(this.z - v.z);
|
|
}
|
|
|
|
setFromSpherical(s) {
|
|
return this.setFromSphericalCoords(s.radius, s.phi, s.theta);
|
|
}
|
|
|
|
setFromSphericalCoords(radius, phi, theta) {
|
|
const sinPhiRadius = Math.sin(phi) * radius;
|
|
this.x = sinPhiRadius * Math.sin(theta);
|
|
this.y = Math.cos(phi) * radius;
|
|
this.z = sinPhiRadius * Math.cos(theta);
|
|
return this;
|
|
}
|
|
|
|
setFromCylindrical(c) {
|
|
return this.setFromCylindricalCoords(c.radius, c.theta, c.y);
|
|
}
|
|
|
|
setFromCylindricalCoords(radius, theta, y) {
|
|
this.x = radius * Math.sin(theta);
|
|
this.y = y;
|
|
this.z = radius * Math.cos(theta);
|
|
return this;
|
|
}
|
|
|
|
setFromMatrixPosition(m) {
|
|
const e = m.elements;
|
|
this.x = e[12];
|
|
this.y = e[13];
|
|
this.z = e[14];
|
|
return this;
|
|
}
|
|
|
|
setFromMatrixScale(m) {
|
|
const sx = this.setFromMatrixColumn(m, 0).length();
|
|
const sy = this.setFromMatrixColumn(m, 1).length();
|
|
const sz = this.setFromMatrixColumn(m, 2).length();
|
|
this.x = sx;
|
|
this.y = sy;
|
|
this.z = sz;
|
|
return this;
|
|
}
|
|
|
|
setFromMatrixColumn(m, index) {
|
|
return this.fromArray(m.elements, index * 4);
|
|
}
|
|
|
|
setFromMatrix3Column(m, index) {
|
|
return this.fromArray(m.elements, index * 3);
|
|
}
|
|
|
|
equals(v) {
|
|
return v.x === this.x && v.y === this.y && v.z === this.z;
|
|
}
|
|
|
|
fromArray(array, offset = 0) {
|
|
this.x = array[offset];
|
|
this.y = array[offset + 1];
|
|
this.z = array[offset + 2];
|
|
return this;
|
|
}
|
|
|
|
toArray(array = [], offset = 0) {
|
|
array[offset] = this.x;
|
|
array[offset + 1] = this.y;
|
|
array[offset + 2] = this.z;
|
|
return array;
|
|
}
|
|
|
|
fromBufferAttribute(attribute, index, offset) {
|
|
if (offset !== undefined) {
|
|
console.warn('THREE.Vector3: offset has been removed from .fromBufferAttribute().');
|
|
}
|
|
|
|
this.x = attribute.getX(index);
|
|
this.y = attribute.getY(index);
|
|
this.z = attribute.getZ(index);
|
|
return this;
|
|
}
|
|
|
|
random() {
|
|
this.x = Math.random();
|
|
this.y = Math.random();
|
|
this.z = Math.random();
|
|
return this;
|
|
}
|
|
|
|
randomDirection() {
|
|
// Derived from https://mathworld.wolfram.com/SpherePointPicking.html
|
|
const u = (Math.random() - 0.5) * 2;
|
|
const t = Math.random() * Math.PI * 2;
|
|
const f = Math.sqrt(1 - u ** 2);
|
|
this.x = f * Math.cos(t);
|
|
this.y = f * Math.sin(t);
|
|
this.z = u;
|
|
return this;
|
|
}
|
|
|
|
*[Symbol.iterator]() {
|
|
yield this.x;
|
|
yield this.y;
|
|
yield this.z;
|
|
}
|
|
|
|
}
|
|
|
|
Vector3.prototype.isVector3 = true;
|
|
|
|
const _vector$c = /*@__PURE__*/new Vector3();
|
|
|
|
const _quaternion$4 = /*@__PURE__*/new Quaternion();
|
|
|
|
class Box3 {
|
|
constructor(min = new Vector3(+Infinity, +Infinity, +Infinity), max = new Vector3(-Infinity, -Infinity, -Infinity)) {
|
|
this.min = min;
|
|
this.max = max;
|
|
}
|
|
|
|
set(min, max) {
|
|
this.min.copy(min);
|
|
this.max.copy(max);
|
|
return this;
|
|
}
|
|
|
|
setFromArray(array) {
|
|
let minX = +Infinity;
|
|
let minY = +Infinity;
|
|
let minZ = +Infinity;
|
|
let maxX = -Infinity;
|
|
let maxY = -Infinity;
|
|
let maxZ = -Infinity;
|
|
|
|
for (let i = 0, l = array.length; i < l; i += 3) {
|
|
const x = array[i];
|
|
const y = array[i + 1];
|
|
const z = array[i + 2];
|
|
if (x < minX) minX = x;
|
|
if (y < minY) minY = y;
|
|
if (z < minZ) minZ = z;
|
|
if (x > maxX) maxX = x;
|
|
if (y > maxY) maxY = y;
|
|
if (z > maxZ) maxZ = z;
|
|
}
|
|
|
|
this.min.set(minX, minY, minZ);
|
|
this.max.set(maxX, maxY, maxZ);
|
|
return this;
|
|
}
|
|
|
|
setFromBufferAttribute(attribute) {
|
|
let minX = +Infinity;
|
|
let minY = +Infinity;
|
|
let minZ = +Infinity;
|
|
let maxX = -Infinity;
|
|
let maxY = -Infinity;
|
|
let maxZ = -Infinity;
|
|
|
|
for (let i = 0, l = attribute.count; i < l; i++) {
|
|
const x = attribute.getX(i);
|
|
const y = attribute.getY(i);
|
|
const z = attribute.getZ(i);
|
|
if (x < minX) minX = x;
|
|
if (y < minY) minY = y;
|
|
if (z < minZ) minZ = z;
|
|
if (x > maxX) maxX = x;
|
|
if (y > maxY) maxY = y;
|
|
if (z > maxZ) maxZ = z;
|
|
}
|
|
|
|
this.min.set(minX, minY, minZ);
|
|
this.max.set(maxX, maxY, maxZ);
|
|
return this;
|
|
}
|
|
|
|
setFromPoints(points) {
|
|
this.makeEmpty();
|
|
|
|
for (let i = 0, il = points.length; i < il; i++) {
|
|
this.expandByPoint(points[i]);
|
|
}
|
|
|
|
return this;
|
|
}
|
|
|
|
setFromCenterAndSize(center, size) {
|
|
const halfSize = _vector$b.copy(size).multiplyScalar(0.5);
|
|
|
|
this.min.copy(center).sub(halfSize);
|
|
this.max.copy(center).add(halfSize);
|
|
return this;
|
|
}
|
|
|
|
setFromObject(object) {
|
|
this.makeEmpty();
|
|
return this.expandByObject(object);
|
|
}
|
|
|
|
clone() {
|
|
return new this.constructor().copy(this);
|
|
}
|
|
|
|
copy(box) {
|
|
this.min.copy(box.min);
|
|
this.max.copy(box.max);
|
|
return this;
|
|
}
|
|
|
|
makeEmpty() {
|
|
this.min.x = this.min.y = this.min.z = +Infinity;
|
|
this.max.x = this.max.y = this.max.z = -Infinity;
|
|
return this;
|
|
}
|
|
|
|
isEmpty() {
|
|
// this is a more robust check for empty than ( volume <= 0 ) because volume can get positive with two negative axes
|
|
return this.max.x < this.min.x || this.max.y < this.min.y || this.max.z < this.min.z;
|
|
}
|
|
|
|
getCenter(target) {
|
|
return this.isEmpty() ? target.set(0, 0, 0) : target.addVectors(this.min, this.max).multiplyScalar(0.5);
|
|
}
|
|
|
|
getSize(target) {
|
|
return this.isEmpty() ? target.set(0, 0, 0) : target.subVectors(this.max, this.min);
|
|
}
|
|
|
|
expandByPoint(point) {
|
|
this.min.min(point);
|
|
this.max.max(point);
|
|
return this;
|
|
}
|
|
|
|
expandByVector(vector) {
|
|
this.min.sub(vector);
|
|
this.max.add(vector);
|
|
return this;
|
|
}
|
|
|
|
expandByScalar(scalar) {
|
|
this.min.addScalar(-scalar);
|
|
this.max.addScalar(scalar);
|
|
return this;
|
|
}
|
|
|
|
expandByObject(object) {
|
|
// Computes the world-axis-aligned bounding box of an object (including its children),
|
|
// accounting for both the object's, and children's, world transforms
|
|
object.updateWorldMatrix(false, false);
|
|
const geometry = object.geometry;
|
|
|
|
if (geometry !== undefined) {
|
|
if (geometry.boundingBox === null) {
|
|
geometry.computeBoundingBox();
|
|
}
|
|
|
|
_box$3.copy(geometry.boundingBox);
|
|
|
|
_box$3.applyMatrix4(object.matrixWorld);
|
|
|
|
this.union(_box$3);
|
|
}
|
|
|
|
const children = object.children;
|
|
|
|
for (let i = 0, l = children.length; i < l; i++) {
|
|
this.expandByObject(children[i]);
|
|
}
|
|
|
|
return this;
|
|
}
|
|
|
|
containsPoint(point) {
|
|
return point.x < this.min.x || point.x > this.max.x || point.y < this.min.y || point.y > this.max.y || point.z < this.min.z || point.z > this.max.z ? false : true;
|
|
}
|
|
|
|
containsBox(box) {
|
|
return this.min.x <= box.min.x && box.max.x <= this.max.x && this.min.y <= box.min.y && box.max.y <= this.max.y && this.min.z <= box.min.z && box.max.z <= this.max.z;
|
|
}
|
|
|
|
getParameter(point, target) {
|
|
// This can potentially have a divide by zero if the box
|
|
// has a size dimension of 0.
|
|
return target.set((point.x - this.min.x) / (this.max.x - this.min.x), (point.y - this.min.y) / (this.max.y - this.min.y), (point.z - this.min.z) / (this.max.z - this.min.z));
|
|
}
|
|
|
|
intersectsBox(box) {
|
|
// using 6 splitting planes to rule out intersections.
|
|
return box.max.x < this.min.x || box.min.x > this.max.x || box.max.y < this.min.y || box.min.y > this.max.y || box.max.z < this.min.z || box.min.z > this.max.z ? false : true;
|
|
}
|
|
|
|
intersectsSphere(sphere) {
|
|
// Find the point on the AABB closest to the sphere center.
|
|
this.clampPoint(sphere.center, _vector$b); // If that point is inside the sphere, the AABB and sphere intersect.
|
|
|
|
return _vector$b.distanceToSquared(sphere.center) <= sphere.radius * sphere.radius;
|
|
}
|
|
|
|
intersectsPlane(plane) {
|
|
// We compute the minimum and maximum dot product values. If those values
|
|
// are on the same side (back or front) of the plane, then there is no intersection.
|
|
let min, max;
|
|
|
|
if (plane.normal.x > 0) {
|
|
min = plane.normal.x * this.min.x;
|
|
max = plane.normal.x * this.max.x;
|
|
} else {
|
|
min = plane.normal.x * this.max.x;
|
|
max = plane.normal.x * this.min.x;
|
|
}
|
|
|
|
if (plane.normal.y > 0) {
|
|
min += plane.normal.y * this.min.y;
|
|
max += plane.normal.y * this.max.y;
|
|
} else {
|
|
min += plane.normal.y * this.max.y;
|
|
max += plane.normal.y * this.min.y;
|
|
}
|
|
|
|
if (plane.normal.z > 0) {
|
|
min += plane.normal.z * this.min.z;
|
|
max += plane.normal.z * this.max.z;
|
|
} else {
|
|
min += plane.normal.z * this.max.z;
|
|
max += plane.normal.z * this.min.z;
|
|
}
|
|
|
|
return min <= -plane.constant && max >= -plane.constant;
|
|
}
|
|
|
|
intersectsTriangle(triangle) {
|
|
if (this.isEmpty()) {
|
|
return false;
|
|
} // compute box center and extents
|
|
|
|
|
|
this.getCenter(_center);
|
|
|
|
_extents.subVectors(this.max, _center); // translate triangle to aabb origin
|
|
|
|
|
|
_v0$2.subVectors(triangle.a, _center);
|
|
|
|
_v1$7.subVectors(triangle.b, _center);
|
|
|
|
_v2$3.subVectors(triangle.c, _center); // compute edge vectors for triangle
|
|
|
|
|
|
_f0.subVectors(_v1$7, _v0$2);
|
|
|
|
_f1.subVectors(_v2$3, _v1$7);
|
|
|
|
_f2.subVectors(_v0$2, _v2$3); // test against axes that are given by cross product combinations of the edges of the triangle and the edges of the aabb
|
|
// make an axis testing of each of the 3 sides of the aabb against each of the 3 sides of the triangle = 9 axis of separation
|
|
// axis_ij = u_i x f_j (u0, u1, u2 = face normals of aabb = x,y,z axes vectors since aabb is axis aligned)
|
|
|
|
|
|
let axes = [0, -_f0.z, _f0.y, 0, -_f1.z, _f1.y, 0, -_f2.z, _f2.y, _f0.z, 0, -_f0.x, _f1.z, 0, -_f1.x, _f2.z, 0, -_f2.x, -_f0.y, _f0.x, 0, -_f1.y, _f1.x, 0, -_f2.y, _f2.x, 0];
|
|
|
|
if (!satForAxes(axes, _v0$2, _v1$7, _v2$3, _extents)) {
|
|
return false;
|
|
} // test 3 face normals from the aabb
|
|
|
|
|
|
axes = [1, 0, 0, 0, 1, 0, 0, 0, 1];
|
|
|
|
if (!satForAxes(axes, _v0$2, _v1$7, _v2$3, _extents)) {
|
|
return false;
|
|
} // finally testing the face normal of the triangle
|
|
// use already existing triangle edge vectors here
|
|
|
|
|
|
_triangleNormal.crossVectors(_f0, _f1);
|
|
|
|
axes = [_triangleNormal.x, _triangleNormal.y, _triangleNormal.z];
|
|
return satForAxes(axes, _v0$2, _v1$7, _v2$3, _extents);
|
|
}
|
|
|
|
clampPoint(point, target) {
|
|
return target.copy(point).clamp(this.min, this.max);
|
|
}
|
|
|
|
distanceToPoint(point) {
|
|
const clampedPoint = _vector$b.copy(point).clamp(this.min, this.max);
|
|
|
|
return clampedPoint.sub(point).length();
|
|
}
|
|
|
|
getBoundingSphere(target) {
|
|
this.getCenter(target.center);
|
|
target.radius = this.getSize(_vector$b).length() * 0.5;
|
|
return target;
|
|
}
|
|
|
|
intersect(box) {
|
|
this.min.max(box.min);
|
|
this.max.min(box.max); // ensure that if there is no overlap, the result is fully empty, not slightly empty with non-inf/+inf values that will cause subsequence intersects to erroneously return valid values.
|
|
|
|
if (this.isEmpty()) this.makeEmpty();
|
|
return this;
|
|
}
|
|
|
|
union(box) {
|
|
this.min.min(box.min);
|
|
this.max.max(box.max);
|
|
return this;
|
|
}
|
|
|
|
applyMatrix4(matrix) {
|
|
// transform of empty box is an empty box.
|
|
if (this.isEmpty()) return this; // NOTE: I am using a binary pattern to specify all 2^3 combinations below
|
|
|
|
_points[0].set(this.min.x, this.min.y, this.min.z).applyMatrix4(matrix); // 000
|
|
|
|
|
|
_points[1].set(this.min.x, this.min.y, this.max.z).applyMatrix4(matrix); // 001
|
|
|
|
|
|
_points[2].set(this.min.x, this.max.y, this.min.z).applyMatrix4(matrix); // 010
|
|
|
|
|
|
_points[3].set(this.min.x, this.max.y, this.max.z).applyMatrix4(matrix); // 011
|
|
|
|
|
|
_points[4].set(this.max.x, this.min.y, this.min.z).applyMatrix4(matrix); // 100
|
|
|
|
|
|
_points[5].set(this.max.x, this.min.y, this.max.z).applyMatrix4(matrix); // 101
|
|
|
|
|
|
_points[6].set(this.max.x, this.max.y, this.min.z).applyMatrix4(matrix); // 110
|
|
|
|
|
|
_points[7].set(this.max.x, this.max.y, this.max.z).applyMatrix4(matrix); // 111
|
|
|
|
|
|
this.setFromPoints(_points);
|
|
return this;
|
|
}
|
|
|
|
translate(offset) {
|
|
this.min.add(offset);
|
|
this.max.add(offset);
|
|
return this;
|
|
}
|
|
|
|
equals(box) {
|
|
return box.min.equals(this.min) && box.max.equals(this.max);
|
|
}
|
|
|
|
}
|
|
|
|
Box3.prototype.isBox3 = true;
|
|
const _points = [/*@__PURE__*/new Vector3(), /*@__PURE__*/new Vector3(), /*@__PURE__*/new Vector3(), /*@__PURE__*/new Vector3(), /*@__PURE__*/new Vector3(), /*@__PURE__*/new Vector3(), /*@__PURE__*/new Vector3(), /*@__PURE__*/new Vector3()];
|
|
|
|
const _vector$b = /*@__PURE__*/new Vector3();
|
|
|
|
const _box$3 = /*@__PURE__*/new Box3(); // triangle centered vertices
|
|
|
|
|
|
const _v0$2 = /*@__PURE__*/new Vector3();
|
|
|
|
const _v1$7 = /*@__PURE__*/new Vector3();
|
|
|
|
const _v2$3 = /*@__PURE__*/new Vector3(); // triangle edge vectors
|
|
|
|
|
|
const _f0 = /*@__PURE__*/new Vector3();
|
|
|
|
const _f1 = /*@__PURE__*/new Vector3();
|
|
|
|
const _f2 = /*@__PURE__*/new Vector3();
|
|
|
|
const _center = /*@__PURE__*/new Vector3();
|
|
|
|
const _extents = /*@__PURE__*/new Vector3();
|
|
|
|
const _triangleNormal = /*@__PURE__*/new Vector3();
|
|
|
|
const _testAxis = /*@__PURE__*/new Vector3();
|
|
|
|
function satForAxes(axes, v0, v1, v2, extents) {
|
|
for (let i = 0, j = axes.length - 3; i <= j; i += 3) {
|
|
_testAxis.fromArray(axes, i); // project the aabb onto the seperating axis
|
|
|
|
|
|
const r = extents.x * Math.abs(_testAxis.x) + extents.y * Math.abs(_testAxis.y) + extents.z * Math.abs(_testAxis.z); // project all 3 vertices of the triangle onto the seperating axis
|
|
|
|
const p0 = v0.dot(_testAxis);
|
|
const p1 = v1.dot(_testAxis);
|
|
const p2 = v2.dot(_testAxis); // actual test, basically see if either of the most extreme of the triangle points intersects r
|
|
|
|
if (Math.max(-Math.max(p0, p1, p2), Math.min(p0, p1, p2)) > r) {
|
|
// points of the projected triangle are outside the projected half-length of the aabb
|
|
// the axis is seperating and we can exit
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
const _box$2 = /*@__PURE__*/new Box3();
|
|
|
|
const _v1$6 = /*@__PURE__*/new Vector3();
|
|
|
|
const _toFarthestPoint = /*@__PURE__*/new Vector3();
|
|
|
|
const _toPoint = /*@__PURE__*/new Vector3();
|
|
|
|
class Sphere {
|
|
constructor(center = new Vector3(), radius = -1) {
|
|
this.center = center;
|
|
this.radius = radius;
|
|
}
|
|
|
|
set(center, radius) {
|
|
this.center.copy(center);
|
|
this.radius = radius;
|
|
return this;
|
|
}
|
|
|
|
setFromPoints(points, optionalCenter) {
|
|
const center = this.center;
|
|
|
|
if (optionalCenter !== undefined) {
|
|
center.copy(optionalCenter);
|
|
} else {
|
|
_box$2.setFromPoints(points).getCenter(center);
|
|
}
|
|
|
|
let maxRadiusSq = 0;
|
|
|
|
for (let i = 0, il = points.length; i < il; i++) {
|
|
maxRadiusSq = Math.max(maxRadiusSq, center.distanceToSquared(points[i]));
|
|
}
|
|
|
|
this.radius = Math.sqrt(maxRadiusSq);
|
|
return this;
|
|
}
|
|
|
|
copy(sphere) {
|
|
this.center.copy(sphere.center);
|
|
this.radius = sphere.radius;
|
|
return this;
|
|
}
|
|
|
|
isEmpty() {
|
|
return this.radius < 0;
|
|
}
|
|
|
|
makeEmpty() {
|
|
this.center.set(0, 0, 0);
|
|
this.radius = -1;
|
|
return this;
|
|
}
|
|
|
|
containsPoint(point) {
|
|
return point.distanceToSquared(this.center) <= this.radius * this.radius;
|
|
}
|
|
|
|
distanceToPoint(point) {
|
|
return point.distanceTo(this.center) - this.radius;
|
|
}
|
|
|
|
intersectsSphere(sphere) {
|
|
const radiusSum = this.radius + sphere.radius;
|
|
return sphere.center.distanceToSquared(this.center) <= radiusSum * radiusSum;
|
|
}
|
|
|
|
intersectsBox(box) {
|
|
return box.intersectsSphere(this);
|
|
}
|
|
|
|
intersectsPlane(plane) {
|
|
return Math.abs(plane.distanceToPoint(this.center)) <= this.radius;
|
|
}
|
|
|
|
clampPoint(point, target) {
|
|
const deltaLengthSq = this.center.distanceToSquared(point);
|
|
target.copy(point);
|
|
|
|
if (deltaLengthSq > this.radius * this.radius) {
|
|
target.sub(this.center).normalize();
|
|
target.multiplyScalar(this.radius).add(this.center);
|
|
}
|
|
|
|
return target;
|
|
}
|
|
|
|
getBoundingBox(target) {
|
|
if (this.isEmpty()) {
|
|
// Empty sphere produces empty bounding box
|
|
target.makeEmpty();
|
|
return target;
|
|
}
|
|
|
|
target.set(this.center, this.center);
|
|
target.expandByScalar(this.radius);
|
|
return target;
|
|
}
|
|
|
|
applyMatrix4(matrix) {
|
|
this.center.applyMatrix4(matrix);
|
|
this.radius = this.radius * matrix.getMaxScaleOnAxis();
|
|
return this;
|
|
}
|
|
|
|
translate(offset) {
|
|
this.center.add(offset);
|
|
return this;
|
|
}
|
|
|
|
expandByPoint(point) {
|
|
// from https://github.com/juj/MathGeoLib/blob/2940b99b99cfe575dd45103ef20f4019dee15b54/src/Geometry/Sphere.cpp#L649-L671
|
|
_toPoint.subVectors(point, this.center);
|
|
|
|
const lengthSq = _toPoint.lengthSq();
|
|
|
|
if (lengthSq > this.radius * this.radius) {
|
|
const length = Math.sqrt(lengthSq);
|
|
const missingRadiusHalf = (length - this.radius) * 0.5; // Nudge this sphere towards the target point. Add half the missing distance to radius,
|
|
// and the other half to position. This gives a tighter enclosure, instead of if
|
|
// the whole missing distance were just added to radius.
|
|
|
|
this.center.add(_toPoint.multiplyScalar(missingRadiusHalf / length));
|
|
this.radius += missingRadiusHalf;
|
|
}
|
|
|
|
return this;
|
|
}
|
|
|
|
union(sphere) {
|
|
// from https://github.com/juj/MathGeoLib/blob/2940b99b99cfe575dd45103ef20f4019dee15b54/src/Geometry/Sphere.cpp#L759-L769
|
|
// To enclose another sphere into this sphere, we only need to enclose two points:
|
|
// 1) Enclose the farthest point on the other sphere into this sphere.
|
|
// 2) Enclose the opposite point of the farthest point into this sphere.
|
|
_toFarthestPoint.subVectors(sphere.center, this.center).normalize().multiplyScalar(sphere.radius);
|
|
|
|
this.expandByPoint(_v1$6.copy(sphere.center).add(_toFarthestPoint));
|
|
this.expandByPoint(_v1$6.copy(sphere.center).sub(_toFarthestPoint));
|
|
return this;
|
|
}
|
|
|
|
equals(sphere) {
|
|
return sphere.center.equals(this.center) && sphere.radius === this.radius;
|
|
}
|
|
|
|
clone() {
|
|
return new this.constructor().copy(this);
|
|
}
|
|
|
|
}
|
|
|
|
const _vector$a = /*@__PURE__*/new Vector3();
|
|
|
|
const _segCenter = /*@__PURE__*/new Vector3();
|
|
|
|
const _segDir = /*@__PURE__*/new Vector3();
|
|
|
|
const _diff = /*@__PURE__*/new Vector3();
|
|
|
|
const _edge1 = /*@__PURE__*/new Vector3();
|
|
|
|
const _edge2 = /*@__PURE__*/new Vector3();
|
|
|
|
const _normal$1 = /*@__PURE__*/new Vector3();
|
|
|
|
class Ray {
|
|
constructor(origin = new Vector3(), direction = new Vector3(0, 0, -1)) {
|
|
this.origin = origin;
|
|
this.direction = direction;
|
|
}
|
|
|
|
set(origin, direction) {
|
|
this.origin.copy(origin);
|
|
this.direction.copy(direction);
|
|
return this;
|
|
}
|
|
|
|
copy(ray) {
|
|
this.origin.copy(ray.origin);
|
|
this.direction.copy(ray.direction);
|
|
return this;
|
|
}
|
|
|
|
at(t, target) {
|
|
return target.copy(this.direction).multiplyScalar(t).add(this.origin);
|
|
}
|
|
|
|
lookAt(v) {
|
|
this.direction.copy(v).sub(this.origin).normalize();
|
|
return this;
|
|
}
|
|
|
|
recast(t) {
|
|
this.origin.copy(this.at(t, _vector$a));
|
|
return this;
|
|
}
|
|
|
|
closestPointToPoint(point, target) {
|
|
target.subVectors(point, this.origin);
|
|
const directionDistance = target.dot(this.direction);
|
|
|
|
if (directionDistance < 0) {
|
|
return target.copy(this.origin);
|
|
}
|
|
|
|
return target.copy(this.direction).multiplyScalar(directionDistance).add(this.origin);
|
|
}
|
|
|
|
distanceToPoint(point) {
|
|
return Math.sqrt(this.distanceSqToPoint(point));
|
|
}
|
|
|
|
distanceSqToPoint(point) {
|
|
const directionDistance = _vector$a.subVectors(point, this.origin).dot(this.direction); // point behind the ray
|
|
|
|
|
|
if (directionDistance < 0) {
|
|
return this.origin.distanceToSquared(point);
|
|
}
|
|
|
|
_vector$a.copy(this.direction).multiplyScalar(directionDistance).add(this.origin);
|
|
|
|
return _vector$a.distanceToSquared(point);
|
|
}
|
|
|
|
distanceSqToSegment(v0, v1, optionalPointOnRay, optionalPointOnSegment) {
|
|
// from http://www.geometrictools.com/GTEngine/Include/Mathematics/GteDistRaySegment.h
|
|
// It returns the min distance between the ray and the segment
|
|
// defined by v0 and v1
|
|
// It can also set two optional targets :
|
|
// - The closest point on the ray
|
|
// - The closest point on the segment
|
|
_segCenter.copy(v0).add(v1).multiplyScalar(0.5);
|
|
|
|
_segDir.copy(v1).sub(v0).normalize();
|
|
|
|
_diff.copy(this.origin).sub(_segCenter);
|
|
|
|
const segExtent = v0.distanceTo(v1) * 0.5;
|
|
const a01 = -this.direction.dot(_segDir);
|
|
|
|
const b0 = _diff.dot(this.direction);
|
|
|
|
const b1 = -_diff.dot(_segDir);
|
|
|
|
const c = _diff.lengthSq();
|
|
|
|
const det = Math.abs(1 - a01 * a01);
|
|
let s0, s1, sqrDist, extDet;
|
|
|
|
if (det > 0) {
|
|
// The ray and segment are not parallel.
|
|
s0 = a01 * b1 - b0;
|
|
s1 = a01 * b0 - b1;
|
|
extDet = segExtent * det;
|
|
|
|
if (s0 >= 0) {
|
|
if (s1 >= -extDet) {
|
|
if (s1 <= extDet) {
|
|
// region 0
|
|
// Minimum at interior points of ray and segment.
|
|
const invDet = 1 / det;
|
|
s0 *= invDet;
|
|
s1 *= invDet;
|
|
sqrDist = s0 * (s0 + a01 * s1 + 2 * b0) + s1 * (a01 * s0 + s1 + 2 * b1) + c;
|
|
} else {
|
|
// region 1
|
|
s1 = segExtent;
|
|
s0 = Math.max(0, -(a01 * s1 + b0));
|
|
sqrDist = -s0 * s0 + s1 * (s1 + 2 * b1) + c;
|
|
}
|
|
} else {
|
|
// region 5
|
|
s1 = -segExtent;
|
|
s0 = Math.max(0, -(a01 * s1 + b0));
|
|
sqrDist = -s0 * s0 + s1 * (s1 + 2 * b1) + c;
|
|
}
|
|
} else {
|
|
if (s1 <= -extDet) {
|
|
// region 4
|
|
s0 = Math.max(0, -(-a01 * segExtent + b0));
|
|
s1 = s0 > 0 ? -segExtent : Math.min(Math.max(-segExtent, -b1), segExtent);
|
|
sqrDist = -s0 * s0 + s1 * (s1 + 2 * b1) + c;
|
|
} else if (s1 <= extDet) {
|
|
// region 3
|
|
s0 = 0;
|
|
s1 = Math.min(Math.max(-segExtent, -b1), segExtent);
|
|
sqrDist = s1 * (s1 + 2 * b1) + c;
|
|
} else {
|
|
// region 2
|
|
s0 = Math.max(0, -(a01 * segExtent + b0));
|
|
s1 = s0 > 0 ? segExtent : Math.min(Math.max(-segExtent, -b1), segExtent);
|
|
sqrDist = -s0 * s0 + s1 * (s1 + 2 * b1) + c;
|
|
}
|
|
}
|
|
} else {
|
|
// Ray and segment are parallel.
|
|
s1 = a01 > 0 ? -segExtent : segExtent;
|
|
s0 = Math.max(0, -(a01 * s1 + b0));
|
|
sqrDist = -s0 * s0 + s1 * (s1 + 2 * b1) + c;
|
|
}
|
|
|
|
if (optionalPointOnRay) {
|
|
optionalPointOnRay.copy(this.direction).multiplyScalar(s0).add(this.origin);
|
|
}
|
|
|
|
if (optionalPointOnSegment) {
|
|
optionalPointOnSegment.copy(_segDir).multiplyScalar(s1).add(_segCenter);
|
|
}
|
|
|
|
return sqrDist;
|
|
}
|
|
|
|
intersectSphere(sphere, target) {
|
|
_vector$a.subVectors(sphere.center, this.origin);
|
|
|
|
const tca = _vector$a.dot(this.direction);
|
|
|
|
const d2 = _vector$a.dot(_vector$a) - tca * tca;
|
|
const radius2 = sphere.radius * sphere.radius;
|
|
if (d2 > radius2) return null;
|
|
const thc = Math.sqrt(radius2 - d2); // t0 = first intersect point - entrance on front of sphere
|
|
|
|
const t0 = tca - thc; // t1 = second intersect point - exit point on back of sphere
|
|
|
|
const t1 = tca + thc; // test to see if both t0 and t1 are behind the ray - if so, return null
|
|
|
|
if (t0 < 0 && t1 < 0) return null; // test to see if t0 is behind the ray:
|
|
// if it is, the ray is inside the sphere, so return the second exit point scaled by t1,
|
|
// in order to always return an intersect point that is in front of the ray.
|
|
|
|
if (t0 < 0) return this.at(t1, target); // else t0 is in front of the ray, so return the first collision point scaled by t0
|
|
|
|
return this.at(t0, target);
|
|
}
|
|
|
|
intersectsSphere(sphere) {
|
|
return this.distanceSqToPoint(sphere.center) <= sphere.radius * sphere.radius;
|
|
}
|
|
|
|
distanceToPlane(plane) {
|
|
const denominator = plane.normal.dot(this.direction);
|
|
|
|
if (denominator === 0) {
|
|
// line is coplanar, return origin
|
|
if (plane.distanceToPoint(this.origin) === 0) {
|
|
return 0;
|
|
} // Null is preferable to undefined since undefined means.... it is undefined
|
|
|
|
|
|
return null;
|
|
}
|
|
|
|
const t = -(this.origin.dot(plane.normal) + plane.constant) / denominator; // Return if the ray never intersects the plane
|
|
|
|
return t >= 0 ? t : null;
|
|
}
|
|
|
|
intersectPlane(plane, target) {
|
|
const t = this.distanceToPlane(plane);
|
|
|
|
if (t === null) {
|
|
return null;
|
|
}
|
|
|
|
return this.at(t, target);
|
|
}
|
|
|
|
intersectsPlane(plane) {
|
|
// check if the ray lies on the plane first
|
|
const distToPoint = plane.distanceToPoint(this.origin);
|
|
|
|
if (distToPoint === 0) {
|
|
return true;
|
|
}
|
|
|
|
const denominator = plane.normal.dot(this.direction);
|
|
|
|
if (denominator * distToPoint < 0) {
|
|
return true;
|
|
} // ray origin is behind the plane (and is pointing behind it)
|
|
|
|
|
|
return false;
|
|
}
|
|
|
|
intersectBox(box, target) {
|
|
let tmin, tmax, tymin, tymax, tzmin, tzmax;
|
|
const invdirx = 1 / this.direction.x,
|
|
invdiry = 1 / this.direction.y,
|
|
invdirz = 1 / this.direction.z;
|
|
const origin = this.origin;
|
|
|
|
if (invdirx >= 0) {
|
|
tmin = (box.min.x - origin.x) * invdirx;
|
|
tmax = (box.max.x - origin.x) * invdirx;
|
|
} else {
|
|
tmin = (box.max.x - origin.x) * invdirx;
|
|
tmax = (box.min.x - origin.x) * invdirx;
|
|
}
|
|
|
|
if (invdiry >= 0) {
|
|
tymin = (box.min.y - origin.y) * invdiry;
|
|
tymax = (box.max.y - origin.y) * invdiry;
|
|
} else {
|
|
tymin = (box.max.y - origin.y) * invdiry;
|
|
tymax = (box.min.y - origin.y) * invdiry;
|
|
}
|
|
|
|
if (tmin > tymax || tymin > tmax) return null; // These lines also handle the case where tmin or tmax is NaN
|
|
// (result of 0 * Infinity). x !== x returns true if x is NaN
|
|
|
|
if (tymin > tmin || tmin !== tmin) tmin = tymin;
|
|
if (tymax < tmax || tmax !== tmax) tmax = tymax;
|
|
|
|
if (invdirz >= 0) {
|
|
tzmin = (box.min.z - origin.z) * invdirz;
|
|
tzmax = (box.max.z - origin.z) * invdirz;
|
|
} else {
|
|
tzmin = (box.max.z - origin.z) * invdirz;
|
|
tzmax = (box.min.z - origin.z) * invdirz;
|
|
}
|
|
|
|
if (tmin > tzmax || tzmin > tmax) return null;
|
|
if (tzmin > tmin || tmin !== tmin) tmin = tzmin;
|
|
if (tzmax < tmax || tmax !== tmax) tmax = tzmax; //return point closest to the ray (positive side)
|
|
|
|
if (tmax < 0) return null;
|
|
return this.at(tmin >= 0 ? tmin : tmax, target);
|
|
}
|
|
|
|
intersectsBox(box) {
|
|
return this.intersectBox(box, _vector$a) !== null;
|
|
}
|
|
|
|
intersectTriangle(a, b, c, backfaceCulling, target) {
|
|
// Compute the offset origin, edges, and normal.
|
|
// from http://www.geometrictools.com/GTEngine/Include/Mathematics/GteIntrRay3Triangle3.h
|
|
_edge1.subVectors(b, a);
|
|
|
|
_edge2.subVectors(c, a);
|
|
|
|
_normal$1.crossVectors(_edge1, _edge2); // Solve Q + t*D = b1*E1 + b2*E2 (Q = kDiff, D = ray direction,
|
|
// E1 = kEdge1, E2 = kEdge2, N = Cross(E1,E2)) by
|
|
// |Dot(D,N)|*b1 = sign(Dot(D,N))*Dot(D,Cross(Q,E2))
|
|
// |Dot(D,N)|*b2 = sign(Dot(D,N))*Dot(D,Cross(E1,Q))
|
|
// |Dot(D,N)|*t = -sign(Dot(D,N))*Dot(Q,N)
|
|
|
|
|
|
let DdN = this.direction.dot(_normal$1);
|
|
let sign;
|
|
|
|
if (DdN > 0) {
|
|
if (backfaceCulling) return null;
|
|
sign = 1;
|
|
} else if (DdN < 0) {
|
|
sign = -1;
|
|
DdN = -DdN;
|
|
} else {
|
|
return null;
|
|
}
|
|
|
|
_diff.subVectors(this.origin, a);
|
|
|
|
const DdQxE2 = sign * this.direction.dot(_edge2.crossVectors(_diff, _edge2)); // b1 < 0, no intersection
|
|
|
|
if (DdQxE2 < 0) {
|
|
return null;
|
|
}
|
|
|
|
const DdE1xQ = sign * this.direction.dot(_edge1.cross(_diff)); // b2 < 0, no intersection
|
|
|
|
if (DdE1xQ < 0) {
|
|
return null;
|
|
} // b1+b2 > 1, no intersection
|
|
|
|
|
|
if (DdQxE2 + DdE1xQ > DdN) {
|
|
return null;
|
|
} // Line intersects triangle, check if ray does.
|
|
|
|
|
|
const QdN = -sign * _diff.dot(_normal$1); // t < 0, no intersection
|
|
|
|
|
|
if (QdN < 0) {
|
|
return null;
|
|
} // Ray intersects triangle.
|
|
|
|
|
|
return this.at(QdN / DdN, target);
|
|
}
|
|
|
|
applyMatrix4(matrix4) {
|
|
this.origin.applyMatrix4(matrix4);
|
|
this.direction.transformDirection(matrix4);
|
|
return this;
|
|
}
|
|
|
|
equals(ray) {
|
|
return ray.origin.equals(this.origin) && ray.direction.equals(this.direction);
|
|
}
|
|
|
|
clone() {
|
|
return new this.constructor().copy(this);
|
|
}
|
|
|
|
}
|
|
|
|
class Matrix4 {
|
|
constructor() {
|
|
this.elements = [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1];
|
|
|
|
if (arguments.length > 0) {
|
|
console.error('THREE.Matrix4: the constructor no longer reads arguments. use .set() instead.');
|
|
}
|
|
}
|
|
|
|
set(n11, n12, n13, n14, n21, n22, n23, n24, n31, n32, n33, n34, n41, n42, n43, n44) {
|
|
const te = this.elements;
|
|
te[0] = n11;
|
|
te[4] = n12;
|
|
te[8] = n13;
|
|
te[12] = n14;
|
|
te[1] = n21;
|
|
te[5] = n22;
|
|
te[9] = n23;
|
|
te[13] = n24;
|
|
te[2] = n31;
|
|
te[6] = n32;
|
|
te[10] = n33;
|
|
te[14] = n34;
|
|
te[3] = n41;
|
|
te[7] = n42;
|
|
te[11] = n43;
|
|
te[15] = n44;
|
|
return this;
|
|
}
|
|
|
|
identity() {
|
|
this.set(1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1);
|
|
return this;
|
|
}
|
|
|
|
clone() {
|
|
return new Matrix4().fromArray(this.elements);
|
|
}
|
|
|
|
copy(m) {
|
|
const te = this.elements;
|
|
const me = m.elements;
|
|
te[0] = me[0];
|
|
te[1] = me[1];
|
|
te[2] = me[2];
|
|
te[3] = me[3];
|
|
te[4] = me[4];
|
|
te[5] = me[5];
|
|
te[6] = me[6];
|
|
te[7] = me[7];
|
|
te[8] = me[8];
|
|
te[9] = me[9];
|
|
te[10] = me[10];
|
|
te[11] = me[11];
|
|
te[12] = me[12];
|
|
te[13] = me[13];
|
|
te[14] = me[14];
|
|
te[15] = me[15];
|
|
return this;
|
|
}
|
|
|
|
copyPosition(m) {
|
|
const te = this.elements,
|
|
me = m.elements;
|
|
te[12] = me[12];
|
|
te[13] = me[13];
|
|
te[14] = me[14];
|
|
return this;
|
|
}
|
|
|
|
setFromMatrix3(m) {
|
|
const me = m.elements;
|
|
this.set(me[0], me[3], me[6], 0, me[1], me[4], me[7], 0, me[2], me[5], me[8], 0, 0, 0, 0, 1);
|
|
return this;
|
|
}
|
|
|
|
extractBasis(xAxis, yAxis, zAxis) {
|
|
xAxis.setFromMatrixColumn(this, 0);
|
|
yAxis.setFromMatrixColumn(this, 1);
|
|
zAxis.setFromMatrixColumn(this, 2);
|
|
return this;
|
|
}
|
|
|
|
makeBasis(xAxis, yAxis, zAxis) {
|
|
this.set(xAxis.x, yAxis.x, zAxis.x, 0, xAxis.y, yAxis.y, zAxis.y, 0, xAxis.z, yAxis.z, zAxis.z, 0, 0, 0, 0, 1);
|
|
return this;
|
|
}
|
|
|
|
extractRotation(m) {
|
|
// this method does not support reflection matrices
|
|
const te = this.elements;
|
|
const me = m.elements;
|
|
|
|
const scaleX = 1 / _v1$5.setFromMatrixColumn(m, 0).length();
|
|
|
|
const scaleY = 1 / _v1$5.setFromMatrixColumn(m, 1).length();
|
|
|
|
const scaleZ = 1 / _v1$5.setFromMatrixColumn(m, 2).length();
|
|
|
|
te[0] = me[0] * scaleX;
|
|
te[1] = me[1] * scaleX;
|
|
te[2] = me[2] * scaleX;
|
|
te[3] = 0;
|
|
te[4] = me[4] * scaleY;
|
|
te[5] = me[5] * scaleY;
|
|
te[6] = me[6] * scaleY;
|
|
te[7] = 0;
|
|
te[8] = me[8] * scaleZ;
|
|
te[9] = me[9] * scaleZ;
|
|
te[10] = me[10] * scaleZ;
|
|
te[11] = 0;
|
|
te[12] = 0;
|
|
te[13] = 0;
|
|
te[14] = 0;
|
|
te[15] = 1;
|
|
return this;
|
|
}
|
|
|
|
makeRotationFromEuler(euler) {
|
|
if (!(euler && euler.isEuler)) {
|
|
console.error('THREE.Matrix4: .makeRotationFromEuler() now expects a Euler rotation rather than a Vector3 and order.');
|
|
}
|
|
|
|
const te = this.elements;
|
|
const x = euler.x,
|
|
y = euler.y,
|
|
z = euler.z;
|
|
const a = Math.cos(x),
|
|
b = Math.sin(x);
|
|
const c = Math.cos(y),
|
|
d = Math.sin(y);
|
|
const e = Math.cos(z),
|
|
f = Math.sin(z);
|
|
|
|
if (euler.order === 'XYZ') {
|
|
const ae = a * e,
|
|
af = a * f,
|
|
be = b * e,
|
|
bf = b * f;
|
|
te[0] = c * e;
|
|
te[4] = -c * f;
|
|
te[8] = d;
|
|
te[1] = af + be * d;
|
|
te[5] = ae - bf * d;
|
|
te[9] = -b * c;
|
|
te[2] = bf - ae * d;
|
|
te[6] = be + af * d;
|
|
te[10] = a * c;
|
|
} else if (euler.order === 'YXZ') {
|
|
const ce = c * e,
|
|
cf = c * f,
|
|
de = d * e,
|
|
df = d * f;
|
|
te[0] = ce + df * b;
|
|
te[4] = de * b - cf;
|
|
te[8] = a * d;
|
|
te[1] = a * f;
|
|
te[5] = a * e;
|
|
te[9] = -b;
|
|
te[2] = cf * b - de;
|
|
te[6] = df + ce * b;
|
|
te[10] = a * c;
|
|
} else if (euler.order === 'ZXY') {
|
|
const ce = c * e,
|
|
cf = c * f,
|
|
de = d * e,
|
|
df = d * f;
|
|
te[0] = ce - df * b;
|
|
te[4] = -a * f;
|
|
te[8] = de + cf * b;
|
|
te[1] = cf + de * b;
|
|
te[5] = a * e;
|
|
te[9] = df - ce * b;
|
|
te[2] = -a * d;
|
|
te[6] = b;
|
|
te[10] = a * c;
|
|
} else if (euler.order === 'ZYX') {
|
|
const ae = a * e,
|
|
af = a * f,
|
|
be = b * e,
|
|
bf = b * f;
|
|
te[0] = c * e;
|
|
te[4] = be * d - af;
|
|
te[8] = ae * d + bf;
|
|
te[1] = c * f;
|
|
te[5] = bf * d + ae;
|
|
te[9] = af * d - be;
|
|
te[2] = -d;
|
|
te[6] = b * c;
|
|
te[10] = a * c;
|
|
} else if (euler.order === 'YZX') {
|
|
const ac = a * c,
|
|
ad = a * d,
|
|
bc = b * c,
|
|
bd = b * d;
|
|
te[0] = c * e;
|
|
te[4] = bd - ac * f;
|
|
te[8] = bc * f + ad;
|
|
te[1] = f;
|
|
te[5] = a * e;
|
|
te[9] = -b * e;
|
|
te[2] = -d * e;
|
|
te[6] = ad * f + bc;
|
|
te[10] = ac - bd * f;
|
|
} else if (euler.order === 'XZY') {
|
|
const ac = a * c,
|
|
ad = a * d,
|
|
bc = b * c,
|
|
bd = b * d;
|
|
te[0] = c * e;
|
|
te[4] = -f;
|
|
te[8] = d * e;
|
|
te[1] = ac * f + bd;
|
|
te[5] = a * e;
|
|
te[9] = ad * f - bc;
|
|
te[2] = bc * f - ad;
|
|
te[6] = b * e;
|
|
te[10] = bd * f + ac;
|
|
} // bottom row
|
|
|
|
|
|
te[3] = 0;
|
|
te[7] = 0;
|
|
te[11] = 0; // last column
|
|
|
|
te[12] = 0;
|
|
te[13] = 0;
|
|
te[14] = 0;
|
|
te[15] = 1;
|
|
return this;
|
|
}
|
|
|
|
makeRotationFromQuaternion(q) {
|
|
return this.compose(_zero, q, _one);
|
|
}
|
|
|
|
lookAt(eye, target, up) {
|
|
const te = this.elements;
|
|
|
|
_z.subVectors(eye, target);
|
|
|
|
if (_z.lengthSq() === 0) {
|
|
// eye and target are in the same position
|
|
_z.z = 1;
|
|
}
|
|
|
|
_z.normalize();
|
|
|
|
_x.crossVectors(up, _z);
|
|
|
|
if (_x.lengthSq() === 0) {
|
|
// up and z are parallel
|
|
if (Math.abs(up.z) === 1) {
|
|
_z.x += 0.0001;
|
|
} else {
|
|
_z.z += 0.0001;
|
|
}
|
|
|
|
_z.normalize();
|
|
|
|
_x.crossVectors(up, _z);
|
|
}
|
|
|
|
_x.normalize();
|
|
|
|
_y.crossVectors(_z, _x);
|
|
|
|
te[0] = _x.x;
|
|
te[4] = _y.x;
|
|
te[8] = _z.x;
|
|
te[1] = _x.y;
|
|
te[5] = _y.y;
|
|
te[9] = _z.y;
|
|
te[2] = _x.z;
|
|
te[6] = _y.z;
|
|
te[10] = _z.z;
|
|
return this;
|
|
}
|
|
|
|
multiply(m, n) {
|
|
if (n !== undefined) {
|
|
console.warn('THREE.Matrix4: .multiply() now only accepts one argument. Use .multiplyMatrices( a, b ) instead.');
|
|
return this.multiplyMatrices(m, n);
|
|
}
|
|
|
|
return this.multiplyMatrices(this, m);
|
|
}
|
|
|
|
premultiply(m) {
|
|
return this.multiplyMatrices(m, this);
|
|
}
|
|
|
|
multiplyMatrices(a, b) {
|
|
const ae = a.elements;
|
|
const be = b.elements;
|
|
const te = this.elements;
|
|
const a11 = ae[0],
|
|
a12 = ae[4],
|
|
a13 = ae[8],
|
|
a14 = ae[12];
|
|
const a21 = ae[1],
|
|
a22 = ae[5],
|
|
a23 = ae[9],
|
|
a24 = ae[13];
|
|
const a31 = ae[2],
|
|
a32 = ae[6],
|
|
a33 = ae[10],
|
|
a34 = ae[14];
|
|
const a41 = ae[3],
|
|
a42 = ae[7],
|
|
a43 = ae[11],
|
|
a44 = ae[15];
|
|
const b11 = be[0],
|
|
b12 = be[4],
|
|
b13 = be[8],
|
|
b14 = be[12];
|
|
const b21 = be[1],
|
|
b22 = be[5],
|
|
b23 = be[9],
|
|
b24 = be[13];
|
|
const b31 = be[2],
|
|
b32 = be[6],
|
|
b33 = be[10],
|
|
b34 = be[14];
|
|
const b41 = be[3],
|
|
b42 = be[7],
|
|
b43 = be[11],
|
|
b44 = be[15];
|
|
te[0] = a11 * b11 + a12 * b21 + a13 * b31 + a14 * b41;
|
|
te[4] = a11 * b12 + a12 * b22 + a13 * b32 + a14 * b42;
|
|
te[8] = a11 * b13 + a12 * b23 + a13 * b33 + a14 * b43;
|
|
te[12] = a11 * b14 + a12 * b24 + a13 * b34 + a14 * b44;
|
|
te[1] = a21 * b11 + a22 * b21 + a23 * b31 + a24 * b41;
|
|
te[5] = a21 * b12 + a22 * b22 + a23 * b32 + a24 * b42;
|
|
te[9] = a21 * b13 + a22 * b23 + a23 * b33 + a24 * b43;
|
|
te[13] = a21 * b14 + a22 * b24 + a23 * b34 + a24 * b44;
|
|
te[2] = a31 * b11 + a32 * b21 + a33 * b31 + a34 * b41;
|
|
te[6] = a31 * b12 + a32 * b22 + a33 * b32 + a34 * b42;
|
|
te[10] = a31 * b13 + a32 * b23 + a33 * b33 + a34 * b43;
|
|
te[14] = a31 * b14 + a32 * b24 + a33 * b34 + a34 * b44;
|
|
te[3] = a41 * b11 + a42 * b21 + a43 * b31 + a44 * b41;
|
|
te[7] = a41 * b12 + a42 * b22 + a43 * b32 + a44 * b42;
|
|
te[11] = a41 * b13 + a42 * b23 + a43 * b33 + a44 * b43;
|
|
te[15] = a41 * b14 + a42 * b24 + a43 * b34 + a44 * b44;
|
|
return this;
|
|
}
|
|
|
|
multiplyScalar(s) {
|
|
const te = this.elements;
|
|
te[0] *= s;
|
|
te[4] *= s;
|
|
te[8] *= s;
|
|
te[12] *= s;
|
|
te[1] *= s;
|
|
te[5] *= s;
|
|
te[9] *= s;
|
|
te[13] *= s;
|
|
te[2] *= s;
|
|
te[6] *= s;
|
|
te[10] *= s;
|
|
te[14] *= s;
|
|
te[3] *= s;
|
|
te[7] *= s;
|
|
te[11] *= s;
|
|
te[15] *= s;
|
|
return this;
|
|
}
|
|
|
|
determinant() {
|
|
const te = this.elements;
|
|
const n11 = te[0],
|
|
n12 = te[4],
|
|
n13 = te[8],
|
|
n14 = te[12];
|
|
const n21 = te[1],
|
|
n22 = te[5],
|
|
n23 = te[9],
|
|
n24 = te[13];
|
|
const n31 = te[2],
|
|
n32 = te[6],
|
|
n33 = te[10],
|
|
n34 = te[14];
|
|
const n41 = te[3],
|
|
n42 = te[7],
|
|
n43 = te[11],
|
|
n44 = te[15]; //TODO: make this more efficient
|
|
//( based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm )
|
|
|
|
return n41 * (+n14 * n23 * n32 - n13 * n24 * n32 - n14 * n22 * n33 + n12 * n24 * n33 + n13 * n22 * n34 - n12 * n23 * n34) + n42 * (+n11 * n23 * n34 - n11 * n24 * n33 + n14 * n21 * n33 - n13 * n21 * n34 + n13 * n24 * n31 - n14 * n23 * n31) + n43 * (+n11 * n24 * n32 - n11 * n22 * n34 - n14 * n21 * n32 + n12 * n21 * n34 + n14 * n22 * n31 - n12 * n24 * n31) + n44 * (-n13 * n22 * n31 - n11 * n23 * n32 + n11 * n22 * n33 + n13 * n21 * n32 - n12 * n21 * n33 + n12 * n23 * n31);
|
|
}
|
|
|
|
transpose() {
|
|
const te = this.elements;
|
|
let tmp;
|
|
tmp = te[1];
|
|
te[1] = te[4];
|
|
te[4] = tmp;
|
|
tmp = te[2];
|
|
te[2] = te[8];
|
|
te[8] = tmp;
|
|
tmp = te[6];
|
|
te[6] = te[9];
|
|
te[9] = tmp;
|
|
tmp = te[3];
|
|
te[3] = te[12];
|
|
te[12] = tmp;
|
|
tmp = te[7];
|
|
te[7] = te[13];
|
|
te[13] = tmp;
|
|
tmp = te[11];
|
|
te[11] = te[14];
|
|
te[14] = tmp;
|
|
return this;
|
|
}
|
|
|
|
setPosition(x, y, z) {
|
|
const te = this.elements;
|
|
|
|
if (x.isVector3) {
|
|
te[12] = x.x;
|
|
te[13] = x.y;
|
|
te[14] = x.z;
|
|
} else {
|
|
te[12] = x;
|
|
te[13] = y;
|
|
te[14] = z;
|
|
}
|
|
|
|
return this;
|
|
}
|
|
|
|
invert() {
|
|
// based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm
|
|
const te = this.elements,
|
|
n11 = te[0],
|
|
n21 = te[1],
|
|
n31 = te[2],
|
|
n41 = te[3],
|
|
n12 = te[4],
|
|
n22 = te[5],
|
|
n32 = te[6],
|
|
n42 = te[7],
|
|
n13 = te[8],
|
|
n23 = te[9],
|
|
n33 = te[10],
|
|
n43 = te[11],
|
|
n14 = te[12],
|
|
n24 = te[13],
|
|
n34 = te[14],
|
|
n44 = te[15],
|
|
t11 = n23 * n34 * n42 - n24 * n33 * n42 + n24 * n32 * n43 - n22 * n34 * n43 - n23 * n32 * n44 + n22 * n33 * n44,
|
|
t12 = n14 * n33 * n42 - n13 * n34 * n42 - n14 * n32 * n43 + n12 * n34 * n43 + n13 * n32 * n44 - n12 * n33 * n44,
|
|
t13 = n13 * n24 * n42 - n14 * n23 * n42 + n14 * n22 * n43 - n12 * n24 * n43 - n13 * n22 * n44 + n12 * n23 * n44,
|
|
t14 = n14 * n23 * n32 - n13 * n24 * n32 - n14 * n22 * n33 + n12 * n24 * n33 + n13 * n22 * n34 - n12 * n23 * n34;
|
|
const det = n11 * t11 + n21 * t12 + n31 * t13 + n41 * t14;
|
|
if (det === 0) return this.set(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);
|
|
const detInv = 1 / det;
|
|
te[0] = t11 * detInv;
|
|
te[1] = (n24 * n33 * n41 - n23 * n34 * n41 - n24 * n31 * n43 + n21 * n34 * n43 + n23 * n31 * n44 - n21 * n33 * n44) * detInv;
|
|
te[2] = (n22 * n34 * n41 - n24 * n32 * n41 + n24 * n31 * n42 - n21 * n34 * n42 - n22 * n31 * n44 + n21 * n32 * n44) * detInv;
|
|
te[3] = (n23 * n32 * n41 - n22 * n33 * n41 - n23 * n31 * n42 + n21 * n33 * n42 + n22 * n31 * n43 - n21 * n32 * n43) * detInv;
|
|
te[4] = t12 * detInv;
|
|
te[5] = (n13 * n34 * n41 - n14 * n33 * n41 + n14 * n31 * n43 - n11 * n34 * n43 - n13 * n31 * n44 + n11 * n33 * n44) * detInv;
|
|
te[6] = (n14 * n32 * n41 - n12 * n34 * n41 - n14 * n31 * n42 + n11 * n34 * n42 + n12 * n31 * n44 - n11 * n32 * n44) * detInv;
|
|
te[7] = (n12 * n33 * n41 - n13 * n32 * n41 + n13 * n31 * n42 - n11 * n33 * n42 - n12 * n31 * n43 + n11 * n32 * n43) * detInv;
|
|
te[8] = t13 * detInv;
|
|
te[9] = (n14 * n23 * n41 - n13 * n24 * n41 - n14 * n21 * n43 + n11 * n24 * n43 + n13 * n21 * n44 - n11 * n23 * n44) * detInv;
|
|
te[10] = (n12 * n24 * n41 - n14 * n22 * n41 + n14 * n21 * n42 - n11 * n24 * n42 - n12 * n21 * n44 + n11 * n22 * n44) * detInv;
|
|
te[11] = (n13 * n22 * n41 - n12 * n23 * n41 - n13 * n21 * n42 + n11 * n23 * n42 + n12 * n21 * n43 - n11 * n22 * n43) * detInv;
|
|
te[12] = t14 * detInv;
|
|
te[13] = (n13 * n24 * n31 - n14 * n23 * n31 + n14 * n21 * n33 - n11 * n24 * n33 - n13 * n21 * n34 + n11 * n23 * n34) * detInv;
|
|
te[14] = (n14 * n22 * n31 - n12 * n24 * n31 - n14 * n21 * n32 + n11 * n24 * n32 + n12 * n21 * n34 - n11 * n22 * n34) * detInv;
|
|
te[15] = (n12 * n23 * n31 - n13 * n22 * n31 + n13 * n21 * n32 - n11 * n23 * n32 - n12 * n21 * n33 + n11 * n22 * n33) * detInv;
|
|
return this;
|
|
}
|
|
|
|
scale(v) {
|
|
const te = this.elements;
|
|
const x = v.x,
|
|
y = v.y,
|
|
z = v.z;
|
|
te[0] *= x;
|
|
te[4] *= y;
|
|
te[8] *= z;
|
|
te[1] *= x;
|
|
te[5] *= y;
|
|
te[9] *= z;
|
|
te[2] *= x;
|
|
te[6] *= y;
|
|
te[10] *= z;
|
|
te[3] *= x;
|
|
te[7] *= y;
|
|
te[11] *= z;
|
|
return this;
|
|
}
|
|
|
|
getMaxScaleOnAxis() {
|
|
const te = this.elements;
|
|
const scaleXSq = te[0] * te[0] + te[1] * te[1] + te[2] * te[2];
|
|
const scaleYSq = te[4] * te[4] + te[5] * te[5] + te[6] * te[6];
|
|
const scaleZSq = te[8] * te[8] + te[9] * te[9] + te[10] * te[10];
|
|
return Math.sqrt(Math.max(scaleXSq, scaleYSq, scaleZSq));
|
|
}
|
|
|
|
makeTranslation(x, y, z) {
|
|
this.set(1, 0, 0, x, 0, 1, 0, y, 0, 0, 1, z, 0, 0, 0, 1);
|
|
return this;
|
|
}
|
|
|
|
makeRotationX(theta) {
|
|
const c = Math.cos(theta),
|
|
s = Math.sin(theta);
|
|
this.set(1, 0, 0, 0, 0, c, -s, 0, 0, s, c, 0, 0, 0, 0, 1);
|
|
return this;
|
|
}
|
|
|
|
makeRotationY(theta) {
|
|
const c = Math.cos(theta),
|
|
s = Math.sin(theta);
|
|
this.set(c, 0, s, 0, 0, 1, 0, 0, -s, 0, c, 0, 0, 0, 0, 1);
|
|
return this;
|
|
}
|
|
|
|
makeRotationZ(theta) {
|
|
const c = Math.cos(theta),
|
|
s = Math.sin(theta);
|
|
this.set(c, -s, 0, 0, s, c, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1);
|
|
return this;
|
|
}
|
|
|
|
makeRotationAxis(axis, angle) {
|
|
// Based on http://www.gamedev.net/reference/articles/article1199.asp
|
|
const c = Math.cos(angle);
|
|
const s = Math.sin(angle);
|
|
const t = 1 - c;
|
|
const x = axis.x,
|
|
y = axis.y,
|
|
z = axis.z;
|
|
const tx = t * x,
|
|
ty = t * y;
|
|
this.set(tx * x + c, tx * y - s * z, tx * z + s * y, 0, tx * y + s * z, ty * y + c, ty * z - s * x, 0, tx * z - s * y, ty * z + s * x, t * z * z + c, 0, 0, 0, 0, 1);
|
|
return this;
|
|
}
|
|
|
|
makeScale(x, y, z) {
|
|
this.set(x, 0, 0, 0, 0, y, 0, 0, 0, 0, z, 0, 0, 0, 0, 1);
|
|
return this;
|
|
}
|
|
|
|
makeShear(xy, xz, yx, yz, zx, zy) {
|
|
this.set(1, yx, zx, 0, xy, 1, zy, 0, xz, yz, 1, 0, 0, 0, 0, 1);
|
|
return this;
|
|
}
|
|
|
|
compose(position, quaternion, scale) {
|
|
const te = this.elements;
|
|
const x = quaternion._x,
|
|
y = quaternion._y,
|
|
z = quaternion._z,
|
|
w = quaternion._w;
|
|
const x2 = x + x,
|
|
y2 = y + y,
|
|
z2 = z + z;
|
|
const xx = x * x2,
|
|
xy = x * y2,
|
|
xz = x * z2;
|
|
const yy = y * y2,
|
|
yz = y * z2,
|
|
zz = z * z2;
|
|
const wx = w * x2,
|
|
wy = w * y2,
|
|
wz = w * z2;
|
|
const sx = scale.x,
|
|
sy = scale.y,
|
|
sz = scale.z;
|
|
te[0] = (1 - (yy + zz)) * sx;
|
|
te[1] = (xy + wz) * sx;
|
|
te[2] = (xz - wy) * sx;
|
|
te[3] = 0;
|
|
te[4] = (xy - wz) * sy;
|
|
te[5] = (1 - (xx + zz)) * sy;
|
|
te[6] = (yz + wx) * sy;
|
|
te[7] = 0;
|
|
te[8] = (xz + wy) * sz;
|
|
te[9] = (yz - wx) * sz;
|
|
te[10] = (1 - (xx + yy)) * sz;
|
|
te[11] = 0;
|
|
te[12] = position.x;
|
|
te[13] = position.y;
|
|
te[14] = position.z;
|
|
te[15] = 1;
|
|
return this;
|
|
}
|
|
|
|
decompose(position, quaternion, scale) {
|
|
const te = this.elements;
|
|
|
|
let sx = _v1$5.set(te[0], te[1], te[2]).length();
|
|
|
|
const sy = _v1$5.set(te[4], te[5], te[6]).length();
|
|
|
|
const sz = _v1$5.set(te[8], te[9], te[10]).length(); // if determine is negative, we need to invert one scale
|
|
|
|
|
|
const det = this.determinant();
|
|
if (det < 0) sx = -sx;
|
|
position.x = te[12];
|
|
position.y = te[13];
|
|
position.z = te[14]; // scale the rotation part
|
|
|
|
_m1$2.copy(this);
|
|
|
|
const invSX = 1 / sx;
|
|
const invSY = 1 / sy;
|
|
const invSZ = 1 / sz;
|
|
_m1$2.elements[0] *= invSX;
|
|
_m1$2.elements[1] *= invSX;
|
|
_m1$2.elements[2] *= invSX;
|
|
_m1$2.elements[4] *= invSY;
|
|
_m1$2.elements[5] *= invSY;
|
|
_m1$2.elements[6] *= invSY;
|
|
_m1$2.elements[8] *= invSZ;
|
|
_m1$2.elements[9] *= invSZ;
|
|
_m1$2.elements[10] *= invSZ;
|
|
quaternion.setFromRotationMatrix(_m1$2);
|
|
scale.x = sx;
|
|
scale.y = sy;
|
|
scale.z = sz;
|
|
return this;
|
|
}
|
|
|
|
makePerspective(left, right, top, bottom, near, far) {
|
|
if (far === undefined) {
|
|
console.warn('THREE.Matrix4: .makePerspective() has been redefined and has a new signature. Please check the docs.');
|
|
}
|
|
|
|
const te = this.elements;
|
|
const x = 2 * near / (right - left);
|
|
const y = 2 * near / (top - bottom);
|
|
const a = (right + left) / (right - left);
|
|
const b = (top + bottom) / (top - bottom);
|
|
const c = -(far + near) / (far - near);
|
|
const d = -2 * far * near / (far - near);
|
|
te[0] = x;
|
|
te[4] = 0;
|
|
te[8] = a;
|
|
te[12] = 0;
|
|
te[1] = 0;
|
|
te[5] = y;
|
|
te[9] = b;
|
|
te[13] = 0;
|
|
te[2] = 0;
|
|
te[6] = 0;
|
|
te[10] = c;
|
|
te[14] = d;
|
|
te[3] = 0;
|
|
te[7] = 0;
|
|
te[11] = -1;
|
|
te[15] = 0;
|
|
return this;
|
|
}
|
|
|
|
makeOrthographic(left, right, top, bottom, near, far) {
|
|
const te = this.elements;
|
|
const w = 1.0 / (right - left);
|
|
const h = 1.0 / (top - bottom);
|
|
const p = 1.0 / (far - near);
|
|
const x = (right + left) * w;
|
|
const y = (top + bottom) * h;
|
|
const z = (far + near) * p;
|
|
te[0] = 2 * w;
|
|
te[4] = 0;
|
|
te[8] = 0;
|
|
te[12] = -x;
|
|
te[1] = 0;
|
|
te[5] = 2 * h;
|
|
te[9] = 0;
|
|
te[13] = -y;
|
|
te[2] = 0;
|
|
te[6] = 0;
|
|
te[10] = -2 * p;
|
|
te[14] = -z;
|
|
te[3] = 0;
|
|
te[7] = 0;
|
|
te[11] = 0;
|
|
te[15] = 1;
|
|
return this;
|
|
}
|
|
|
|
equals(matrix) {
|
|
const te = this.elements;
|
|
const me = matrix.elements;
|
|
|
|
for (let i = 0; i < 16; i++) {
|
|
if (te[i] !== me[i]) return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
fromArray(array, offset = 0) {
|
|
for (let i = 0; i < 16; i++) {
|
|
this.elements[i] = array[i + offset];
|
|
}
|
|
|
|
return this;
|
|
}
|
|
|
|
toArray(array = [], offset = 0) {
|
|
const te = this.elements;
|
|
array[offset] = te[0];
|
|
array[offset + 1] = te[1];
|
|
array[offset + 2] = te[2];
|
|
array[offset + 3] = te[3];
|
|
array[offset + 4] = te[4];
|
|
array[offset + 5] = te[5];
|
|
array[offset + 6] = te[6];
|
|
array[offset + 7] = te[7];
|
|
array[offset + 8] = te[8];
|
|
array[offset + 9] = te[9];
|
|
array[offset + 10] = te[10];
|
|
array[offset + 11] = te[11];
|
|
array[offset + 12] = te[12];
|
|
array[offset + 13] = te[13];
|
|
array[offset + 14] = te[14];
|
|
array[offset + 15] = te[15];
|
|
return array;
|
|
}
|
|
|
|
}
|
|
|
|
Matrix4.prototype.isMatrix4 = true;
|
|
|
|
const _v1$5 = /*@__PURE__*/new Vector3();
|
|
|
|
const _m1$2 = /*@__PURE__*/new Matrix4();
|
|
|
|
const _zero = /*@__PURE__*/new Vector3(0, 0, 0);
|
|
|
|
const _one = /*@__PURE__*/new Vector3(1, 1, 1);
|
|
|
|
const _x = /*@__PURE__*/new Vector3();
|
|
|
|
const _y = /*@__PURE__*/new Vector3();
|
|
|
|
const _z = /*@__PURE__*/new Vector3();
|
|
|
|
const _matrix$1 = /*@__PURE__*/new Matrix4();
|
|
|
|
const _quaternion$3 = /*@__PURE__*/new Quaternion();
|
|
|
|
class Euler {
|
|
constructor(x = 0, y = 0, z = 0, order = Euler.DefaultOrder) {
|
|
this._x = x;
|
|
this._y = y;
|
|
this._z = z;
|
|
this._order = order;
|
|
}
|
|
|
|
get x() {
|
|
return this._x;
|
|
}
|
|
|
|
set x(value) {
|
|
this._x = value;
|
|
|
|
this._onChangeCallback();
|
|
}
|
|
|
|
get y() {
|
|
return this._y;
|
|
}
|
|
|
|
set y(value) {
|
|
this._y = value;
|
|
|
|
this._onChangeCallback();
|
|
}
|
|
|
|
get z() {
|
|
return this._z;
|
|
}
|
|
|
|
set z(value) {
|
|
this._z = value;
|
|
|
|
this._onChangeCallback();
|
|
}
|
|
|
|
get order() {
|
|
return this._order;
|
|
}
|
|
|
|
set order(value) {
|
|
this._order = value;
|
|
|
|
this._onChangeCallback();
|
|
}
|
|
|
|
set(x, y, z, order = this._order) {
|
|
this._x = x;
|
|
this._y = y;
|
|
this._z = z;
|
|
this._order = order;
|
|
|
|
this._onChangeCallback();
|
|
|
|
return this;
|
|
}
|
|
|
|
clone() {
|
|
return new this.constructor(this._x, this._y, this._z, this._order);
|
|
}
|
|
|
|
copy(euler) {
|
|
this._x = euler._x;
|
|
this._y = euler._y;
|
|
this._z = euler._z;
|
|
this._order = euler._order;
|
|
|
|
this._onChangeCallback();
|
|
|
|
return this;
|
|
}
|
|
|
|
setFromRotationMatrix(m, order = this._order, update = true) {
|
|
// assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)
|
|
const te = m.elements;
|
|
const m11 = te[0],
|
|
m12 = te[4],
|
|
m13 = te[8];
|
|
const m21 = te[1],
|
|
m22 = te[5],
|
|
m23 = te[9];
|
|
const m31 = te[2],
|
|
m32 = te[6],
|
|
m33 = te[10];
|
|
|
|
switch (order) {
|
|
case 'XYZ':
|
|
this._y = Math.asin(clamp(m13, -1, 1));
|
|
|
|
if (Math.abs(m13) < 0.9999999) {
|
|
this._x = Math.atan2(-m23, m33);
|
|
this._z = Math.atan2(-m12, m11);
|
|
} else {
|
|
this._x = Math.atan2(m32, m22);
|
|
this._z = 0;
|
|
}
|
|
|
|
break;
|
|
|
|
case 'YXZ':
|
|
this._x = Math.asin(-clamp(m23, -1, 1));
|
|
|
|
if (Math.abs(m23) < 0.9999999) {
|
|
this._y = Math.atan2(m13, m33);
|
|
this._z = Math.atan2(m21, m22);
|
|
} else {
|
|
this._y = Math.atan2(-m31, m11);
|
|
this._z = 0;
|
|
}
|
|
|
|
break;
|
|
|
|
case 'ZXY':
|
|
this._x = Math.asin(clamp(m32, -1, 1));
|
|
|
|
if (Math.abs(m32) < 0.9999999) {
|
|
this._y = Math.atan2(-m31, m33);
|
|
this._z = Math.atan2(-m12, m22);
|
|
} else {
|
|
this._y = 0;
|
|
this._z = Math.atan2(m21, m11);
|
|
}
|
|
|
|
break;
|
|
|
|
case 'ZYX':
|
|
this._y = Math.asin(-clamp(m31, -1, 1));
|
|
|
|
if (Math.abs(m31) < 0.9999999) {
|
|
this._x = Math.atan2(m32, m33);
|
|
this._z = Math.atan2(m21, m11);
|
|
} else {
|
|
this._x = 0;
|
|
this._z = Math.atan2(-m12, m22);
|
|
}
|
|
|
|
break;
|
|
|
|
case 'YZX':
|
|
this._z = Math.asin(clamp(m21, -1, 1));
|
|
|
|
if (Math.abs(m21) < 0.9999999) {
|
|
this._x = Math.atan2(-m23, m22);
|
|
this._y = Math.atan2(-m31, m11);
|
|
} else {
|
|
this._x = 0;
|
|
this._y = Math.atan2(m13, m33);
|
|
}
|
|
|
|
break;
|
|
|
|
case 'XZY':
|
|
this._z = Math.asin(-clamp(m12, -1, 1));
|
|
|
|
if (Math.abs(m12) < 0.9999999) {
|
|
this._x = Math.atan2(m32, m22);
|
|
this._y = Math.atan2(m13, m11);
|
|
} else {
|
|
this._x = Math.atan2(-m23, m33);
|
|
this._y = 0;
|
|
}
|
|
|
|
break;
|
|
|
|
default:
|
|
console.warn('THREE.Euler: .setFromRotationMatrix() encountered an unknown order: ' + order);
|
|
}
|
|
|
|
this._order = order;
|
|
if (update === true) this._onChangeCallback();
|
|
return this;
|
|
}
|
|
|
|
setFromQuaternion(q, order, update) {
|
|
_matrix$1.makeRotationFromQuaternion(q);
|
|
|
|
return this.setFromRotationMatrix(_matrix$1, order, update);
|
|
}
|
|
|
|
setFromVector3(v, order = this._order) {
|
|
return this.set(v.x, v.y, v.z, order);
|
|
}
|
|
|
|
reorder(newOrder) {
|
|
// WARNING: this discards revolution information -bhouston
|
|
_quaternion$3.setFromEuler(this);
|
|
|
|
return this.setFromQuaternion(_quaternion$3, newOrder);
|
|
}
|
|
|
|
equals(euler) {
|
|
return euler._x === this._x && euler._y === this._y && euler._z === this._z && euler._order === this._order;
|
|
}
|
|
|
|
fromArray(array) {
|
|
this._x = array[0];
|
|
this._y = array[1];
|
|
this._z = array[2];
|
|
if (array[3] !== undefined) this._order = array[3];
|
|
|
|
this._onChangeCallback();
|
|
|
|
return this;
|
|
}
|
|
|
|
toArray(array = [], offset = 0) {
|
|
array[offset] = this._x;
|
|
array[offset + 1] = this._y;
|
|
array[offset + 2] = this._z;
|
|
array[offset + 3] = this._order;
|
|
return array;
|
|
}
|
|
|
|
toVector3(optionalResult) {
|
|
if (optionalResult) {
|
|
return optionalResult.set(this._x, this._y, this._z);
|
|
} else {
|
|
return new Vector3(this._x, this._y, this._z);
|
|
}
|
|
}
|
|
|
|
_onChange(callback) {
|
|
this._onChangeCallback = callback;
|
|
return this;
|
|
}
|
|
|
|
_onChangeCallback() {}
|
|
|
|
}
|
|
|
|
Euler.prototype.isEuler = true;
|
|
Euler.DefaultOrder = 'XYZ';
|
|
Euler.RotationOrders = ['XYZ', 'YZX', 'ZXY', 'XZY', 'YXZ', 'ZYX'];
|
|
|
|
class Layers {
|
|
constructor() {
|
|
this.mask = 1 | 0;
|
|
}
|
|
|
|
set(channel) {
|
|
this.mask = 1 << channel | 0;
|
|
}
|
|
|
|
enable(channel) {
|
|
this.mask |= 1 << channel | 0;
|
|
}
|
|
|
|
enableAll() {
|
|
this.mask = 0xffffffff | 0;
|
|
}
|
|
|
|
toggle(channel) {
|
|
this.mask ^= 1 << channel | 0;
|
|
}
|
|
|
|
disable(channel) {
|
|
this.mask &= ~(1 << channel | 0);
|
|
}
|
|
|
|
disableAll() {
|
|
this.mask = 0;
|
|
}
|
|
|
|
test(layers) {
|
|
return (this.mask & layers.mask) !== 0;
|
|
}
|
|
|
|
}
|
|
|
|
let _object3DId = 0;
|
|
|
|
const _v1$4 = /*@__PURE__*/new Vector3();
|
|
|
|
const _q1 = /*@__PURE__*/new Quaternion();
|
|
|
|
const _m1$1 = /*@__PURE__*/new Matrix4();
|
|
|
|
const _target = /*@__PURE__*/new Vector3();
|
|
|
|
const _position$3 = /*@__PURE__*/new Vector3();
|
|
|
|
const _scale$2 = /*@__PURE__*/new Vector3();
|
|
|
|
const _quaternion$2 = /*@__PURE__*/new Quaternion();
|
|
|
|
const _xAxis = /*@__PURE__*/new Vector3(1, 0, 0);
|
|
|
|
const _yAxis = /*@__PURE__*/new Vector3(0, 1, 0);
|
|
|
|
const _zAxis = /*@__PURE__*/new Vector3(0, 0, 1);
|
|
|
|
const _addedEvent = {
|
|
type: 'added'
|
|
};
|
|
const _removedEvent = {
|
|
type: 'removed'
|
|
};
|
|
|
|
class Object3D extends EventDispatcher {
|
|
constructor() {
|
|
super();
|
|
Object.defineProperty(this, 'id', {
|
|
value: _object3DId++
|
|
});
|
|
this.uuid = generateUUID();
|
|
this.name = '';
|
|
this.type = 'Object3D';
|
|
this.parent = null;
|
|
this.children = [];
|
|
this.up = Object3D.DefaultUp.clone();
|
|
const position = new Vector3();
|
|
const rotation = new Euler();
|
|
const quaternion = new Quaternion();
|
|
const scale = new Vector3(1, 1, 1);
|
|
|
|
function onRotationChange() {
|
|
quaternion.setFromEuler(rotation, false);
|
|
}
|
|
|
|
function onQuaternionChange() {
|
|
rotation.setFromQuaternion(quaternion, undefined, false);
|
|
}
|
|
|
|
rotation._onChange(onRotationChange);
|
|
|
|
quaternion._onChange(onQuaternionChange);
|
|
|
|
Object.defineProperties(this, {
|
|
position: {
|
|
configurable: true,
|
|
enumerable: true,
|
|
value: position
|
|
},
|
|
rotation: {
|
|
configurable: true,
|
|
enumerable: true,
|
|
value: rotation
|
|
},
|
|
quaternion: {
|
|
configurable: true,
|
|
enumerable: true,
|
|
value: quaternion
|
|
},
|
|
scale: {
|
|
configurable: true,
|
|
enumerable: true,
|
|
value: scale
|
|
},
|
|
modelViewMatrix: {
|
|
value: new Matrix4()
|
|
},
|
|
normalMatrix: {
|
|
value: new Matrix3()
|
|
}
|
|
});
|
|
this.matrix = new Matrix4();
|
|
this.matrixWorld = new Matrix4();
|
|
this.matrixAutoUpdate = Object3D.DefaultMatrixAutoUpdate;
|
|
this.matrixWorldNeedsUpdate = false;
|
|
this.layers = new Layers();
|
|
this.visible = true;
|
|
this.castShadow = false;
|
|
this.receiveShadow = false;
|
|
this.frustumCulled = true;
|
|
this.renderOrder = 0;
|
|
this.animations = [];
|
|
this.userData = {};
|
|
}
|
|
|
|
onBeforeRender() {}
|
|
|
|
onAfterRender() {}
|
|
|
|
applyMatrix4(matrix) {
|
|
if (this.matrixAutoUpdate) this.updateMatrix();
|
|
this.matrix.premultiply(matrix);
|
|
this.matrix.decompose(this.position, this.quaternion, this.scale);
|
|
}
|
|
|
|
applyQuaternion(q) {
|
|
this.quaternion.premultiply(q);
|
|
return this;
|
|
}
|
|
|
|
setRotationFromAxisAngle(axis, angle) {
|
|
// assumes axis is normalized
|
|
this.quaternion.setFromAxisAngle(axis, angle);
|
|
}
|
|
|
|
setRotationFromEuler(euler) {
|
|
this.quaternion.setFromEuler(euler, true);
|
|
}
|
|
|
|
setRotationFromMatrix(m) {
|
|
// assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)
|
|
this.quaternion.setFromRotationMatrix(m);
|
|
}
|
|
|
|
setRotationFromQuaternion(q) {
|
|
// assumes q is normalized
|
|
this.quaternion.copy(q);
|
|
}
|
|
|
|
rotateOnAxis(axis, angle) {
|
|
// rotate object on axis in object space
|
|
// axis is assumed to be normalized
|
|
_q1.setFromAxisAngle(axis, angle);
|
|
|
|
this.quaternion.multiply(_q1);
|
|
return this;
|
|
}
|
|
|
|
rotateOnWorldAxis(axis, angle) {
|
|
// rotate object on axis in world space
|
|
// axis is assumed to be normalized
|
|
// method assumes no rotated parent
|
|
_q1.setFromAxisAngle(axis, angle);
|
|
|
|
this.quaternion.premultiply(_q1);
|
|
return this;
|
|
}
|
|
|
|
rotateX(angle) {
|
|
return this.rotateOnAxis(_xAxis, angle);
|
|
}
|
|
|
|
rotateY(angle) {
|
|
return this.rotateOnAxis(_yAxis, angle);
|
|
}
|
|
|
|
rotateZ(angle) {
|
|
return this.rotateOnAxis(_zAxis, angle);
|
|
}
|
|
|
|
translateOnAxis(axis, distance) {
|
|
// translate object by distance along axis in object space
|
|
// axis is assumed to be normalized
|
|
_v1$4.copy(axis).applyQuaternion(this.quaternion);
|
|
|
|
this.position.add(_v1$4.multiplyScalar(distance));
|
|
return this;
|
|
}
|
|
|
|
translateX(distance) {
|
|
return this.translateOnAxis(_xAxis, distance);
|
|
}
|
|
|
|
translateY(distance) {
|
|
return this.translateOnAxis(_yAxis, distance);
|
|
}
|
|
|
|
translateZ(distance) {
|
|
return this.translateOnAxis(_zAxis, distance);
|
|
}
|
|
|
|
localToWorld(vector) {
|
|
return vector.applyMatrix4(this.matrixWorld);
|
|
}
|
|
|
|
worldToLocal(vector) {
|
|
return vector.applyMatrix4(_m1$1.copy(this.matrixWorld).invert());
|
|
}
|
|
|
|
lookAt(x, y, z) {
|
|
// This method does not support objects having non-uniformly-scaled parent(s)
|
|
if (x.isVector3) {
|
|
_target.copy(x);
|
|
} else {
|
|
_target.set(x, y, z);
|
|
}
|
|
|
|
const parent = this.parent;
|
|
this.updateWorldMatrix(true, false);
|
|
|
|
_position$3.setFromMatrixPosition(this.matrixWorld);
|
|
|
|
if (this.isCamera || this.isLight) {
|
|
_m1$1.lookAt(_position$3, _target, this.up);
|
|
} else {
|
|
_m1$1.lookAt(_target, _position$3, this.up);
|
|
}
|
|
|
|
this.quaternion.setFromRotationMatrix(_m1$1);
|
|
|
|
if (parent) {
|
|
_m1$1.extractRotation(parent.matrixWorld);
|
|
|
|
_q1.setFromRotationMatrix(_m1$1);
|
|
|
|
this.quaternion.premultiply(_q1.invert());
|
|
}
|
|
}
|
|
|
|
add(object) {
|
|
if (arguments.length > 1) {
|
|
for (let i = 0; i < arguments.length; i++) {
|
|
this.add(arguments[i]);
|
|
}
|
|
|
|
return this;
|
|
}
|
|
|
|
if (object === this) {
|
|
console.error('THREE.Object3D.add: object can\'t be added as a child of itself.', object);
|
|
return this;
|
|
}
|
|
|
|
if (object && object.isObject3D) {
|
|
if (object.parent !== null) {
|
|
object.parent.remove(object);
|
|
}
|
|
|
|
object.parent = this;
|
|
this.children.push(object);
|
|
object.dispatchEvent(_addedEvent);
|
|
} else {
|
|
console.error('THREE.Object3D.add: object not an instance of THREE.Object3D.', object);
|
|
}
|
|
|
|
return this;
|
|
}
|
|
|
|
remove(object) {
|
|
if (arguments.length > 1) {
|
|
for (let i = 0; i < arguments.length; i++) {
|
|
this.remove(arguments[i]);
|
|
}
|
|
|
|
return this;
|
|
}
|
|
|
|
const index = this.children.indexOf(object);
|
|
|
|
if (index !== -1) {
|
|
object.parent = null;
|
|
this.children.splice(index, 1);
|
|
object.dispatchEvent(_removedEvent);
|
|
}
|
|
|
|
return this;
|
|
}
|
|
|
|
removeFromParent() {
|
|
const parent = this.parent;
|
|
|
|
if (parent !== null) {
|
|
parent.remove(this);
|
|
}
|
|
|
|
return this;
|
|
}
|
|
|
|
clear() {
|
|
for (let i = 0; i < this.children.length; i++) {
|
|
const object = this.children[i];
|
|
object.parent = null;
|
|
object.dispatchEvent(_removedEvent);
|
|
}
|
|
|
|
this.children.length = 0;
|
|
return this;
|
|
}
|
|
|
|
attach(object) {
|
|
// adds object as a child of this, while maintaining the object's world transform
|
|
this.updateWorldMatrix(true, false);
|
|
|
|
_m1$1.copy(this.matrixWorld).invert();
|
|
|
|
if (object.parent !== null) {
|
|
object.parent.updateWorldMatrix(true, false);
|
|
|
|
_m1$1.multiply(object.parent.matrixWorld);
|
|
}
|
|
|
|
object.applyMatrix4(_m1$1);
|
|
this.add(object);
|
|
object.updateWorldMatrix(false, true);
|
|
return this;
|
|
}
|
|
|
|
getObjectById(id) {
|
|
return this.getObjectByProperty('id', id);
|
|
}
|
|
|
|
getObjectByName(name) {
|
|
return this.getObjectByProperty('name', name);
|
|
}
|
|
|
|
getObjectByProperty(name, value) {
|
|
if (this[name] === value) return this;
|
|
|
|
for (let i = 0, l = this.children.length; i < l; i++) {
|
|
const child = this.children[i];
|
|
const object = child.getObjectByProperty(name, value);
|
|
|
|
if (object !== undefined) {
|
|
return object;
|
|
}
|
|
}
|
|
|
|
return undefined;
|
|
}
|
|
|
|
getWorldPosition(target) {
|
|
this.updateWorldMatrix(true, false);
|
|
return target.setFromMatrixPosition(this.matrixWorld);
|
|
}
|
|
|
|
getWorldQuaternion(target) {
|
|
this.updateWorldMatrix(true, false);
|
|
this.matrixWorld.decompose(_position$3, target, _scale$2);
|
|
return target;
|
|
}
|
|
|
|
getWorldScale(target) {
|
|
this.updateWorldMatrix(true, false);
|
|
this.matrixWorld.decompose(_position$3, _quaternion$2, target);
|
|
return target;
|
|
}
|
|
|
|
getWorldDirection(target) {
|
|
this.updateWorldMatrix(true, false);
|
|
const e = this.matrixWorld.elements;
|
|
return target.set(e[8], e[9], e[10]).normalize();
|
|
}
|
|
|
|
raycast() {}
|
|
|
|
traverse(callback) {
|
|
callback(this);
|
|
const children = this.children;
|
|
|
|
for (let i = 0, l = children.length; i < l; i++) {
|
|
children[i].traverse(callback);
|
|
}
|
|
}
|
|
|
|
traverseVisible(callback) {
|
|
if (this.visible === false) return;
|
|
callback(this);
|
|
const children = this.children;
|
|
|
|
for (let i = 0, l = children.length; i < l; i++) {
|
|
children[i].traverseVisible(callback);
|
|
}
|
|
}
|
|
|
|
traverseAncestors(callback) {
|
|
const parent = this.parent;
|
|
|
|
if (parent !== null) {
|
|
callback(parent);
|
|
parent.traverseAncestors(callback);
|
|
}
|
|
}
|
|
|
|
updateMatrix() {
|
|
this.matrix.compose(this.position, this.quaternion, this.scale);
|
|
this.matrixWorldNeedsUpdate = true;
|
|
}
|
|
|
|
updateMatrixWorld(force) {
|
|
if (this.matrixAutoUpdate) this.updateMatrix();
|
|
|
|
if (this.matrixWorldNeedsUpdate || force) {
|
|
if (this.parent === null) {
|
|
this.matrixWorld.copy(this.matrix);
|
|
} else {
|
|
this.matrixWorld.multiplyMatrices(this.parent.matrixWorld, this.matrix);
|
|
}
|
|
|
|
this.matrixWorldNeedsUpdate = false;
|
|
force = true;
|
|
} // update children
|
|
|
|
|
|
const children = this.children;
|
|
|
|
for (let i = 0, l = children.length; i < l; i++) {
|
|
children[i].updateMatrixWorld(force);
|
|
}
|
|
}
|
|
|
|
updateWorldMatrix(updateParents, updateChildren) {
|
|
const parent = this.parent;
|
|
|
|
if (updateParents === true && parent !== null) {
|
|
parent.updateWorldMatrix(true, false);
|
|
}
|
|
|
|
if (this.matrixAutoUpdate) this.updateMatrix();
|
|
|
|
if (this.parent === null) {
|
|
this.matrixWorld.copy(this.matrix);
|
|
} else {
|
|
this.matrixWorld.multiplyMatrices(this.parent.matrixWorld, this.matrix);
|
|
} // update children
|
|
|
|
|
|
if (updateChildren === true) {
|
|
const children = this.children;
|
|
|
|
for (let i = 0, l = children.length; i < l; i++) {
|
|
children[i].updateWorldMatrix(false, true);
|
|
}
|
|
}
|
|
}
|
|
|
|
toJSON(meta) {
|
|
// meta is a string when called from JSON.stringify
|
|
const isRootObject = meta === undefined || typeof meta === 'string';
|
|
const output = {}; // meta is a hash used to collect geometries, materials.
|
|
// not providing it implies that this is the root object
|
|
// being serialized.
|
|
|
|
if (isRootObject) {
|
|
// initialize meta obj
|
|
meta = {
|
|
geometries: {},
|
|
materials: {},
|
|
textures: {},
|
|
images: {},
|
|
shapes: {},
|
|
skeletons: {},
|
|
animations: {}
|
|
};
|
|
output.metadata = {
|
|
version: 4.5,
|
|
type: 'Object',
|
|
generator: 'Object3D.toJSON'
|
|
};
|
|
} // standard Object3D serialization
|
|
|
|
|
|
const object = {};
|
|
object.uuid = this.uuid;
|
|
object.type = this.type;
|
|
if (this.name !== '') object.name = this.name;
|
|
if (this.castShadow === true) object.castShadow = true;
|
|
if (this.receiveShadow === true) object.receiveShadow = true;
|
|
if (this.visible === false) object.visible = false;
|
|
if (this.frustumCulled === false) object.frustumCulled = false;
|
|
if (this.renderOrder !== 0) object.renderOrder = this.renderOrder;
|
|
if (JSON.stringify(this.userData) !== '{}') object.userData = this.userData;
|
|
object.layers = this.layers.mask;
|
|
object.matrix = this.matrix.toArray();
|
|
if (this.matrixAutoUpdate === false) object.matrixAutoUpdate = false; // object specific properties
|
|
|
|
if (this.isInstancedMesh) {
|
|
object.type = 'InstancedMesh';
|
|
object.count = this.count;
|
|
object.instanceMatrix = this.instanceMatrix.toJSON();
|
|
if (this.instanceColor !== null) object.instanceColor = this.instanceColor.toJSON();
|
|
} //
|
|
|
|
|
|
function serialize(library, element) {
|
|
if (library[element.uuid] === undefined) {
|
|
library[element.uuid] = element.toJSON(meta);
|
|
}
|
|
|
|
return element.uuid;
|
|
}
|
|
|
|
if (this.isScene) {
|
|
if (this.background) {
|
|
if (this.background.isColor) {
|
|
object.background = this.background.toJSON();
|
|
} else if (this.background.isTexture) {
|
|
object.background = this.background.toJSON(meta).uuid;
|
|
}
|
|
}
|
|
|
|
if (this.environment && this.environment.isTexture) {
|
|
object.environment = this.environment.toJSON(meta).uuid;
|
|
}
|
|
} else if (this.isMesh || this.isLine || this.isPoints) {
|
|
object.geometry = serialize(meta.geometries, this.geometry);
|
|
const parameters = this.geometry.parameters;
|
|
|
|
if (parameters !== undefined && parameters.shapes !== undefined) {
|
|
const shapes = parameters.shapes;
|
|
|
|
if (Array.isArray(shapes)) {
|
|
for (let i = 0, l = shapes.length; i < l; i++) {
|
|
const shape = shapes[i];
|
|
serialize(meta.shapes, shape);
|
|
}
|
|
} else {
|
|
serialize(meta.shapes, shapes);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (this.isSkinnedMesh) {
|
|
object.bindMode = this.bindMode;
|
|
object.bindMatrix = this.bindMatrix.toArray();
|
|
|
|
if (this.skeleton !== undefined) {
|
|
serialize(meta.skeletons, this.skeleton);
|
|
object.skeleton = this.skeleton.uuid;
|
|
}
|
|
}
|
|
|
|
if (this.material !== undefined) {
|
|
if (Array.isArray(this.material)) {
|
|
const uuids = [];
|
|
|
|
for (let i = 0, l = this.material.length; i < l; i++) {
|
|
uuids.push(serialize(meta.materials, this.material[i]));
|
|
}
|
|
|
|
object.material = uuids;
|
|
} else {
|
|
object.material = serialize(meta.materials, this.material);
|
|
}
|
|
} //
|
|
|
|
|
|
if (this.children.length > 0) {
|
|
object.children = [];
|
|
|
|
for (let i = 0; i < this.children.length; i++) {
|
|
object.children.push(this.children[i].toJSON(meta).object);
|
|
}
|
|
} //
|
|
|
|
|
|
if (this.animations.length > 0) {
|
|
object.animations = [];
|
|
|
|
for (let i = 0; i < this.animations.length; i++) {
|
|
const animation = this.animations[i];
|
|
object.animations.push(serialize(meta.animations, animation));
|
|
}
|
|
}
|
|
|
|
if (isRootObject) {
|
|
const geometries = extractFromCache(meta.geometries);
|
|
const materials = extractFromCache(meta.materials);
|
|
const textures = extractFromCache(meta.textures);
|
|
const images = extractFromCache(meta.images);
|
|
const shapes = extractFromCache(meta.shapes);
|
|
const skeletons = extractFromCache(meta.skeletons);
|
|
const animations = extractFromCache(meta.animations);
|
|
if (geometries.length > 0) output.geometries = geometries;
|
|
if (materials.length > 0) output.materials = materials;
|
|
if (textures.length > 0) output.textures = textures;
|
|
if (images.length > 0) output.images = images;
|
|
if (shapes.length > 0) output.shapes = shapes;
|
|
if (skeletons.length > 0) output.skeletons = skeletons;
|
|
if (animations.length > 0) output.animations = animations;
|
|
}
|
|
|
|
output.object = object;
|
|
return output; // extract data from the cache hash
|
|
// remove metadata on each item
|
|
// and return as array
|
|
|
|
function extractFromCache(cache) {
|
|
const values = [];
|
|
|
|
for (const key in cache) {
|
|
const data = cache[key];
|
|
delete data.metadata;
|
|
values.push(data);
|
|
}
|
|
|
|
return values;
|
|
}
|
|
}
|
|
|
|
clone(recursive) {
|
|
return new this.constructor().copy(this, recursive);
|
|
}
|
|
|
|
copy(source, recursive = true) {
|
|
this.name = source.name;
|
|
this.up.copy(source.up);
|
|
this.position.copy(source.position);
|
|
this.rotation.order = source.rotation.order;
|
|
this.quaternion.copy(source.quaternion);
|
|
this.scale.copy(source.scale);
|
|
this.matrix.copy(source.matrix);
|
|
this.matrixWorld.copy(source.matrixWorld);
|
|
this.matrixAutoUpdate = source.matrixAutoUpdate;
|
|
this.matrixWorldNeedsUpdate = source.matrixWorldNeedsUpdate;
|
|
this.layers.mask = source.layers.mask;
|
|
this.visible = source.visible;
|
|
this.castShadow = source.castShadow;
|
|
this.receiveShadow = source.receiveShadow;
|
|
this.frustumCulled = source.frustumCulled;
|
|
this.renderOrder = source.renderOrder;
|
|
this.userData = JSON.parse(JSON.stringify(source.userData));
|
|
|
|
if (recursive === true) {
|
|
for (let i = 0; i < source.children.length; i++) {
|
|
const child = source.children[i];
|
|
this.add(child.clone());
|
|
}
|
|
}
|
|
|
|
return this;
|
|
}
|
|
|
|
}
|
|
|
|
Object3D.DefaultUp = new Vector3(0, 1, 0);
|
|
Object3D.DefaultMatrixAutoUpdate = true;
|
|
Object3D.prototype.isObject3D = true;
|
|
|
|
const _v0$1 = /*@__PURE__*/new Vector3();
|
|
|
|
const _v1$3 = /*@__PURE__*/new Vector3();
|
|
|
|
const _v2$2 = /*@__PURE__*/new Vector3();
|
|
|
|
const _v3$1 = /*@__PURE__*/new Vector3();
|
|
|
|
const _vab = /*@__PURE__*/new Vector3();
|
|
|
|
const _vac = /*@__PURE__*/new Vector3();
|
|
|
|
const _vbc = /*@__PURE__*/new Vector3();
|
|
|
|
const _vap = /*@__PURE__*/new Vector3();
|
|
|
|
const _vbp = /*@__PURE__*/new Vector3();
|
|
|
|
const _vcp = /*@__PURE__*/new Vector3();
|
|
|
|
class Triangle {
|
|
constructor(a = new Vector3(), b = new Vector3(), c = new Vector3()) {
|
|
this.a = a;
|
|
this.b = b;
|
|
this.c = c;
|
|
}
|
|
|
|
static getNormal(a, b, c, target) {
|
|
target.subVectors(c, b);
|
|
|
|
_v0$1.subVectors(a, b);
|
|
|
|
target.cross(_v0$1);
|
|
const targetLengthSq = target.lengthSq();
|
|
|
|
if (targetLengthSq > 0) {
|
|
return target.multiplyScalar(1 / Math.sqrt(targetLengthSq));
|
|
}
|
|
|
|
return target.set(0, 0, 0);
|
|
} // static/instance method to calculate barycentric coordinates
|
|
// based on: http://www.blackpawn.com/texts/pointinpoly/default.html
|
|
|
|
|
|
static getBarycoord(point, a, b, c, target) {
|
|
_v0$1.subVectors(c, a);
|
|
|
|
_v1$3.subVectors(b, a);
|
|
|
|
_v2$2.subVectors(point, a);
|
|
|
|
const dot00 = _v0$1.dot(_v0$1);
|
|
|
|
const dot01 = _v0$1.dot(_v1$3);
|
|
|
|
const dot02 = _v0$1.dot(_v2$2);
|
|
|
|
const dot11 = _v1$3.dot(_v1$3);
|
|
|
|
const dot12 = _v1$3.dot(_v2$2);
|
|
|
|
const denom = dot00 * dot11 - dot01 * dot01; // collinear or singular triangle
|
|
|
|
if (denom === 0) {
|
|
// arbitrary location outside of triangle?
|
|
// not sure if this is the best idea, maybe should be returning undefined
|
|
return target.set(-2, -1, -1);
|
|
}
|
|
|
|
const invDenom = 1 / denom;
|
|
const u = (dot11 * dot02 - dot01 * dot12) * invDenom;
|
|
const v = (dot00 * dot12 - dot01 * dot02) * invDenom; // barycentric coordinates must always sum to 1
|
|
|
|
return target.set(1 - u - v, v, u);
|
|
}
|
|
|
|
static containsPoint(point, a, b, c) {
|
|
this.getBarycoord(point, a, b, c, _v3$1);
|
|
return _v3$1.x >= 0 && _v3$1.y >= 0 && _v3$1.x + _v3$1.y <= 1;
|
|
}
|
|
|
|
static getUV(point, p1, p2, p3, uv1, uv2, uv3, target) {
|
|
this.getBarycoord(point, p1, p2, p3, _v3$1);
|
|
target.set(0, 0);
|
|
target.addScaledVector(uv1, _v3$1.x);
|
|
target.addScaledVector(uv2, _v3$1.y);
|
|
target.addScaledVector(uv3, _v3$1.z);
|
|
return target;
|
|
}
|
|
|
|
static isFrontFacing(a, b, c, direction) {
|
|
_v0$1.subVectors(c, b);
|
|
|
|
_v1$3.subVectors(a, b); // strictly front facing
|
|
|
|
|
|
return _v0$1.cross(_v1$3).dot(direction) < 0 ? true : false;
|
|
}
|
|
|
|
set(a, b, c) {
|
|
this.a.copy(a);
|
|
this.b.copy(b);
|
|
this.c.copy(c);
|
|
return this;
|
|
}
|
|
|
|
setFromPointsAndIndices(points, i0, i1, i2) {
|
|
this.a.copy(points[i0]);
|
|
this.b.copy(points[i1]);
|
|
this.c.copy(points[i2]);
|
|
return this;
|
|
}
|
|
|
|
setFromAttributeAndIndices(attribute, i0, i1, i2) {
|
|
this.a.fromBufferAttribute(attribute, i0);
|
|
this.b.fromBufferAttribute(attribute, i1);
|
|
this.c.fromBufferAttribute(attribute, i2);
|
|
return this;
|
|
}
|
|
|
|
clone() {
|
|
return new this.constructor().copy(this);
|
|
}
|
|
|
|
copy(triangle) {
|
|
this.a.copy(triangle.a);
|
|
this.b.copy(triangle.b);
|
|
this.c.copy(triangle.c);
|
|
return this;
|
|
}
|
|
|
|
getArea() {
|
|
_v0$1.subVectors(this.c, this.b);
|
|
|
|
_v1$3.subVectors(this.a, this.b);
|
|
|
|
return _v0$1.cross(_v1$3).length() * 0.5;
|
|
}
|
|
|
|
getMidpoint(target) {
|
|
return target.addVectors(this.a, this.b).add(this.c).multiplyScalar(1 / 3);
|
|
}
|
|
|
|
getNormal(target) {
|
|
return Triangle.getNormal(this.a, this.b, this.c, target);
|
|
}
|
|
|
|
getPlane(target) {
|
|
return target.setFromCoplanarPoints(this.a, this.b, this.c);
|
|
}
|
|
|
|
getBarycoord(point, target) {
|
|
return Triangle.getBarycoord(point, this.a, this.b, this.c, target);
|
|
}
|
|
|
|
getUV(point, uv1, uv2, uv3, target) {
|
|
return Triangle.getUV(point, this.a, this.b, this.c, uv1, uv2, uv3, target);
|
|
}
|
|
|
|
containsPoint(point) {
|
|
return Triangle.containsPoint(point, this.a, this.b, this.c);
|
|
}
|
|
|
|
isFrontFacing(direction) {
|
|
return Triangle.isFrontFacing(this.a, this.b, this.c, direction);
|
|
}
|
|
|
|
intersectsBox(box) {
|
|
return box.intersectsTriangle(this);
|
|
}
|
|
|
|
closestPointToPoint(p, target) {
|
|
const a = this.a,
|
|
b = this.b,
|
|
c = this.c;
|
|
let v, w; // algorithm thanks to Real-Time Collision Detection by Christer Ericson,
|
|
// published by Morgan Kaufmann Publishers, (c) 2005 Elsevier Inc.,
|
|
// under the accompanying license; see chapter 5.1.5 for detailed explanation.
|
|
// basically, we're distinguishing which of the voronoi regions of the triangle
|
|
// the point lies in with the minimum amount of redundant computation.
|
|
|
|
_vab.subVectors(b, a);
|
|
|
|
_vac.subVectors(c, a);
|
|
|
|
_vap.subVectors(p, a);
|
|
|
|
const d1 = _vab.dot(_vap);
|
|
|
|
const d2 = _vac.dot(_vap);
|
|
|
|
if (d1 <= 0 && d2 <= 0) {
|
|
// vertex region of A; barycentric coords (1, 0, 0)
|
|
return target.copy(a);
|
|
}
|
|
|
|
_vbp.subVectors(p, b);
|
|
|
|
const d3 = _vab.dot(_vbp);
|
|
|
|
const d4 = _vac.dot(_vbp);
|
|
|
|
if (d3 >= 0 && d4 <= d3) {
|
|
// vertex region of B; barycentric coords (0, 1, 0)
|
|
return target.copy(b);
|
|
}
|
|
|
|
const vc = d1 * d4 - d3 * d2;
|
|
|
|
if (vc <= 0 && d1 >= 0 && d3 <= 0) {
|
|
v = d1 / (d1 - d3); // edge region of AB; barycentric coords (1-v, v, 0)
|
|
|
|
return target.copy(a).addScaledVector(_vab, v);
|
|
}
|
|
|
|
_vcp.subVectors(p, c);
|
|
|
|
const d5 = _vab.dot(_vcp);
|
|
|
|
const d6 = _vac.dot(_vcp);
|
|
|
|
if (d6 >= 0 && d5 <= d6) {
|
|
// vertex region of C; barycentric coords (0, 0, 1)
|
|
return target.copy(c);
|
|
}
|
|
|
|
const vb = d5 * d2 - d1 * d6;
|
|
|
|
if (vb <= 0 && d2 >= 0 && d6 <= 0) {
|
|
w = d2 / (d2 - d6); // edge region of AC; barycentric coords (1-w, 0, w)
|
|
|
|
return target.copy(a).addScaledVector(_vac, w);
|
|
}
|
|
|
|
const va = d3 * d6 - d5 * d4;
|
|
|
|
if (va <= 0 && d4 - d3 >= 0 && d5 - d6 >= 0) {
|
|
_vbc.subVectors(c, b);
|
|
|
|
w = (d4 - d3) / (d4 - d3 + (d5 - d6)); // edge region of BC; barycentric coords (0, 1-w, w)
|
|
|
|
return target.copy(b).addScaledVector(_vbc, w); // edge region of BC
|
|
} // face region
|
|
|
|
|
|
const denom = 1 / (va + vb + vc); // u = va * denom
|
|
|
|
v = vb * denom;
|
|
w = vc * denom;
|
|
return target.copy(a).addScaledVector(_vab, v).addScaledVector(_vac, w);
|
|
}
|
|
|
|
equals(triangle) {
|
|
return triangle.a.equals(this.a) && triangle.b.equals(this.b) && triangle.c.equals(this.c);
|
|
}
|
|
|
|
}
|
|
|
|
let materialId = 0;
|
|
|
|
class Material extends EventDispatcher {
|
|
constructor() {
|
|
super();
|
|
Object.defineProperty(this, 'id', {
|
|
value: materialId++
|
|
});
|
|
this.uuid = generateUUID();
|
|
this.name = '';
|
|
this.type = 'Material';
|
|
this.fog = true;
|
|
this.blending = NormalBlending;
|
|
this.side = FrontSide;
|
|
this.vertexColors = false;
|
|
this.opacity = 1;
|
|
this.format = RGBAFormat;
|
|
this.transparent = false;
|
|
this.blendSrc = SrcAlphaFactor;
|
|
this.blendDst = OneMinusSrcAlphaFactor;
|
|
this.blendEquation = AddEquation;
|
|
this.blendSrcAlpha = null;
|
|
this.blendDstAlpha = null;
|
|
this.blendEquationAlpha = null;
|
|
this.depthFunc = LessEqualDepth;
|
|
this.depthTest = true;
|
|
this.depthWrite = true;
|
|
this.stencilWriteMask = 0xff;
|
|
this.stencilFunc = AlwaysStencilFunc;
|
|
this.stencilRef = 0;
|
|
this.stencilFuncMask = 0xff;
|
|
this.stencilFail = KeepStencilOp;
|
|
this.stencilZFail = KeepStencilOp;
|
|
this.stencilZPass = KeepStencilOp;
|
|
this.stencilWrite = false;
|
|
this.clippingPlanes = null;
|
|
this.clipIntersection = false;
|
|
this.clipShadows = false;
|
|
this.shadowSide = null;
|
|
this.colorWrite = true;
|
|
this.precision = null; // override the renderer's default precision for this material
|
|
|
|
this.polygonOffset = false;
|
|
this.polygonOffsetFactor = 0;
|
|
this.polygonOffsetUnits = 0;
|
|
this.dithering = false;
|
|
this.alphaToCoverage = false;
|
|
this.premultipliedAlpha = false;
|
|
this.visible = true;
|
|
this.toneMapped = true;
|
|
this.userData = {};
|
|
this.version = 0;
|
|
this._alphaTest = 0;
|
|
}
|
|
|
|
get alphaTest() {
|
|
return this._alphaTest;
|
|
}
|
|
|
|
set alphaTest(value) {
|
|
if (this._alphaTest > 0 !== value > 0) {
|
|
this.version++;
|
|
}
|
|
|
|
this._alphaTest = value;
|
|
}
|
|
|
|
onBuild() {}
|
|
|
|
onBeforeRender() {}
|
|
|
|
onBeforeCompile() {}
|
|
|
|
customProgramCacheKey() {
|
|
return this.onBeforeCompile.toString();
|
|
}
|
|
|
|
setValues(values) {
|
|
if (values === undefined) return;
|
|
|
|
for (const key in values) {
|
|
const newValue = values[key];
|
|
|
|
if (newValue === undefined) {
|
|
console.warn('THREE.Material: \'' + key + '\' parameter is undefined.');
|
|
continue;
|
|
} // for backward compatability if shading is set in the constructor
|
|
|
|
|
|
if (key === 'shading') {
|
|
console.warn('THREE.' + this.type + ': .shading has been removed. Use the boolean .flatShading instead.');
|
|
this.flatShading = newValue === FlatShading ? true : false;
|
|
continue;
|
|
}
|
|
|
|
const currentValue = this[key];
|
|
|
|
if (currentValue === undefined) {
|
|
console.warn('THREE.' + this.type + ': \'' + key + '\' is not a property of this material.');
|
|
continue;
|
|
}
|
|
|
|
if (currentValue && currentValue.isColor) {
|
|
currentValue.set(newValue);
|
|
} else if (currentValue && currentValue.isVector3 && newValue && newValue.isVector3) {
|
|
currentValue.copy(newValue);
|
|
} else {
|
|
this[key] = newValue;
|
|
}
|
|
}
|
|
}
|
|
|
|
toJSON(meta) {
|
|
const isRoot = meta === undefined || typeof meta === 'string';
|
|
|
|
if (isRoot) {
|
|
meta = {
|
|
textures: {},
|
|
images: {}
|
|
};
|
|
}
|
|
|
|
const data = {
|
|
metadata: {
|
|
version: 4.5,
|
|
type: 'Material',
|
|
generator: 'Material.toJSON'
|
|
}
|
|
}; // standard Material serialization
|
|
|
|
data.uuid = this.uuid;
|
|
data.type = this.type;
|
|
if (this.name !== '') data.name = this.name;
|
|
if (this.color && this.color.isColor) data.color = this.color.getHex();
|
|
if (this.roughness !== undefined) data.roughness = this.roughness;
|
|
if (this.metalness !== undefined) data.metalness = this.metalness;
|
|
if (this.sheen !== undefined) data.sheen = this.sheen;
|
|
if (this.sheenTint && this.sheenTint.isColor) data.sheenTint = this.sheenTint.getHex();
|
|
if (this.sheenRoughness !== undefined) data.sheenRoughness = this.sheenRoughness;
|
|
if (this.emissive && this.emissive.isColor) data.emissive = this.emissive.getHex();
|
|
if (this.emissiveIntensity && this.emissiveIntensity !== 1) data.emissiveIntensity = this.emissiveIntensity;
|
|
if (this.specular && this.specular.isColor) data.specular = this.specular.getHex();
|
|
if (this.specularIntensity !== undefined) data.specularIntensity = this.specularIntensity;
|
|
if (this.specularTint && this.specularTint.isColor) data.specularTint = this.specularTint.getHex();
|
|
if (this.shininess !== undefined) data.shininess = this.shininess;
|
|
if (this.clearcoat !== undefined) data.clearcoat = this.clearcoat;
|
|
if (this.clearcoatRoughness !== undefined) data.clearcoatRoughness = this.clearcoatRoughness;
|
|
|
|
if (this.clearcoatMap && this.clearcoatMap.isTexture) {
|
|
data.clearcoatMap = this.clearcoatMap.toJSON(meta).uuid;
|
|
}
|
|
|
|
if (this.clearcoatRoughnessMap && this.clearcoatRoughnessMap.isTexture) {
|
|
data.clearcoatRoughnessMap = this.clearcoatRoughnessMap.toJSON(meta).uuid;
|
|
}
|
|
|
|
if (this.clearcoatNormalMap && this.clearcoatNormalMap.isTexture) {
|
|
data.clearcoatNormalMap = this.clearcoatNormalMap.toJSON(meta).uuid;
|
|
data.clearcoatNormalScale = this.clearcoatNormalScale.toArray();
|
|
}
|
|
|
|
if (this.map && this.map.isTexture) data.map = this.map.toJSON(meta).uuid;
|
|
if (this.matcap && this.matcap.isTexture) data.matcap = this.matcap.toJSON(meta).uuid;
|
|
if (this.alphaMap && this.alphaMap.isTexture) data.alphaMap = this.alphaMap.toJSON(meta).uuid;
|
|
|
|
if (this.lightMap && this.lightMap.isTexture) {
|
|
data.lightMap = this.lightMap.toJSON(meta).uuid;
|
|
data.lightMapIntensity = this.lightMapIntensity;
|
|
}
|
|
|
|
if (this.aoMap && this.aoMap.isTexture) {
|
|
data.aoMap = this.aoMap.toJSON(meta).uuid;
|
|
data.aoMapIntensity = this.aoMapIntensity;
|
|
}
|
|
|
|
if (this.bumpMap && this.bumpMap.isTexture) {
|
|
data.bumpMap = this.bumpMap.toJSON(meta).uuid;
|
|
data.bumpScale = this.bumpScale;
|
|
}
|
|
|
|
if (this.normalMap && this.normalMap.isTexture) {
|
|
data.normalMap = this.normalMap.toJSON(meta).uuid;
|
|
data.normalMapType = this.normalMapType;
|
|
data.normalScale = this.normalScale.toArray();
|
|
}
|
|
|
|
if (this.displacementMap && this.displacementMap.isTexture) {
|
|
data.displacementMap = this.displacementMap.toJSON(meta).uuid;
|
|
data.displacementScale = this.displacementScale;
|
|
data.displacementBias = this.displacementBias;
|
|
}
|
|
|
|
if (this.roughnessMap && this.roughnessMap.isTexture) data.roughnessMap = this.roughnessMap.toJSON(meta).uuid;
|
|
if (this.metalnessMap && this.metalnessMap.isTexture) data.metalnessMap = this.metalnessMap.toJSON(meta).uuid;
|
|
if (this.emissiveMap && this.emissiveMap.isTexture) data.emissiveMap = this.emissiveMap.toJSON(meta).uuid;
|
|
if (this.specularMap && this.specularMap.isTexture) data.specularMap = this.specularMap.toJSON(meta).uuid;
|
|
if (this.specularIntensityMap && this.specularIntensityMap.isTexture) data.specularIntensityMap = this.specularIntensityMap.toJSON(meta).uuid;
|
|
if (this.specularTintMap && this.specularTintMap.isTexture) data.specularTintMap = this.specularTintMap.toJSON(meta).uuid;
|
|
|
|
if (this.envMap && this.envMap.isTexture) {
|
|
data.envMap = this.envMap.toJSON(meta).uuid;
|
|
if (this.combine !== undefined) data.combine = this.combine;
|
|
}
|
|
|
|
if (this.envMapIntensity !== undefined) data.envMapIntensity = this.envMapIntensity;
|
|
if (this.reflectivity !== undefined) data.reflectivity = this.reflectivity;
|
|
if (this.refractionRatio !== undefined) data.refractionRatio = this.refractionRatio;
|
|
|
|
if (this.gradientMap && this.gradientMap.isTexture) {
|
|
data.gradientMap = this.gradientMap.toJSON(meta).uuid;
|
|
}
|
|
|
|
if (this.transmission !== undefined) data.transmission = this.transmission;
|
|
if (this.transmissionMap && this.transmissionMap.isTexture) data.transmissionMap = this.transmissionMap.toJSON(meta).uuid;
|
|
if (this.thickness !== undefined) data.thickness = this.thickness;
|
|
if (this.thicknessMap && this.thicknessMap.isTexture) data.thicknessMap = this.thicknessMap.toJSON(meta).uuid;
|
|
if (this.attenuationDistance !== undefined) data.attenuationDistance = this.attenuationDistance;
|
|
if (this.attenuationTint !== undefined) data.attenuationTint = this.attenuationTint.getHex();
|
|
if (this.size !== undefined) data.size = this.size;
|
|
if (this.shadowSide !== null) data.shadowSide = this.shadowSide;
|
|
if (this.sizeAttenuation !== undefined) data.sizeAttenuation = this.sizeAttenuation;
|
|
if (this.blending !== NormalBlending) data.blending = this.blending;
|
|
if (this.side !== FrontSide) data.side = this.side;
|
|
if (this.vertexColors) data.vertexColors = true;
|
|
if (this.opacity < 1) data.opacity = this.opacity;
|
|
if (this.format !== RGBAFormat) data.format = this.format;
|
|
if (this.transparent === true) data.transparent = this.transparent;
|
|
data.depthFunc = this.depthFunc;
|
|
data.depthTest = this.depthTest;
|
|
data.depthWrite = this.depthWrite;
|
|
data.colorWrite = this.colorWrite;
|
|
data.stencilWrite = this.stencilWrite;
|
|
data.stencilWriteMask = this.stencilWriteMask;
|
|
data.stencilFunc = this.stencilFunc;
|
|
data.stencilRef = this.stencilRef;
|
|
data.stencilFuncMask = this.stencilFuncMask;
|
|
data.stencilFail = this.stencilFail;
|
|
data.stencilZFail = this.stencilZFail;
|
|
data.stencilZPass = this.stencilZPass; // rotation (SpriteMaterial)
|
|
|
|
if (this.rotation && this.rotation !== 0) data.rotation = this.rotation;
|
|
if (this.polygonOffset === true) data.polygonOffset = true;
|
|
if (this.polygonOffsetFactor !== 0) data.polygonOffsetFactor = this.polygonOffsetFactor;
|
|
if (this.polygonOffsetUnits !== 0) data.polygonOffsetUnits = this.polygonOffsetUnits;
|
|
if (this.linewidth && this.linewidth !== 1) data.linewidth = this.linewidth;
|
|
if (this.dashSize !== undefined) data.dashSize = this.dashSize;
|
|
if (this.gapSize !== undefined) data.gapSize = this.gapSize;
|
|
if (this.scale !== undefined) data.scale = this.scale;
|
|
if (this.dithering === true) data.dithering = true;
|
|
if (this.alphaTest > 0) data.alphaTest = this.alphaTest;
|
|
if (this.alphaToCoverage === true) data.alphaToCoverage = this.alphaToCoverage;
|
|
if (this.premultipliedAlpha === true) data.premultipliedAlpha = this.premultipliedAlpha;
|
|
if (this.wireframe === true) data.wireframe = this.wireframe;
|
|
if (this.wireframeLinewidth > 1) data.wireframeLinewidth = this.wireframeLinewidth;
|
|
if (this.wireframeLinecap !== 'round') data.wireframeLinecap = this.wireframeLinecap;
|
|
if (this.wireframeLinejoin !== 'round') data.wireframeLinejoin = this.wireframeLinejoin;
|
|
if (this.flatShading === true) data.flatShading = this.flatShading;
|
|
if (this.visible === false) data.visible = false;
|
|
if (this.toneMapped === false) data.toneMapped = false;
|
|
if (JSON.stringify(this.userData) !== '{}') data.userData = this.userData; // TODO: Copied from Object3D.toJSON
|
|
|
|
function extractFromCache(cache) {
|
|
const values = [];
|
|
|
|
for (const key in cache) {
|
|
const data = cache[key];
|
|
delete data.metadata;
|
|
values.push(data);
|
|
}
|
|
|
|
return values;
|
|
}
|
|
|
|
if (isRoot) {
|
|
const textures = extractFromCache(meta.textures);
|
|
const images = extractFromCache(meta.images);
|
|
if (textures.length > 0) data.textures = textures;
|
|
if (images.length > 0) data.images = images;
|
|
}
|
|
|
|
return data;
|
|
}
|
|
|
|
clone() {
|
|
return new this.constructor().copy(this);
|
|
}
|
|
|
|
copy(source) {
|
|
this.name = source.name;
|
|
this.fog = source.fog;
|
|
this.blending = source.blending;
|
|
this.side = source.side;
|
|
this.vertexColors = source.vertexColors;
|
|
this.opacity = source.opacity;
|
|
this.format = source.format;
|
|
this.transparent = source.transparent;
|
|
this.blendSrc = source.blendSrc;
|
|
this.blendDst = source.blendDst;
|
|
this.blendEquation = source.blendEquation;
|
|
this.blendSrcAlpha = source.blendSrcAlpha;
|
|
this.blendDstAlpha = source.blendDstAlpha;
|
|
this.blendEquationAlpha = source.blendEquationAlpha;
|
|
this.depthFunc = source.depthFunc;
|
|
this.depthTest = source.depthTest;
|
|
this.depthWrite = source.depthWrite;
|
|
this.stencilWriteMask = source.stencilWriteMask;
|
|
this.stencilFunc = source.stencilFunc;
|
|
this.stencilRef = source.stencilRef;
|
|
this.stencilFuncMask = source.stencilFuncMask;
|
|
this.stencilFail = source.stencilFail;
|
|
this.stencilZFail = source.stencilZFail;
|
|
this.stencilZPass = source.stencilZPass;
|
|
this.stencilWrite = source.stencilWrite;
|
|
const srcPlanes = source.clippingPlanes;
|
|
let dstPlanes = null;
|
|
|
|
if (srcPlanes !== null) {
|
|
const n = srcPlanes.length;
|
|
dstPlanes = new Array(n);
|
|
|
|
for (let i = 0; i !== n; ++i) {
|
|
dstPlanes[i] = srcPlanes[i].clone();
|
|
}
|
|
}
|
|
|
|
this.clippingPlanes = dstPlanes;
|
|
this.clipIntersection = source.clipIntersection;
|
|
this.clipShadows = source.clipShadows;
|
|
this.shadowSide = source.shadowSide;
|
|
this.colorWrite = source.colorWrite;
|
|
this.precision = source.precision;
|
|
this.polygonOffset = source.polygonOffset;
|
|
this.polygonOffsetFactor = source.polygonOffsetFactor;
|
|
this.polygonOffsetUnits = source.polygonOffsetUnits;
|
|
this.dithering = source.dithering;
|
|
this.alphaTest = source.alphaTest;
|
|
this.alphaToCoverage = source.alphaToCoverage;
|
|
this.premultipliedAlpha = source.premultipliedAlpha;
|
|
this.visible = source.visible;
|
|
this.toneMapped = source.toneMapped;
|
|
this.userData = JSON.parse(JSON.stringify(source.userData));
|
|
return this;
|
|
}
|
|
|
|
dispose() {
|
|
this.dispatchEvent({
|
|
type: 'dispose'
|
|
});
|
|
}
|
|
|
|
set needsUpdate(value) {
|
|
if (value === true) this.version++;
|
|
}
|
|
|
|
}
|
|
|
|
Material.prototype.isMaterial = true;
|
|
|
|
const _colorKeywords = {
|
|
'aliceblue': 0xF0F8FF,
|
|
'antiquewhite': 0xFAEBD7,
|
|
'aqua': 0x00FFFF,
|
|
'aquamarine': 0x7FFFD4,
|
|
'azure': 0xF0FFFF,
|
|
'beige': 0xF5F5DC,
|
|
'bisque': 0xFFE4C4,
|
|
'black': 0x000000,
|
|
'blanchedalmond': 0xFFEBCD,
|
|
'blue': 0x0000FF,
|
|
'blueviolet': 0x8A2BE2,
|
|
'brown': 0xA52A2A,
|
|
'burlywood': 0xDEB887,
|
|
'cadetblue': 0x5F9EA0,
|
|
'chartreuse': 0x7FFF00,
|
|
'chocolate': 0xD2691E,
|
|
'coral': 0xFF7F50,
|
|
'cornflowerblue': 0x6495ED,
|
|
'cornsilk': 0xFFF8DC,
|
|
'crimson': 0xDC143C,
|
|
'cyan': 0x00FFFF,
|
|
'darkblue': 0x00008B,
|
|
'darkcyan': 0x008B8B,
|
|
'darkgoldenrod': 0xB8860B,
|
|
'darkgray': 0xA9A9A9,
|
|
'darkgreen': 0x006400,
|
|
'darkgrey': 0xA9A9A9,
|
|
'darkkhaki': 0xBDB76B,
|
|
'darkmagenta': 0x8B008B,
|
|
'darkolivegreen': 0x556B2F,
|
|
'darkorange': 0xFF8C00,
|
|
'darkorchid': 0x9932CC,
|
|
'darkred': 0x8B0000,
|
|
'darksalmon': 0xE9967A,
|
|
'darkseagreen': 0x8FBC8F,
|
|
'darkslateblue': 0x483D8B,
|
|
'darkslategray': 0x2F4F4F,
|
|
'darkslategrey': 0x2F4F4F,
|
|
'darkturquoise': 0x00CED1,
|
|
'darkviolet': 0x9400D3,
|
|
'deeppink': 0xFF1493,
|
|
'deepskyblue': 0x00BFFF,
|
|
'dimgray': 0x696969,
|
|
'dimgrey': 0x696969,
|
|
'dodgerblue': 0x1E90FF,
|
|
'firebrick': 0xB22222,
|
|
'floralwhite': 0xFFFAF0,
|
|
'forestgreen': 0x228B22,
|
|
'fuchsia': 0xFF00FF,
|
|
'gainsboro': 0xDCDCDC,
|
|
'ghostwhite': 0xF8F8FF,
|
|
'gold': 0xFFD700,
|
|
'goldenrod': 0xDAA520,
|
|
'gray': 0x808080,
|
|
'green': 0x008000,
|
|
'greenyellow': 0xADFF2F,
|
|
'grey': 0x808080,
|
|
'honeydew': 0xF0FFF0,
|
|
'hotpink': 0xFF69B4,
|
|
'indianred': 0xCD5C5C,
|
|
'indigo': 0x4B0082,
|
|
'ivory': 0xFFFFF0,
|
|
'khaki': 0xF0E68C,
|
|
'lavender': 0xE6E6FA,
|
|
'lavenderblush': 0xFFF0F5,
|
|
'lawngreen': 0x7CFC00,
|
|
'lemonchiffon': 0xFFFACD,
|
|
'lightblue': 0xADD8E6,
|
|
'lightcoral': 0xF08080,
|
|
'lightcyan': 0xE0FFFF,
|
|
'lightgoldenrodyellow': 0xFAFAD2,
|
|
'lightgray': 0xD3D3D3,
|
|
'lightgreen': 0x90EE90,
|
|
'lightgrey': 0xD3D3D3,
|
|
'lightpink': 0xFFB6C1,
|
|
'lightsalmon': 0xFFA07A,
|
|
'lightseagreen': 0x20B2AA,
|
|
'lightskyblue': 0x87CEFA,
|
|
'lightslategray': 0x778899,
|
|
'lightslategrey': 0x778899,
|
|
'lightsteelblue': 0xB0C4DE,
|
|
'lightyellow': 0xFFFFE0,
|
|
'lime': 0x00FF00,
|
|
'limegreen': 0x32CD32,
|
|
'linen': 0xFAF0E6,
|
|
'magenta': 0xFF00FF,
|
|
'maroon': 0x800000,
|
|
'mediumaquamarine': 0x66CDAA,
|
|
'mediumblue': 0x0000CD,
|
|
'mediumorchid': 0xBA55D3,
|
|
'mediumpurple': 0x9370DB,
|
|
'mediumseagreen': 0x3CB371,
|
|
'mediumslateblue': 0x7B68EE,
|
|
'mediumspringgreen': 0x00FA9A,
|
|
'mediumturquoise': 0x48D1CC,
|
|
'mediumvioletred': 0xC71585,
|
|
'midnightblue': 0x191970,
|
|
'mintcream': 0xF5FFFA,
|
|
'mistyrose': 0xFFE4E1,
|
|
'moccasin': 0xFFE4B5,
|
|
'navajowhite': 0xFFDEAD,
|
|
'navy': 0x000080,
|
|
'oldlace': 0xFDF5E6,
|
|
'olive': 0x808000,
|
|
'olivedrab': 0x6B8E23,
|
|
'orange': 0xFFA500,
|
|
'orangered': 0xFF4500,
|
|
'orchid': 0xDA70D6,
|
|
'palegoldenrod': 0xEEE8AA,
|
|
'palegreen': 0x98FB98,
|
|
'paleturquoise': 0xAFEEEE,
|
|
'palevioletred': 0xDB7093,
|
|
'papayawhip': 0xFFEFD5,
|
|
'peachpuff': 0xFFDAB9,
|
|
'peru': 0xCD853F,
|
|
'pink': 0xFFC0CB,
|
|
'plum': 0xDDA0DD,
|
|
'powderblue': 0xB0E0E6,
|
|
'purple': 0x800080,
|
|
'rebeccapurple': 0x663399,
|
|
'red': 0xFF0000,
|
|
'rosybrown': 0xBC8F8F,
|
|
'royalblue': 0x4169E1,
|
|
'saddlebrown': 0x8B4513,
|
|
'salmon': 0xFA8072,
|
|
'sandybrown': 0xF4A460,
|
|
'seagreen': 0x2E8B57,
|
|
'seashell': 0xFFF5EE,
|
|
'sienna': 0xA0522D,
|
|
'silver': 0xC0C0C0,
|
|
'skyblue': 0x87CEEB,
|
|
'slateblue': 0x6A5ACD,
|
|
'slategray': 0x708090,
|
|
'slategrey': 0x708090,
|
|
'snow': 0xFFFAFA,
|
|
'springgreen': 0x00FF7F,
|
|
'steelblue': 0x4682B4,
|
|
'tan': 0xD2B48C,
|
|
'teal': 0x008080,
|
|
'thistle': 0xD8BFD8,
|
|
'tomato': 0xFF6347,
|
|
'turquoise': 0x40E0D0,
|
|
'violet': 0xEE82EE,
|
|
'wheat': 0xF5DEB3,
|
|
'white': 0xFFFFFF,
|
|
'whitesmoke': 0xF5F5F5,
|
|
'yellow': 0xFFFF00,
|
|
'yellowgreen': 0x9ACD32
|
|
};
|
|
const _hslA = {
|
|
h: 0,
|
|
s: 0,
|
|
l: 0
|
|
};
|
|
const _hslB = {
|
|
h: 0,
|
|
s: 0,
|
|
l: 0
|
|
};
|
|
|
|
function hue2rgb(p, q, t) {
|
|
if (t < 0) t += 1;
|
|
if (t > 1) t -= 1;
|
|
if (t < 1 / 6) return p + (q - p) * 6 * t;
|
|
if (t < 1 / 2) return q;
|
|
if (t < 2 / 3) return p + (q - p) * 6 * (2 / 3 - t);
|
|
return p;
|
|
}
|
|
|
|
function SRGBToLinear(c) {
|
|
return c < 0.04045 ? c * 0.0773993808 : Math.pow(c * 0.9478672986 + 0.0521327014, 2.4);
|
|
}
|
|
|
|
function LinearToSRGB(c) {
|
|
return c < 0.0031308 ? c * 12.92 : 1.055 * Math.pow(c, 0.41666) - 0.055;
|
|
}
|
|
|
|
class Color {
|
|
constructor(r, g, b) {
|
|
if (g === undefined && b === undefined) {
|
|
// r is THREE.Color, hex or string
|
|
return this.set(r);
|
|
}
|
|
|
|
return this.setRGB(r, g, b);
|
|
}
|
|
|
|
set(value) {
|
|
if (value && value.isColor) {
|
|
this.copy(value);
|
|
} else if (typeof value === 'number') {
|
|
this.setHex(value);
|
|
} else if (typeof value === 'string') {
|
|
this.setStyle(value);
|
|
}
|
|
|
|
return this;
|
|
}
|
|
|
|
setScalar(scalar) {
|
|
this.r = scalar;
|
|
this.g = scalar;
|
|
this.b = scalar;
|
|
return this;
|
|
}
|
|
|
|
setHex(hex) {
|
|
hex = Math.floor(hex);
|
|
this.r = (hex >> 16 & 255) / 255;
|
|
this.g = (hex >> 8 & 255) / 255;
|
|
this.b = (hex & 255) / 255;
|
|
return this;
|
|
}
|
|
|
|
setRGB(r, g, b) {
|
|
this.r = r;
|
|
this.g = g;
|
|
this.b = b;
|
|
return this;
|
|
}
|
|
|
|
setHSL(h, s, l) {
|
|
// h,s,l ranges are in 0.0 - 1.0
|
|
h = euclideanModulo(h, 1);
|
|
s = clamp(s, 0, 1);
|
|
l = clamp(l, 0, 1);
|
|
|
|
if (s === 0) {
|
|
this.r = this.g = this.b = l;
|
|
} else {
|
|
const p = l <= 0.5 ? l * (1 + s) : l + s - l * s;
|
|
const q = 2 * l - p;
|
|
this.r = hue2rgb(q, p, h + 1 / 3);
|
|
this.g = hue2rgb(q, p, h);
|
|
this.b = hue2rgb(q, p, h - 1 / 3);
|
|
}
|
|
|
|
return this;
|
|
}
|
|
|
|
setStyle(style) {
|
|
function handleAlpha(string) {
|
|
if (string === undefined) return;
|
|
|
|
if (parseFloat(string) < 1) {
|
|
console.warn('THREE.Color: Alpha component of ' + style + ' will be ignored.');
|
|
}
|
|
}
|
|
|
|
let m;
|
|
|
|
if (m = /^((?:rgb|hsl)a?)\(([^\)]*)\)/.exec(style)) {
|
|
// rgb / hsl
|
|
let color;
|
|
const name = m[1];
|
|
const components = m[2];
|
|
|
|
switch (name) {
|
|
case 'rgb':
|
|
case 'rgba':
|
|
if (color = /^\s*(\d+)\s*,\s*(\d+)\s*,\s*(\d+)\s*(?:,\s*(\d*\.?\d+)\s*)?$/.exec(components)) {
|
|
// rgb(255,0,0) rgba(255,0,0,0.5)
|
|
this.r = Math.min(255, parseInt(color[1], 10)) / 255;
|
|
this.g = Math.min(255, parseInt(color[2], 10)) / 255;
|
|
this.b = Math.min(255, parseInt(color[3], 10)) / 255;
|
|
handleAlpha(color[4]);
|
|
return this;
|
|
}
|
|
|
|
if (color = /^\s*(\d+)\%\s*,\s*(\d+)\%\s*,\s*(\d+)\%\s*(?:,\s*(\d*\.?\d+)\s*)?$/.exec(components)) {
|
|
// rgb(100%,0%,0%) rgba(100%,0%,0%,0.5)
|
|
this.r = Math.min(100, parseInt(color[1], 10)) / 100;
|
|
this.g = Math.min(100, parseInt(color[2], 10)) / 100;
|
|
this.b = Math.min(100, parseInt(color[3], 10)) / 100;
|
|
handleAlpha(color[4]);
|
|
return this;
|
|
}
|
|
|
|
break;
|
|
|
|
case 'hsl':
|
|
case 'hsla':
|
|
if (color = /^\s*(\d*\.?\d+)\s*,\s*(\d+)\%\s*,\s*(\d+)\%\s*(?:,\s*(\d*\.?\d+)\s*)?$/.exec(components)) {
|
|
// hsl(120,50%,50%) hsla(120,50%,50%,0.5)
|
|
const h = parseFloat(color[1]) / 360;
|
|
const s = parseInt(color[2], 10) / 100;
|
|
const l = parseInt(color[3], 10) / 100;
|
|
handleAlpha(color[4]);
|
|
return this.setHSL(h, s, l);
|
|
}
|
|
|
|
break;
|
|
}
|
|
} else if (m = /^\#([A-Fa-f\d]+)$/.exec(style)) {
|
|
// hex color
|
|
const hex = m[1];
|
|
const size = hex.length;
|
|
|
|
if (size === 3) {
|
|
// #ff0
|
|
this.r = parseInt(hex.charAt(0) + hex.charAt(0), 16) / 255;
|
|
this.g = parseInt(hex.charAt(1) + hex.charAt(1), 16) / 255;
|
|
this.b = parseInt(hex.charAt(2) + hex.charAt(2), 16) / 255;
|
|
return this;
|
|
} else if (size === 6) {
|
|
// #ff0000
|
|
this.r = parseInt(hex.charAt(0) + hex.charAt(1), 16) / 255;
|
|
this.g = parseInt(hex.charAt(2) + hex.charAt(3), 16) / 255;
|
|
this.b = parseInt(hex.charAt(4) + hex.charAt(5), 16) / 255;
|
|
return this;
|
|
}
|
|
}
|
|
|
|
if (style && style.length > 0) {
|
|
return this.setColorName(style);
|
|
}
|
|
|
|
return this;
|
|
}
|
|
|
|
setColorName(style) {
|
|
// color keywords
|
|
const hex = _colorKeywords[style.toLowerCase()];
|
|
|
|
if (hex !== undefined) {
|
|
// red
|
|
this.setHex(hex);
|
|
} else {
|
|
// unknown color
|
|
console.warn('THREE.Color: Unknown color ' + style);
|
|
}
|
|
|
|
return this;
|
|
}
|
|
|
|
clone() {
|
|
return new this.constructor(this.r, this.g, this.b);
|
|
}
|
|
|
|
copy(color) {
|
|
this.r = color.r;
|
|
this.g = color.g;
|
|
this.b = color.b;
|
|
return this;
|
|
}
|
|
|
|
copyGammaToLinear(color, gammaFactor = 2.0) {
|
|
this.r = Math.pow(color.r, gammaFactor);
|
|
this.g = Math.pow(color.g, gammaFactor);
|
|
this.b = Math.pow(color.b, gammaFactor);
|
|
return this;
|
|
}
|
|
|
|
copyLinearToGamma(color, gammaFactor = 2.0) {
|
|
const safeInverse = gammaFactor > 0 ? 1.0 / gammaFactor : 1.0;
|
|
this.r = Math.pow(color.r, safeInverse);
|
|
this.g = Math.pow(color.g, safeInverse);
|
|
this.b = Math.pow(color.b, safeInverse);
|
|
return this;
|
|
}
|
|
|
|
convertGammaToLinear(gammaFactor) {
|
|
this.copyGammaToLinear(this, gammaFactor);
|
|
return this;
|
|
}
|
|
|
|
convertLinearToGamma(gammaFactor) {
|
|
this.copyLinearToGamma(this, gammaFactor);
|
|
return this;
|
|
}
|
|
|
|
copySRGBToLinear(color) {
|
|
this.r = SRGBToLinear(color.r);
|
|
this.g = SRGBToLinear(color.g);
|
|
this.b = SRGBToLinear(color.b);
|
|
return this;
|
|
}
|
|
|
|
copyLinearToSRGB(color) {
|
|
this.r = LinearToSRGB(color.r);
|
|
this.g = LinearToSRGB(color.g);
|
|
this.b = LinearToSRGB(color.b);
|
|
return this;
|
|
}
|
|
|
|
convertSRGBToLinear() {
|
|
this.copySRGBToLinear(this);
|
|
return this;
|
|
}
|
|
|
|
convertLinearToSRGB() {
|
|
this.copyLinearToSRGB(this);
|
|
return this;
|
|
}
|
|
|
|
getHex() {
|
|
return this.r * 255 << 16 ^ this.g * 255 << 8 ^ this.b * 255 << 0;
|
|
}
|
|
|
|
getHexString() {
|
|
return ('000000' + this.getHex().toString(16)).slice(-6);
|
|
}
|
|
|
|
getHSL(target) {
|
|
// h,s,l ranges are in 0.0 - 1.0
|
|
const r = this.r,
|
|
g = this.g,
|
|
b = this.b;
|
|
const max = Math.max(r, g, b);
|
|
const min = Math.min(r, g, b);
|
|
let hue, saturation;
|
|
const lightness = (min + max) / 2.0;
|
|
|
|
if (min === max) {
|
|
hue = 0;
|
|
saturation = 0;
|
|
} else {
|
|
const delta = max - min;
|
|
saturation = lightness <= 0.5 ? delta / (max + min) : delta / (2 - max - min);
|
|
|
|
switch (max) {
|
|
case r:
|
|
hue = (g - b) / delta + (g < b ? 6 : 0);
|
|
break;
|
|
|
|
case g:
|
|
hue = (b - r) / delta + 2;
|
|
break;
|
|
|
|
case b:
|
|
hue = (r - g) / delta + 4;
|
|
break;
|
|
}
|
|
|
|
hue /= 6;
|
|
}
|
|
|
|
target.h = hue;
|
|
target.s = saturation;
|
|
target.l = lightness;
|
|
return target;
|
|
}
|
|
|
|
getStyle() {
|
|
return 'rgb(' + (this.r * 255 | 0) + ',' + (this.g * 255 | 0) + ',' + (this.b * 255 | 0) + ')';
|
|
}
|
|
|
|
offsetHSL(h, s, l) {
|
|
this.getHSL(_hslA);
|
|
_hslA.h += h;
|
|
_hslA.s += s;
|
|
_hslA.l += l;
|
|
this.setHSL(_hslA.h, _hslA.s, _hslA.l);
|
|
return this;
|
|
}
|
|
|
|
add(color) {
|
|
this.r += color.r;
|
|
this.g += color.g;
|
|
this.b += color.b;
|
|
return this;
|
|
}
|
|
|
|
addColors(color1, color2) {
|
|
this.r = color1.r + color2.r;
|
|
this.g = color1.g + color2.g;
|
|
this.b = color1.b + color2.b;
|
|
return this;
|
|
}
|
|
|
|
addScalar(s) {
|
|
this.r += s;
|
|
this.g += s;
|
|
this.b += s;
|
|
return this;
|
|
}
|
|
|
|
sub(color) {
|
|
this.r = Math.max(0, this.r - color.r);
|
|
this.g = Math.max(0, this.g - color.g);
|
|
this.b = Math.max(0, this.b - color.b);
|
|
return this;
|
|
}
|
|
|
|
multiply(color) {
|
|
this.r *= color.r;
|
|
this.g *= color.g;
|
|
this.b *= color.b;
|
|
return this;
|
|
}
|
|
|
|
multiplyScalar(s) {
|
|
this.r *= s;
|
|
this.g *= s;
|
|
this.b *= s;
|
|
return this;
|
|
}
|
|
|
|
lerp(color, alpha) {
|
|
this.r += (color.r - this.r) * alpha;
|
|
this.g += (color.g - this.g) * alpha;
|
|
this.b += (color.b - this.b) * alpha;
|
|
return this;
|
|
}
|
|
|
|
lerpColors(color1, color2, alpha) {
|
|
this.r = color1.r + (color2.r - color1.r) * alpha;
|
|
this.g = color1.g + (color2.g - color1.g) * alpha;
|
|
this.b = color1.b + (color2.b - color1.b) * alpha;
|
|
return this;
|
|
}
|
|
|
|
lerpHSL(color, alpha) {
|
|
this.getHSL(_hslA);
|
|
color.getHSL(_hslB);
|
|
const h = lerp(_hslA.h, _hslB.h, alpha);
|
|
const s = lerp(_hslA.s, _hslB.s, alpha);
|
|
const l = lerp(_hslA.l, _hslB.l, alpha);
|
|
this.setHSL(h, s, l);
|
|
return this;
|
|
}
|
|
|
|
equals(c) {
|
|
return c.r === this.r && c.g === this.g && c.b === this.b;
|
|
}
|
|
|
|
fromArray(array, offset = 0) {
|
|
this.r = array[offset];
|
|
this.g = array[offset + 1];
|
|
this.b = array[offset + 2];
|
|
return this;
|
|
}
|
|
|
|
toArray(array = [], offset = 0) {
|
|
array[offset] = this.r;
|
|
array[offset + 1] = this.g;
|
|
array[offset + 2] = this.b;
|
|
return array;
|
|
}
|
|
|
|
fromBufferAttribute(attribute, index) {
|
|
this.r = attribute.getX(index);
|
|
this.g = attribute.getY(index);
|
|
this.b = attribute.getZ(index);
|
|
|
|
if (attribute.normalized === true) {
|
|
// assuming Uint8Array
|
|
this.r /= 255;
|
|
this.g /= 255;
|
|
this.b /= 255;
|
|
}
|
|
|
|
return this;
|
|
}
|
|
|
|
toJSON() {
|
|
return this.getHex();
|
|
}
|
|
|
|
}
|
|
|
|
Color.NAMES = _colorKeywords;
|
|
Color.prototype.isColor = true;
|
|
Color.prototype.r = 1;
|
|
Color.prototype.g = 1;
|
|
Color.prototype.b = 1;
|
|
|
|
/**
|
|
* parameters = {
|
|
* color: <hex>,
|
|
* opacity: <float>,
|
|
* map: new THREE.Texture( <Image> ),
|
|
*
|
|
* lightMap: new THREE.Texture( <Image> ),
|
|
* lightMapIntensity: <float>
|
|
*
|
|
* aoMap: new THREE.Texture( <Image> ),
|
|
* aoMapIntensity: <float>
|
|
*
|
|
* specularMap: new THREE.Texture( <Image> ),
|
|
*
|
|
* alphaMap: new THREE.Texture( <Image> ),
|
|
*
|
|
* envMap: new THREE.CubeTexture( [posx, negx, posy, negy, posz, negz] ),
|
|
* combine: THREE.Multiply,
|
|
* reflectivity: <float>,
|
|
* refractionRatio: <float>,
|
|
*
|
|
* depthTest: <bool>,
|
|
* depthWrite: <bool>,
|
|
*
|
|
* wireframe: <boolean>,
|
|
* wireframeLinewidth: <float>,
|
|
* }
|
|
*/
|
|
|
|
class MeshBasicMaterial extends Material {
|
|
constructor(parameters) {
|
|
super();
|
|
this.type = 'MeshBasicMaterial';
|
|
this.color = new Color(0xffffff); // emissive
|
|
|
|
this.map = null;
|
|
this.lightMap = null;
|
|
this.lightMapIntensity = 1.0;
|
|
this.aoMap = null;
|
|
this.aoMapIntensity = 1.0;
|
|
this.specularMap = null;
|
|
this.alphaMap = null;
|
|
this.envMap = null;
|
|
this.combine = MultiplyOperation;
|
|
this.reflectivity = 1;
|
|
this.refractionRatio = 0.98;
|
|
this.wireframe = false;
|
|
this.wireframeLinewidth = 1;
|
|
this.wireframeLinecap = 'round';
|
|
this.wireframeLinejoin = 'round';
|
|
this.setValues(parameters);
|
|
}
|
|
|
|
copy(source) {
|
|
super.copy(source);
|
|
this.color.copy(source.color);
|
|
this.map = source.map;
|
|
this.lightMap = source.lightMap;
|
|
this.lightMapIntensity = source.lightMapIntensity;
|
|
this.aoMap = source.aoMap;
|
|
this.aoMapIntensity = source.aoMapIntensity;
|
|
this.specularMap = source.specularMap;
|
|
this.alphaMap = source.alphaMap;
|
|
this.envMap = source.envMap;
|
|
this.combine = source.combine;
|
|
this.reflectivity = source.reflectivity;
|
|
this.refractionRatio = source.refractionRatio;
|
|
this.wireframe = source.wireframe;
|
|
this.wireframeLinewidth = source.wireframeLinewidth;
|
|
this.wireframeLinecap = source.wireframeLinecap;
|
|
this.wireframeLinejoin = source.wireframeLinejoin;
|
|
return this;
|
|
}
|
|
|
|
}
|
|
|
|
MeshBasicMaterial.prototype.isMeshBasicMaterial = true;
|
|
|
|
const _vector$9 = /*@__PURE__*/new Vector3();
|
|
|
|
const _vector2$1 = /*@__PURE__*/new Vector2();
|
|
|
|
class BufferAttribute {
|
|
constructor(array, itemSize, normalized) {
|
|
if (Array.isArray(array)) {
|
|
throw new TypeError('THREE.BufferAttribute: array should be a Typed Array.');
|
|
}
|
|
|
|
this.name = '';
|
|
this.array = array;
|
|
this.itemSize = itemSize;
|
|
this.count = array !== undefined ? array.length / itemSize : 0;
|
|
this.normalized = normalized === true;
|
|
this.usage = StaticDrawUsage;
|
|
this.updateRange = {
|
|
offset: 0,
|
|
count: -1
|
|
};
|
|
this.version = 0;
|
|
}
|
|
|
|
onUploadCallback() {}
|
|
|
|
set needsUpdate(value) {
|
|
if (value === true) this.version++;
|
|
}
|
|
|
|
setUsage(value) {
|
|
this.usage = value;
|
|
return this;
|
|
}
|
|
|
|
copy(source) {
|
|
this.name = source.name;
|
|
this.array = new source.array.constructor(source.array);
|
|
this.itemSize = source.itemSize;
|
|
this.count = source.count;
|
|
this.normalized = source.normalized;
|
|
this.usage = source.usage;
|
|
return this;
|
|
}
|
|
|
|
copyAt(index1, attribute, index2) {
|
|
index1 *= this.itemSize;
|
|
index2 *= attribute.itemSize;
|
|
|
|
for (let i = 0, l = this.itemSize; i < l; i++) {
|
|
this.array[index1 + i] = attribute.array[index2 + i];
|
|
}
|
|
|
|
return this;
|
|
}
|
|
|
|
copyArray(array) {
|
|
this.array.set(array);
|
|
return this;
|
|
}
|
|
|
|
copyColorsArray(colors) {
|
|
const array = this.array;
|
|
let offset = 0;
|
|
|
|
for (let i = 0, l = colors.length; i < l; i++) {
|
|
let color = colors[i];
|
|
|
|
if (color === undefined) {
|
|
console.warn('THREE.BufferAttribute.copyColorsArray(): color is undefined', i);
|
|
color = new Color();
|
|
}
|
|
|
|
array[offset++] = color.r;
|
|
array[offset++] = color.g;
|
|
array[offset++] = color.b;
|
|
}
|
|
|
|
return this;
|
|
}
|
|
|
|
copyVector2sArray(vectors) {
|
|
const array = this.array;
|
|
let offset = 0;
|
|
|
|
for (let i = 0, l = vectors.length; i < l; i++) {
|
|
let vector = vectors[i];
|
|
|
|
if (vector === undefined) {
|
|
console.warn('THREE.BufferAttribute.copyVector2sArray(): vector is undefined', i);
|
|
vector = new Vector2();
|
|
}
|
|
|
|
array[offset++] = vector.x;
|
|
array[offset++] = vector.y;
|
|
}
|
|
|
|
return this;
|
|
}
|
|
|
|
copyVector3sArray(vectors) {
|
|
const array = this.array;
|
|
let offset = 0;
|
|
|
|
for (let i = 0, l = vectors.length; i < l; i++) {
|
|
let vector = vectors[i];
|
|
|
|
if (vector === undefined) {
|
|
console.warn('THREE.BufferAttribute.copyVector3sArray(): vector is undefined', i);
|
|
vector = new Vector3();
|
|
}
|
|
|
|
array[offset++] = vector.x;
|
|
array[offset++] = vector.y;
|
|
array[offset++] = vector.z;
|
|
}
|
|
|
|
return this;
|
|
}
|
|
|
|
copyVector4sArray(vectors) {
|
|
const array = this.array;
|
|
let offset = 0;
|
|
|
|
for (let i = 0, l = vectors.length; i < l; i++) {
|
|
let vector = vectors[i];
|
|
|
|
if (vector === undefined) {
|
|
console.warn('THREE.BufferAttribute.copyVector4sArray(): vector is undefined', i);
|
|
vector = new Vector4();
|
|
}
|
|
|
|
array[offset++] = vector.x;
|
|
array[offset++] = vector.y;
|
|
array[offset++] = vector.z;
|
|
array[offset++] = vector.w;
|
|
}
|
|
|
|
return this;
|
|
}
|
|
|
|
applyMatrix3(m) {
|
|
if (this.itemSize === 2) {
|
|
for (let i = 0, l = this.count; i < l; i++) {
|
|
_vector2$1.fromBufferAttribute(this, i);
|
|
|
|
_vector2$1.applyMatrix3(m);
|
|
|
|
this.setXY(i, _vector2$1.x, _vector2$1.y);
|
|
}
|
|
} else if (this.itemSize === 3) {
|
|
for (let i = 0, l = this.count; i < l; i++) {
|
|
_vector$9.fromBufferAttribute(this, i);
|
|
|
|
_vector$9.applyMatrix3(m);
|
|
|
|
this.setXYZ(i, _vector$9.x, _vector$9.y, _vector$9.z);
|
|
}
|
|
}
|
|
|
|
return this;
|
|
}
|
|
|
|
applyMatrix4(m) {
|
|
for (let i = 0, l = this.count; i < l; i++) {
|
|
_vector$9.x = this.getX(i);
|
|
_vector$9.y = this.getY(i);
|
|
_vector$9.z = this.getZ(i);
|
|
|
|
_vector$9.applyMatrix4(m);
|
|
|
|
this.setXYZ(i, _vector$9.x, _vector$9.y, _vector$9.z);
|
|
}
|
|
|
|
return this;
|
|
}
|
|
|
|
applyNormalMatrix(m) {
|
|
for (let i = 0, l = this.count; i < l; i++) {
|
|
_vector$9.x = this.getX(i);
|
|
_vector$9.y = this.getY(i);
|
|
_vector$9.z = this.getZ(i);
|
|
|
|
_vector$9.applyNormalMatrix(m);
|
|
|
|
this.setXYZ(i, _vector$9.x, _vector$9.y, _vector$9.z);
|
|
}
|
|
|
|
return this;
|
|
}
|
|
|
|
transformDirection(m) {
|
|
for (let i = 0, l = this.count; i < l; i++) {
|
|
_vector$9.x = this.getX(i);
|
|
_vector$9.y = this.getY(i);
|
|
_vector$9.z = this.getZ(i);
|
|
|
|
_vector$9.transformDirection(m);
|
|
|
|
this.setXYZ(i, _vector$9.x, _vector$9.y, _vector$9.z);
|
|
}
|
|
|
|
return this;
|
|
}
|
|
|
|
set(value, offset = 0) {
|
|
this.array.set(value, offset);
|
|
return this;
|
|
}
|
|
|
|
getX(index) {
|
|
return this.array[index * this.itemSize];
|
|
}
|
|
|
|
setX(index, x) {
|
|
this.array[index * this.itemSize] = x;
|
|
return this;
|
|
}
|
|
|
|
getY(index) {
|
|
return this.array[index * this.itemSize + 1];
|
|
}
|
|
|
|
setY(index, y) {
|
|
this.array[index * this.itemSize + 1] = y;
|
|
return this;
|
|
}
|
|
|
|
getZ(index) {
|
|
return this.array[index * this.itemSize + 2];
|
|
}
|
|
|
|
setZ(index, z) {
|
|
this.array[index * this.itemSize + 2] = z;
|
|
return this;
|
|
}
|
|
|
|
getW(index) {
|
|
return this.array[index * this.itemSize + 3];
|
|
}
|
|
|
|
setW(index, w) {
|
|
this.array[index * this.itemSize + 3] = w;
|
|
return this;
|
|
}
|
|
|
|
setXY(index, x, y) {
|
|
index *= this.itemSize;
|
|
this.array[index + 0] = x;
|
|
this.array[index + 1] = y;
|
|
return this;
|
|
}
|
|
|
|
setXYZ(index, x, y, z) {
|
|
index *= this.itemSize;
|
|
this.array[index + 0] = x;
|
|
this.array[index + 1] = y;
|
|
this.array[index + 2] = z;
|
|
return this;
|
|
}
|
|
|
|
setXYZW(index, x, y, z, w) {
|
|
index *= this.itemSize;
|
|
this.array[index + 0] = x;
|
|
this.array[index + 1] = y;
|
|
this.array[index + 2] = z;
|
|
this.array[index + 3] = w;
|
|
return this;
|
|
}
|
|
|
|
onUpload(callback) {
|
|
this.onUploadCallback = callback;
|
|
return this;
|
|
}
|
|
|
|
clone() {
|
|
return new this.constructor(this.array, this.itemSize).copy(this);
|
|
}
|
|
|
|
toJSON() {
|
|
const data = {
|
|
itemSize: this.itemSize,
|
|
type: this.array.constructor.name,
|
|
array: Array.prototype.slice.call(this.array),
|
|
normalized: this.normalized
|
|
};
|
|
if (this.name !== '') data.name = this.name;
|
|
if (this.usage !== StaticDrawUsage) data.usage = this.usage;
|
|
if (this.updateRange.offset !== 0 || this.updateRange.count !== -1) data.updateRange = this.updateRange;
|
|
return data;
|
|
}
|
|
|
|
}
|
|
|
|
BufferAttribute.prototype.isBufferAttribute = true; //
|
|
|
|
class Int8BufferAttribute extends BufferAttribute {
|
|
constructor(array, itemSize, normalized) {
|
|
super(new Int8Array(array), itemSize, normalized);
|
|
}
|
|
|
|
}
|
|
|
|
class Uint8BufferAttribute extends BufferAttribute {
|
|
constructor(array, itemSize, normalized) {
|
|
super(new Uint8Array(array), itemSize, normalized);
|
|
}
|
|
|
|
}
|
|
|
|
class Uint8ClampedBufferAttribute extends BufferAttribute {
|
|
constructor(array, itemSize, normalized) {
|
|
super(new Uint8ClampedArray(array), itemSize, normalized);
|
|
}
|
|
|
|
}
|
|
|
|
class Int16BufferAttribute extends BufferAttribute {
|
|
constructor(array, itemSize, normalized) {
|
|
super(new Int16Array(array), itemSize, normalized);
|
|
}
|
|
|
|
}
|
|
|
|
class Uint16BufferAttribute extends BufferAttribute {
|
|
constructor(array, itemSize, normalized) {
|
|
super(new Uint16Array(array), itemSize, normalized);
|
|
}
|
|
|
|
}
|
|
|
|
class Int32BufferAttribute extends BufferAttribute {
|
|
constructor(array, itemSize, normalized) {
|
|
super(new Int32Array(array), itemSize, normalized);
|
|
}
|
|
|
|
}
|
|
|
|
class Uint32BufferAttribute extends BufferAttribute {
|
|
constructor(array, itemSize, normalized) {
|
|
super(new Uint32Array(array), itemSize, normalized);
|
|
}
|
|
|
|
}
|
|
|
|
class Float16BufferAttribute extends BufferAttribute {
|
|
constructor(array, itemSize, normalized) {
|
|
super(new Uint16Array(array), itemSize, normalized);
|
|
}
|
|
|
|
}
|
|
|
|
Float16BufferAttribute.prototype.isFloat16BufferAttribute = true;
|
|
|
|
class Float32BufferAttribute extends BufferAttribute {
|
|
constructor(array, itemSize, normalized) {
|
|
super(new Float32Array(array), itemSize, normalized);
|
|
}
|
|
|
|
}
|
|
|
|
class Float64BufferAttribute extends BufferAttribute {
|
|
constructor(array, itemSize, normalized) {
|
|
super(new Float64Array(array), itemSize, normalized);
|
|
}
|
|
|
|
} //
|
|
|
|
let _id = 0;
|
|
|
|
const _m1 = /*@__PURE__*/new Matrix4();
|
|
|
|
const _obj = /*@__PURE__*/new Object3D();
|
|
|
|
const _offset = /*@__PURE__*/new Vector3();
|
|
|
|
const _box$1 = /*@__PURE__*/new Box3();
|
|
|
|
const _boxMorphTargets = /*@__PURE__*/new Box3();
|
|
|
|
const _vector$8 = /*@__PURE__*/new Vector3();
|
|
|
|
class BufferGeometry extends EventDispatcher {
|
|
constructor() {
|
|
super();
|
|
Object.defineProperty(this, 'id', {
|
|
value: _id++
|
|
});
|
|
this.uuid = generateUUID();
|
|
this.name = '';
|
|
this.type = 'BufferGeometry';
|
|
this.index = null;
|
|
this.attributes = {};
|
|
this.morphAttributes = {};
|
|
this.morphTargetsRelative = false;
|
|
this.groups = [];
|
|
this.boundingBox = null;
|
|
this.boundingSphere = null;
|
|
this.drawRange = {
|
|
start: 0,
|
|
count: Infinity
|
|
};
|
|
this.userData = {};
|
|
}
|
|
|
|
getIndex() {
|
|
return this.index;
|
|
}
|
|
|
|
setIndex(index) {
|
|
if (Array.isArray(index)) {
|
|
this.index = new (arrayMax(index) > 65535 ? Uint32BufferAttribute : Uint16BufferAttribute)(index, 1);
|
|
} else {
|
|
this.index = index;
|
|
}
|
|
|
|
return this;
|
|
}
|
|
|
|
getAttribute(name) {
|
|
return this.attributes[name];
|
|
}
|
|
|
|
setAttribute(name, attribute) {
|
|
this.attributes[name] = attribute;
|
|
return this;
|
|
}
|
|
|
|
deleteAttribute(name) {
|
|
delete this.attributes[name];
|
|
return this;
|
|
}
|
|
|
|
hasAttribute(name) {
|
|
return this.attributes[name] !== undefined;
|
|
}
|
|
|
|
addGroup(start, count, materialIndex = 0) {
|
|
this.groups.push({
|
|
start: start,
|
|
count: count,
|
|
materialIndex: materialIndex
|
|
});
|
|
}
|
|
|
|
clearGroups() {
|
|
this.groups = [];
|
|
}
|
|
|
|
setDrawRange(start, count) {
|
|
this.drawRange.start = start;
|
|
this.drawRange.count = count;
|
|
}
|
|
|
|
applyMatrix4(matrix) {
|
|
const position = this.attributes.position;
|
|
|
|
if (position !== undefined) {
|
|
position.applyMatrix4(matrix);
|
|
position.needsUpdate = true;
|
|
}
|
|
|
|
const normal = this.attributes.normal;
|
|
|
|
if (normal !== undefined) {
|
|
const normalMatrix = new Matrix3().getNormalMatrix(matrix);
|
|
normal.applyNormalMatrix(normalMatrix);
|
|
normal.needsUpdate = true;
|
|
}
|
|
|
|
const tangent = this.attributes.tangent;
|
|
|
|
if (tangent !== undefined) {
|
|
tangent.transformDirection(matrix);
|
|
tangent.needsUpdate = true;
|
|
}
|
|
|
|
if (this.boundingBox !== null) {
|
|
this.computeBoundingBox();
|
|
}
|
|
|
|
if (this.boundingSphere !== null) {
|
|
this.computeBoundingSphere();
|
|
}
|
|
|
|
return this;
|
|
}
|
|
|
|
applyQuaternion(q) {
|
|
_m1.makeRotationFromQuaternion(q);
|
|
|
|
this.applyMatrix4(_m1);
|
|
return this;
|
|
}
|
|
|
|
rotateX(angle) {
|
|
// rotate geometry around world x-axis
|
|
_m1.makeRotationX(angle);
|
|
|
|
this.applyMatrix4(_m1);
|
|
return this;
|
|
}
|
|
|
|
rotateY(angle) {
|
|
// rotate geometry around world y-axis
|
|
_m1.makeRotationY(angle);
|
|
|
|
this.applyMatrix4(_m1);
|
|
return this;
|
|
}
|
|
|
|
rotateZ(angle) {
|
|
// rotate geometry around world z-axis
|
|
_m1.makeRotationZ(angle);
|
|
|
|
this.applyMatrix4(_m1);
|
|
return this;
|
|
}
|
|
|
|
translate(x, y, z) {
|
|
// translate geometry
|
|
_m1.makeTranslation(x, y, z);
|
|
|
|
this.applyMatrix4(_m1);
|
|
return this;
|
|
}
|
|
|
|
scale(x, y, z) {
|
|
// scale geometry
|
|
_m1.makeScale(x, y, z);
|
|
|
|
this.applyMatrix4(_m1);
|
|
return this;
|
|
}
|
|
|
|
lookAt(vector) {
|
|
_obj.lookAt(vector);
|
|
|
|
_obj.updateMatrix();
|
|
|
|
this.applyMatrix4(_obj.matrix);
|
|
return this;
|
|
}
|
|
|
|
center() {
|
|
this.computeBoundingBox();
|
|
this.boundingBox.getCenter(_offset).negate();
|
|
this.translate(_offset.x, _offset.y, _offset.z);
|
|
return this;
|
|
}
|
|
|
|
setFromPoints(points) {
|
|
const position = [];
|
|
|
|
for (let i = 0, l = points.length; i < l; i++) {
|
|
const point = points[i];
|
|
position.push(point.x, point.y, point.z || 0);
|
|
}
|
|
|
|
this.setAttribute('position', new Float32BufferAttribute(position, 3));
|
|
return this;
|
|
}
|
|
|
|
computeBoundingBox() {
|
|
if (this.boundingBox === null) {
|
|
this.boundingBox = new Box3();
|
|
}
|
|
|
|
const position = this.attributes.position;
|
|
const morphAttributesPosition = this.morphAttributes.position;
|
|
|
|
if (position && position.isGLBufferAttribute) {
|
|
console.error('THREE.BufferGeometry.computeBoundingBox(): GLBufferAttribute requires a manual bounding box. Alternatively set "mesh.frustumCulled" to "false".', this);
|
|
this.boundingBox.set(new Vector3(-Infinity, -Infinity, -Infinity), new Vector3(+Infinity, +Infinity, +Infinity));
|
|
return;
|
|
}
|
|
|
|
if (position !== undefined) {
|
|
this.boundingBox.setFromBufferAttribute(position); // process morph attributes if present
|
|
|
|
if (morphAttributesPosition) {
|
|
for (let i = 0, il = morphAttributesPosition.length; i < il; i++) {
|
|
const morphAttribute = morphAttributesPosition[i];
|
|
|
|
_box$1.setFromBufferAttribute(morphAttribute);
|
|
|
|
if (this.morphTargetsRelative) {
|
|
_vector$8.addVectors(this.boundingBox.min, _box$1.min);
|
|
|
|
this.boundingBox.expandByPoint(_vector$8);
|
|
|
|
_vector$8.addVectors(this.boundingBox.max, _box$1.max);
|
|
|
|
this.boundingBox.expandByPoint(_vector$8);
|
|
} else {
|
|
this.boundingBox.expandByPoint(_box$1.min);
|
|
this.boundingBox.expandByPoint(_box$1.max);
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
this.boundingBox.makeEmpty();
|
|
}
|
|
|
|
if (isNaN(this.boundingBox.min.x) || isNaN(this.boundingBox.min.y) || isNaN(this.boundingBox.min.z)) {
|
|
console.error('THREE.BufferGeometry.computeBoundingBox(): Computed min/max have NaN values. The "position" attribute is likely to have NaN values.', this);
|
|
}
|
|
}
|
|
|
|
computeBoundingSphere() {
|
|
if (this.boundingSphere === null) {
|
|
this.boundingSphere = new Sphere();
|
|
}
|
|
|
|
const position = this.attributes.position;
|
|
const morphAttributesPosition = this.morphAttributes.position;
|
|
|
|
if (position && position.isGLBufferAttribute) {
|
|
console.error('THREE.BufferGeometry.computeBoundingSphere(): GLBufferAttribute requires a manual bounding sphere. Alternatively set "mesh.frustumCulled" to "false".', this);
|
|
this.boundingSphere.set(new Vector3(), Infinity);
|
|
return;
|
|
}
|
|
|
|
if (position) {
|
|
// first, find the center of the bounding sphere
|
|
const center = this.boundingSphere.center;
|
|
|
|
_box$1.setFromBufferAttribute(position); // process morph attributes if present
|
|
|
|
|
|
if (morphAttributesPosition) {
|
|
for (let i = 0, il = morphAttributesPosition.length; i < il; i++) {
|
|
const morphAttribute = morphAttributesPosition[i];
|
|
|
|
_boxMorphTargets.setFromBufferAttribute(morphAttribute);
|
|
|
|
if (this.morphTargetsRelative) {
|
|
_vector$8.addVectors(_box$1.min, _boxMorphTargets.min);
|
|
|
|
_box$1.expandByPoint(_vector$8);
|
|
|
|
_vector$8.addVectors(_box$1.max, _boxMorphTargets.max);
|
|
|
|
_box$1.expandByPoint(_vector$8);
|
|
} else {
|
|
_box$1.expandByPoint(_boxMorphTargets.min);
|
|
|
|
_box$1.expandByPoint(_boxMorphTargets.max);
|
|
}
|
|
}
|
|
}
|
|
|
|
_box$1.getCenter(center); // second, try to find a boundingSphere with a radius smaller than the
|
|
// boundingSphere of the boundingBox: sqrt(3) smaller in the best case
|
|
|
|
|
|
let maxRadiusSq = 0;
|
|
|
|
for (let i = 0, il = position.count; i < il; i++) {
|
|
_vector$8.fromBufferAttribute(position, i);
|
|
|
|
maxRadiusSq = Math.max(maxRadiusSq, center.distanceToSquared(_vector$8));
|
|
} // process morph attributes if present
|
|
|
|
|
|
if (morphAttributesPosition) {
|
|
for (let i = 0, il = morphAttributesPosition.length; i < il; i++) {
|
|
const morphAttribute = morphAttributesPosition[i];
|
|
const morphTargetsRelative = this.morphTargetsRelative;
|
|
|
|
for (let j = 0, jl = morphAttribute.count; j < jl; j++) {
|
|
_vector$8.fromBufferAttribute(morphAttribute, j);
|
|
|
|
if (morphTargetsRelative) {
|
|
_offset.fromBufferAttribute(position, j);
|
|
|
|
_vector$8.add(_offset);
|
|
}
|
|
|
|
maxRadiusSq = Math.max(maxRadiusSq, center.distanceToSquared(_vector$8));
|
|
}
|
|
}
|
|
}
|
|
|
|
this.boundingSphere.radius = Math.sqrt(maxRadiusSq);
|
|
|
|
if (isNaN(this.boundingSphere.radius)) {
|
|
console.error('THREE.BufferGeometry.computeBoundingSphere(): Computed radius is NaN. The "position" attribute is likely to have NaN values.', this);
|
|
}
|
|
}
|
|
}
|
|
|
|
computeTangents() {
|
|
const index = this.index;
|
|
const attributes = this.attributes; // based on http://www.terathon.com/code/tangent.html
|
|
// (per vertex tangents)
|
|
|
|
if (index === null || attributes.position === undefined || attributes.normal === undefined || attributes.uv === undefined) {
|
|
console.error('THREE.BufferGeometry: .computeTangents() failed. Missing required attributes (index, position, normal or uv)');
|
|
return;
|
|
}
|
|
|
|
const indices = index.array;
|
|
const positions = attributes.position.array;
|
|
const normals = attributes.normal.array;
|
|
const uvs = attributes.uv.array;
|
|
const nVertices = positions.length / 3;
|
|
|
|
if (attributes.tangent === undefined) {
|
|
this.setAttribute('tangent', new BufferAttribute(new Float32Array(4 * nVertices), 4));
|
|
}
|
|
|
|
const tangents = attributes.tangent.array;
|
|
const tan1 = [],
|
|
tan2 = [];
|
|
|
|
for (let i = 0; i < nVertices; i++) {
|
|
tan1[i] = new Vector3();
|
|
tan2[i] = new Vector3();
|
|
}
|
|
|
|
const vA = new Vector3(),
|
|
vB = new Vector3(),
|
|
vC = new Vector3(),
|
|
uvA = new Vector2(),
|
|
uvB = new Vector2(),
|
|
uvC = new Vector2(),
|
|
sdir = new Vector3(),
|
|
tdir = new Vector3();
|
|
|
|
function handleTriangle(a, b, c) {
|
|
vA.fromArray(positions, a * 3);
|
|
vB.fromArray(positions, b * 3);
|
|
vC.fromArray(positions, c * 3);
|
|
uvA.fromArray(uvs, a * 2);
|
|
uvB.fromArray(uvs, b * 2);
|
|
uvC.fromArray(uvs, c * 2);
|
|
vB.sub(vA);
|
|
vC.sub(vA);
|
|
uvB.sub(uvA);
|
|
uvC.sub(uvA);
|
|
const r = 1.0 / (uvB.x * uvC.y - uvC.x * uvB.y); // silently ignore degenerate uv triangles having coincident or colinear vertices
|
|
|
|
if (!isFinite(r)) return;
|
|
sdir.copy(vB).multiplyScalar(uvC.y).addScaledVector(vC, -uvB.y).multiplyScalar(r);
|
|
tdir.copy(vC).multiplyScalar(uvB.x).addScaledVector(vB, -uvC.x).multiplyScalar(r);
|
|
tan1[a].add(sdir);
|
|
tan1[b].add(sdir);
|
|
tan1[c].add(sdir);
|
|
tan2[a].add(tdir);
|
|
tan2[b].add(tdir);
|
|
tan2[c].add(tdir);
|
|
}
|
|
|
|
let groups = this.groups;
|
|
|
|
if (groups.length === 0) {
|
|
groups = [{
|
|
start: 0,
|
|
count: indices.length
|
|
}];
|
|
}
|
|
|
|
for (let i = 0, il = groups.length; i < il; ++i) {
|
|
const group = groups[i];
|
|
const start = group.start;
|
|
const count = group.count;
|
|
|
|
for (let j = start, jl = start + count; j < jl; j += 3) {
|
|
handleTriangle(indices[j + 0], indices[j + 1], indices[j + 2]);
|
|
}
|
|
}
|
|
|
|
const tmp = new Vector3(),
|
|
tmp2 = new Vector3();
|
|
const n = new Vector3(),
|
|
n2 = new Vector3();
|
|
|
|
function handleVertex(v) {
|
|
n.fromArray(normals, v * 3);
|
|
n2.copy(n);
|
|
const t = tan1[v]; // Gram-Schmidt orthogonalize
|
|
|
|
tmp.copy(t);
|
|
tmp.sub(n.multiplyScalar(n.dot(t))).normalize(); // Calculate handedness
|
|
|
|
tmp2.crossVectors(n2, t);
|
|
const test = tmp2.dot(tan2[v]);
|
|
const w = test < 0.0 ? -1.0 : 1.0;
|
|
tangents[v * 4] = tmp.x;
|
|
tangents[v * 4 + 1] = tmp.y;
|
|
tangents[v * 4 + 2] = tmp.z;
|
|
tangents[v * 4 + 3] = w;
|
|
}
|
|
|
|
for (let i = 0, il = groups.length; i < il; ++i) {
|
|
const group = groups[i];
|
|
const start = group.start;
|
|
const count = group.count;
|
|
|
|
for (let j = start, jl = start + count; j < jl; j += 3) {
|
|
handleVertex(indices[j + 0]);
|
|
handleVertex(indices[j + 1]);
|
|
handleVertex(indices[j + 2]);
|
|
}
|
|
}
|
|
}
|
|
|
|
computeVertexNormals() {
|
|
const index = this.index;
|
|
const positionAttribute = this.getAttribute('position');
|
|
|
|
if (positionAttribute !== undefined) {
|
|
let normalAttribute = this.getAttribute('normal');
|
|
|
|
if (normalAttribute === undefined) {
|
|
normalAttribute = new BufferAttribute(new Float32Array(positionAttribute.count * 3), 3);
|
|
this.setAttribute('normal', normalAttribute);
|
|
} else {
|
|
// reset existing normals to zero
|
|
for (let i = 0, il = normalAttribute.count; i < il; i++) {
|
|
normalAttribute.setXYZ(i, 0, 0, 0);
|
|
}
|
|
}
|
|
|
|
const pA = new Vector3(),
|
|
pB = new Vector3(),
|
|
pC = new Vector3();
|
|
const nA = new Vector3(),
|
|
nB = new Vector3(),
|
|
nC = new Vector3();
|
|
const cb = new Vector3(),
|
|
ab = new Vector3(); // indexed elements
|
|
|
|
if (index) {
|
|
for (let i = 0, il = index.count; i < il; i += 3) {
|
|
const vA = index.getX(i + 0);
|
|
const vB = index.getX(i + 1);
|
|
const vC = index.getX(i + 2);
|
|
pA.fromBufferAttribute(positionAttribute, vA);
|
|
pB.fromBufferAttribute(positionAttribute, vB);
|
|
pC.fromBufferAttribute(positionAttribute, vC);
|
|
cb.subVectors(pC, pB);
|
|
ab.subVectors(pA, pB);
|
|
cb.cross(ab);
|
|
nA.fromBufferAttribute(normalAttribute, vA);
|
|
nB.fromBufferAttribute(normalAttribute, vB);
|
|
nC.fromBufferAttribute(normalAttribute, vC);
|
|
nA.add(cb);
|
|
nB.add(cb);
|
|
nC.add(cb);
|
|
normalAttribute.setXYZ(vA, nA.x, nA.y, nA.z);
|
|
normalAttribute.setXYZ(vB, nB.x, nB.y, nB.z);
|
|
normalAttribute.setXYZ(vC, nC.x, nC.y, nC.z);
|
|
}
|
|
} else {
|
|
// non-indexed elements (unconnected triangle soup)
|
|
for (let i = 0, il = positionAttribute.count; i < il; i += 3) {
|
|
pA.fromBufferAttribute(positionAttribute, i + 0);
|
|
pB.fromBufferAttribute(positionAttribute, i + 1);
|
|
pC.fromBufferAttribute(positionAttribute, i + 2);
|
|
cb.subVectors(pC, pB);
|
|
ab.subVectors(pA, pB);
|
|
cb.cross(ab);
|
|
normalAttribute.setXYZ(i + 0, cb.x, cb.y, cb.z);
|
|
normalAttribute.setXYZ(i + 1, cb.x, cb.y, cb.z);
|
|
normalAttribute.setXYZ(i + 2, cb.x, cb.y, cb.z);
|
|
}
|
|
}
|
|
|
|
this.normalizeNormals();
|
|
normalAttribute.needsUpdate = true;
|
|
}
|
|
}
|
|
|
|
merge(geometry, offset) {
|
|
if (!(geometry && geometry.isBufferGeometry)) {
|
|
console.error('THREE.BufferGeometry.merge(): geometry not an instance of THREE.BufferGeometry.', geometry);
|
|
return;
|
|
}
|
|
|
|
if (offset === undefined) {
|
|
offset = 0;
|
|
console.warn('THREE.BufferGeometry.merge(): Overwriting original geometry, starting at offset=0. ' + 'Use BufferGeometryUtils.mergeBufferGeometries() for lossless merge.');
|
|
}
|
|
|
|
const attributes = this.attributes;
|
|
|
|
for (const key in attributes) {
|
|
if (geometry.attributes[key] === undefined) continue;
|
|
const attribute1 = attributes[key];
|
|
const attributeArray1 = attribute1.array;
|
|
const attribute2 = geometry.attributes[key];
|
|
const attributeArray2 = attribute2.array;
|
|
const attributeOffset = attribute2.itemSize * offset;
|
|
const length = Math.min(attributeArray2.length, attributeArray1.length - attributeOffset);
|
|
|
|
for (let i = 0, j = attributeOffset; i < length; i++, j++) {
|
|
attributeArray1[j] = attributeArray2[i];
|
|
}
|
|
}
|
|
|
|
return this;
|
|
}
|
|
|
|
normalizeNormals() {
|
|
const normals = this.attributes.normal;
|
|
|
|
for (let i = 0, il = normals.count; i < il; i++) {
|
|
_vector$8.fromBufferAttribute(normals, i);
|
|
|
|
_vector$8.normalize();
|
|
|
|
normals.setXYZ(i, _vector$8.x, _vector$8.y, _vector$8.z);
|
|
}
|
|
}
|
|
|
|
toNonIndexed() {
|
|
function convertBufferAttribute(attribute, indices) {
|
|
const array = attribute.array;
|
|
const itemSize = attribute.itemSize;
|
|
const normalized = attribute.normalized;
|
|
const array2 = new array.constructor(indices.length * itemSize);
|
|
let index = 0,
|
|
index2 = 0;
|
|
|
|
for (let i = 0, l = indices.length; i < l; i++) {
|
|
if (attribute.isInterleavedBufferAttribute) {
|
|
index = indices[i] * attribute.data.stride + attribute.offset;
|
|
} else {
|
|
index = indices[i] * itemSize;
|
|
}
|
|
|
|
for (let j = 0; j < itemSize; j++) {
|
|
array2[index2++] = array[index++];
|
|
}
|
|
}
|
|
|
|
return new BufferAttribute(array2, itemSize, normalized);
|
|
} //
|
|
|
|
|
|
if (this.index === null) {
|
|
console.warn('THREE.BufferGeometry.toNonIndexed(): BufferGeometry is already non-indexed.');
|
|
return this;
|
|
}
|
|
|
|
const geometry2 = new BufferGeometry();
|
|
const indices = this.index.array;
|
|
const attributes = this.attributes; // attributes
|
|
|
|
for (const name in attributes) {
|
|
const attribute = attributes[name];
|
|
const newAttribute = convertBufferAttribute(attribute, indices);
|
|
geometry2.setAttribute(name, newAttribute);
|
|
} // morph attributes
|
|
|
|
|
|
const morphAttributes = this.morphAttributes;
|
|
|
|
for (const name in morphAttributes) {
|
|
const morphArray = [];
|
|
const morphAttribute = morphAttributes[name]; // morphAttribute: array of Float32BufferAttributes
|
|
|
|
for (let i = 0, il = morphAttribute.length; i < il; i++) {
|
|
const attribute = morphAttribute[i];
|
|
const newAttribute = convertBufferAttribute(attribute, indices);
|
|
morphArray.push(newAttribute);
|
|
}
|
|
|
|
geometry2.morphAttributes[name] = morphArray;
|
|
}
|
|
|
|
geometry2.morphTargetsRelative = this.morphTargetsRelative; // groups
|
|
|
|
const groups = this.groups;
|
|
|
|
for (let i = 0, l = groups.length; i < l; i++) {
|
|
const group = groups[i];
|
|
geometry2.addGroup(group.start, group.count, group.materialIndex);
|
|
}
|
|
|
|
return geometry2;
|
|
}
|
|
|
|
toJSON() {
|
|
const data = {
|
|
metadata: {
|
|
version: 4.5,
|
|
type: 'BufferGeometry',
|
|
generator: 'BufferGeometry.toJSON'
|
|
}
|
|
}; // standard BufferGeometry serialization
|
|
|
|
data.uuid = this.uuid;
|
|
data.type = this.type;
|
|
if (this.name !== '') data.name = this.name;
|
|
if (Object.keys(this.userData).length > 0) data.userData = this.userData;
|
|
|
|
if (this.parameters !== undefined) {
|
|
const parameters = this.parameters;
|
|
|
|
for (const key in parameters) {
|
|
if (parameters[key] !== undefined) data[key] = parameters[key];
|
|
}
|
|
|
|
return data;
|
|
} // for simplicity the code assumes attributes are not shared across geometries, see #15811
|
|
|
|
|
|
data.data = {
|
|
attributes: {}
|
|
};
|
|
const index = this.index;
|
|
|
|
if (index !== null) {
|
|
data.data.index = {
|
|
type: index.array.constructor.name,
|
|
array: Array.prototype.slice.call(index.array)
|
|
};
|
|
}
|
|
|
|
const attributes = this.attributes;
|
|
|
|
for (const key in attributes) {
|
|
const attribute = attributes[key];
|
|
data.data.attributes[key] = attribute.toJSON(data.data);
|
|
}
|
|
|
|
const morphAttributes = {};
|
|
let hasMorphAttributes = false;
|
|
|
|
for (const key in this.morphAttributes) {
|
|
const attributeArray = this.morphAttributes[key];
|
|
const array = [];
|
|
|
|
for (let i = 0, il = attributeArray.length; i < il; i++) {
|
|
const attribute = attributeArray[i];
|
|
array.push(attribute.toJSON(data.data));
|
|
}
|
|
|
|
if (array.length > 0) {
|
|
morphAttributes[key] = array;
|
|
hasMorphAttributes = true;
|
|
}
|
|
}
|
|
|
|
if (hasMorphAttributes) {
|
|
data.data.morphAttributes = morphAttributes;
|
|
data.data.morphTargetsRelative = this.morphTargetsRelative;
|
|
}
|
|
|
|
const groups = this.groups;
|
|
|
|
if (groups.length > 0) {
|
|
data.data.groups = JSON.parse(JSON.stringify(groups));
|
|
}
|
|
|
|
const boundingSphere = this.boundingSphere;
|
|
|
|
if (boundingSphere !== null) {
|
|
data.data.boundingSphere = {
|
|
center: boundingSphere.center.toArray(),
|
|
radius: boundingSphere.radius
|
|
};
|
|
}
|
|
|
|
return data;
|
|
}
|
|
|
|
clone() {
|
|
return new this.constructor().copy(this);
|
|
}
|
|
|
|
copy(source) {
|
|
// reset
|
|
this.index = null;
|
|
this.attributes = {};
|
|
this.morphAttributes = {};
|
|
this.groups = [];
|
|
this.boundingBox = null;
|
|
this.boundingSphere = null; // used for storing cloned, shared data
|
|
|
|
const data = {}; // name
|
|
|
|
this.name = source.name; // index
|
|
|
|
const index = source.index;
|
|
|
|
if (index !== null) {
|
|
this.setIndex(index.clone(data));
|
|
} // attributes
|
|
|
|
|
|
const attributes = source.attributes;
|
|
|
|
for (const name in attributes) {
|
|
const attribute = attributes[name];
|
|
this.setAttribute(name, attribute.clone(data));
|
|
} // morph attributes
|
|
|
|
|
|
const morphAttributes = source.morphAttributes;
|
|
|
|
for (const name in morphAttributes) {
|
|
const array = [];
|
|
const morphAttribute = morphAttributes[name]; // morphAttribute: array of Float32BufferAttributes
|
|
|
|
for (let i = 0, l = morphAttribute.length; i < l; i++) {
|
|
array.push(morphAttribute[i].clone(data));
|
|
}
|
|
|
|
this.morphAttributes[name] = array;
|
|
}
|
|
|
|
this.morphTargetsRelative = source.morphTargetsRelative; // groups
|
|
|
|
const groups = source.groups;
|
|
|
|
for (let i = 0, l = groups.length; i < l; i++) {
|
|
const group = groups[i];
|
|
this.addGroup(group.start, group.count, group.materialIndex);
|
|
} // bounding box
|
|
|
|
|
|
const boundingBox = source.boundingBox;
|
|
|
|
if (boundingBox !== null) {
|
|
this.boundingBox = boundingBox.clone();
|
|
} // bounding sphere
|
|
|
|
|
|
const boundingSphere = source.boundingSphere;
|
|
|
|
if (boundingSphere !== null) {
|
|
this.boundingSphere = boundingSphere.clone();
|
|
} // draw range
|
|
|
|
|
|
this.drawRange.start = source.drawRange.start;
|
|
this.drawRange.count = source.drawRange.count; // user data
|
|
|
|
this.userData = source.userData; // geometry generator parameters
|
|
|
|
if (source.parameters !== undefined) this.parameters = Object.assign({}, source.parameters);
|
|
return this;
|
|
}
|
|
|
|
dispose() {
|
|
this.dispatchEvent({
|
|
type: 'dispose'
|
|
});
|
|
}
|
|
|
|
}
|
|
|
|
BufferGeometry.prototype.isBufferGeometry = true;
|
|
|
|
const _inverseMatrix$2 = /*@__PURE__*/new Matrix4();
|
|
|
|
const _ray$2 = /*@__PURE__*/new Ray();
|
|
|
|
const _sphere$3 = /*@__PURE__*/new Sphere();
|
|
|
|
const _vA$1 = /*@__PURE__*/new Vector3();
|
|
|
|
const _vB$1 = /*@__PURE__*/new Vector3();
|
|
|
|
const _vC$1 = /*@__PURE__*/new Vector3();
|
|
|
|
const _tempA = /*@__PURE__*/new Vector3();
|
|
|
|
const _tempB = /*@__PURE__*/new Vector3();
|
|
|
|
const _tempC = /*@__PURE__*/new Vector3();
|
|
|
|
const _morphA = /*@__PURE__*/new Vector3();
|
|
|
|
const _morphB = /*@__PURE__*/new Vector3();
|
|
|
|
const _morphC = /*@__PURE__*/new Vector3();
|
|
|
|
const _uvA$1 = /*@__PURE__*/new Vector2();
|
|
|
|
const _uvB$1 = /*@__PURE__*/new Vector2();
|
|
|
|
const _uvC$1 = /*@__PURE__*/new Vector2();
|
|
|
|
const _intersectionPoint = /*@__PURE__*/new Vector3();
|
|
|
|
const _intersectionPointWorld = /*@__PURE__*/new Vector3();
|
|
|
|
class Mesh extends Object3D {
|
|
constructor(geometry = new BufferGeometry(), material = new MeshBasicMaterial()) {
|
|
super();
|
|
this.type = 'Mesh';
|
|
this.geometry = geometry;
|
|
this.material = material;
|
|
this.updateMorphTargets();
|
|
}
|
|
|
|
copy(source) {
|
|
super.copy(source);
|
|
|
|
if (source.morphTargetInfluences !== undefined) {
|
|
this.morphTargetInfluences = source.morphTargetInfluences.slice();
|
|
}
|
|
|
|
if (source.morphTargetDictionary !== undefined) {
|
|
this.morphTargetDictionary = Object.assign({}, source.morphTargetDictionary);
|
|
}
|
|
|
|
this.material = source.material;
|
|
this.geometry = source.geometry;
|
|
return this;
|
|
}
|
|
|
|
updateMorphTargets() {
|
|
const geometry = this.geometry;
|
|
|
|
if (geometry.isBufferGeometry) {
|
|
const morphAttributes = geometry.morphAttributes;
|
|
const keys = Object.keys(morphAttributes);
|
|
|
|
if (keys.length > 0) {
|
|
const morphAttribute = morphAttributes[keys[0]];
|
|
|
|
if (morphAttribute !== undefined) {
|
|
this.morphTargetInfluences = [];
|
|
this.morphTargetDictionary = {};
|
|
|
|
for (let m = 0, ml = morphAttribute.length; m < ml; m++) {
|
|
const name = morphAttribute[m].name || String(m);
|
|
this.morphTargetInfluences.push(0);
|
|
this.morphTargetDictionary[name] = m;
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
const morphTargets = geometry.morphTargets;
|
|
|
|
if (morphTargets !== undefined && morphTargets.length > 0) {
|
|
console.error('THREE.Mesh.updateMorphTargets() no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.');
|
|
}
|
|
}
|
|
}
|
|
|
|
raycast(raycaster, intersects) {
|
|
const geometry = this.geometry;
|
|
const material = this.material;
|
|
const matrixWorld = this.matrixWorld;
|
|
if (material === undefined) return; // Checking boundingSphere distance to ray
|
|
|
|
if (geometry.boundingSphere === null) geometry.computeBoundingSphere();
|
|
|
|
_sphere$3.copy(geometry.boundingSphere);
|
|
|
|
_sphere$3.applyMatrix4(matrixWorld);
|
|
|
|
if (raycaster.ray.intersectsSphere(_sphere$3) === false) return; //
|
|
|
|
_inverseMatrix$2.copy(matrixWorld).invert();
|
|
|
|
_ray$2.copy(raycaster.ray).applyMatrix4(_inverseMatrix$2); // Check boundingBox before continuing
|
|
|
|
|
|
if (geometry.boundingBox !== null) {
|
|
if (_ray$2.intersectsBox(geometry.boundingBox) === false) return;
|
|
}
|
|
|
|
let intersection;
|
|
|
|
if (geometry.isBufferGeometry) {
|
|
const index = geometry.index;
|
|
const position = geometry.attributes.position;
|
|
const morphPosition = geometry.morphAttributes.position;
|
|
const morphTargetsRelative = geometry.morphTargetsRelative;
|
|
const uv = geometry.attributes.uv;
|
|
const uv2 = geometry.attributes.uv2;
|
|
const groups = geometry.groups;
|
|
const drawRange = geometry.drawRange;
|
|
|
|
if (index !== null) {
|
|
// indexed buffer geometry
|
|
if (Array.isArray(material)) {
|
|
for (let i = 0, il = groups.length; i < il; i++) {
|
|
const group = groups[i];
|
|
const groupMaterial = material[group.materialIndex];
|
|
const start = Math.max(group.start, drawRange.start);
|
|
const end = Math.min(index.count, Math.min(group.start + group.count, drawRange.start + drawRange.count));
|
|
|
|
for (let j = start, jl = end; j < jl; j += 3) {
|
|
const a = index.getX(j);
|
|
const b = index.getX(j + 1);
|
|
const c = index.getX(j + 2);
|
|
intersection = checkBufferGeometryIntersection(this, groupMaterial, raycaster, _ray$2, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c);
|
|
|
|
if (intersection) {
|
|
intersection.faceIndex = Math.floor(j / 3); // triangle number in indexed buffer semantics
|
|
|
|
intersection.face.materialIndex = group.materialIndex;
|
|
intersects.push(intersection);
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
const start = Math.max(0, drawRange.start);
|
|
const end = Math.min(index.count, drawRange.start + drawRange.count);
|
|
|
|
for (let i = start, il = end; i < il; i += 3) {
|
|
const a = index.getX(i);
|
|
const b = index.getX(i + 1);
|
|
const c = index.getX(i + 2);
|
|
intersection = checkBufferGeometryIntersection(this, material, raycaster, _ray$2, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c);
|
|
|
|
if (intersection) {
|
|
intersection.faceIndex = Math.floor(i / 3); // triangle number in indexed buffer semantics
|
|
|
|
intersects.push(intersection);
|
|
}
|
|
}
|
|
}
|
|
} else if (position !== undefined) {
|
|
// non-indexed buffer geometry
|
|
if (Array.isArray(material)) {
|
|
for (let i = 0, il = groups.length; i < il; i++) {
|
|
const group = groups[i];
|
|
const groupMaterial = material[group.materialIndex];
|
|
const start = Math.max(group.start, drawRange.start);
|
|
const end = Math.min(position.count, Math.min(group.start + group.count, drawRange.start + drawRange.count));
|
|
|
|
for (let j = start, jl = end; j < jl; j += 3) {
|
|
const a = j;
|
|
const b = j + 1;
|
|
const c = j + 2;
|
|
intersection = checkBufferGeometryIntersection(this, groupMaterial, raycaster, _ray$2, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c);
|
|
|
|
if (intersection) {
|
|
intersection.faceIndex = Math.floor(j / 3); // triangle number in non-indexed buffer semantics
|
|
|
|
intersection.face.materialIndex = group.materialIndex;
|
|
intersects.push(intersection);
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
const start = Math.max(0, drawRange.start);
|
|
const end = Math.min(position.count, drawRange.start + drawRange.count);
|
|
|
|
for (let i = start, il = end; i < il; i += 3) {
|
|
const a = i;
|
|
const b = i + 1;
|
|
const c = i + 2;
|
|
intersection = checkBufferGeometryIntersection(this, material, raycaster, _ray$2, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c);
|
|
|
|
if (intersection) {
|
|
intersection.faceIndex = Math.floor(i / 3); // triangle number in non-indexed buffer semantics
|
|
|
|
intersects.push(intersection);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} else if (geometry.isGeometry) {
|
|
console.error('THREE.Mesh.raycast() no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.');
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
Mesh.prototype.isMesh = true;
|
|
|
|
function checkIntersection(object, material, raycaster, ray, pA, pB, pC, point) {
|
|
let intersect;
|
|
|
|
if (material.side === BackSide) {
|
|
intersect = ray.intersectTriangle(pC, pB, pA, true, point);
|
|
} else {
|
|
intersect = ray.intersectTriangle(pA, pB, pC, material.side !== DoubleSide, point);
|
|
}
|
|
|
|
if (intersect === null) return null;
|
|
|
|
_intersectionPointWorld.copy(point);
|
|
|
|
_intersectionPointWorld.applyMatrix4(object.matrixWorld);
|
|
|
|
const distance = raycaster.ray.origin.distanceTo(_intersectionPointWorld);
|
|
if (distance < raycaster.near || distance > raycaster.far) return null;
|
|
return {
|
|
distance: distance,
|
|
point: _intersectionPointWorld.clone(),
|
|
object: object
|
|
};
|
|
}
|
|
|
|
function checkBufferGeometryIntersection(object, material, raycaster, ray, position, morphPosition, morphTargetsRelative, uv, uv2, a, b, c) {
|
|
_vA$1.fromBufferAttribute(position, a);
|
|
|
|
_vB$1.fromBufferAttribute(position, b);
|
|
|
|
_vC$1.fromBufferAttribute(position, c);
|
|
|
|
const morphInfluences = object.morphTargetInfluences;
|
|
|
|
if (morphPosition && morphInfluences) {
|
|
_morphA.set(0, 0, 0);
|
|
|
|
_morphB.set(0, 0, 0);
|
|
|
|
_morphC.set(0, 0, 0);
|
|
|
|
for (let i = 0, il = morphPosition.length; i < il; i++) {
|
|
const influence = morphInfluences[i];
|
|
const morphAttribute = morphPosition[i];
|
|
if (influence === 0) continue;
|
|
|
|
_tempA.fromBufferAttribute(morphAttribute, a);
|
|
|
|
_tempB.fromBufferAttribute(morphAttribute, b);
|
|
|
|
_tempC.fromBufferAttribute(morphAttribute, c);
|
|
|
|
if (morphTargetsRelative) {
|
|
_morphA.addScaledVector(_tempA, influence);
|
|
|
|
_morphB.addScaledVector(_tempB, influence);
|
|
|
|
_morphC.addScaledVector(_tempC, influence);
|
|
} else {
|
|
_morphA.addScaledVector(_tempA.sub(_vA$1), influence);
|
|
|
|
_morphB.addScaledVector(_tempB.sub(_vB$1), influence);
|
|
|
|
_morphC.addScaledVector(_tempC.sub(_vC$1), influence);
|
|
}
|
|
}
|
|
|
|
_vA$1.add(_morphA);
|
|
|
|
_vB$1.add(_morphB);
|
|
|
|
_vC$1.add(_morphC);
|
|
}
|
|
|
|
if (object.isSkinnedMesh) {
|
|
object.boneTransform(a, _vA$1);
|
|
object.boneTransform(b, _vB$1);
|
|
object.boneTransform(c, _vC$1);
|
|
}
|
|
|
|
const intersection = checkIntersection(object, material, raycaster, ray, _vA$1, _vB$1, _vC$1, _intersectionPoint);
|
|
|
|
if (intersection) {
|
|
if (uv) {
|
|
_uvA$1.fromBufferAttribute(uv, a);
|
|
|
|
_uvB$1.fromBufferAttribute(uv, b);
|
|
|
|
_uvC$1.fromBufferAttribute(uv, c);
|
|
|
|
intersection.uv = Triangle.getUV(_intersectionPoint, _vA$1, _vB$1, _vC$1, _uvA$1, _uvB$1, _uvC$1, new Vector2());
|
|
}
|
|
|
|
if (uv2) {
|
|
_uvA$1.fromBufferAttribute(uv2, a);
|
|
|
|
_uvB$1.fromBufferAttribute(uv2, b);
|
|
|
|
_uvC$1.fromBufferAttribute(uv2, c);
|
|
|
|
intersection.uv2 = Triangle.getUV(_intersectionPoint, _vA$1, _vB$1, _vC$1, _uvA$1, _uvB$1, _uvC$1, new Vector2());
|
|
}
|
|
|
|
const face = {
|
|
a: a,
|
|
b: b,
|
|
c: c,
|
|
normal: new Vector3(),
|
|
materialIndex: 0
|
|
};
|
|
Triangle.getNormal(_vA$1, _vB$1, _vC$1, face.normal);
|
|
intersection.face = face;
|
|
}
|
|
|
|
return intersection;
|
|
}
|
|
|
|
class BoxGeometry extends BufferGeometry {
|
|
constructor(width = 1, height = 1, depth = 1, widthSegments = 1, heightSegments = 1, depthSegments = 1) {
|
|
super();
|
|
this.type = 'BoxGeometry';
|
|
this.parameters = {
|
|
width: width,
|
|
height: height,
|
|
depth: depth,
|
|
widthSegments: widthSegments,
|
|
heightSegments: heightSegments,
|
|
depthSegments: depthSegments
|
|
};
|
|
const scope = this; // segments
|
|
|
|
widthSegments = Math.floor(widthSegments);
|
|
heightSegments = Math.floor(heightSegments);
|
|
depthSegments = Math.floor(depthSegments); // buffers
|
|
|
|
const indices = [];
|
|
const vertices = [];
|
|
const normals = [];
|
|
const uvs = []; // helper variables
|
|
|
|
let numberOfVertices = 0;
|
|
let groupStart = 0; // build each side of the box geometry
|
|
|
|
buildPlane('z', 'y', 'x', -1, -1, depth, height, width, depthSegments, heightSegments, 0); // px
|
|
|
|
buildPlane('z', 'y', 'x', 1, -1, depth, height, -width, depthSegments, heightSegments, 1); // nx
|
|
|
|
buildPlane('x', 'z', 'y', 1, 1, width, depth, height, widthSegments, depthSegments, 2); // py
|
|
|
|
buildPlane('x', 'z', 'y', 1, -1, width, depth, -height, widthSegments, depthSegments, 3); // ny
|
|
|
|
buildPlane('x', 'y', 'z', 1, -1, width, height, depth, widthSegments, heightSegments, 4); // pz
|
|
|
|
buildPlane('x', 'y', 'z', -1, -1, width, height, -depth, widthSegments, heightSegments, 5); // nz
|
|
// build geometry
|
|
|
|
this.setIndex(indices);
|
|
this.setAttribute('position', new Float32BufferAttribute(vertices, 3));
|
|
this.setAttribute('normal', new Float32BufferAttribute(normals, 3));
|
|
this.setAttribute('uv', new Float32BufferAttribute(uvs, 2));
|
|
|
|
function buildPlane(u, v, w, udir, vdir, width, height, depth, gridX, gridY, materialIndex) {
|
|
const segmentWidth = width / gridX;
|
|
const segmentHeight = height / gridY;
|
|
const widthHalf = width / 2;
|
|
const heightHalf = height / 2;
|
|
const depthHalf = depth / 2;
|
|
const gridX1 = gridX + 1;
|
|
const gridY1 = gridY + 1;
|
|
let vertexCounter = 0;
|
|
let groupCount = 0;
|
|
const vector = new Vector3(); // generate vertices, normals and uvs
|
|
|
|
for (let iy = 0; iy < gridY1; iy++) {
|
|
const y = iy * segmentHeight - heightHalf;
|
|
|
|
for (let ix = 0; ix < gridX1; ix++) {
|
|
const x = ix * segmentWidth - widthHalf; // set values to correct vector component
|
|
|
|
vector[u] = x * udir;
|
|
vector[v] = y * vdir;
|
|
vector[w] = depthHalf; // now apply vector to vertex buffer
|
|
|
|
vertices.push(vector.x, vector.y, vector.z); // set values to correct vector component
|
|
|
|
vector[u] = 0;
|
|
vector[v] = 0;
|
|
vector[w] = depth > 0 ? 1 : -1; // now apply vector to normal buffer
|
|
|
|
normals.push(vector.x, vector.y, vector.z); // uvs
|
|
|
|
uvs.push(ix / gridX);
|
|
uvs.push(1 - iy / gridY); // counters
|
|
|
|
vertexCounter += 1;
|
|
}
|
|
} // indices
|
|
// 1. you need three indices to draw a single face
|
|
// 2. a single segment consists of two faces
|
|
// 3. so we need to generate six (2*3) indices per segment
|
|
|
|
|
|
for (let iy = 0; iy < gridY; iy++) {
|
|
for (let ix = 0; ix < gridX; ix++) {
|
|
const a = numberOfVertices + ix + gridX1 * iy;
|
|
const b = numberOfVertices + ix + gridX1 * (iy + 1);
|
|
const c = numberOfVertices + (ix + 1) + gridX1 * (iy + 1);
|
|
const d = numberOfVertices + (ix + 1) + gridX1 * iy; // faces
|
|
|
|
indices.push(a, b, d);
|
|
indices.push(b, c, d); // increase counter
|
|
|
|
groupCount += 6;
|
|
}
|
|
} // add a group to the geometry. this will ensure multi material support
|
|
|
|
|
|
scope.addGroup(groupStart, groupCount, materialIndex); // calculate new start value for groups
|
|
|
|
groupStart += groupCount; // update total number of vertices
|
|
|
|
numberOfVertices += vertexCounter;
|
|
}
|
|
}
|
|
|
|
static fromJSON(data) {
|
|
return new BoxGeometry(data.width, data.height, data.depth, data.widthSegments, data.heightSegments, data.depthSegments);
|
|
}
|
|
|
|
}
|
|
|
|
/**
|
|
* Uniform Utilities
|
|
*/
|
|
function cloneUniforms(src) {
|
|
const dst = {};
|
|
|
|
for (const u in src) {
|
|
dst[u] = {};
|
|
|
|
for (const p in src[u]) {
|
|
const property = src[u][p];
|
|
|
|
if (property && (property.isColor || property.isMatrix3 || property.isMatrix4 || property.isVector2 || property.isVector3 || property.isVector4 || property.isTexture || property.isQuaternion)) {
|
|
dst[u][p] = property.clone();
|
|
} else if (Array.isArray(property)) {
|
|
dst[u][p] = property.slice();
|
|
} else {
|
|
dst[u][p] = property;
|
|
}
|
|
}
|
|
}
|
|
|
|
return dst;
|
|
}
|
|
function mergeUniforms(uniforms) {
|
|
const merged = {};
|
|
|
|
for (let u = 0; u < uniforms.length; u++) {
|
|
const tmp = cloneUniforms(uniforms[u]);
|
|
|
|
for (const p in tmp) {
|
|
merged[p] = tmp[p];
|
|
}
|
|
}
|
|
|
|
return merged;
|
|
} // Legacy
|
|
|
|
const UniformsUtils = {
|
|
clone: cloneUniforms,
|
|
merge: mergeUniforms
|
|
};
|
|
|
|
var default_vertex = "void main() {\n\tgl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );\n}";
|
|
|
|
var default_fragment = "void main() {\n\tgl_FragColor = vec4( 1.0, 0.0, 0.0, 1.0 );\n}";
|
|
|
|
/**
|
|
* parameters = {
|
|
* defines: { "label" : "value" },
|
|
* uniforms: { "parameter1": { value: 1.0 }, "parameter2": { value2: 2 } },
|
|
*
|
|
* fragmentShader: <string>,
|
|
* vertexShader: <string>,
|
|
*
|
|
* wireframe: <boolean>,
|
|
* wireframeLinewidth: <float>,
|
|
*
|
|
* lights: <bool>
|
|
* }
|
|
*/
|
|
|
|
class ShaderMaterial extends Material {
|
|
constructor(parameters) {
|
|
super();
|
|
this.type = 'ShaderMaterial';
|
|
this.defines = {};
|
|
this.uniforms = {};
|
|
this.vertexShader = default_vertex;
|
|
this.fragmentShader = default_fragment;
|
|
this.linewidth = 1;
|
|
this.wireframe = false;
|
|
this.wireframeLinewidth = 1;
|
|
this.fog = false; // set to use scene fog
|
|
|
|
this.lights = false; // set to use scene lights
|
|
|
|
this.clipping = false; // set to use user-defined clipping planes
|
|
|
|
this.extensions = {
|
|
derivatives: false,
|
|
// set to use derivatives
|
|
fragDepth: false,
|
|
// set to use fragment depth values
|
|
drawBuffers: false,
|
|
// set to use draw buffers
|
|
shaderTextureLOD: false // set to use shader texture LOD
|
|
|
|
}; // When rendered geometry doesn't include these attributes but the material does,
|
|
// use these default values in WebGL. This avoids errors when buffer data is missing.
|
|
|
|
this.defaultAttributeValues = {
|
|
'color': [1, 1, 1],
|
|
'uv': [0, 0],
|
|
'uv2': [0, 0]
|
|
};
|
|
this.index0AttributeName = undefined;
|
|
this.uniformsNeedUpdate = false;
|
|
this.glslVersion = null;
|
|
|
|
if (parameters !== undefined) {
|
|
if (parameters.attributes !== undefined) {
|
|
console.error('THREE.ShaderMaterial: attributes should now be defined in THREE.BufferGeometry instead.');
|
|
}
|
|
|
|
this.setValues(parameters);
|
|
}
|
|
}
|
|
|
|
copy(source) {
|
|
super.copy(source);
|
|
this.fragmentShader = source.fragmentShader;
|
|
this.vertexShader = source.vertexShader;
|
|
this.uniforms = cloneUniforms(source.uniforms);
|
|
this.defines = Object.assign({}, source.defines);
|
|
this.wireframe = source.wireframe;
|
|
this.wireframeLinewidth = source.wireframeLinewidth;
|
|
this.lights = source.lights;
|
|
this.clipping = source.clipping;
|
|
this.extensions = Object.assign({}, source.extensions);
|
|
this.glslVersion = source.glslVersion;
|
|
return this;
|
|
}
|
|
|
|
toJSON(meta) {
|
|
const data = super.toJSON(meta);
|
|
data.glslVersion = this.glslVersion;
|
|
data.uniforms = {};
|
|
|
|
for (const name in this.uniforms) {
|
|
const uniform = this.uniforms[name];
|
|
const value = uniform.value;
|
|
|
|
if (value && value.isTexture) {
|
|
data.uniforms[name] = {
|
|
type: 't',
|
|
value: value.toJSON(meta).uuid
|
|
};
|
|
} else if (value && value.isColor) {
|
|
data.uniforms[name] = {
|
|
type: 'c',
|
|
value: value.getHex()
|
|
};
|
|
} else if (value && value.isVector2) {
|
|
data.uniforms[name] = {
|
|
type: 'v2',
|
|
value: value.toArray()
|
|
};
|
|
} else if (value && value.isVector3) {
|
|
data.uniforms[name] = {
|
|
type: 'v3',
|
|
value: value.toArray()
|
|
};
|
|
} else if (value && value.isVector4) {
|
|
data.uniforms[name] = {
|
|
type: 'v4',
|
|
value: value.toArray()
|
|
};
|
|
} else if (value && value.isMatrix3) {
|
|
data.uniforms[name] = {
|
|
type: 'm3',
|
|
value: value.toArray()
|
|
};
|
|
} else if (value && value.isMatrix4) {
|
|
data.uniforms[name] = {
|
|
type: 'm4',
|
|
value: value.toArray()
|
|
};
|
|
} else {
|
|
data.uniforms[name] = {
|
|
value: value
|
|
}; // note: the array variants v2v, v3v, v4v, m4v and tv are not supported so far
|
|
}
|
|
}
|
|
|
|
if (Object.keys(this.defines).length > 0) data.defines = this.defines;
|
|
data.vertexShader = this.vertexShader;
|
|
data.fragmentShader = this.fragmentShader;
|
|
const extensions = {};
|
|
|
|
for (const key in this.extensions) {
|
|
if (this.extensions[key] === true) extensions[key] = true;
|
|
}
|
|
|
|
if (Object.keys(extensions).length > 0) data.extensions = extensions;
|
|
return data;
|
|
}
|
|
|
|
}
|
|
|
|
ShaderMaterial.prototype.isShaderMaterial = true;
|
|
|
|
class Camera extends Object3D {
|
|
constructor() {
|
|
super();
|
|
this.type = 'Camera';
|
|
this.matrixWorldInverse = new Matrix4();
|
|
this.projectionMatrix = new Matrix4();
|
|
this.projectionMatrixInverse = new Matrix4();
|
|
}
|
|
|
|
copy(source, recursive) {
|
|
super.copy(source, recursive);
|
|
this.matrixWorldInverse.copy(source.matrixWorldInverse);
|
|
this.projectionMatrix.copy(source.projectionMatrix);
|
|
this.projectionMatrixInverse.copy(source.projectionMatrixInverse);
|
|
return this;
|
|
}
|
|
|
|
getWorldDirection(target) {
|
|
this.updateWorldMatrix(true, false);
|
|
const e = this.matrixWorld.elements;
|
|
return target.set(-e[8], -e[9], -e[10]).normalize();
|
|
}
|
|
|
|
updateMatrixWorld(force) {
|
|
super.updateMatrixWorld(force);
|
|
this.matrixWorldInverse.copy(this.matrixWorld).invert();
|
|
}
|
|
|
|
updateWorldMatrix(updateParents, updateChildren) {
|
|
super.updateWorldMatrix(updateParents, updateChildren);
|
|
this.matrixWorldInverse.copy(this.matrixWorld).invert();
|
|
}
|
|
|
|
clone() {
|
|
return new this.constructor().copy(this);
|
|
}
|
|
|
|
}
|
|
|
|
Camera.prototype.isCamera = true;
|
|
|
|
class PerspectiveCamera extends Camera {
|
|
constructor(fov = 50, aspect = 1, near = 0.1, far = 2000) {
|
|
super();
|
|
this.type = 'PerspectiveCamera';
|
|
this.fov = fov;
|
|
this.zoom = 1;
|
|
this.near = near;
|
|
this.far = far;
|
|
this.focus = 10;
|
|
this.aspect = aspect;
|
|
this.view = null;
|
|
this.filmGauge = 35; // width of the film (default in millimeters)
|
|
|
|
this.filmOffset = 0; // horizontal film offset (same unit as gauge)
|
|
|
|
this.updateProjectionMatrix();
|
|
}
|
|
|
|
copy(source, recursive) {
|
|
super.copy(source, recursive);
|
|
this.fov = source.fov;
|
|
this.zoom = source.zoom;
|
|
this.near = source.near;
|
|
this.far = source.far;
|
|
this.focus = source.focus;
|
|
this.aspect = source.aspect;
|
|
this.view = source.view === null ? null : Object.assign({}, source.view);
|
|
this.filmGauge = source.filmGauge;
|
|
this.filmOffset = source.filmOffset;
|
|
return this;
|
|
}
|
|
/**
|
|
* Sets the FOV by focal length in respect to the current .filmGauge.
|
|
*
|
|
* The default film gauge is 35, so that the focal length can be specified for
|
|
* a 35mm (full frame) camera.
|
|
*
|
|
* Values for focal length and film gauge must have the same unit.
|
|
*/
|
|
|
|
|
|
setFocalLength(focalLength) {
|
|
/** see {@link http://www.bobatkins.com/photography/technical/field_of_view.html} */
|
|
const vExtentSlope = 0.5 * this.getFilmHeight() / focalLength;
|
|
this.fov = RAD2DEG * 2 * Math.atan(vExtentSlope);
|
|
this.updateProjectionMatrix();
|
|
}
|
|
/**
|
|
* Calculates the focal length from the current .fov and .filmGauge.
|
|
*/
|
|
|
|
|
|
getFocalLength() {
|
|
const vExtentSlope = Math.tan(DEG2RAD * 0.5 * this.fov);
|
|
return 0.5 * this.getFilmHeight() / vExtentSlope;
|
|
}
|
|
|
|
getEffectiveFOV() {
|
|
return RAD2DEG * 2 * Math.atan(Math.tan(DEG2RAD * 0.5 * this.fov) / this.zoom);
|
|
}
|
|
|
|
getFilmWidth() {
|
|
// film not completely covered in portrait format (aspect < 1)
|
|
return this.filmGauge * Math.min(this.aspect, 1);
|
|
}
|
|
|
|
getFilmHeight() {
|
|
// film not completely covered in landscape format (aspect > 1)
|
|
return this.filmGauge / Math.max(this.aspect, 1);
|
|
}
|
|
/**
|
|
* Sets an offset in a larger frustum. This is useful for multi-window or
|
|
* multi-monitor/multi-machine setups.
|
|
*
|
|
* For example, if you have 3x2 monitors and each monitor is 1920x1080 and
|
|
* the monitors are in grid like this
|
|
*
|
|
* +---+---+---+
|
|
* | A | B | C |
|
|
* +---+---+---+
|
|
* | D | E | F |
|
|
* +---+---+---+
|
|
*
|
|
* then for each monitor you would call it like this
|
|
*
|
|
* const w = 1920;
|
|
* const h = 1080;
|
|
* const fullWidth = w * 3;
|
|
* const fullHeight = h * 2;
|
|
*
|
|
* --A--
|
|
* camera.setViewOffset( fullWidth, fullHeight, w * 0, h * 0, w, h );
|
|
* --B--
|
|
* camera.setViewOffset( fullWidth, fullHeight, w * 1, h * 0, w, h );
|
|
* --C--
|
|
* camera.setViewOffset( fullWidth, fullHeight, w * 2, h * 0, w, h );
|
|
* --D--
|
|
* camera.setViewOffset( fullWidth, fullHeight, w * 0, h * 1, w, h );
|
|
* --E--
|
|
* camera.setViewOffset( fullWidth, fullHeight, w * 1, h * 1, w, h );
|
|
* --F--
|
|
* camera.setViewOffset( fullWidth, fullHeight, w * 2, h * 1, w, h );
|
|
*
|
|
* Note there is no reason monitors have to be the same size or in a grid.
|
|
*/
|
|
|
|
|
|
setViewOffset(fullWidth, fullHeight, x, y, width, height) {
|
|
this.aspect = fullWidth / fullHeight;
|
|
|
|
if (this.view === null) {
|
|
this.view = {
|
|
enabled: true,
|
|
fullWidth: 1,
|
|
fullHeight: 1,
|
|
offsetX: 0,
|
|
offsetY: 0,
|
|
width: 1,
|
|
height: 1
|
|
};
|
|
}
|
|
|
|
this.view.enabled = true;
|
|
this.view.fullWidth = fullWidth;
|
|
this.view.fullHeight = fullHeight;
|
|
this.view.offsetX = x;
|
|
this.view.offsetY = y;
|
|
this.view.width = width;
|
|
this.view.height = height;
|
|
this.updateProjectionMatrix();
|
|
}
|
|
|
|
clearViewOffset() {
|
|
if (this.view !== null) {
|
|
this.view.enabled = false;
|
|
}
|
|
|
|
this.updateProjectionMatrix();
|
|
}
|
|
|
|
updateProjectionMatrix() {
|
|
const near = this.near;
|
|
let top = near * Math.tan(DEG2RAD * 0.5 * this.fov) / this.zoom;
|
|
let height = 2 * top;
|
|
let width = this.aspect * height;
|
|
let left = -0.5 * width;
|
|
const view = this.view;
|
|
|
|
if (this.view !== null && this.view.enabled) {
|
|
const fullWidth = view.fullWidth,
|
|
fullHeight = view.fullHeight;
|
|
left += view.offsetX * width / fullWidth;
|
|
top -= view.offsetY * height / fullHeight;
|
|
width *= view.width / fullWidth;
|
|
height *= view.height / fullHeight;
|
|
}
|
|
|
|
const skew = this.filmOffset;
|
|
if (skew !== 0) left += near * skew / this.getFilmWidth();
|
|
this.projectionMatrix.makePerspective(left, left + width, top, top - height, near, this.far);
|
|
this.projectionMatrixInverse.copy(this.projectionMatrix).invert();
|
|
}
|
|
|
|
toJSON(meta) {
|
|
const data = super.toJSON(meta);
|
|
data.object.fov = this.fov;
|
|
data.object.zoom = this.zoom;
|
|
data.object.near = this.near;
|
|
data.object.far = this.far;
|
|
data.object.focus = this.focus;
|
|
data.object.aspect = this.aspect;
|
|
if (this.view !== null) data.object.view = Object.assign({}, this.view);
|
|
data.object.filmGauge = this.filmGauge;
|
|
data.object.filmOffset = this.filmOffset;
|
|
return data;
|
|
}
|
|
|
|
}
|
|
|
|
PerspectiveCamera.prototype.isPerspectiveCamera = true;
|
|
|
|
const fov = 90,
|
|
aspect = 1;
|
|
|
|
class CubeCamera extends Object3D {
|
|
constructor(near, far, renderTarget) {
|
|
super();
|
|
this.type = 'CubeCamera';
|
|
|
|
if (renderTarget.isWebGLCubeRenderTarget !== true) {
|
|
console.error('THREE.CubeCamera: The constructor now expects an instance of WebGLCubeRenderTarget as third parameter.');
|
|
return;
|
|
}
|
|
|
|
this.renderTarget = renderTarget;
|
|
const cameraPX = new PerspectiveCamera(fov, aspect, near, far);
|
|
cameraPX.layers = this.layers;
|
|
cameraPX.up.set(0, -1, 0);
|
|
cameraPX.lookAt(new Vector3(1, 0, 0));
|
|
this.add(cameraPX);
|
|
const cameraNX = new PerspectiveCamera(fov, aspect, near, far);
|
|
cameraNX.layers = this.layers;
|
|
cameraNX.up.set(0, -1, 0);
|
|
cameraNX.lookAt(new Vector3(-1, 0, 0));
|
|
this.add(cameraNX);
|
|
const cameraPY = new PerspectiveCamera(fov, aspect, near, far);
|
|
cameraPY.layers = this.layers;
|
|
cameraPY.up.set(0, 0, 1);
|
|
cameraPY.lookAt(new Vector3(0, 1, 0));
|
|
this.add(cameraPY);
|
|
const cameraNY = new PerspectiveCamera(fov, aspect, near, far);
|
|
cameraNY.layers = this.layers;
|
|
cameraNY.up.set(0, 0, -1);
|
|
cameraNY.lookAt(new Vector3(0, -1, 0));
|
|
this.add(cameraNY);
|
|
const cameraPZ = new PerspectiveCamera(fov, aspect, near, far);
|
|
cameraPZ.layers = this.layers;
|
|
cameraPZ.up.set(0, -1, 0);
|
|
cameraPZ.lookAt(new Vector3(0, 0, 1));
|
|
this.add(cameraPZ);
|
|
const cameraNZ = new PerspectiveCamera(fov, aspect, near, far);
|
|
cameraNZ.layers = this.layers;
|
|
cameraNZ.up.set(0, -1, 0);
|
|
cameraNZ.lookAt(new Vector3(0, 0, -1));
|
|
this.add(cameraNZ);
|
|
}
|
|
|
|
update(renderer, scene) {
|
|
if (this.parent === null) this.updateMatrixWorld();
|
|
const renderTarget = this.renderTarget;
|
|
const [cameraPX, cameraNX, cameraPY, cameraNY, cameraPZ, cameraNZ] = this.children;
|
|
const currentXrEnabled = renderer.xr.enabled;
|
|
const currentRenderTarget = renderer.getRenderTarget();
|
|
renderer.xr.enabled = false;
|
|
const generateMipmaps = renderTarget.texture.generateMipmaps;
|
|
renderTarget.texture.generateMipmaps = false;
|
|
renderer.setRenderTarget(renderTarget, 0);
|
|
renderer.render(scene, cameraPX);
|
|
renderer.setRenderTarget(renderTarget, 1);
|
|
renderer.render(scene, cameraNX);
|
|
renderer.setRenderTarget(renderTarget, 2);
|
|
renderer.render(scene, cameraPY);
|
|
renderer.setRenderTarget(renderTarget, 3);
|
|
renderer.render(scene, cameraNY);
|
|
renderer.setRenderTarget(renderTarget, 4);
|
|
renderer.render(scene, cameraPZ);
|
|
renderTarget.texture.generateMipmaps = generateMipmaps;
|
|
renderer.setRenderTarget(renderTarget, 5);
|
|
renderer.render(scene, cameraNZ);
|
|
renderer.setRenderTarget(currentRenderTarget);
|
|
renderer.xr.enabled = currentXrEnabled;
|
|
}
|
|
|
|
}
|
|
|
|
class CubeTexture extends Texture {
|
|
constructor(images, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding) {
|
|
images = images !== undefined ? images : [];
|
|
mapping = mapping !== undefined ? mapping : CubeReflectionMapping;
|
|
super(images, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding);
|
|
this.flipY = false;
|
|
}
|
|
|
|
get images() {
|
|
return this.image;
|
|
}
|
|
|
|
set images(value) {
|
|
this.image = value;
|
|
}
|
|
|
|
}
|
|
|
|
CubeTexture.prototype.isCubeTexture = true;
|
|
|
|
class WebGLCubeRenderTarget extends WebGLRenderTarget {
|
|
constructor(size, options, dummy) {
|
|
if (Number.isInteger(options)) {
|
|
console.warn('THREE.WebGLCubeRenderTarget: constructor signature is now WebGLCubeRenderTarget( size, options )');
|
|
options = dummy;
|
|
}
|
|
|
|
super(size, size, options);
|
|
options = options || {}; // By convention -- likely based on the RenderMan spec from the 1990's -- cube maps are specified by WebGL (and three.js)
|
|
// in a coordinate system in which positive-x is to the right when looking up the positive-z axis -- in other words,
|
|
// in a left-handed coordinate system. By continuing this convention, preexisting cube maps continued to render correctly.
|
|
// three.js uses a right-handed coordinate system. So environment maps used in three.js appear to have px and nx swapped
|
|
// and the flag isRenderTargetTexture controls this conversion. The flip is not required when using WebGLCubeRenderTarget.texture
|
|
// as a cube texture (this is detected when isRenderTargetTexture is set to true for cube textures).
|
|
|
|
this.texture = new CubeTexture(undefined, options.mapping, options.wrapS, options.wrapT, options.magFilter, options.minFilter, options.format, options.type, options.anisotropy, options.encoding);
|
|
this.texture.isRenderTargetTexture = true;
|
|
this.texture.generateMipmaps = options.generateMipmaps !== undefined ? options.generateMipmaps : false;
|
|
this.texture.minFilter = options.minFilter !== undefined ? options.minFilter : LinearFilter;
|
|
this.texture._needsFlipEnvMap = false;
|
|
}
|
|
|
|
fromEquirectangularTexture(renderer, texture) {
|
|
this.texture.type = texture.type;
|
|
this.texture.format = RGBAFormat; // see #18859
|
|
|
|
this.texture.encoding = texture.encoding;
|
|
this.texture.generateMipmaps = texture.generateMipmaps;
|
|
this.texture.minFilter = texture.minFilter;
|
|
this.texture.magFilter = texture.magFilter;
|
|
const shader = {
|
|
uniforms: {
|
|
tEquirect: {
|
|
value: null
|
|
}
|
|
},
|
|
vertexShader:
|
|
/* glsl */
|
|
`
|
|
|
|
varying vec3 vWorldDirection;
|
|
|
|
vec3 transformDirection( in vec3 dir, in mat4 matrix ) {
|
|
|
|
return normalize( ( matrix * vec4( dir, 0.0 ) ).xyz );
|
|
|
|
}
|
|
|
|
void main() {
|
|
|
|
vWorldDirection = transformDirection( position, modelMatrix );
|
|
|
|
#include <begin_vertex>
|
|
#include <project_vertex>
|
|
|
|
}
|
|
`,
|
|
fragmentShader:
|
|
/* glsl */
|
|
`
|
|
|
|
uniform sampler2D tEquirect;
|
|
|
|
varying vec3 vWorldDirection;
|
|
|
|
#include <common>
|
|
|
|
void main() {
|
|
|
|
vec3 direction = normalize( vWorldDirection );
|
|
|
|
vec2 sampleUV = equirectUv( direction );
|
|
|
|
gl_FragColor = texture2D( tEquirect, sampleUV );
|
|
|
|
}
|
|
`
|
|
};
|
|
const geometry = new BoxGeometry(5, 5, 5);
|
|
const material = new ShaderMaterial({
|
|
name: 'CubemapFromEquirect',
|
|
uniforms: cloneUniforms(shader.uniforms),
|
|
vertexShader: shader.vertexShader,
|
|
fragmentShader: shader.fragmentShader,
|
|
side: BackSide,
|
|
blending: NoBlending
|
|
});
|
|
material.uniforms.tEquirect.value = texture;
|
|
const mesh = new Mesh(geometry, material);
|
|
const currentMinFilter = texture.minFilter; // Avoid blurred poles
|
|
|
|
if (texture.minFilter === LinearMipmapLinearFilter) texture.minFilter = LinearFilter;
|
|
const camera = new CubeCamera(1, 10, this);
|
|
camera.update(renderer, mesh);
|
|
texture.minFilter = currentMinFilter;
|
|
mesh.geometry.dispose();
|
|
mesh.material.dispose();
|
|
return this;
|
|
}
|
|
|
|
clear(renderer, color, depth, stencil) {
|
|
const currentRenderTarget = renderer.getRenderTarget();
|
|
|
|
for (let i = 0; i < 6; i++) {
|
|
renderer.setRenderTarget(this, i);
|
|
renderer.clear(color, depth, stencil);
|
|
}
|
|
|
|
renderer.setRenderTarget(currentRenderTarget);
|
|
}
|
|
|
|
}
|
|
|
|
WebGLCubeRenderTarget.prototype.isWebGLCubeRenderTarget = true;
|
|
|
|
const _vector1 = /*@__PURE__*/new Vector3();
|
|
|
|
const _vector2 = /*@__PURE__*/new Vector3();
|
|
|
|
const _normalMatrix = /*@__PURE__*/new Matrix3();
|
|
|
|
class Plane {
|
|
constructor(normal = new Vector3(1, 0, 0), constant = 0) {
|
|
// normal is assumed to be normalized
|
|
this.normal = normal;
|
|
this.constant = constant;
|
|
}
|
|
|
|
set(normal, constant) {
|
|
this.normal.copy(normal);
|
|
this.constant = constant;
|
|
return this;
|
|
}
|
|
|
|
setComponents(x, y, z, w) {
|
|
this.normal.set(x, y, z);
|
|
this.constant = w;
|
|
return this;
|
|
}
|
|
|
|
setFromNormalAndCoplanarPoint(normal, point) {
|
|
this.normal.copy(normal);
|
|
this.constant = -point.dot(this.normal);
|
|
return this;
|
|
}
|
|
|
|
setFromCoplanarPoints(a, b, c) {
|
|
const normal = _vector1.subVectors(c, b).cross(_vector2.subVectors(a, b)).normalize(); // Q: should an error be thrown if normal is zero (e.g. degenerate plane)?
|
|
|
|
|
|
this.setFromNormalAndCoplanarPoint(normal, a);
|
|
return this;
|
|
}
|
|
|
|
copy(plane) {
|
|
this.normal.copy(plane.normal);
|
|
this.constant = plane.constant;
|
|
return this;
|
|
}
|
|
|
|
normalize() {
|
|
// Note: will lead to a divide by zero if the plane is invalid.
|
|
const inverseNormalLength = 1.0 / this.normal.length();
|
|
this.normal.multiplyScalar(inverseNormalLength);
|
|
this.constant *= inverseNormalLength;
|
|
return this;
|
|
}
|
|
|
|
negate() {
|
|
this.constant *= -1;
|
|
this.normal.negate();
|
|
return this;
|
|
}
|
|
|
|
distanceToPoint(point) {
|
|
return this.normal.dot(point) + this.constant;
|
|
}
|
|
|
|
distanceToSphere(sphere) {
|
|
return this.distanceToPoint(sphere.center) - sphere.radius;
|
|
}
|
|
|
|
projectPoint(point, target) {
|
|
return target.copy(this.normal).multiplyScalar(-this.distanceToPoint(point)).add(point);
|
|
}
|
|
|
|
intersectLine(line, target) {
|
|
const direction = line.delta(_vector1);
|
|
const denominator = this.normal.dot(direction);
|
|
|
|
if (denominator === 0) {
|
|
// line is coplanar, return origin
|
|
if (this.distanceToPoint(line.start) === 0) {
|
|
return target.copy(line.start);
|
|
} // Unsure if this is the correct method to handle this case.
|
|
|
|
|
|
return null;
|
|
}
|
|
|
|
const t = -(line.start.dot(this.normal) + this.constant) / denominator;
|
|
|
|
if (t < 0 || t > 1) {
|
|
return null;
|
|
}
|
|
|
|
return target.copy(direction).multiplyScalar(t).add(line.start);
|
|
}
|
|
|
|
intersectsLine(line) {
|
|
// Note: this tests if a line intersects the plane, not whether it (or its end-points) are coplanar with it.
|
|
const startSign = this.distanceToPoint(line.start);
|
|
const endSign = this.distanceToPoint(line.end);
|
|
return startSign < 0 && endSign > 0 || endSign < 0 && startSign > 0;
|
|
}
|
|
|
|
intersectsBox(box) {
|
|
return box.intersectsPlane(this);
|
|
}
|
|
|
|
intersectsSphere(sphere) {
|
|
return sphere.intersectsPlane(this);
|
|
}
|
|
|
|
coplanarPoint(target) {
|
|
return target.copy(this.normal).multiplyScalar(-this.constant);
|
|
}
|
|
|
|
applyMatrix4(matrix, optionalNormalMatrix) {
|
|
const normalMatrix = optionalNormalMatrix || _normalMatrix.getNormalMatrix(matrix);
|
|
|
|
const referencePoint = this.coplanarPoint(_vector1).applyMatrix4(matrix);
|
|
const normal = this.normal.applyMatrix3(normalMatrix).normalize();
|
|
this.constant = -referencePoint.dot(normal);
|
|
return this;
|
|
}
|
|
|
|
translate(offset) {
|
|
this.constant -= offset.dot(this.normal);
|
|
return this;
|
|
}
|
|
|
|
equals(plane) {
|
|
return plane.normal.equals(this.normal) && plane.constant === this.constant;
|
|
}
|
|
|
|
clone() {
|
|
return new this.constructor().copy(this);
|
|
}
|
|
|
|
}
|
|
|
|
Plane.prototype.isPlane = true;
|
|
|
|
const _sphere$2 = /*@__PURE__*/new Sphere();
|
|
|
|
const _vector$7 = /*@__PURE__*/new Vector3();
|
|
|
|
class Frustum {
|
|
constructor(p0 = new Plane(), p1 = new Plane(), p2 = new Plane(), p3 = new Plane(), p4 = new Plane(), p5 = new Plane()) {
|
|
this.planes = [p0, p1, p2, p3, p4, p5];
|
|
}
|
|
|
|
set(p0, p1, p2, p3, p4, p5) {
|
|
const planes = this.planes;
|
|
planes[0].copy(p0);
|
|
planes[1].copy(p1);
|
|
planes[2].copy(p2);
|
|
planes[3].copy(p3);
|
|
planes[4].copy(p4);
|
|
planes[5].copy(p5);
|
|
return this;
|
|
}
|
|
|
|
copy(frustum) {
|
|
const planes = this.planes;
|
|
|
|
for (let i = 0; i < 6; i++) {
|
|
planes[i].copy(frustum.planes[i]);
|
|
}
|
|
|
|
return this;
|
|
}
|
|
|
|
setFromProjectionMatrix(m) {
|
|
const planes = this.planes;
|
|
const me = m.elements;
|
|
const me0 = me[0],
|
|
me1 = me[1],
|
|
me2 = me[2],
|
|
me3 = me[3];
|
|
const me4 = me[4],
|
|
me5 = me[5],
|
|
me6 = me[6],
|
|
me7 = me[7];
|
|
const me8 = me[8],
|
|
me9 = me[9],
|
|
me10 = me[10],
|
|
me11 = me[11];
|
|
const me12 = me[12],
|
|
me13 = me[13],
|
|
me14 = me[14],
|
|
me15 = me[15];
|
|
planes[0].setComponents(me3 - me0, me7 - me4, me11 - me8, me15 - me12).normalize();
|
|
planes[1].setComponents(me3 + me0, me7 + me4, me11 + me8, me15 + me12).normalize();
|
|
planes[2].setComponents(me3 + me1, me7 + me5, me11 + me9, me15 + me13).normalize();
|
|
planes[3].setComponents(me3 - me1, me7 - me5, me11 - me9, me15 - me13).normalize();
|
|
planes[4].setComponents(me3 - me2, me7 - me6, me11 - me10, me15 - me14).normalize();
|
|
planes[5].setComponents(me3 + me2, me7 + me6, me11 + me10, me15 + me14).normalize();
|
|
return this;
|
|
}
|
|
|
|
intersectsObject(object) {
|
|
const geometry = object.geometry;
|
|
if (geometry.boundingSphere === null) geometry.computeBoundingSphere();
|
|
|
|
_sphere$2.copy(geometry.boundingSphere).applyMatrix4(object.matrixWorld);
|
|
|
|
return this.intersectsSphere(_sphere$2);
|
|
}
|
|
|
|
intersectsSprite(sprite) {
|
|
_sphere$2.center.set(0, 0, 0);
|
|
|
|
_sphere$2.radius = 0.7071067811865476;
|
|
|
|
_sphere$2.applyMatrix4(sprite.matrixWorld);
|
|
|
|
return this.intersectsSphere(_sphere$2);
|
|
}
|
|
|
|
intersectsSphere(sphere) {
|
|
const planes = this.planes;
|
|
const center = sphere.center;
|
|
const negRadius = -sphere.radius;
|
|
|
|
for (let i = 0; i < 6; i++) {
|
|
const distance = planes[i].distanceToPoint(center);
|
|
|
|
if (distance < negRadius) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
intersectsBox(box) {
|
|
const planes = this.planes;
|
|
|
|
for (let i = 0; i < 6; i++) {
|
|
const plane = planes[i]; // corner at max distance
|
|
|
|
_vector$7.x = plane.normal.x > 0 ? box.max.x : box.min.x;
|
|
_vector$7.y = plane.normal.y > 0 ? box.max.y : box.min.y;
|
|
_vector$7.z = plane.normal.z > 0 ? box.max.z : box.min.z;
|
|
|
|
if (plane.distanceToPoint(_vector$7) < 0) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
containsPoint(point) {
|
|
const planes = this.planes;
|
|
|
|
for (let i = 0; i < 6; i++) {
|
|
if (planes[i].distanceToPoint(point) < 0) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
clone() {
|
|
return new this.constructor().copy(this);
|
|
}
|
|
|
|
}
|
|
|
|
function WebGLAnimation() {
|
|
let context = null;
|
|
let isAnimating = false;
|
|
let animationLoop = null;
|
|
let requestId = null;
|
|
|
|
function onAnimationFrame(time, frame) {
|
|
animationLoop(time, frame);
|
|
requestId = context.requestAnimationFrame(onAnimationFrame);
|
|
}
|
|
|
|
return {
|
|
start: function () {
|
|
if (isAnimating === true) return;
|
|
if (animationLoop === null) return;
|
|
requestId = context.requestAnimationFrame(onAnimationFrame);
|
|
isAnimating = true;
|
|
},
|
|
stop: function () {
|
|
context.cancelAnimationFrame(requestId);
|
|
isAnimating = false;
|
|
},
|
|
setAnimationLoop: function (callback) {
|
|
animationLoop = callback;
|
|
},
|
|
setContext: function (value) {
|
|
context = value;
|
|
}
|
|
};
|
|
}
|
|
|
|
function WebGLAttributes(gl, capabilities) {
|
|
const isWebGL2 = capabilities.isWebGL2;
|
|
const buffers = new WeakMap();
|
|
|
|
function createBuffer(attribute, bufferType) {
|
|
const array = attribute.array;
|
|
const usage = attribute.usage;
|
|
const buffer = gl.createBuffer();
|
|
gl.bindBuffer(bufferType, buffer);
|
|
gl.bufferData(bufferType, array, usage);
|
|
attribute.onUploadCallback();
|
|
let type = gl.FLOAT;
|
|
|
|
if (array instanceof Float32Array) {
|
|
type = gl.FLOAT;
|
|
} else if (array instanceof Float64Array) {
|
|
console.warn('THREE.WebGLAttributes: Unsupported data buffer format: Float64Array.');
|
|
} else if (array instanceof Uint16Array) {
|
|
if (attribute.isFloat16BufferAttribute) {
|
|
if (isWebGL2) {
|
|
type = gl.HALF_FLOAT;
|
|
} else {
|
|
console.warn('THREE.WebGLAttributes: Usage of Float16BufferAttribute requires WebGL2.');
|
|
}
|
|
} else {
|
|
type = gl.UNSIGNED_SHORT;
|
|
}
|
|
} else if (array instanceof Int16Array) {
|
|
type = gl.SHORT;
|
|
} else if (array instanceof Uint32Array) {
|
|
type = gl.UNSIGNED_INT;
|
|
} else if (array instanceof Int32Array) {
|
|
type = gl.INT;
|
|
} else if (array instanceof Int8Array) {
|
|
type = gl.BYTE;
|
|
} else if (array instanceof Uint8Array) {
|
|
type = gl.UNSIGNED_BYTE;
|
|
} else if (array instanceof Uint8ClampedArray) {
|
|
type = gl.UNSIGNED_BYTE;
|
|
}
|
|
|
|
return {
|
|
buffer: buffer,
|
|
type: type,
|
|
bytesPerElement: array.BYTES_PER_ELEMENT,
|
|
version: attribute.version
|
|
};
|
|
}
|
|
|
|
function updateBuffer(buffer, attribute, bufferType) {
|
|
const array = attribute.array;
|
|
const updateRange = attribute.updateRange;
|
|
gl.bindBuffer(bufferType, buffer);
|
|
|
|
if (updateRange.count === -1) {
|
|
// Not using update ranges
|
|
gl.bufferSubData(bufferType, 0, array);
|
|
} else {
|
|
if (isWebGL2) {
|
|
gl.bufferSubData(bufferType, updateRange.offset * array.BYTES_PER_ELEMENT, array, updateRange.offset, updateRange.count);
|
|
} else {
|
|
gl.bufferSubData(bufferType, updateRange.offset * array.BYTES_PER_ELEMENT, array.subarray(updateRange.offset, updateRange.offset + updateRange.count));
|
|
}
|
|
|
|
updateRange.count = -1; // reset range
|
|
}
|
|
} //
|
|
|
|
|
|
function get(attribute) {
|
|
if (attribute.isInterleavedBufferAttribute) attribute = attribute.data;
|
|
return buffers.get(attribute);
|
|
}
|
|
|
|
function remove(attribute) {
|
|
if (attribute.isInterleavedBufferAttribute) attribute = attribute.data;
|
|
const data = buffers.get(attribute);
|
|
|
|
if (data) {
|
|
gl.deleteBuffer(data.buffer);
|
|
buffers.delete(attribute);
|
|
}
|
|
}
|
|
|
|
function update(attribute, bufferType) {
|
|
if (attribute.isGLBufferAttribute) {
|
|
const cached = buffers.get(attribute);
|
|
|
|
if (!cached || cached.version < attribute.version) {
|
|
buffers.set(attribute, {
|
|
buffer: attribute.buffer,
|
|
type: attribute.type,
|
|
bytesPerElement: attribute.elementSize,
|
|
version: attribute.version
|
|
});
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
if (attribute.isInterleavedBufferAttribute) attribute = attribute.data;
|
|
const data = buffers.get(attribute);
|
|
|
|
if (data === undefined) {
|
|
buffers.set(attribute, createBuffer(attribute, bufferType));
|
|
} else if (data.version < attribute.version) {
|
|
updateBuffer(data.buffer, attribute, bufferType);
|
|
data.version = attribute.version;
|
|
}
|
|
}
|
|
|
|
return {
|
|
get: get,
|
|
remove: remove,
|
|
update: update
|
|
};
|
|
}
|
|
|
|
class PlaneGeometry extends BufferGeometry {
|
|
constructor(width = 1, height = 1, widthSegments = 1, heightSegments = 1) {
|
|
super();
|
|
this.type = 'PlaneGeometry';
|
|
this.parameters = {
|
|
width: width,
|
|
height: height,
|
|
widthSegments: widthSegments,
|
|
heightSegments: heightSegments
|
|
};
|
|
const width_half = width / 2;
|
|
const height_half = height / 2;
|
|
const gridX = Math.floor(widthSegments);
|
|
const gridY = Math.floor(heightSegments);
|
|
const gridX1 = gridX + 1;
|
|
const gridY1 = gridY + 1;
|
|
const segment_width = width / gridX;
|
|
const segment_height = height / gridY; //
|
|
|
|
const indices = [];
|
|
const vertices = [];
|
|
const normals = [];
|
|
const uvs = [];
|
|
|
|
for (let iy = 0; iy < gridY1; iy++) {
|
|
const y = iy * segment_height - height_half;
|
|
|
|
for (let ix = 0; ix < gridX1; ix++) {
|
|
const x = ix * segment_width - width_half;
|
|
vertices.push(x, -y, 0);
|
|
normals.push(0, 0, 1);
|
|
uvs.push(ix / gridX);
|
|
uvs.push(1 - iy / gridY);
|
|
}
|
|
}
|
|
|
|
for (let iy = 0; iy < gridY; iy++) {
|
|
for (let ix = 0; ix < gridX; ix++) {
|
|
const a = ix + gridX1 * iy;
|
|
const b = ix + gridX1 * (iy + 1);
|
|
const c = ix + 1 + gridX1 * (iy + 1);
|
|
const d = ix + 1 + gridX1 * iy;
|
|
indices.push(a, b, d);
|
|
indices.push(b, c, d);
|
|
}
|
|
}
|
|
|
|
this.setIndex(indices);
|
|
this.setAttribute('position', new Float32BufferAttribute(vertices, 3));
|
|
this.setAttribute('normal', new Float32BufferAttribute(normals, 3));
|
|
this.setAttribute('uv', new Float32BufferAttribute(uvs, 2));
|
|
}
|
|
|
|
static fromJSON(data) {
|
|
return new PlaneGeometry(data.width, data.height, data.widthSegments, data.heightSegments);
|
|
}
|
|
|
|
}
|
|
|
|
var alphamap_fragment = "#ifdef USE_ALPHAMAP\n\tdiffuseColor.a *= texture2D( alphaMap, vUv ).g;\n#endif";
|
|
|
|
var alphamap_pars_fragment = "#ifdef USE_ALPHAMAP\n\tuniform sampler2D alphaMap;\n#endif";
|
|
|
|
var alphatest_fragment = "#ifdef USE_ALPHATEST\n\tif ( diffuseColor.a < alphaTest ) discard;\n#endif";
|
|
|
|
var alphatest_pars_fragment = "#ifdef USE_ALPHATEST\n\tuniform float alphaTest;\n#endif";
|
|
|
|
var aomap_fragment = "#ifdef USE_AOMAP\n\tfloat ambientOcclusion = ( texture2D( aoMap, vUv2 ).r - 1.0 ) * aoMapIntensity + 1.0;\n\treflectedLight.indirectDiffuse *= ambientOcclusion;\n\t#if defined( USE_ENVMAP ) && defined( STANDARD )\n\t\tfloat dotNV = saturate( dot( geometry.normal, geometry.viewDir ) );\n\t\treflectedLight.indirectSpecular *= computeSpecularOcclusion( dotNV, ambientOcclusion, material.roughness );\n\t#endif\n#endif";
|
|
|
|
var aomap_pars_fragment = "#ifdef USE_AOMAP\n\tuniform sampler2D aoMap;\n\tuniform float aoMapIntensity;\n#endif";
|
|
|
|
var begin_vertex = "vec3 transformed = vec3( position );";
|
|
|
|
var beginnormal_vertex = "vec3 objectNormal = vec3( normal );\n#ifdef USE_TANGENT\n\tvec3 objectTangent = vec3( tangent.xyz );\n#endif";
|
|
|
|
var bsdfs = "vec3 BRDF_Lambert( const in vec3 diffuseColor ) {\n\treturn RECIPROCAL_PI * diffuseColor;\n}\nvec3 F_Schlick( const in vec3 f0, const in float f90, const in float dotVH ) {\n\tfloat fresnel = exp2( ( - 5.55473 * dotVH - 6.98316 ) * dotVH );\n\treturn f0 * ( 1.0 - fresnel ) + ( f90 * fresnel );\n}\nfloat V_GGX_SmithCorrelated( const in float alpha, const in float dotNL, const in float dotNV ) {\n\tfloat a2 = pow2( alpha );\n\tfloat gv = dotNL * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNV ) );\n\tfloat gl = dotNV * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNL ) );\n\treturn 0.5 / max( gv + gl, EPSILON );\n}\nfloat D_GGX( const in float alpha, const in float dotNH ) {\n\tfloat a2 = pow2( alpha );\n\tfloat denom = pow2( dotNH ) * ( a2 - 1.0 ) + 1.0;\n\treturn RECIPROCAL_PI * a2 / pow2( denom );\n}\nvec3 BRDF_GGX( const in vec3 lightDir, const in vec3 viewDir, const in vec3 normal, const in vec3 f0, const in float f90, const in float roughness ) {\n\tfloat alpha = pow2( roughness );\n\tvec3 halfDir = normalize( lightDir + viewDir );\n\tfloat dotNL = saturate( dot( normal, lightDir ) );\n\tfloat dotNV = saturate( dot( normal, viewDir ) );\n\tfloat dotNH = saturate( dot( normal, halfDir ) );\n\tfloat dotVH = saturate( dot( viewDir, halfDir ) );\n\tvec3 F = F_Schlick( f0, f90, dotVH );\n\tfloat V = V_GGX_SmithCorrelated( alpha, dotNL, dotNV );\n\tfloat D = D_GGX( alpha, dotNH );\n\treturn F * ( V * D );\n}\nvec2 LTC_Uv( const in vec3 N, const in vec3 V, const in float roughness ) {\n\tconst float LUT_SIZE = 64.0;\n\tconst float LUT_SCALE = ( LUT_SIZE - 1.0 ) / LUT_SIZE;\n\tconst float LUT_BIAS = 0.5 / LUT_SIZE;\n\tfloat dotNV = saturate( dot( N, V ) );\n\tvec2 uv = vec2( roughness, sqrt( 1.0 - dotNV ) );\n\tuv = uv * LUT_SCALE + LUT_BIAS;\n\treturn uv;\n}\nfloat LTC_ClippedSphereFormFactor( const in vec3 f ) {\n\tfloat l = length( f );\n\treturn max( ( l * l + f.z ) / ( l + 1.0 ), 0.0 );\n}\nvec3 LTC_EdgeVectorFormFactor( const in vec3 v1, const in vec3 v2 ) {\n\tfloat x = dot( v1, v2 );\n\tfloat y = abs( x );\n\tfloat a = 0.8543985 + ( 0.4965155 + 0.0145206 * y ) * y;\n\tfloat b = 3.4175940 + ( 4.1616724 + y ) * y;\n\tfloat v = a / b;\n\tfloat theta_sintheta = ( x > 0.0 ) ? v : 0.5 * inversesqrt( max( 1.0 - x * x, 1e-7 ) ) - v;\n\treturn cross( v1, v2 ) * theta_sintheta;\n}\nvec3 LTC_Evaluate( const in vec3 N, const in vec3 V, const in vec3 P, const in mat3 mInv, const in vec3 rectCoords[ 4 ] ) {\n\tvec3 v1 = rectCoords[ 1 ] - rectCoords[ 0 ];\n\tvec3 v2 = rectCoords[ 3 ] - rectCoords[ 0 ];\n\tvec3 lightNormal = cross( v1, v2 );\n\tif( dot( lightNormal, P - rectCoords[ 0 ] ) < 0.0 ) return vec3( 0.0 );\n\tvec3 T1, T2;\n\tT1 = normalize( V - N * dot( V, N ) );\n\tT2 = - cross( N, T1 );\n\tmat3 mat = mInv * transposeMat3( mat3( T1, T2, N ) );\n\tvec3 coords[ 4 ];\n\tcoords[ 0 ] = mat * ( rectCoords[ 0 ] - P );\n\tcoords[ 1 ] = mat * ( rectCoords[ 1 ] - P );\n\tcoords[ 2 ] = mat * ( rectCoords[ 2 ] - P );\n\tcoords[ 3 ] = mat * ( rectCoords[ 3 ] - P );\n\tcoords[ 0 ] = normalize( coords[ 0 ] );\n\tcoords[ 1 ] = normalize( coords[ 1 ] );\n\tcoords[ 2 ] = normalize( coords[ 2 ] );\n\tcoords[ 3 ] = normalize( coords[ 3 ] );\n\tvec3 vectorFormFactor = vec3( 0.0 );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 0 ], coords[ 1 ] );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 1 ], coords[ 2 ] );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 2 ], coords[ 3 ] );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 3 ], coords[ 0 ] );\n\tfloat result = LTC_ClippedSphereFormFactor( vectorFormFactor );\n\treturn vec3( result );\n}\nfloat G_BlinnPhong_Implicit( ) {\n\treturn 0.25;\n}\nfloat D_BlinnPhong( const in float shininess, const in float dotNH ) {\n\treturn RECIPROCAL_PI * ( shininess * 0.5 + 1.0 ) * pow( dotNH, shininess );\n}\nvec3 BRDF_BlinnPhong( const in vec3 lightDir, const in vec3 viewDir, const in vec3 normal, const in vec3 specularColor, const in float shininess ) {\n\tvec3 halfDir = normalize( lightDir + viewDir );\n\tfloat dotNH = saturate( dot( normal, halfDir ) );\n\tfloat dotVH = saturate( dot( viewDir, halfDir ) );\n\tvec3 F = F_Schlick( specularColor, 1.0, dotVH );\n\tfloat G = G_BlinnPhong_Implicit( );\n\tfloat D = D_BlinnPhong( shininess, dotNH );\n\treturn F * ( G * D );\n}\n#if defined( USE_SHEEN )\nfloat D_Charlie( float roughness, float dotNH ) {\n\tfloat alpha = pow2( roughness );\n\tfloat invAlpha = 1.0 / alpha;\n\tfloat cos2h = dotNH * dotNH;\n\tfloat sin2h = max( 1.0 - cos2h, 0.0078125 );\n\treturn ( 2.0 + invAlpha ) * pow( sin2h, invAlpha * 0.5 ) / ( 2.0 * PI );\n}\nfloat V_Neubelt( float dotNV, float dotNL ) {\n\treturn saturate( 1.0 / ( 4.0 * ( dotNL + dotNV - dotNL * dotNV ) ) );\n}\nvec3 BRDF_Sheen( const in vec3 lightDir, const in vec3 viewDir, const in vec3 normal, vec3 sheenTint, const in float sheenRoughness ) {\n\tvec3 halfDir = normalize( lightDir + viewDir );\n\tfloat dotNL = saturate( dot( normal, lightDir ) );\n\tfloat dotNV = saturate( dot( normal, viewDir ) );\n\tfloat dotNH = saturate( dot( normal, halfDir ) );\n\tfloat D = D_Charlie( sheenRoughness, dotNH );\n\tfloat V = V_Neubelt( dotNV, dotNL );\n\treturn sheenTint * ( D * V );\n}\n#endif";
|
|
|
|
var bumpmap_pars_fragment = "#ifdef USE_BUMPMAP\n\tuniform sampler2D bumpMap;\n\tuniform float bumpScale;\n\tvec2 dHdxy_fwd() {\n\t\tvec2 dSTdx = dFdx( vUv );\n\t\tvec2 dSTdy = dFdy( vUv );\n\t\tfloat Hll = bumpScale * texture2D( bumpMap, vUv ).x;\n\t\tfloat dBx = bumpScale * texture2D( bumpMap, vUv + dSTdx ).x - Hll;\n\t\tfloat dBy = bumpScale * texture2D( bumpMap, vUv + dSTdy ).x - Hll;\n\t\treturn vec2( dBx, dBy );\n\t}\n\tvec3 perturbNormalArb( vec3 surf_pos, vec3 surf_norm, vec2 dHdxy, float faceDirection ) {\n\t\tvec3 vSigmaX = vec3( dFdx( surf_pos.x ), dFdx( surf_pos.y ), dFdx( surf_pos.z ) );\n\t\tvec3 vSigmaY = vec3( dFdy( surf_pos.x ), dFdy( surf_pos.y ), dFdy( surf_pos.z ) );\n\t\tvec3 vN = surf_norm;\n\t\tvec3 R1 = cross( vSigmaY, vN );\n\t\tvec3 R2 = cross( vN, vSigmaX );\n\t\tfloat fDet = dot( vSigmaX, R1 ) * faceDirection;\n\t\tvec3 vGrad = sign( fDet ) * ( dHdxy.x * R1 + dHdxy.y * R2 );\n\t\treturn normalize( abs( fDet ) * surf_norm - vGrad );\n\t}\n#endif";
|
|
|
|
var clipping_planes_fragment = "#if NUM_CLIPPING_PLANES > 0\n\tvec4 plane;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < UNION_CLIPPING_PLANES; i ++ ) {\n\t\tplane = clippingPlanes[ i ];\n\t\tif ( dot( vClipPosition, plane.xyz ) > plane.w ) discard;\n\t}\n\t#pragma unroll_loop_end\n\t#if UNION_CLIPPING_PLANES < NUM_CLIPPING_PLANES\n\t\tbool clipped = true;\n\t\t#pragma unroll_loop_start\n\t\tfor ( int i = UNION_CLIPPING_PLANES; i < NUM_CLIPPING_PLANES; i ++ ) {\n\t\t\tplane = clippingPlanes[ i ];\n\t\t\tclipped = ( dot( vClipPosition, plane.xyz ) > plane.w ) && clipped;\n\t\t}\n\t\t#pragma unroll_loop_end\n\t\tif ( clipped ) discard;\n\t#endif\n#endif";
|
|
|
|
var clipping_planes_pars_fragment = "#if NUM_CLIPPING_PLANES > 0\n\tvarying vec3 vClipPosition;\n\tuniform vec4 clippingPlanes[ NUM_CLIPPING_PLANES ];\n#endif";
|
|
|
|
var clipping_planes_pars_vertex = "#if NUM_CLIPPING_PLANES > 0\n\tvarying vec3 vClipPosition;\n#endif";
|
|
|
|
var clipping_planes_vertex = "#if NUM_CLIPPING_PLANES > 0\n\tvClipPosition = - mvPosition.xyz;\n#endif";
|
|
|
|
var color_fragment = "#if defined( USE_COLOR_ALPHA )\n\tdiffuseColor *= vColor;\n#elif defined( USE_COLOR )\n\tdiffuseColor.rgb *= vColor;\n#endif";
|
|
|
|
var color_pars_fragment = "#if defined( USE_COLOR_ALPHA )\n\tvarying vec4 vColor;\n#elif defined( USE_COLOR )\n\tvarying vec3 vColor;\n#endif";
|
|
|
|
var color_pars_vertex = "#if defined( USE_COLOR_ALPHA )\n\tvarying vec4 vColor;\n#elif defined( USE_COLOR ) || defined( USE_INSTANCING_COLOR )\n\tvarying vec3 vColor;\n#endif";
|
|
|
|
var color_vertex = "#if defined( USE_COLOR_ALPHA )\n\tvColor = vec4( 1.0 );\n#elif defined( USE_COLOR ) || defined( USE_INSTANCING_COLOR )\n\tvColor = vec3( 1.0 );\n#endif\n#ifdef USE_COLOR\n\tvColor *= color;\n#endif\n#ifdef USE_INSTANCING_COLOR\n\tvColor.xyz *= instanceColor.xyz;\n#endif";
|
|
|
|
var common = "#define PI 3.141592653589793\n#define PI2 6.283185307179586\n#define PI_HALF 1.5707963267948966\n#define RECIPROCAL_PI 0.3183098861837907\n#define RECIPROCAL_PI2 0.15915494309189535\n#define EPSILON 1e-6\n#ifndef saturate\n#define saturate( a ) clamp( a, 0.0, 1.0 )\n#endif\n#define whiteComplement( a ) ( 1.0 - saturate( a ) )\nfloat pow2( const in float x ) { return x*x; }\nfloat pow3( const in float x ) { return x*x*x; }\nfloat pow4( const in float x ) { float x2 = x*x; return x2*x2; }\nfloat max3( const in vec3 v ) { return max( max( v.x, v.y ), v.z ); }\nfloat average( const in vec3 color ) { return dot( color, vec3( 0.3333 ) ); }\nhighp float rand( const in vec2 uv ) {\n\tconst highp float a = 12.9898, b = 78.233, c = 43758.5453;\n\thighp float dt = dot( uv.xy, vec2( a,b ) ), sn = mod( dt, PI );\n\treturn fract( sin( sn ) * c );\n}\n#ifdef HIGH_PRECISION\n\tfloat precisionSafeLength( vec3 v ) { return length( v ); }\n#else\n\tfloat precisionSafeLength( vec3 v ) {\n\t\tfloat maxComponent = max3( abs( v ) );\n\t\treturn length( v / maxComponent ) * maxComponent;\n\t}\n#endif\nstruct IncidentLight {\n\tvec3 color;\n\tvec3 direction;\n\tbool visible;\n};\nstruct ReflectedLight {\n\tvec3 directDiffuse;\n\tvec3 directSpecular;\n\tvec3 indirectDiffuse;\n\tvec3 indirectSpecular;\n};\nstruct GeometricContext {\n\tvec3 position;\n\tvec3 normal;\n\tvec3 viewDir;\n#ifdef USE_CLEARCOAT\n\tvec3 clearcoatNormal;\n#endif\n};\nvec3 transformDirection( in vec3 dir, in mat4 matrix ) {\n\treturn normalize( ( matrix * vec4( dir, 0.0 ) ).xyz );\n}\nvec3 inverseTransformDirection( in vec3 dir, in mat4 matrix ) {\n\treturn normalize( ( vec4( dir, 0.0 ) * matrix ).xyz );\n}\nmat3 transposeMat3( const in mat3 m ) {\n\tmat3 tmp;\n\ttmp[ 0 ] = vec3( m[ 0 ].x, m[ 1 ].x, m[ 2 ].x );\n\ttmp[ 1 ] = vec3( m[ 0 ].y, m[ 1 ].y, m[ 2 ].y );\n\ttmp[ 2 ] = vec3( m[ 0 ].z, m[ 1 ].z, m[ 2 ].z );\n\treturn tmp;\n}\nfloat linearToRelativeLuminance( const in vec3 color ) {\n\tvec3 weights = vec3( 0.2126, 0.7152, 0.0722 );\n\treturn dot( weights, color.rgb );\n}\nbool isPerspectiveMatrix( mat4 m ) {\n\treturn m[ 2 ][ 3 ] == - 1.0;\n}\nvec2 equirectUv( in vec3 dir ) {\n\tfloat u = atan( dir.z, dir.x ) * RECIPROCAL_PI2 + 0.5;\n\tfloat v = asin( clamp( dir.y, - 1.0, 1.0 ) ) * RECIPROCAL_PI + 0.5;\n\treturn vec2( u, v );\n}";
|
|
|
|
var cube_uv_reflection_fragment = "#ifdef ENVMAP_TYPE_CUBE_UV\n\t#define cubeUV_maxMipLevel 8.0\n\t#define cubeUV_minMipLevel 4.0\n\t#define cubeUV_maxTileSize 256.0\n\t#define cubeUV_minTileSize 16.0\n\tfloat getFace( vec3 direction ) {\n\t\tvec3 absDirection = abs( direction );\n\t\tfloat face = - 1.0;\n\t\tif ( absDirection.x > absDirection.z ) {\n\t\t\tif ( absDirection.x > absDirection.y )\n\t\t\t\tface = direction.x > 0.0 ? 0.0 : 3.0;\n\t\t\telse\n\t\t\t\tface = direction.y > 0.0 ? 1.0 : 4.0;\n\t\t} else {\n\t\t\tif ( absDirection.z > absDirection.y )\n\t\t\t\tface = direction.z > 0.0 ? 2.0 : 5.0;\n\t\t\telse\n\t\t\t\tface = direction.y > 0.0 ? 1.0 : 4.0;\n\t\t}\n\t\treturn face;\n\t}\n\tvec2 getUV( vec3 direction, float face ) {\n\t\tvec2 uv;\n\t\tif ( face == 0.0 ) {\n\t\t\tuv = vec2( direction.z, direction.y ) / abs( direction.x );\n\t\t} else if ( face == 1.0 ) {\n\t\t\tuv = vec2( - direction.x, - direction.z ) / abs( direction.y );\n\t\t} else if ( face == 2.0 ) {\n\t\t\tuv = vec2( - direction.x, direction.y ) / abs( direction.z );\n\t\t} else if ( face == 3.0 ) {\n\t\t\tuv = vec2( - direction.z, direction.y ) / abs( direction.x );\n\t\t} else if ( face == 4.0 ) {\n\t\t\tuv = vec2( - direction.x, direction.z ) / abs( direction.y );\n\t\t} else {\n\t\t\tuv = vec2( direction.x, direction.y ) / abs( direction.z );\n\t\t}\n\t\treturn 0.5 * ( uv + 1.0 );\n\t}\n\tvec3 bilinearCubeUV( sampler2D envMap, vec3 direction, float mipInt ) {\n\t\tfloat face = getFace( direction );\n\t\tfloat filterInt = max( cubeUV_minMipLevel - mipInt, 0.0 );\n\t\tmipInt = max( mipInt, cubeUV_minMipLevel );\n\t\tfloat faceSize = exp2( mipInt );\n\t\tfloat texelSize = 1.0 / ( 3.0 * cubeUV_maxTileSize );\n\t\tvec2 uv = getUV( direction, face ) * ( faceSize - 1.0 );\n\t\tvec2 f = fract( uv );\n\t\tuv += 0.5 - f;\n\t\tif ( face > 2.0 ) {\n\t\t\tuv.y += faceSize;\n\t\t\tface -= 3.0;\n\t\t}\n\t\tuv.x += face * faceSize;\n\t\tif ( mipInt < cubeUV_maxMipLevel ) {\n\t\t\tuv.y += 2.0 * cubeUV_maxTileSize;\n\t\t}\n\t\tuv.y += filterInt * 2.0 * cubeUV_minTileSize;\n\t\tuv.x += 3.0 * max( 0.0, cubeUV_maxTileSize - 2.0 * faceSize );\n\t\tuv *= texelSize;\n\t\tvec3 tl = envMapTexelToLinear( texture2D( envMap, uv ) ).rgb;\n\t\tuv.x += texelSize;\n\t\tvec3 tr = envMapTexelToLinear( texture2D( envMap, uv ) ).rgb;\n\t\tuv.y += texelSize;\n\t\tvec3 br = envMapTexelToLinear( texture2D( envMap, uv ) ).rgb;\n\t\tuv.x -= texelSize;\n\t\tvec3 bl = envMapTexelToLinear( texture2D( envMap, uv ) ).rgb;\n\t\tvec3 tm = mix( tl, tr, f.x );\n\t\tvec3 bm = mix( bl, br, f.x );\n\t\treturn mix( tm, bm, f.y );\n\t}\n\t#define r0 1.0\n\t#define v0 0.339\n\t#define m0 - 2.0\n\t#define r1 0.8\n\t#define v1 0.276\n\t#define m1 - 1.0\n\t#define r4 0.4\n\t#define v4 0.046\n\t#define m4 2.0\n\t#define r5 0.305\n\t#define v5 0.016\n\t#define m5 3.0\n\t#define r6 0.21\n\t#define v6 0.0038\n\t#define m6 4.0\n\tfloat roughnessToMip( float roughness ) {\n\t\tfloat mip = 0.0;\n\t\tif ( roughness >= r1 ) {\n\t\t\tmip = ( r0 - roughness ) * ( m1 - m0 ) / ( r0 - r1 ) + m0;\n\t\t} else if ( roughness >= r4 ) {\n\t\t\tmip = ( r1 - roughness ) * ( m4 - m1 ) / ( r1 - r4 ) + m1;\n\t\t} else if ( roughness >= r5 ) {\n\t\t\tmip = ( r4 - roughness ) * ( m5 - m4 ) / ( r4 - r5 ) + m4;\n\t\t} else if ( roughness >= r6 ) {\n\t\t\tmip = ( r5 - roughness ) * ( m6 - m5 ) / ( r5 - r6 ) + m5;\n\t\t} else {\n\t\t\tmip = - 2.0 * log2( 1.16 * roughness );\t\t}\n\t\treturn mip;\n\t}\n\tvec4 textureCubeUV( sampler2D envMap, vec3 sampleDir, float roughness ) {\n\t\tfloat mip = clamp( roughnessToMip( roughness ), m0, cubeUV_maxMipLevel );\n\t\tfloat mipF = fract( mip );\n\t\tfloat mipInt = floor( mip );\n\t\tvec3 color0 = bilinearCubeUV( envMap, sampleDir, mipInt );\n\t\tif ( mipF == 0.0 ) {\n\t\t\treturn vec4( color0, 1.0 );\n\t\t} else {\n\t\t\tvec3 color1 = bilinearCubeUV( envMap, sampleDir, mipInt + 1.0 );\n\t\t\treturn vec4( mix( color0, color1, mipF ), 1.0 );\n\t\t}\n\t}\n#endif";
|
|
|
|
var defaultnormal_vertex = "vec3 transformedNormal = objectNormal;\n#ifdef USE_INSTANCING\n\tmat3 m = mat3( instanceMatrix );\n\ttransformedNormal /= vec3( dot( m[ 0 ], m[ 0 ] ), dot( m[ 1 ], m[ 1 ] ), dot( m[ 2 ], m[ 2 ] ) );\n\ttransformedNormal = m * transformedNormal;\n#endif\ntransformedNormal = normalMatrix * transformedNormal;\n#ifdef FLIP_SIDED\n\ttransformedNormal = - transformedNormal;\n#endif\n#ifdef USE_TANGENT\n\tvec3 transformedTangent = ( modelViewMatrix * vec4( objectTangent, 0.0 ) ).xyz;\n\t#ifdef FLIP_SIDED\n\t\ttransformedTangent = - transformedTangent;\n\t#endif\n#endif";
|
|
|
|
var displacementmap_pars_vertex = "#ifdef USE_DISPLACEMENTMAP\n\tuniform sampler2D displacementMap;\n\tuniform float displacementScale;\n\tuniform float displacementBias;\n#endif";
|
|
|
|
var displacementmap_vertex = "#ifdef USE_DISPLACEMENTMAP\n\ttransformed += normalize( objectNormal ) * ( texture2D( displacementMap, vUv ).x * displacementScale + displacementBias );\n#endif";
|
|
|
|
var emissivemap_fragment = "#ifdef USE_EMISSIVEMAP\n\tvec4 emissiveColor = texture2D( emissiveMap, vUv );\n\temissiveColor.rgb = emissiveMapTexelToLinear( emissiveColor ).rgb;\n\ttotalEmissiveRadiance *= emissiveColor.rgb;\n#endif";
|
|
|
|
var emissivemap_pars_fragment = "#ifdef USE_EMISSIVEMAP\n\tuniform sampler2D emissiveMap;\n#endif";
|
|
|
|
var encodings_fragment = "gl_FragColor = linearToOutputTexel( gl_FragColor );";
|
|
|
|
var encodings_pars_fragment = "\nvec4 LinearToLinear( in vec4 value ) {\n\treturn value;\n}\nvec4 GammaToLinear( in vec4 value, in float gammaFactor ) {\n\treturn vec4( pow( value.rgb, vec3( gammaFactor ) ), value.a );\n}\nvec4 LinearToGamma( in vec4 value, in float gammaFactor ) {\n\treturn vec4( pow( value.rgb, vec3( 1.0 / gammaFactor ) ), value.a );\n}\nvec4 sRGBToLinear( in vec4 value ) {\n\treturn vec4( mix( pow( value.rgb * 0.9478672986 + vec3( 0.0521327014 ), vec3( 2.4 ) ), value.rgb * 0.0773993808, vec3( lessThanEqual( value.rgb, vec3( 0.04045 ) ) ) ), value.a );\n}\nvec4 LinearTosRGB( in vec4 value ) {\n\treturn vec4( mix( pow( value.rgb, vec3( 0.41666 ) ) * 1.055 - vec3( 0.055 ), value.rgb * 12.92, vec3( lessThanEqual( value.rgb, vec3( 0.0031308 ) ) ) ), value.a );\n}\nvec4 RGBEToLinear( in vec4 value ) {\n\treturn vec4( value.rgb * exp2( value.a * 255.0 - 128.0 ), 1.0 );\n}\nvec4 LinearToRGBE( in vec4 value ) {\n\tfloat maxComponent = max( max( value.r, value.g ), value.b );\n\tfloat fExp = clamp( ceil( log2( maxComponent ) ), -128.0, 127.0 );\n\treturn vec4( value.rgb / exp2( fExp ), ( fExp + 128.0 ) / 255.0 );\n}\nvec4 RGBMToLinear( in vec4 value, in float maxRange ) {\n\treturn vec4( value.rgb * value.a * maxRange, 1.0 );\n}\nvec4 LinearToRGBM( in vec4 value, in float maxRange ) {\n\tfloat maxRGB = max( value.r, max( value.g, value.b ) );\n\tfloat M = clamp( maxRGB / maxRange, 0.0, 1.0 );\n\tM = ceil( M * 255.0 ) / 255.0;\n\treturn vec4( value.rgb / ( M * maxRange ), M );\n}\nvec4 RGBDToLinear( in vec4 value, in float maxRange ) {\n\treturn vec4( value.rgb * ( ( maxRange / 255.0 ) / value.a ), 1.0 );\n}\nvec4 LinearToRGBD( in vec4 value, in float maxRange ) {\n\tfloat maxRGB = max( value.r, max( value.g, value.b ) );\n\tfloat D = max( maxRange / maxRGB, 1.0 );\n\tD = clamp( floor( D ) / 255.0, 0.0, 1.0 );\n\treturn vec4( value.rgb * ( D * ( 255.0 / maxRange ) ), D );\n}\nconst mat3 cLogLuvM = mat3( 0.2209, 0.3390, 0.4184, 0.1138, 0.6780, 0.7319, 0.0102, 0.1130, 0.2969 );\nvec4 LinearToLogLuv( in vec4 value ) {\n\tvec3 Xp_Y_XYZp = cLogLuvM * value.rgb;\n\tXp_Y_XYZp = max( Xp_Y_XYZp, vec3( 1e-6, 1e-6, 1e-6 ) );\n\tvec4 vResult;\n\tvResult.xy = Xp_Y_XYZp.xy / Xp_Y_XYZp.z;\n\tfloat Le = 2.0 * log2(Xp_Y_XYZp.y) + 127.0;\n\tvResult.w = fract( Le );\n\tvResult.z = ( Le - ( floor( vResult.w * 255.0 ) ) / 255.0 ) / 255.0;\n\treturn vResult;\n}\nconst mat3 cLogLuvInverseM = mat3( 6.0014, -2.7008, -1.7996, -1.3320, 3.1029, -5.7721, 0.3008, -1.0882, 5.6268 );\nvec4 LogLuvToLinear( in vec4 value ) {\n\tfloat Le = value.z * 255.0 + value.w;\n\tvec3 Xp_Y_XYZp;\n\tXp_Y_XYZp.y = exp2( ( Le - 127.0 ) / 2.0 );\n\tXp_Y_XYZp.z = Xp_Y_XYZp.y / value.y;\n\tXp_Y_XYZp.x = value.x * Xp_Y_XYZp.z;\n\tvec3 vRGB = cLogLuvInverseM * Xp_Y_XYZp.rgb;\n\treturn vec4( max( vRGB, 0.0 ), 1.0 );\n}";
|
|
|
|
var envmap_fragment = "#ifdef USE_ENVMAP\n\t#ifdef ENV_WORLDPOS\n\t\tvec3 cameraToFrag;\n\t\tif ( isOrthographic ) {\n\t\t\tcameraToFrag = normalize( vec3( - viewMatrix[ 0 ][ 2 ], - viewMatrix[ 1 ][ 2 ], - viewMatrix[ 2 ][ 2 ] ) );\n\t\t} else {\n\t\t\tcameraToFrag = normalize( vWorldPosition - cameraPosition );\n\t\t}\n\t\tvec3 worldNormal = inverseTransformDirection( normal, viewMatrix );\n\t\t#ifdef ENVMAP_MODE_REFLECTION\n\t\t\tvec3 reflectVec = reflect( cameraToFrag, worldNormal );\n\t\t#else\n\t\t\tvec3 reflectVec = refract( cameraToFrag, worldNormal, refractionRatio );\n\t\t#endif\n\t#else\n\t\tvec3 reflectVec = vReflect;\n\t#endif\n\t#ifdef ENVMAP_TYPE_CUBE\n\t\tvec4 envColor = textureCube( envMap, vec3( flipEnvMap * reflectVec.x, reflectVec.yz ) );\n\t\tenvColor = envMapTexelToLinear( envColor );\n\t#elif defined( ENVMAP_TYPE_CUBE_UV )\n\t\tvec4 envColor = textureCubeUV( envMap, reflectVec, 0.0 );\n\t#else\n\t\tvec4 envColor = vec4( 0.0 );\n\t#endif\n\t#ifdef ENVMAP_BLENDING_MULTIPLY\n\t\toutgoingLight = mix( outgoingLight, outgoingLight * envColor.xyz, specularStrength * reflectivity );\n\t#elif defined( ENVMAP_BLENDING_MIX )\n\t\toutgoingLight = mix( outgoingLight, envColor.xyz, specularStrength * reflectivity );\n\t#elif defined( ENVMAP_BLENDING_ADD )\n\t\toutgoingLight += envColor.xyz * specularStrength * reflectivity;\n\t#endif\n#endif";
|
|
|
|
var envmap_common_pars_fragment = "#ifdef USE_ENVMAP\n\tuniform float envMapIntensity;\n\tuniform float flipEnvMap;\n\tuniform int maxMipLevel;\n\t#ifdef ENVMAP_TYPE_CUBE\n\t\tuniform samplerCube envMap;\n\t#else\n\t\tuniform sampler2D envMap;\n\t#endif\n\t\n#endif";
|
|
|
|
var envmap_pars_fragment = "#ifdef USE_ENVMAP\n\tuniform float reflectivity;\n\t#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG )\n\t\t#define ENV_WORLDPOS\n\t#endif\n\t#ifdef ENV_WORLDPOS\n\t\tvarying vec3 vWorldPosition;\n\t\tuniform float refractionRatio;\n\t#else\n\t\tvarying vec3 vReflect;\n\t#endif\n#endif";
|
|
|
|
var envmap_pars_vertex = "#ifdef USE_ENVMAP\n\t#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) ||defined( PHONG )\n\t\t#define ENV_WORLDPOS\n\t#endif\n\t#ifdef ENV_WORLDPOS\n\t\t\n\t\tvarying vec3 vWorldPosition;\n\t#else\n\t\tvarying vec3 vReflect;\n\t\tuniform float refractionRatio;\n\t#endif\n#endif";
|
|
|
|
var envmap_vertex = "#ifdef USE_ENVMAP\n\t#ifdef ENV_WORLDPOS\n\t\tvWorldPosition = worldPosition.xyz;\n\t#else\n\t\tvec3 cameraToVertex;\n\t\tif ( isOrthographic ) {\n\t\t\tcameraToVertex = normalize( vec3( - viewMatrix[ 0 ][ 2 ], - viewMatrix[ 1 ][ 2 ], - viewMatrix[ 2 ][ 2 ] ) );\n\t\t} else {\n\t\t\tcameraToVertex = normalize( worldPosition.xyz - cameraPosition );\n\t\t}\n\t\tvec3 worldNormal = inverseTransformDirection( transformedNormal, viewMatrix );\n\t\t#ifdef ENVMAP_MODE_REFLECTION\n\t\t\tvReflect = reflect( cameraToVertex, worldNormal );\n\t\t#else\n\t\t\tvReflect = refract( cameraToVertex, worldNormal, refractionRatio );\n\t\t#endif\n\t#endif\n#endif";
|
|
|
|
var fog_vertex = "#ifdef USE_FOG\n\tvFogDepth = - mvPosition.z;\n#endif";
|
|
|
|
var fog_pars_vertex = "#ifdef USE_FOG\n\tvarying float vFogDepth;\n#endif";
|
|
|
|
var fog_fragment = "#ifdef USE_FOG\n\t#ifdef FOG_EXP2\n\t\tfloat fogFactor = 1.0 - exp( - fogDensity * fogDensity * vFogDepth * vFogDepth );\n\t#else\n\t\tfloat fogFactor = smoothstep( fogNear, fogFar, vFogDepth );\n\t#endif\n\tgl_FragColor.rgb = mix( gl_FragColor.rgb, fogColor, fogFactor );\n#endif";
|
|
|
|
var fog_pars_fragment = "#ifdef USE_FOG\n\tuniform vec3 fogColor;\n\tvarying float vFogDepth;\n\t#ifdef FOG_EXP2\n\t\tuniform float fogDensity;\n\t#else\n\t\tuniform float fogNear;\n\t\tuniform float fogFar;\n\t#endif\n#endif";
|
|
|
|
var gradientmap_pars_fragment = "#ifdef USE_GRADIENTMAP\n\tuniform sampler2D gradientMap;\n#endif\nvec3 getGradientIrradiance( vec3 normal, vec3 lightDirection ) {\n\tfloat dotNL = dot( normal, lightDirection );\n\tvec2 coord = vec2( dotNL * 0.5 + 0.5, 0.0 );\n\t#ifdef USE_GRADIENTMAP\n\t\treturn texture2D( gradientMap, coord ).rgb;\n\t#else\n\t\treturn ( coord.x < 0.7 ) ? vec3( 0.7 ) : vec3( 1.0 );\n\t#endif\n}";
|
|
|
|
var lightmap_fragment = "#ifdef USE_LIGHTMAP\n\tvec4 lightMapTexel = texture2D( lightMap, vUv2 );\n\tvec3 lightMapIrradiance = lightMapTexelToLinear( lightMapTexel ).rgb * lightMapIntensity;\n\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\tlightMapIrradiance *= PI;\n\t#endif\n\treflectedLight.indirectDiffuse += lightMapIrradiance;\n#endif";
|
|
|
|
var lightmap_pars_fragment = "#ifdef USE_LIGHTMAP\n\tuniform sampler2D lightMap;\n\tuniform float lightMapIntensity;\n#endif";
|
|
|
|
var lights_lambert_vertex = "vec3 diffuse = vec3( 1.0 );\nGeometricContext geometry;\ngeometry.position = mvPosition.xyz;\ngeometry.normal = normalize( transformedNormal );\ngeometry.viewDir = ( isOrthographic ) ? vec3( 0, 0, 1 ) : normalize( -mvPosition.xyz );\nGeometricContext backGeometry;\nbackGeometry.position = geometry.position;\nbackGeometry.normal = -geometry.normal;\nbackGeometry.viewDir = geometry.viewDir;\nvLightFront = vec3( 0.0 );\nvIndirectFront = vec3( 0.0 );\n#ifdef DOUBLE_SIDED\n\tvLightBack = vec3( 0.0 );\n\tvIndirectBack = vec3( 0.0 );\n#endif\nIncidentLight directLight;\nfloat dotNL;\nvec3 directLightColor_Diffuse;\nvIndirectFront += getAmbientLightIrradiance( ambientLightColor );\nvIndirectFront += getLightProbeIrradiance( lightProbe, geometry.normal );\n#ifdef DOUBLE_SIDED\n\tvIndirectBack += getAmbientLightIrradiance( ambientLightColor );\n\tvIndirectBack += getLightProbeIrradiance( lightProbe, backGeometry.normal );\n#endif\n#if NUM_POINT_LIGHTS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\n\t\tgetPointLightInfo( pointLights[ i ], geometry, directLight );\n\t\tdotNL = dot( geometry.normal, directLight.direction );\n\t\tdirectLightColor_Diffuse = directLight.color;\n\t\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvLightBack += saturate( - dotNL ) * directLightColor_Diffuse;\n\t\t#endif\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if NUM_SPOT_LIGHTS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\n\t\tgetSpotLightInfo( spotLights[ i ], geometry, directLight );\n\t\tdotNL = dot( geometry.normal, directLight.direction );\n\t\tdirectLightColor_Diffuse = directLight.color;\n\t\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvLightBack += saturate( - dotNL ) * directLightColor_Diffuse;\n\t\t#endif\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if NUM_DIR_LIGHTS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\n\t\tgetDirectionalLightInfo( directionalLights[ i ], geometry, directLight );\n\t\tdotNL = dot( geometry.normal, directLight.direction );\n\t\tdirectLightColor_Diffuse = directLight.color;\n\t\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvLightBack += saturate( - dotNL ) * directLightColor_Diffuse;\n\t\t#endif\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if NUM_HEMI_LIGHTS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_HEMI_LIGHTS; i ++ ) {\n\t\tvIndirectFront += getHemisphereLightIrradiance( hemisphereLights[ i ], geometry.normal );\n\t\t#ifdef DOUBLE_SIDED\n\t\t\tvIndirectBack += getHemisphereLightIrradiance( hemisphereLights[ i ], backGeometry.normal );\n\t\t#endif\n\t}\n\t#pragma unroll_loop_end\n#endif";
|
|
|
|
var lights_pars_begin = "uniform bool receiveShadow;\nuniform vec3 ambientLightColor;\nuniform vec3 lightProbe[ 9 ];\nvec3 shGetIrradianceAt( in vec3 normal, in vec3 shCoefficients[ 9 ] ) {\n\tfloat x = normal.x, y = normal.y, z = normal.z;\n\tvec3 result = shCoefficients[ 0 ] * 0.886227;\n\tresult += shCoefficients[ 1 ] * 2.0 * 0.511664 * y;\n\tresult += shCoefficients[ 2 ] * 2.0 * 0.511664 * z;\n\tresult += shCoefficients[ 3 ] * 2.0 * 0.511664 * x;\n\tresult += shCoefficients[ 4 ] * 2.0 * 0.429043 * x * y;\n\tresult += shCoefficients[ 5 ] * 2.0 * 0.429043 * y * z;\n\tresult += shCoefficients[ 6 ] * ( 0.743125 * z * z - 0.247708 );\n\tresult += shCoefficients[ 7 ] * 2.0 * 0.429043 * x * z;\n\tresult += shCoefficients[ 8 ] * 0.429043 * ( x * x - y * y );\n\treturn result;\n}\nvec3 getLightProbeIrradiance( const in vec3 lightProbe[ 9 ], const in vec3 normal ) {\n\tvec3 worldNormal = inverseTransformDirection( normal, viewMatrix );\n\tvec3 irradiance = shGetIrradianceAt( worldNormal, lightProbe );\n\treturn irradiance;\n}\nvec3 getAmbientLightIrradiance( const in vec3 ambientLightColor ) {\n\tvec3 irradiance = ambientLightColor;\n\treturn irradiance;\n}\nfloat getDistanceAttenuation( const in float lightDistance, const in float cutoffDistance, const in float decayExponent ) {\n\t#if defined ( PHYSICALLY_CORRECT_LIGHTS )\n\t\tfloat distanceFalloff = 1.0 / max( pow( lightDistance, decayExponent ), 0.01 );\n\t\tif ( cutoffDistance > 0.0 ) {\n\t\t\tdistanceFalloff *= pow2( saturate( 1.0 - pow4( lightDistance / cutoffDistance ) ) );\n\t\t}\n\t\treturn distanceFalloff;\n\t#else\n\t\tif ( cutoffDistance > 0.0 && decayExponent > 0.0 ) {\n\t\t\treturn pow( saturate( - lightDistance / cutoffDistance + 1.0 ), decayExponent );\n\t\t}\n\t\treturn 1.0;\n\t#endif\n}\nfloat getSpotAttenuation( const in float coneCosine, const in float penumbraCosine, const in float angleCosine ) {\n\treturn smoothstep( coneCosine, penumbraCosine, angleCosine );\n}\n#if NUM_DIR_LIGHTS > 0\n\tstruct DirectionalLight {\n\t\tvec3 direction;\n\t\tvec3 color;\n\t};\n\tuniform DirectionalLight directionalLights[ NUM_DIR_LIGHTS ];\n\tvoid getDirectionalLightInfo( const in DirectionalLight directionalLight, const in GeometricContext geometry, out IncidentLight light ) {\n\t\tlight.color = directionalLight.color;\n\t\tlight.direction = directionalLight.direction;\n\t\tlight.visible = true;\n\t}\n#endif\n#if NUM_POINT_LIGHTS > 0\n\tstruct PointLight {\n\t\tvec3 position;\n\t\tvec3 color;\n\t\tfloat distance;\n\t\tfloat decay;\n\t};\n\tuniform PointLight pointLights[ NUM_POINT_LIGHTS ];\n\tvoid getPointLightInfo( const in PointLight pointLight, const in GeometricContext geometry, out IncidentLight light ) {\n\t\tvec3 lVector = pointLight.position - geometry.position;\n\t\tlight.direction = normalize( lVector );\n\t\tfloat lightDistance = length( lVector );\n\t\tlight.color = pointLight.color;\n\t\tlight.color *= getDistanceAttenuation( lightDistance, pointLight.distance, pointLight.decay );\n\t\tlight.visible = ( light.color != vec3( 0.0 ) );\n\t}\n#endif\n#if NUM_SPOT_LIGHTS > 0\n\tstruct SpotLight {\n\t\tvec3 position;\n\t\tvec3 direction;\n\t\tvec3 color;\n\t\tfloat distance;\n\t\tfloat decay;\n\t\tfloat coneCos;\n\t\tfloat penumbraCos;\n\t};\n\tuniform SpotLight spotLights[ NUM_SPOT_LIGHTS ];\n\tvoid getSpotLightInfo( const in SpotLight spotLight, const in GeometricContext geometry, out IncidentLight light ) {\n\t\tvec3 lVector = spotLight.position - geometry.position;\n\t\tlight.direction = normalize( lVector );\n\t\tfloat angleCos = dot( light.direction, spotLight.direction );\n\t\tfloat spotAttenuation = getSpotAttenuation( spotLight.coneCos, spotLight.penumbraCos, angleCos );\n\t\tif ( spotAttenuation > 0.0 ) {\n\t\t\tfloat lightDistance = length( lVector );\n\t\t\tlight.color = spotLight.color * spotAttenuation;\n\t\t\tlight.color *= getDistanceAttenuation( lightDistance, spotLight.distance, spotLight.decay );\n\t\t\tlight.visible = ( light.color != vec3( 0.0 ) );\n\t\t} else {\n\t\t\tlight.color = vec3( 0.0 );\n\t\t\tlight.visible = false;\n\t\t}\n\t}\n#endif\n#if NUM_RECT_AREA_LIGHTS > 0\n\tstruct RectAreaLight {\n\t\tvec3 color;\n\t\tvec3 position;\n\t\tvec3 halfWidth;\n\t\tvec3 halfHeight;\n\t};\n\tuniform sampler2D ltc_1;\tuniform sampler2D ltc_2;\n\tuniform RectAreaLight rectAreaLights[ NUM_RECT_AREA_LIGHTS ];\n#endif\n#if NUM_HEMI_LIGHTS > 0\n\tstruct HemisphereLight {\n\t\tvec3 direction;\n\t\tvec3 skyColor;\n\t\tvec3 groundColor;\n\t};\n\tuniform HemisphereLight hemisphereLights[ NUM_HEMI_LIGHTS ];\n\tvec3 getHemisphereLightIrradiance( const in HemisphereLight hemiLight, const in vec3 normal ) {\n\t\tfloat dotNL = dot( normal, hemiLight.direction );\n\t\tfloat hemiDiffuseWeight = 0.5 * dotNL + 0.5;\n\t\tvec3 irradiance = mix( hemiLight.groundColor, hemiLight.skyColor, hemiDiffuseWeight );\n\t\treturn irradiance;\n\t}\n#endif";
|
|
|
|
var envmap_physical_pars_fragment = "#if defined( USE_ENVMAP )\n\t#ifdef ENVMAP_MODE_REFRACTION\n\t\tuniform float refractionRatio;\n\t#endif\n\tvec3 getIBLIrradiance( const in vec3 normal ) {\n\t\t#if defined( ENVMAP_TYPE_CUBE_UV )\n\t\t\tvec3 worldNormal = inverseTransformDirection( normal, viewMatrix );\n\t\t\tvec4 envMapColor = textureCubeUV( envMap, worldNormal, 1.0 );\n\t\t\treturn PI * envMapColor.rgb * envMapIntensity;\n\t\t#else\n\t\t\treturn vec3( 0.0 );\n\t\t#endif\n\t}\n\tvec3 getIBLRadiance( const in vec3 viewDir, const in vec3 normal, const in float roughness ) {\n\t\t#if defined( ENVMAP_TYPE_CUBE_UV )\n\t\t\tvec3 reflectVec;\n\t\t\t#ifdef ENVMAP_MODE_REFLECTION\n\t\t\t\treflectVec = reflect( - viewDir, normal );\n\t\t\t\treflectVec = normalize( mix( reflectVec, normal, roughness * roughness) );\n\t\t\t#else\n\t\t\t\treflectVec = refract( - viewDir, normal, refractionRatio );\n\t\t\t#endif\n\t\t\treflectVec = inverseTransformDirection( reflectVec, viewMatrix );\n\t\t\tvec4 envMapColor = textureCubeUV( envMap, reflectVec, roughness );\n\t\t\treturn envMapColor.rgb * envMapIntensity;\n\t\t#else\n\t\t\treturn vec3( 0.0 );\n\t\t#endif\n\t}\n#endif";
|
|
|
|
var lights_toon_fragment = "ToonMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb;";
|
|
|
|
var lights_toon_pars_fragment = "varying vec3 vViewPosition;\nstruct ToonMaterial {\n\tvec3 diffuseColor;\n};\nvoid RE_Direct_Toon( const in IncidentLight directLight, const in GeometricContext geometry, const in ToonMaterial material, inout ReflectedLight reflectedLight ) {\n\tvec3 irradiance = getGradientIrradiance( geometry.normal, directLight.direction ) * directLight.color;\n\treflectedLight.directDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectDiffuse_Toon( const in vec3 irradiance, const in GeometricContext geometry, const in ToonMaterial material, inout ReflectedLight reflectedLight ) {\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\n#define RE_Direct\t\t\t\tRE_Direct_Toon\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_Toon\n#define Material_LightProbeLOD( material )\t(0)";
|
|
|
|
var lights_phong_fragment = "BlinnPhongMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb;\nmaterial.specularColor = specular;\nmaterial.specularShininess = shininess;\nmaterial.specularStrength = specularStrength;";
|
|
|
|
var lights_phong_pars_fragment = "varying vec3 vViewPosition;\nstruct BlinnPhongMaterial {\n\tvec3 diffuseColor;\n\tvec3 specularColor;\n\tfloat specularShininess;\n\tfloat specularStrength;\n};\nvoid RE_Direct_BlinnPhong( const in IncidentLight directLight, const in GeometricContext geometry, const in BlinnPhongMaterial material, inout ReflectedLight reflectedLight ) {\n\tfloat dotNL = saturate( dot( geometry.normal, directLight.direction ) );\n\tvec3 irradiance = dotNL * directLight.color;\n\treflectedLight.directDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n\treflectedLight.directSpecular += irradiance * BRDF_BlinnPhong( directLight.direction, geometry.viewDir, geometry.normal, material.specularColor, material.specularShininess ) * material.specularStrength;\n}\nvoid RE_IndirectDiffuse_BlinnPhong( const in vec3 irradiance, const in GeometricContext geometry, const in BlinnPhongMaterial material, inout ReflectedLight reflectedLight ) {\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\n#define RE_Direct\t\t\t\tRE_Direct_BlinnPhong\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_BlinnPhong\n#define Material_LightProbeLOD( material )\t(0)";
|
|
|
|
var lights_physical_fragment = "PhysicalMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb * ( 1.0 - metalnessFactor );\nvec3 dxy = max( abs( dFdx( geometryNormal ) ), abs( dFdy( geometryNormal ) ) );\nfloat geometryRoughness = max( max( dxy.x, dxy.y ), dxy.z );\nmaterial.roughness = max( roughnessFactor, 0.0525 );material.roughness += geometryRoughness;\nmaterial.roughness = min( material.roughness, 1.0 );\n#ifdef IOR\n\t#ifdef SPECULAR\n\t\tfloat specularIntensityFactor = specularIntensity;\n\t\tvec3 specularTintFactor = specularTint;\n\t\t#ifdef USE_SPECULARINTENSITYMAP\n\t\t\tspecularIntensityFactor *= texture2D( specularIntensityMap, vUv ).a;\n\t\t#endif\n\t\t#ifdef USE_SPECULARTINTMAP\n\t\t\tspecularTintFactor *= specularTintMapTexelToLinear( texture2D( specularTintMap, vUv ) ).rgb;\n\t\t#endif\n\t\tmaterial.specularF90 = mix( specularIntensityFactor, 1.0, metalnessFactor );\n\t#else\n\t\tfloat specularIntensityFactor = 1.0;\n\t\tvec3 specularTintFactor = vec3( 1.0 );\n\t\tmaterial.specularF90 = 1.0;\n\t#endif\n\tmaterial.specularColor = mix( min( pow2( ( ior - 1.0 ) / ( ior + 1.0 ) ) * specularTintFactor, vec3( 1.0 ) ) * specularIntensityFactor, diffuseColor.rgb, metalnessFactor );\n#else\n\tmaterial.specularColor = mix( vec3( 0.04 ), diffuseColor.rgb, metalnessFactor );\n\tmaterial.specularF90 = 1.0;\n#endif\n#ifdef USE_CLEARCOAT\n\tmaterial.clearcoat = clearcoat;\n\tmaterial.clearcoatRoughness = clearcoatRoughness;\n\tmaterial.clearcoatF0 = vec3( 0.04 );\n\tmaterial.clearcoatF90 = 1.0;\n\t#ifdef USE_CLEARCOATMAP\n\t\tmaterial.clearcoat *= texture2D( clearcoatMap, vUv ).x;\n\t#endif\n\t#ifdef USE_CLEARCOAT_ROUGHNESSMAP\n\t\tmaterial.clearcoatRoughness *= texture2D( clearcoatRoughnessMap, vUv ).y;\n\t#endif\n\tmaterial.clearcoat = saturate( material.clearcoat );\tmaterial.clearcoatRoughness = max( material.clearcoatRoughness, 0.0525 );\n\tmaterial.clearcoatRoughness += geometryRoughness;\n\tmaterial.clearcoatRoughness = min( material.clearcoatRoughness, 1.0 );\n#endif\n#ifdef USE_SHEEN\n\tmaterial.sheenTint = sheenTint;\n\tmaterial.sheenRoughness = clamp( sheenRoughness, 0.07, 1.0 );\n#endif";
|
|
|
|
var lights_physical_pars_fragment = "struct PhysicalMaterial {\n\tvec3 diffuseColor;\n\tfloat roughness;\n\tvec3 specularColor;\n\tfloat specularF90;\n\t#ifdef USE_CLEARCOAT\n\t\tfloat clearcoat;\n\t\tfloat clearcoatRoughness;\n\t\tvec3 clearcoatF0;\n\t\tfloat clearcoatF90;\n\t#endif\n\t#ifdef USE_SHEEN\n\t\tvec3 sheenTint;\n\t\tfloat sheenRoughness;\n\t#endif\n};\nvec3 clearcoatSpecular = vec3( 0.0 );\nvec2 DFGApprox( const in vec3 normal, const in vec3 viewDir, const in float roughness ) {\n\tfloat dotNV = saturate( dot( normal, viewDir ) );\n\tconst vec4 c0 = vec4( - 1, - 0.0275, - 0.572, 0.022 );\n\tconst vec4 c1 = vec4( 1, 0.0425, 1.04, - 0.04 );\n\tvec4 r = roughness * c0 + c1;\n\tfloat a004 = min( r.x * r.x, exp2( - 9.28 * dotNV ) ) * r.x + r.y;\n\tvec2 fab = vec2( - 1.04, 1.04 ) * a004 + r.zw;\n\treturn fab;\n}\nvec3 EnvironmentBRDF( const in vec3 normal, const in vec3 viewDir, const in vec3 specularColor, const in float specularF90, const in float roughness ) {\n\tvec2 fab = DFGApprox( normal, viewDir, roughness );\n\treturn specularColor * fab.x + specularF90 * fab.y;\n}\nvoid computeMultiscattering( const in vec3 normal, const in vec3 viewDir, const in vec3 specularColor, const in float specularF90, const in float roughness, inout vec3 singleScatter, inout vec3 multiScatter ) {\n\tvec2 fab = DFGApprox( normal, viewDir, roughness );\n\tvec3 FssEss = specularColor * fab.x + specularF90 * fab.y;\n\tfloat Ess = fab.x + fab.y;\n\tfloat Ems = 1.0 - Ess;\n\tvec3 Favg = specularColor + ( 1.0 - specularColor ) * 0.047619;\tvec3 Fms = FssEss * Favg / ( 1.0 - Ems * Favg );\n\tsingleScatter += FssEss;\n\tmultiScatter += Fms * Ems;\n}\n#if NUM_RECT_AREA_LIGHTS > 0\n\tvoid RE_Direct_RectArea_Physical( const in RectAreaLight rectAreaLight, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\t\tvec3 normal = geometry.normal;\n\t\tvec3 viewDir = geometry.viewDir;\n\t\tvec3 position = geometry.position;\n\t\tvec3 lightPos = rectAreaLight.position;\n\t\tvec3 halfWidth = rectAreaLight.halfWidth;\n\t\tvec3 halfHeight = rectAreaLight.halfHeight;\n\t\tvec3 lightColor = rectAreaLight.color;\n\t\tfloat roughness = material.roughness;\n\t\tvec3 rectCoords[ 4 ];\n\t\trectCoords[ 0 ] = lightPos + halfWidth - halfHeight;\t\trectCoords[ 1 ] = lightPos - halfWidth - halfHeight;\n\t\trectCoords[ 2 ] = lightPos - halfWidth + halfHeight;\n\t\trectCoords[ 3 ] = lightPos + halfWidth + halfHeight;\n\t\tvec2 uv = LTC_Uv( normal, viewDir, roughness );\n\t\tvec4 t1 = texture2D( ltc_1, uv );\n\t\tvec4 t2 = texture2D( ltc_2, uv );\n\t\tmat3 mInv = mat3(\n\t\t\tvec3( t1.x, 0, t1.y ),\n\t\t\tvec3( 0, 1, 0 ),\n\t\t\tvec3( t1.z, 0, t1.w )\n\t\t);\n\t\tvec3 fresnel = ( material.specularColor * t2.x + ( vec3( 1.0 ) - material.specularColor ) * t2.y );\n\t\treflectedLight.directSpecular += lightColor * fresnel * LTC_Evaluate( normal, viewDir, position, mInv, rectCoords );\n\t\treflectedLight.directDiffuse += lightColor * material.diffuseColor * LTC_Evaluate( normal, viewDir, position, mat3( 1.0 ), rectCoords );\n\t}\n#endif\nvoid RE_Direct_Physical( const in IncidentLight directLight, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\tfloat dotNL = saturate( dot( geometry.normal, directLight.direction ) );\n\tvec3 irradiance = dotNL * directLight.color;\n\t#ifdef USE_CLEARCOAT\n\t\tfloat dotNLcc = saturate( dot( geometry.clearcoatNormal, directLight.direction ) );\n\t\tvec3 ccIrradiance = dotNLcc * directLight.color;\n\t\tclearcoatSpecular += ccIrradiance * BRDF_GGX( directLight.direction, geometry.viewDir, geometry.clearcoatNormal, material.clearcoatF0, material.clearcoatF90, material.clearcoatRoughness );\n\t#endif\n\t#ifdef USE_SHEEN\n\t\treflectedLight.directSpecular += irradiance * BRDF_Sheen( directLight.direction, geometry.viewDir, geometry.normal, material.sheenTint, material.sheenRoughness );\n\t#endif\n\treflectedLight.directSpecular += irradiance * BRDF_GGX( directLight.direction, geometry.viewDir, geometry.normal, material.specularColor, material.specularF90, material.roughness );\n\treflectedLight.directDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectDiffuse_Physical( const in vec3 irradiance, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectSpecular_Physical( const in vec3 radiance, const in vec3 irradiance, const in vec3 clearcoatRadiance, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight) {\n\t#ifdef USE_CLEARCOAT\n\t\tclearcoatSpecular += clearcoatRadiance * EnvironmentBRDF( geometry.clearcoatNormal, geometry.viewDir, material.clearcoatF0, material.clearcoatF90, material.clearcoatRoughness );\n\t#endif\n\tvec3 singleScattering = vec3( 0.0 );\n\tvec3 multiScattering = vec3( 0.0 );\n\tvec3 cosineWeightedIrradiance = irradiance * RECIPROCAL_PI;\n\tcomputeMultiscattering( geometry.normal, geometry.viewDir, material.specularColor, material.specularF90, material.roughness, singleScattering, multiScattering );\n\tvec3 diffuse = material.diffuseColor * ( 1.0 - ( singleScattering + multiScattering ) );\n\treflectedLight.indirectSpecular += radiance * singleScattering;\n\treflectedLight.indirectSpecular += multiScattering * cosineWeightedIrradiance;\n\treflectedLight.indirectDiffuse += diffuse * cosineWeightedIrradiance;\n}\n#define RE_Direct\t\t\t\tRE_Direct_Physical\n#define RE_Direct_RectArea\t\tRE_Direct_RectArea_Physical\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_Physical\n#define RE_IndirectSpecular\t\tRE_IndirectSpecular_Physical\nfloat computeSpecularOcclusion( const in float dotNV, const in float ambientOcclusion, const in float roughness ) {\n\treturn saturate( pow( dotNV + ambientOcclusion, exp2( - 16.0 * roughness - 1.0 ) ) - 1.0 + ambientOcclusion );\n}";
|
|
|
|
var lights_fragment_begin = "\nGeometricContext geometry;\ngeometry.position = - vViewPosition;\ngeometry.normal = normal;\ngeometry.viewDir = ( isOrthographic ) ? vec3( 0, 0, 1 ) : normalize( vViewPosition );\n#ifdef USE_CLEARCOAT\n\tgeometry.clearcoatNormal = clearcoatNormal;\n#endif\nIncidentLight directLight;\n#if ( NUM_POINT_LIGHTS > 0 ) && defined( RE_Direct )\n\tPointLight pointLight;\n\t#if defined( USE_SHADOWMAP ) && NUM_POINT_LIGHT_SHADOWS > 0\n\tPointLightShadow pointLightShadow;\n\t#endif\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\n\t\tpointLight = pointLights[ i ];\n\t\tgetPointLightInfo( pointLight, geometry, directLight );\n\t\t#if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_POINT_LIGHT_SHADOWS )\n\t\tpointLightShadow = pointLightShadows[ i ];\n\t\tdirectLight.color *= all( bvec2( directLight.visible, receiveShadow ) ) ? getPointShadow( pointShadowMap[ i ], pointLightShadow.shadowMapSize, pointLightShadow.shadowBias, pointLightShadow.shadowRadius, vPointShadowCoord[ i ], pointLightShadow.shadowCameraNear, pointLightShadow.shadowCameraFar ) : 1.0;\n\t\t#endif\n\t\tRE_Direct( directLight, geometry, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if ( NUM_SPOT_LIGHTS > 0 ) && defined( RE_Direct )\n\tSpotLight spotLight;\n\t#if defined( USE_SHADOWMAP ) && NUM_SPOT_LIGHT_SHADOWS > 0\n\tSpotLightShadow spotLightShadow;\n\t#endif\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\n\t\tspotLight = spotLights[ i ];\n\t\tgetSpotLightInfo( spotLight, geometry, directLight );\n\t\t#if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_SPOT_LIGHT_SHADOWS )\n\t\tspotLightShadow = spotLightShadows[ i ];\n\t\tdirectLight.color *= all( bvec2( directLight.visible, receiveShadow ) ) ? getShadow( spotShadowMap[ i ], spotLightShadow.shadowMapSize, spotLightShadow.shadowBias, spotLightShadow.shadowRadius, vSpotShadowCoord[ i ] ) : 1.0;\n\t\t#endif\n\t\tRE_Direct( directLight, geometry, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if ( NUM_DIR_LIGHTS > 0 ) && defined( RE_Direct )\n\tDirectionalLight directionalLight;\n\t#if defined( USE_SHADOWMAP ) && NUM_DIR_LIGHT_SHADOWS > 0\n\tDirectionalLightShadow directionalLightShadow;\n\t#endif\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\n\t\tdirectionalLight = directionalLights[ i ];\n\t\tgetDirectionalLightInfo( directionalLight, geometry, directLight );\n\t\t#if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_DIR_LIGHT_SHADOWS )\n\t\tdirectionalLightShadow = directionalLightShadows[ i ];\n\t\tdirectLight.color *= all( bvec2( directLight.visible, receiveShadow ) ) ? getShadow( directionalShadowMap[ i ], directionalLightShadow.shadowMapSize, directionalLightShadow.shadowBias, directionalLightShadow.shadowRadius, vDirectionalShadowCoord[ i ] ) : 1.0;\n\t\t#endif\n\t\tRE_Direct( directLight, geometry, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if ( NUM_RECT_AREA_LIGHTS > 0 ) && defined( RE_Direct_RectArea )\n\tRectAreaLight rectAreaLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_RECT_AREA_LIGHTS; i ++ ) {\n\t\trectAreaLight = rectAreaLights[ i ];\n\t\tRE_Direct_RectArea( rectAreaLight, geometry, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if defined( RE_IndirectDiffuse )\n\tvec3 iblIrradiance = vec3( 0.0 );\n\tvec3 irradiance = getAmbientLightIrradiance( ambientLightColor );\n\tirradiance += getLightProbeIrradiance( lightProbe, geometry.normal );\n\t#if ( NUM_HEMI_LIGHTS > 0 )\n\t\t#pragma unroll_loop_start\n\t\tfor ( int i = 0; i < NUM_HEMI_LIGHTS; i ++ ) {\n\t\t\tirradiance += getHemisphereLightIrradiance( hemisphereLights[ i ], geometry.normal );\n\t\t}\n\t\t#pragma unroll_loop_end\n\t#endif\n#endif\n#if defined( RE_IndirectSpecular )\n\tvec3 radiance = vec3( 0.0 );\n\tvec3 clearcoatRadiance = vec3( 0.0 );\n#endif";
|
|
|
|
var lights_fragment_maps = "#if defined( RE_IndirectDiffuse )\n\t#ifdef USE_LIGHTMAP\n\t\tvec4 lightMapTexel = texture2D( lightMap, vUv2 );\n\t\tvec3 lightMapIrradiance = lightMapTexelToLinear( lightMapTexel ).rgb * lightMapIntensity;\n\t\t#ifndef PHYSICALLY_CORRECT_LIGHTS\n\t\t\tlightMapIrradiance *= PI;\n\t\t#endif\n\t\tirradiance += lightMapIrradiance;\n\t#endif\n\t#if defined( USE_ENVMAP ) && defined( STANDARD ) && defined( ENVMAP_TYPE_CUBE_UV )\n\t\tiblIrradiance += getIBLIrradiance( geometry.normal );\n\t#endif\n#endif\n#if defined( USE_ENVMAP ) && defined( RE_IndirectSpecular )\n\tradiance += getIBLRadiance( geometry.viewDir, geometry.normal, material.roughness );\n\t#ifdef USE_CLEARCOAT\n\t\tclearcoatRadiance += getIBLRadiance( geometry.viewDir, geometry.clearcoatNormal, material.clearcoatRoughness );\n\t#endif\n#endif";
|
|
|
|
var lights_fragment_end = "#if defined( RE_IndirectDiffuse )\n\tRE_IndirectDiffuse( irradiance, geometry, material, reflectedLight );\n#endif\n#if defined( RE_IndirectSpecular )\n\tRE_IndirectSpecular( radiance, iblIrradiance, clearcoatRadiance, geometry, material, reflectedLight );\n#endif";
|
|
|
|
var logdepthbuf_fragment = "#if defined( USE_LOGDEPTHBUF ) && defined( USE_LOGDEPTHBUF_EXT )\n\tgl_FragDepthEXT = vIsPerspective == 0.0 ? gl_FragCoord.z : log2( vFragDepth ) * logDepthBufFC * 0.5;\n#endif";
|
|
|
|
var logdepthbuf_pars_fragment = "#if defined( USE_LOGDEPTHBUF ) && defined( USE_LOGDEPTHBUF_EXT )\n\tuniform float logDepthBufFC;\n\tvarying float vFragDepth;\n\tvarying float vIsPerspective;\n#endif";
|
|
|
|
var logdepthbuf_pars_vertex = "#ifdef USE_LOGDEPTHBUF\n\t#ifdef USE_LOGDEPTHBUF_EXT\n\t\tvarying float vFragDepth;\n\t\tvarying float vIsPerspective;\n\t#else\n\t\tuniform float logDepthBufFC;\n\t#endif\n#endif";
|
|
|
|
var logdepthbuf_vertex = "#ifdef USE_LOGDEPTHBUF\n\t#ifdef USE_LOGDEPTHBUF_EXT\n\t\tvFragDepth = 1.0 + gl_Position.w;\n\t\tvIsPerspective = float( isPerspectiveMatrix( projectionMatrix ) );\n\t#else\n\t\tif ( isPerspectiveMatrix( projectionMatrix ) ) {\n\t\t\tgl_Position.z = log2( max( EPSILON, gl_Position.w + 1.0 ) ) * logDepthBufFC - 1.0;\n\t\t\tgl_Position.z *= gl_Position.w;\n\t\t}\n\t#endif\n#endif";
|
|
|
|
var map_fragment = "#ifdef USE_MAP\n\tvec4 texelColor = texture2D( map, vUv );\n\ttexelColor = mapTexelToLinear( texelColor );\n\tdiffuseColor *= texelColor;\n#endif";
|
|
|
|
var map_pars_fragment = "#ifdef USE_MAP\n\tuniform sampler2D map;\n#endif";
|
|
|
|
var map_particle_fragment = "#if defined( USE_MAP ) || defined( USE_ALPHAMAP )\n\tvec2 uv = ( uvTransform * vec3( gl_PointCoord.x, 1.0 - gl_PointCoord.y, 1 ) ).xy;\n#endif\n#ifdef USE_MAP\n\tvec4 mapTexel = texture2D( map, uv );\n\tdiffuseColor *= mapTexelToLinear( mapTexel );\n#endif\n#ifdef USE_ALPHAMAP\n\tdiffuseColor.a *= texture2D( alphaMap, uv ).g;\n#endif";
|
|
|
|
var map_particle_pars_fragment = "#if defined( USE_MAP ) || defined( USE_ALPHAMAP )\n\tuniform mat3 uvTransform;\n#endif\n#ifdef USE_MAP\n\tuniform sampler2D map;\n#endif\n#ifdef USE_ALPHAMAP\n\tuniform sampler2D alphaMap;\n#endif";
|
|
|
|
var metalnessmap_fragment = "float metalnessFactor = metalness;\n#ifdef USE_METALNESSMAP\n\tvec4 texelMetalness = texture2D( metalnessMap, vUv );\n\tmetalnessFactor *= texelMetalness.b;\n#endif";
|
|
|
|
var metalnessmap_pars_fragment = "#ifdef USE_METALNESSMAP\n\tuniform sampler2D metalnessMap;\n#endif";
|
|
|
|
var morphnormal_vertex = "#ifdef USE_MORPHNORMALS\n\tobjectNormal *= morphTargetBaseInfluence;\n\t#ifdef MORPHTARGETS_TEXTURE\n\t\tfor ( int i = 0; i < MORPHTARGETS_COUNT; i ++ ) {\n\t\t\tif ( morphTargetInfluences[ i ] > 0.0 ) objectNormal += getMorph( gl_VertexID, i, 1, 2 ) * morphTargetInfluences[ i ];\n\t\t}\n\t#else\n\t\tobjectNormal += morphNormal0 * morphTargetInfluences[ 0 ];\n\t\tobjectNormal += morphNormal1 * morphTargetInfluences[ 1 ];\n\t\tobjectNormal += morphNormal2 * morphTargetInfluences[ 2 ];\n\t\tobjectNormal += morphNormal3 * morphTargetInfluences[ 3 ];\n\t#endif\n#endif";
|
|
|
|
var morphtarget_pars_vertex = "#ifdef USE_MORPHTARGETS\n\tuniform float morphTargetBaseInfluence;\n\t#ifdef MORPHTARGETS_TEXTURE\n\t\tuniform float morphTargetInfluences[ MORPHTARGETS_COUNT ];\n\t\tuniform sampler2DArray morphTargetsTexture;\n\t\tuniform vec2 morphTargetsTextureSize;\n\t\tvec3 getMorph( const in int vertexIndex, const in int morphTargetIndex, const in int offset, const in int stride ) {\n\t\t\tfloat texelIndex = float( vertexIndex * stride + offset );\n\t\t\tfloat y = floor( texelIndex / morphTargetsTextureSize.x );\n\t\t\tfloat x = texelIndex - y * morphTargetsTextureSize.x;\n\t\t\tvec3 morphUV = vec3( ( x + 0.5 ) / morphTargetsTextureSize.x, y / morphTargetsTextureSize.y, morphTargetIndex );\n\t\t\treturn texture( morphTargetsTexture, morphUV ).xyz;\n\t\t}\n\t#else\n\t\t#ifndef USE_MORPHNORMALS\n\t\t\tuniform float morphTargetInfluences[ 8 ];\n\t\t#else\n\t\t\tuniform float morphTargetInfluences[ 4 ];\n\t\t#endif\n\t#endif\n#endif";
|
|
|
|
var morphtarget_vertex = "#ifdef USE_MORPHTARGETS\n\ttransformed *= morphTargetBaseInfluence;\n\t#ifdef MORPHTARGETS_TEXTURE\n\t\tfor ( int i = 0; i < MORPHTARGETS_COUNT; i ++ ) {\n\t\t\t#ifndef USE_MORPHNORMALS\n\t\t\t\tif ( morphTargetInfluences[ i ] > 0.0 ) transformed += getMorph( gl_VertexID, i, 0, 1 ) * morphTargetInfluences[ i ];\n\t\t\t#else\n\t\t\t\tif ( morphTargetInfluences[ i ] > 0.0 ) transformed += getMorph( gl_VertexID, i, 0, 2 ) * morphTargetInfluences[ i ];\n\t\t\t#endif\n\t\t}\n\t#else\n\t\ttransformed += morphTarget0 * morphTargetInfluences[ 0 ];\n\t\ttransformed += morphTarget1 * morphTargetInfluences[ 1 ];\n\t\ttransformed += morphTarget2 * morphTargetInfluences[ 2 ];\n\t\ttransformed += morphTarget3 * morphTargetInfluences[ 3 ];\n\t\t#ifndef USE_MORPHNORMALS\n\t\t\ttransformed += morphTarget4 * morphTargetInfluences[ 4 ];\n\t\t\ttransformed += morphTarget5 * morphTargetInfluences[ 5 ];\n\t\t\ttransformed += morphTarget6 * morphTargetInfluences[ 6 ];\n\t\t\ttransformed += morphTarget7 * morphTargetInfluences[ 7 ];\n\t\t#endif\n\t#endif\n#endif";
|
|
|
|
var normal_fragment_begin = "float faceDirection = gl_FrontFacing ? 1.0 : - 1.0;\n#ifdef FLAT_SHADED\n\tvec3 fdx = vec3( dFdx( vViewPosition.x ), dFdx( vViewPosition.y ), dFdx( vViewPosition.z ) );\n\tvec3 fdy = vec3( dFdy( vViewPosition.x ), dFdy( vViewPosition.y ), dFdy( vViewPosition.z ) );\n\tvec3 normal = normalize( cross( fdx, fdy ) );\n#else\n\tvec3 normal = normalize( vNormal );\n\t#ifdef DOUBLE_SIDED\n\t\tnormal = normal * faceDirection;\n\t#endif\n\t#ifdef USE_TANGENT\n\t\tvec3 tangent = normalize( vTangent );\n\t\tvec3 bitangent = normalize( vBitangent );\n\t\t#ifdef DOUBLE_SIDED\n\t\t\ttangent = tangent * faceDirection;\n\t\t\tbitangent = bitangent * faceDirection;\n\t\t#endif\n\t\t#if defined( TANGENTSPACE_NORMALMAP ) || defined( USE_CLEARCOAT_NORMALMAP )\n\t\t\tmat3 vTBN = mat3( tangent, bitangent, normal );\n\t\t#endif\n\t#endif\n#endif\nvec3 geometryNormal = normal;";
|
|
|
|
var normal_fragment_maps = "#ifdef OBJECTSPACE_NORMALMAP\n\tnormal = texture2D( normalMap, vUv ).xyz * 2.0 - 1.0;\n\t#ifdef FLIP_SIDED\n\t\tnormal = - normal;\n\t#endif\n\t#ifdef DOUBLE_SIDED\n\t\tnormal = normal * faceDirection;\n\t#endif\n\tnormal = normalize( normalMatrix * normal );\n#elif defined( TANGENTSPACE_NORMALMAP )\n\tvec3 mapN = texture2D( normalMap, vUv ).xyz * 2.0 - 1.0;\n\tmapN.xy *= normalScale;\n\t#ifdef USE_TANGENT\n\t\tnormal = normalize( vTBN * mapN );\n\t#else\n\t\tnormal = perturbNormal2Arb( - vViewPosition, normal, mapN, faceDirection );\n\t#endif\n#elif defined( USE_BUMPMAP )\n\tnormal = perturbNormalArb( - vViewPosition, normal, dHdxy_fwd(), faceDirection );\n#endif";
|
|
|
|
var normal_pars_fragment = "#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n\t#ifdef USE_TANGENT\n\t\tvarying vec3 vTangent;\n\t\tvarying vec3 vBitangent;\n\t#endif\n#endif";
|
|
|
|
var normal_pars_vertex = "#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n\t#ifdef USE_TANGENT\n\t\tvarying vec3 vTangent;\n\t\tvarying vec3 vBitangent;\n\t#endif\n#endif";
|
|
|
|
var normal_vertex = "#ifndef FLAT_SHADED\n\tvNormal = normalize( transformedNormal );\n\t#ifdef USE_TANGENT\n\t\tvTangent = normalize( transformedTangent );\n\t\tvBitangent = normalize( cross( vNormal, vTangent ) * tangent.w );\n\t#endif\n#endif";
|
|
|
|
var normalmap_pars_fragment = "#ifdef USE_NORMALMAP\n\tuniform sampler2D normalMap;\n\tuniform vec2 normalScale;\n#endif\n#ifdef OBJECTSPACE_NORMALMAP\n\tuniform mat3 normalMatrix;\n#endif\n#if ! defined ( USE_TANGENT ) && ( defined ( TANGENTSPACE_NORMALMAP ) || defined ( USE_CLEARCOAT_NORMALMAP ) )\n\tvec3 perturbNormal2Arb( vec3 eye_pos, vec3 surf_norm, vec3 mapN, float faceDirection ) {\n\t\tvec3 q0 = vec3( dFdx( eye_pos.x ), dFdx( eye_pos.y ), dFdx( eye_pos.z ) );\n\t\tvec3 q1 = vec3( dFdy( eye_pos.x ), dFdy( eye_pos.y ), dFdy( eye_pos.z ) );\n\t\tvec2 st0 = dFdx( vUv.st );\n\t\tvec2 st1 = dFdy( vUv.st );\n\t\tvec3 N = surf_norm;\n\t\tvec3 q1perp = cross( q1, N );\n\t\tvec3 q0perp = cross( N, q0 );\n\t\tvec3 T = q1perp * st0.x + q0perp * st1.x;\n\t\tvec3 B = q1perp * st0.y + q0perp * st1.y;\n\t\tfloat det = max( dot( T, T ), dot( B, B ) );\n\t\tfloat scale = ( det == 0.0 ) ? 0.0 : faceDirection * inversesqrt( det );\n\t\treturn normalize( T * ( mapN.x * scale ) + B * ( mapN.y * scale ) + N * mapN.z );\n\t}\n#endif";
|
|
|
|
var clearcoat_normal_fragment_begin = "#ifdef USE_CLEARCOAT\n\tvec3 clearcoatNormal = geometryNormal;\n#endif";
|
|
|
|
var clearcoat_normal_fragment_maps = "#ifdef USE_CLEARCOAT_NORMALMAP\n\tvec3 clearcoatMapN = texture2D( clearcoatNormalMap, vUv ).xyz * 2.0 - 1.0;\n\tclearcoatMapN.xy *= clearcoatNormalScale;\n\t#ifdef USE_TANGENT\n\t\tclearcoatNormal = normalize( vTBN * clearcoatMapN );\n\t#else\n\t\tclearcoatNormal = perturbNormal2Arb( - vViewPosition, clearcoatNormal, clearcoatMapN, faceDirection );\n\t#endif\n#endif";
|
|
|
|
var clearcoat_pars_fragment = "#ifdef USE_CLEARCOATMAP\n\tuniform sampler2D clearcoatMap;\n#endif\n#ifdef USE_CLEARCOAT_ROUGHNESSMAP\n\tuniform sampler2D clearcoatRoughnessMap;\n#endif\n#ifdef USE_CLEARCOAT_NORMALMAP\n\tuniform sampler2D clearcoatNormalMap;\n\tuniform vec2 clearcoatNormalScale;\n#endif";
|
|
|
|
var output_fragment = "#ifdef OPAQUE\ndiffuseColor.a = 1.0;\n#endif\n#ifdef USE_TRANSMISSION\ndiffuseColor.a *= transmissionAlpha + 0.1;\n#endif\ngl_FragColor = vec4( outgoingLight, diffuseColor.a );";
|
|
|
|
var packing = "vec3 packNormalToRGB( const in vec3 normal ) {\n\treturn normalize( normal ) * 0.5 + 0.5;\n}\nvec3 unpackRGBToNormal( const in vec3 rgb ) {\n\treturn 2.0 * rgb.xyz - 1.0;\n}\nconst float PackUpscale = 256. / 255.;const float UnpackDownscale = 255. / 256.;\nconst vec3 PackFactors = vec3( 256. * 256. * 256., 256. * 256., 256. );\nconst vec4 UnpackFactors = UnpackDownscale / vec4( PackFactors, 1. );\nconst float ShiftRight8 = 1. / 256.;\nvec4 packDepthToRGBA( const in float v ) {\n\tvec4 r = vec4( fract( v * PackFactors ), v );\n\tr.yzw -= r.xyz * ShiftRight8;\treturn r * PackUpscale;\n}\nfloat unpackRGBAToDepth( const in vec4 v ) {\n\treturn dot( v, UnpackFactors );\n}\nvec4 pack2HalfToRGBA( vec2 v ) {\n\tvec4 r = vec4( v.x, fract( v.x * 255.0 ), v.y, fract( v.y * 255.0 ) );\n\treturn vec4( r.x - r.y / 255.0, r.y, r.z - r.w / 255.0, r.w );\n}\nvec2 unpackRGBATo2Half( vec4 v ) {\n\treturn vec2( v.x + ( v.y / 255.0 ), v.z + ( v.w / 255.0 ) );\n}\nfloat viewZToOrthographicDepth( const in float viewZ, const in float near, const in float far ) {\n\treturn ( viewZ + near ) / ( near - far );\n}\nfloat orthographicDepthToViewZ( const in float linearClipZ, const in float near, const in float far ) {\n\treturn linearClipZ * ( near - far ) - near;\n}\nfloat viewZToPerspectiveDepth( const in float viewZ, const in float near, const in float far ) {\n\treturn ( ( near + viewZ ) * far ) / ( ( far - near ) * viewZ );\n}\nfloat perspectiveDepthToViewZ( const in float invClipZ, const in float near, const in float far ) {\n\treturn ( near * far ) / ( ( far - near ) * invClipZ - far );\n}";
|
|
|
|
var premultiplied_alpha_fragment = "#ifdef PREMULTIPLIED_ALPHA\n\tgl_FragColor.rgb *= gl_FragColor.a;\n#endif";
|
|
|
|
var project_vertex = "vec4 mvPosition = vec4( transformed, 1.0 );\n#ifdef USE_INSTANCING\n\tmvPosition = instanceMatrix * mvPosition;\n#endif\nmvPosition = modelViewMatrix * mvPosition;\ngl_Position = projectionMatrix * mvPosition;";
|
|
|
|
var dithering_fragment = "#ifdef DITHERING\n\tgl_FragColor.rgb = dithering( gl_FragColor.rgb );\n#endif";
|
|
|
|
var dithering_pars_fragment = "#ifdef DITHERING\n\tvec3 dithering( vec3 color ) {\n\t\tfloat grid_position = rand( gl_FragCoord.xy );\n\t\tvec3 dither_shift_RGB = vec3( 0.25 / 255.0, -0.25 / 255.0, 0.25 / 255.0 );\n\t\tdither_shift_RGB = mix( 2.0 * dither_shift_RGB, -2.0 * dither_shift_RGB, grid_position );\n\t\treturn color + dither_shift_RGB;\n\t}\n#endif";
|
|
|
|
var roughnessmap_fragment = "float roughnessFactor = roughness;\n#ifdef USE_ROUGHNESSMAP\n\tvec4 texelRoughness = texture2D( roughnessMap, vUv );\n\troughnessFactor *= texelRoughness.g;\n#endif";
|
|
|
|
var roughnessmap_pars_fragment = "#ifdef USE_ROUGHNESSMAP\n\tuniform sampler2D roughnessMap;\n#endif";
|
|
|
|
var shadowmap_pars_fragment = "#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\t\tuniform sampler2D directionalShadowMap[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tvarying vec4 vDirectionalShadowCoord[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tstruct DirectionalLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform DirectionalLightShadow directionalLightShadows[ NUM_DIR_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\t\tuniform sampler2D spotShadowMap[ NUM_SPOT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vSpotShadowCoord[ NUM_SPOT_LIGHT_SHADOWS ];\n\t\tstruct SpotLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform SpotLightShadow spotLightShadows[ NUM_SPOT_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\t\tuniform sampler2D pointShadowMap[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vPointShadowCoord[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tstruct PointLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t\tfloat shadowCameraNear;\n\t\t\tfloat shadowCameraFar;\n\t\t};\n\t\tuniform PointLightShadow pointLightShadows[ NUM_POINT_LIGHT_SHADOWS ];\n\t#endif\n\tfloat texture2DCompare( sampler2D depths, vec2 uv, float compare ) {\n\t\treturn step( compare, unpackRGBAToDepth( texture2D( depths, uv ) ) );\n\t}\n\tvec2 texture2DDistribution( sampler2D shadow, vec2 uv ) {\n\t\treturn unpackRGBATo2Half( texture2D( shadow, uv ) );\n\t}\n\tfloat VSMShadow (sampler2D shadow, vec2 uv, float compare ){\n\t\tfloat occlusion = 1.0;\n\t\tvec2 distribution = texture2DDistribution( shadow, uv );\n\t\tfloat hard_shadow = step( compare , distribution.x );\n\t\tif (hard_shadow != 1.0 ) {\n\t\t\tfloat distance = compare - distribution.x ;\n\t\t\tfloat variance = max( 0.00000, distribution.y * distribution.y );\n\t\t\tfloat softness_probability = variance / (variance + distance * distance );\t\t\tsoftness_probability = clamp( ( softness_probability - 0.3 ) / ( 0.95 - 0.3 ), 0.0, 1.0 );\t\t\tocclusion = clamp( max( hard_shadow, softness_probability ), 0.0, 1.0 );\n\t\t}\n\t\treturn occlusion;\n\t}\n\tfloat getShadow( sampler2D shadowMap, vec2 shadowMapSize, float shadowBias, float shadowRadius, vec4 shadowCoord ) {\n\t\tfloat shadow = 1.0;\n\t\tshadowCoord.xyz /= shadowCoord.w;\n\t\tshadowCoord.z += shadowBias;\n\t\tbvec4 inFrustumVec = bvec4 ( shadowCoord.x >= 0.0, shadowCoord.x <= 1.0, shadowCoord.y >= 0.0, shadowCoord.y <= 1.0 );\n\t\tbool inFrustum = all( inFrustumVec );\n\t\tbvec2 frustumTestVec = bvec2( inFrustum, shadowCoord.z <= 1.0 );\n\t\tbool frustumTest = all( frustumTestVec );\n\t\tif ( frustumTest ) {\n\t\t#if defined( SHADOWMAP_TYPE_PCF )\n\t\t\tvec2 texelSize = vec2( 1.0 ) / shadowMapSize;\n\t\t\tfloat dx0 = - texelSize.x * shadowRadius;\n\t\t\tfloat dy0 = - texelSize.y * shadowRadius;\n\t\t\tfloat dx1 = + texelSize.x * shadowRadius;\n\t\t\tfloat dy1 = + texelSize.y * shadowRadius;\n\t\t\tfloat dx2 = dx0 / 2.0;\n\t\t\tfloat dy2 = dy0 / 2.0;\n\t\t\tfloat dx3 = dx1 / 2.0;\n\t\t\tfloat dy3 = dy1 / 2.0;\n\t\t\tshadow = (\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, dy2 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy2 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, dy2 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy, shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, dy3 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy3 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, dy3 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy1 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy1 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy1 ), shadowCoord.z )\n\t\t\t) * ( 1.0 / 17.0 );\n\t\t#elif defined( SHADOWMAP_TYPE_PCF_SOFT )\n\t\t\tvec2 texelSize = vec2( 1.0 ) / shadowMapSize;\n\t\t\tfloat dx = texelSize.x;\n\t\t\tfloat dy = texelSize.y;\n\t\t\tvec2 uv = shadowCoord.xy;\n\t\t\tvec2 f = fract( uv * shadowMapSize + 0.5 );\n\t\t\tuv -= f * texelSize;\n\t\t\tshadow = (\n\t\t\t\ttexture2DCompare( shadowMap, uv, shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, uv + vec2( dx, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, uv + vec2( 0.0, dy ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, uv + texelSize, shadowCoord.z ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( -dx, 0.0 ), shadowCoord.z ), \n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, 0.0 ), shadowCoord.z ),\n\t\t\t\t\t f.x ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( -dx, dy ), shadowCoord.z ), \n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, dy ), shadowCoord.z ),\n\t\t\t\t\t f.x ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( 0.0, -dy ), shadowCoord.z ), \n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 0.0, 2.0 * dy ), shadowCoord.z ),\n\t\t\t\t\t f.y ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( dx, -dy ), shadowCoord.z ), \n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( dx, 2.0 * dy ), shadowCoord.z ),\n\t\t\t\t\t f.y ) +\n\t\t\t\tmix( mix( texture2DCompare( shadowMap, uv + vec2( -dx, -dy ), shadowCoord.z ), \n\t\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, -dy ), shadowCoord.z ),\n\t\t\t\t\t\t f.x ),\n\t\t\t\t\t mix( texture2DCompare( shadowMap, uv + vec2( -dx, 2.0 * dy ), shadowCoord.z ), \n\t\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, 2.0 * dy ), shadowCoord.z ),\n\t\t\t\t\t\t f.x ),\n\t\t\t\t\t f.y )\n\t\t\t) * ( 1.0 / 9.0 );\n\t\t#elif defined( SHADOWMAP_TYPE_VSM )\n\t\t\tshadow = VSMShadow( shadowMap, shadowCoord.xy, shadowCoord.z );\n\t\t#else\n\t\t\tshadow = texture2DCompare( shadowMap, shadowCoord.xy, shadowCoord.z );\n\t\t#endif\n\t\t}\n\t\treturn shadow;\n\t}\n\tvec2 cubeToUV( vec3 v, float texelSizeY ) {\n\t\tvec3 absV = abs( v );\n\t\tfloat scaleToCube = 1.0 / max( absV.x, max( absV.y, absV.z ) );\n\t\tabsV *= scaleToCube;\n\t\tv *= scaleToCube * ( 1.0 - 2.0 * texelSizeY );\n\t\tvec2 planar = v.xy;\n\t\tfloat almostATexel = 1.5 * texelSizeY;\n\t\tfloat almostOne = 1.0 - almostATexel;\n\t\tif ( absV.z >= almostOne ) {\n\t\t\tif ( v.z > 0.0 )\n\t\t\t\tplanar.x = 4.0 - v.x;\n\t\t} else if ( absV.x >= almostOne ) {\n\t\t\tfloat signX = sign( v.x );\n\t\t\tplanar.x = v.z * signX + 2.0 * signX;\n\t\t} else if ( absV.y >= almostOne ) {\n\t\t\tfloat signY = sign( v.y );\n\t\t\tplanar.x = v.x + 2.0 * signY + 2.0;\n\t\t\tplanar.y = v.z * signY - 2.0;\n\t\t}\n\t\treturn vec2( 0.125, 0.25 ) * planar + vec2( 0.375, 0.75 );\n\t}\n\tfloat getPointShadow( sampler2D shadowMap, vec2 shadowMapSize, float shadowBias, float shadowRadius, vec4 shadowCoord, float shadowCameraNear, float shadowCameraFar ) {\n\t\tvec2 texelSize = vec2( 1.0 ) / ( shadowMapSize * vec2( 4.0, 2.0 ) );\n\t\tvec3 lightToPosition = shadowCoord.xyz;\n\t\tfloat dp = ( length( lightToPosition ) - shadowCameraNear ) / ( shadowCameraFar - shadowCameraNear );\t\tdp += shadowBias;\n\t\tvec3 bd3D = normalize( lightToPosition );\n\t\t#if defined( SHADOWMAP_TYPE_PCF ) || defined( SHADOWMAP_TYPE_PCF_SOFT ) || defined( SHADOWMAP_TYPE_VSM )\n\t\t\tvec2 offset = vec2( - 1, 1 ) * shadowRadius * texelSize.y;\n\t\t\treturn (\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xyy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yyy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xyx, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yyx, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xxy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yxy, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xxx, texelSize.y ), dp ) +\n\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yxx, texelSize.y ), dp )\n\t\t\t) * ( 1.0 / 9.0 );\n\t\t#else\n\t\t\treturn texture2DCompare( shadowMap, cubeToUV( bd3D, texelSize.y ), dp );\n\t\t#endif\n\t}\n#endif";
|
|
|
|
var shadowmap_pars_vertex = "#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\t\tuniform mat4 directionalShadowMatrix[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tvarying vec4 vDirectionalShadowCoord[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tstruct DirectionalLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform DirectionalLightShadow directionalLightShadows[ NUM_DIR_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\t\tuniform mat4 spotShadowMatrix[ NUM_SPOT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vSpotShadowCoord[ NUM_SPOT_LIGHT_SHADOWS ];\n\t\tstruct SpotLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform SpotLightShadow spotLightShadows[ NUM_SPOT_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\t\tuniform mat4 pointShadowMatrix[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vPointShadowCoord[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tstruct PointLightShadow {\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t\tfloat shadowCameraNear;\n\t\t\tfloat shadowCameraFar;\n\t\t};\n\t\tuniform PointLightShadow pointLightShadows[ NUM_POINT_LIGHT_SHADOWS ];\n\t#endif\n#endif";
|
|
|
|
var shadowmap_vertex = "#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0 || NUM_SPOT_LIGHT_SHADOWS > 0 || NUM_POINT_LIGHT_SHADOWS > 0\n\t\tvec3 shadowWorldNormal = inverseTransformDirection( transformedNormal, viewMatrix );\n\t\tvec4 shadowWorldPosition;\n\t#endif\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHT_SHADOWS; i ++ ) {\n\t\tshadowWorldPosition = worldPosition + vec4( shadowWorldNormal * directionalLightShadows[ i ].shadowNormalBias, 0 );\n\t\tvDirectionalShadowCoord[ i ] = directionalShadowMatrix[ i ] * shadowWorldPosition;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHT_SHADOWS; i ++ ) {\n\t\tshadowWorldPosition = worldPosition + vec4( shadowWorldNormal * spotLightShadows[ i ].shadowNormalBias, 0 );\n\t\tvSpotShadowCoord[ i ] = spotShadowMatrix[ i ] * shadowWorldPosition;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHT_SHADOWS; i ++ ) {\n\t\tshadowWorldPosition = worldPosition + vec4( shadowWorldNormal * pointLightShadows[ i ].shadowNormalBias, 0 );\n\t\tvPointShadowCoord[ i ] = pointShadowMatrix[ i ] * shadowWorldPosition;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n#endif";
|
|
|
|
var shadowmask_pars_fragment = "float getShadowMask() {\n\tfloat shadow = 1.0;\n\t#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\tDirectionalLightShadow directionalLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHT_SHADOWS; i ++ ) {\n\t\tdirectionalLight = directionalLightShadows[ i ];\n\t\tshadow *= receiveShadow ? getShadow( directionalShadowMap[ i ], directionalLight.shadowMapSize, directionalLight.shadowBias, directionalLight.shadowRadius, vDirectionalShadowCoord[ i ] ) : 1.0;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\tSpotLightShadow spotLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHT_SHADOWS; i ++ ) {\n\t\tspotLight = spotLightShadows[ i ];\n\t\tshadow *= receiveShadow ? getShadow( spotShadowMap[ i ], spotLight.shadowMapSize, spotLight.shadowBias, spotLight.shadowRadius, vSpotShadowCoord[ i ] ) : 1.0;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\tPointLightShadow pointLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHT_SHADOWS; i ++ ) {\n\t\tpointLight = pointLightShadows[ i ];\n\t\tshadow *= receiveShadow ? getPointShadow( pointShadowMap[ i ], pointLight.shadowMapSize, pointLight.shadowBias, pointLight.shadowRadius, vPointShadowCoord[ i ], pointLight.shadowCameraNear, pointLight.shadowCameraFar ) : 1.0;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#endif\n\treturn shadow;\n}";
|
|
|
|
var skinbase_vertex = "#ifdef USE_SKINNING\n\tmat4 boneMatX = getBoneMatrix( skinIndex.x );\n\tmat4 boneMatY = getBoneMatrix( skinIndex.y );\n\tmat4 boneMatZ = getBoneMatrix( skinIndex.z );\n\tmat4 boneMatW = getBoneMatrix( skinIndex.w );\n#endif";
|
|
|
|
var skinning_pars_vertex = "#ifdef USE_SKINNING\n\tuniform mat4 bindMatrix;\n\tuniform mat4 bindMatrixInverse;\n\t#ifdef BONE_TEXTURE\n\t\tuniform highp sampler2D boneTexture;\n\t\tuniform int boneTextureSize;\n\t\tmat4 getBoneMatrix( const in float i ) {\n\t\t\tfloat j = i * 4.0;\n\t\t\tfloat x = mod( j, float( boneTextureSize ) );\n\t\t\tfloat y = floor( j / float( boneTextureSize ) );\n\t\t\tfloat dx = 1.0 / float( boneTextureSize );\n\t\t\tfloat dy = 1.0 / float( boneTextureSize );\n\t\t\ty = dy * ( y + 0.5 );\n\t\t\tvec4 v1 = texture2D( boneTexture, vec2( dx * ( x + 0.5 ), y ) );\n\t\t\tvec4 v2 = texture2D( boneTexture, vec2( dx * ( x + 1.5 ), y ) );\n\t\t\tvec4 v3 = texture2D( boneTexture, vec2( dx * ( x + 2.5 ), y ) );\n\t\t\tvec4 v4 = texture2D( boneTexture, vec2( dx * ( x + 3.5 ), y ) );\n\t\t\tmat4 bone = mat4( v1, v2, v3, v4 );\n\t\t\treturn bone;\n\t\t}\n\t#else\n\t\tuniform mat4 boneMatrices[ MAX_BONES ];\n\t\tmat4 getBoneMatrix( const in float i ) {\n\t\t\tmat4 bone = boneMatrices[ int(i) ];\n\t\t\treturn bone;\n\t\t}\n\t#endif\n#endif";
|
|
|
|
var skinning_vertex = "#ifdef USE_SKINNING\n\tvec4 skinVertex = bindMatrix * vec4( transformed, 1.0 );\n\tvec4 skinned = vec4( 0.0 );\n\tskinned += boneMatX * skinVertex * skinWeight.x;\n\tskinned += boneMatY * skinVertex * skinWeight.y;\n\tskinned += boneMatZ * skinVertex * skinWeight.z;\n\tskinned += boneMatW * skinVertex * skinWeight.w;\n\ttransformed = ( bindMatrixInverse * skinned ).xyz;\n#endif";
|
|
|
|
var skinnormal_vertex = "#ifdef USE_SKINNING\n\tmat4 skinMatrix = mat4( 0.0 );\n\tskinMatrix += skinWeight.x * boneMatX;\n\tskinMatrix += skinWeight.y * boneMatY;\n\tskinMatrix += skinWeight.z * boneMatZ;\n\tskinMatrix += skinWeight.w * boneMatW;\n\tskinMatrix = bindMatrixInverse * skinMatrix * bindMatrix;\n\tobjectNormal = vec4( skinMatrix * vec4( objectNormal, 0.0 ) ).xyz;\n\t#ifdef USE_TANGENT\n\t\tobjectTangent = vec4( skinMatrix * vec4( objectTangent, 0.0 ) ).xyz;\n\t#endif\n#endif";
|
|
|
|
var specularmap_fragment = "float specularStrength;\n#ifdef USE_SPECULARMAP\n\tvec4 texelSpecular = texture2D( specularMap, vUv );\n\tspecularStrength = texelSpecular.r;\n#else\n\tspecularStrength = 1.0;\n#endif";
|
|
|
|
var specularmap_pars_fragment = "#ifdef USE_SPECULARMAP\n\tuniform sampler2D specularMap;\n#endif";
|
|
|
|
var tonemapping_fragment = "#if defined( TONE_MAPPING )\n\tgl_FragColor.rgb = toneMapping( gl_FragColor.rgb );\n#endif";
|
|
|
|
var tonemapping_pars_fragment = "#ifndef saturate\n#define saturate( a ) clamp( a, 0.0, 1.0 )\n#endif\nuniform float toneMappingExposure;\nvec3 LinearToneMapping( vec3 color ) {\n\treturn toneMappingExposure * color;\n}\nvec3 ReinhardToneMapping( vec3 color ) {\n\tcolor *= toneMappingExposure;\n\treturn saturate( color / ( vec3( 1.0 ) + color ) );\n}\nvec3 OptimizedCineonToneMapping( vec3 color ) {\n\tcolor *= toneMappingExposure;\n\tcolor = max( vec3( 0.0 ), color - 0.004 );\n\treturn pow( ( color * ( 6.2 * color + 0.5 ) ) / ( color * ( 6.2 * color + 1.7 ) + 0.06 ), vec3( 2.2 ) );\n}\nvec3 RRTAndODTFit( vec3 v ) {\n\tvec3 a = v * ( v + 0.0245786 ) - 0.000090537;\n\tvec3 b = v * ( 0.983729 * v + 0.4329510 ) + 0.238081;\n\treturn a / b;\n}\nvec3 ACESFilmicToneMapping( vec3 color ) {\n\tconst mat3 ACESInputMat = mat3(\n\t\tvec3( 0.59719, 0.07600, 0.02840 ),\t\tvec3( 0.35458, 0.90834, 0.13383 ),\n\t\tvec3( 0.04823, 0.01566, 0.83777 )\n\t);\n\tconst mat3 ACESOutputMat = mat3(\n\t\tvec3( 1.60475, -0.10208, -0.00327 ),\t\tvec3( -0.53108, 1.10813, -0.07276 ),\n\t\tvec3( -0.07367, -0.00605, 1.07602 )\n\t);\n\tcolor *= toneMappingExposure / 0.6;\n\tcolor = ACESInputMat * color;\n\tcolor = RRTAndODTFit( color );\n\tcolor = ACESOutputMat * color;\n\treturn saturate( color );\n}\nvec3 CustomToneMapping( vec3 color ) { return color; }";
|
|
|
|
var transmission_fragment = "#ifdef USE_TRANSMISSION\n\tfloat transmissionAlpha = 1.0;\n\tfloat transmissionFactor = transmission;\n\tfloat thicknessFactor = thickness;\n\t#ifdef USE_TRANSMISSIONMAP\n\t\ttransmissionFactor *= texture2D( transmissionMap, vUv ).r;\n\t#endif\n\t#ifdef USE_THICKNESSMAP\n\t\tthicknessFactor *= texture2D( thicknessMap, vUv ).g;\n\t#endif\n\tvec3 pos = vWorldPosition;\n\tvec3 v = normalize( cameraPosition - pos );\n\tvec3 n = inverseTransformDirection( normal, viewMatrix );\n\tvec4 transmission = getIBLVolumeRefraction(\n\t\tn, v, roughnessFactor, material.diffuseColor, material.specularColor, material.specularF90,\n\t\tpos, modelMatrix, viewMatrix, projectionMatrix, ior, thicknessFactor,\n\t\tattenuationTint, attenuationDistance );\n\ttotalDiffuse = mix( totalDiffuse, transmission.rgb, transmissionFactor );\n\ttransmissionAlpha = mix( transmissionAlpha, transmission.a, transmissionFactor );\n#endif";
|
|
|
|
var transmission_pars_fragment = "#ifdef USE_TRANSMISSION\n\tuniform float transmission;\n\tuniform float thickness;\n\tuniform float attenuationDistance;\n\tuniform vec3 attenuationTint;\n\t#ifdef USE_TRANSMISSIONMAP\n\t\tuniform sampler2D transmissionMap;\n\t#endif\n\t#ifdef USE_THICKNESSMAP\n\t\tuniform sampler2D thicknessMap;\n\t#endif\n\tuniform vec2 transmissionSamplerSize;\n\tuniform sampler2D transmissionSamplerMap;\n\tuniform mat4 modelMatrix;\n\tuniform mat4 projectionMatrix;\n\tvarying vec3 vWorldPosition;\n\tvec3 getVolumeTransmissionRay( vec3 n, vec3 v, float thickness, float ior, mat4 modelMatrix ) {\n\t\tvec3 refractionVector = refract( - v, normalize( n ), 1.0 / ior );\n\t\tvec3 modelScale;\n\t\tmodelScale.x = length( vec3( modelMatrix[ 0 ].xyz ) );\n\t\tmodelScale.y = length( vec3( modelMatrix[ 1 ].xyz ) );\n\t\tmodelScale.z = length( vec3( modelMatrix[ 2 ].xyz ) );\n\t\treturn normalize( refractionVector ) * thickness * modelScale;\n\t}\n\tfloat applyIorToRoughness( float roughness, float ior ) {\n\t\treturn roughness * clamp( ior * 2.0 - 2.0, 0.0, 1.0 );\n\t}\n\tvec4 getTransmissionSample( vec2 fragCoord, float roughness, float ior ) {\n\t\tfloat framebufferLod = log2( transmissionSamplerSize.x ) * applyIorToRoughness( roughness, ior );\n\t\t#ifdef TEXTURE_LOD_EXT\n\t\t\treturn texture2DLodEXT( transmissionSamplerMap, fragCoord.xy, framebufferLod );\n\t\t#else\n\t\t\treturn texture2D( transmissionSamplerMap, fragCoord.xy, framebufferLod );\n\t\t#endif\n\t}\n\tvec3 applyVolumeAttenuation( vec3 radiance, float transmissionDistance, vec3 attenuationColor, float attenuationDistance ) {\n\t\tif ( attenuationDistance == 0.0 ) {\n\t\t\treturn radiance;\n\t\t} else {\n\t\t\tvec3 attenuationCoefficient = -log( attenuationColor ) / attenuationDistance;\n\t\t\tvec3 transmittance = exp( - attenuationCoefficient * transmissionDistance );\t\t\treturn transmittance * radiance;\n\t\t}\n\t}\n\tvec4 getIBLVolumeRefraction( vec3 n, vec3 v, float roughness, vec3 diffuseColor, vec3 specularColor, float specularF90,\n\t\tvec3 position, mat4 modelMatrix, mat4 viewMatrix, mat4 projMatrix, float ior, float thickness,\n\t\tvec3 attenuationColor, float attenuationDistance ) {\n\t\tvec3 transmissionRay = getVolumeTransmissionRay( n, v, thickness, ior, modelMatrix );\n\t\tvec3 refractedRayExit = position + transmissionRay;\n\t\tvec4 ndcPos = projMatrix * viewMatrix * vec4( refractedRayExit, 1.0 );\n\t\tvec2 refractionCoords = ndcPos.xy / ndcPos.w;\n\t\trefractionCoords += 1.0;\n\t\trefractionCoords /= 2.0;\n\t\tvec4 transmittedLight = getTransmissionSample( refractionCoords, roughness, ior );\n\t\tvec3 attenuatedColor = applyVolumeAttenuation( transmittedLight.rgb, length( transmissionRay ), attenuationColor, attenuationDistance );\n\t\tvec3 F = EnvironmentBRDF( n, v, specularColor, specularF90, roughness );\n\t\treturn vec4( ( 1.0 - F ) * attenuatedColor * diffuseColor, transmittedLight.a );\n\t}\n#endif";
|
|
|
|
var uv_pars_fragment = "#if ( defined( USE_UV ) && ! defined( UVS_VERTEX_ONLY ) )\n\tvarying vec2 vUv;\n#endif";
|
|
|
|
var uv_pars_vertex = "#ifdef USE_UV\n\t#ifdef UVS_VERTEX_ONLY\n\t\tvec2 vUv;\n\t#else\n\t\tvarying vec2 vUv;\n\t#endif\n\tuniform mat3 uvTransform;\n#endif";
|
|
|
|
var uv_vertex = "#ifdef USE_UV\n\tvUv = ( uvTransform * vec3( uv, 1 ) ).xy;\n#endif";
|
|
|
|
var uv2_pars_fragment = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n\tvarying vec2 vUv2;\n#endif";
|
|
|
|
var uv2_pars_vertex = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n\tattribute vec2 uv2;\n\tvarying vec2 vUv2;\n\tuniform mat3 uv2Transform;\n#endif";
|
|
|
|
var uv2_vertex = "#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\n\tvUv2 = ( uv2Transform * vec3( uv2, 1 ) ).xy;\n#endif";
|
|
|
|
var worldpos_vertex = "#if defined( USE_ENVMAP ) || defined( DISTANCE ) || defined ( USE_SHADOWMAP ) || defined ( USE_TRANSMISSION )\n\tvec4 worldPosition = vec4( transformed, 1.0 );\n\t#ifdef USE_INSTANCING\n\t\tworldPosition = instanceMatrix * worldPosition;\n\t#endif\n\tworldPosition = modelMatrix * worldPosition;\n#endif";
|
|
|
|
const vertex$g = "varying vec2 vUv;\nuniform mat3 uvTransform;\nvoid main() {\n\tvUv = ( uvTransform * vec3( uv, 1 ) ).xy;\n\tgl_Position = vec4( position.xy, 1.0, 1.0 );\n}";
|
|
const fragment$g = "uniform sampler2D t2D;\nvarying vec2 vUv;\nvoid main() {\n\tvec4 texColor = texture2D( t2D, vUv );\n\tgl_FragColor = mapTexelToLinear( texColor );\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n}";
|
|
|
|
const vertex$f = "varying vec3 vWorldDirection;\n#include <common>\nvoid main() {\n\tvWorldDirection = transformDirection( position, modelMatrix );\n\t#include <begin_vertex>\n\t#include <project_vertex>\n\tgl_Position.z = gl_Position.w;\n}";
|
|
const fragment$f = "#include <envmap_common_pars_fragment>\nuniform float opacity;\nvarying vec3 vWorldDirection;\n#include <cube_uv_reflection_fragment>\nvoid main() {\n\tvec3 vReflect = vWorldDirection;\n\t#include <envmap_fragment>\n\tgl_FragColor = envColor;\n\tgl_FragColor.a *= opacity;\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n}";
|
|
|
|
const vertex$e = "#include <common>\n#include <uv_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvarying vec2 vHighPrecisionZW;\nvoid main() {\n\t#include <uv_vertex>\n\t#include <skinbase_vertex>\n\t#ifdef USE_DISPLACEMENTMAP\n\t\t#include <beginnormal_vertex>\n\t\t#include <morphnormal_vertex>\n\t\t#include <skinnormal_vertex>\n\t#endif\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\tvHighPrecisionZW = gl_Position.zw;\n}";
|
|
const fragment$e = "#if DEPTH_PACKING == 3200\n\tuniform float opacity;\n#endif\n#include <common>\n#include <packing>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvarying vec2 vHighPrecisionZW;\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( 1.0 );\n\t#if DEPTH_PACKING == 3200\n\t\tdiffuseColor.a = opacity;\n\t#endif\n\t#include <map_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\t#include <logdepthbuf_fragment>\n\tfloat fragCoordZ = 0.5 * vHighPrecisionZW[0] / vHighPrecisionZW[1] + 0.5;\n\t#if DEPTH_PACKING == 3200\n\t\tgl_FragColor = vec4( vec3( 1.0 - fragCoordZ ), opacity );\n\t#elif DEPTH_PACKING == 3201\n\t\tgl_FragColor = packDepthToRGBA( fragCoordZ );\n\t#endif\n}";
|
|
|
|
const vertex$d = "#define DISTANCE\nvarying vec3 vWorldPosition;\n#include <common>\n#include <uv_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <skinbase_vertex>\n\t#ifdef USE_DISPLACEMENTMAP\n\t\t#include <beginnormal_vertex>\n\t\t#include <morphnormal_vertex>\n\t\t#include <skinnormal_vertex>\n\t#endif\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <worldpos_vertex>\n\t#include <clipping_planes_vertex>\n\tvWorldPosition = worldPosition.xyz;\n}";
|
|
const fragment$d = "#define DISTANCE\nuniform vec3 referencePosition;\nuniform float nearDistance;\nuniform float farDistance;\nvarying vec3 vWorldPosition;\n#include <common>\n#include <packing>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main () {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( 1.0 );\n\t#include <map_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\tfloat dist = length( vWorldPosition - referencePosition );\n\tdist = ( dist - nearDistance ) / ( farDistance - nearDistance );\n\tdist = saturate( dist );\n\tgl_FragColor = packDepthToRGBA( dist );\n}";
|
|
|
|
const vertex$c = "varying vec3 vWorldDirection;\n#include <common>\nvoid main() {\n\tvWorldDirection = transformDirection( position, modelMatrix );\n\t#include <begin_vertex>\n\t#include <project_vertex>\n}";
|
|
const fragment$c = "uniform sampler2D tEquirect;\nvarying vec3 vWorldDirection;\n#include <common>\nvoid main() {\n\tvec3 direction = normalize( vWorldDirection );\n\tvec2 sampleUV = equirectUv( direction );\n\tvec4 texColor = texture2D( tEquirect, sampleUV );\n\tgl_FragColor = mapTexelToLinear( texColor );\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n}";
|
|
|
|
const vertex$b = "uniform float scale;\nattribute float lineDistance;\nvarying float vLineDistance;\n#include <common>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\tvLineDistance = scale * lineDistance;\n\t#include <color_vertex>\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\t#include <fog_vertex>\n}";
|
|
const fragment$b = "uniform vec3 diffuse;\nuniform float opacity;\nuniform float dashSize;\nuniform float totalSize;\nvarying float vLineDistance;\n#include <common>\n#include <color_pars_fragment>\n#include <fog_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tif ( mod( vLineDistance, totalSize ) > dashSize ) {\n\t\tdiscard;\n\t}\n\tvec3 outgoingLight = vec3( 0.0 );\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include <logdepthbuf_fragment>\n\t#include <color_fragment>\n\toutgoingLight = diffuseColor.rgb;\n\t#include <output_fragment>\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n}";
|
|
|
|
const vertex$a = "#include <common>\n#include <uv_pars_vertex>\n#include <uv2_pars_vertex>\n#include <envmap_pars_vertex>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <uv2_vertex>\n\t#include <color_vertex>\n\t#if defined ( USE_ENVMAP ) || defined ( USE_SKINNING )\n\t\t#include <beginnormal_vertex>\n\t\t#include <morphnormal_vertex>\n\t\t#include <skinbase_vertex>\n\t\t#include <skinnormal_vertex>\n\t\t#include <defaultnormal_vertex>\n\t#endif\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\t#include <worldpos_vertex>\n\t#include <envmap_vertex>\n\t#include <fog_vertex>\n}";
|
|
const fragment$a = "uniform vec3 diffuse;\nuniform float opacity;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\n#include <common>\n#include <dithering_pars_fragment>\n#include <color_pars_fragment>\n#include <uv_pars_fragment>\n#include <uv2_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <aomap_pars_fragment>\n#include <lightmap_pars_fragment>\n#include <envmap_common_pars_fragment>\n#include <envmap_pars_fragment>\n#include <cube_uv_reflection_fragment>\n#include <fog_pars_fragment>\n#include <specularmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <color_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\t#include <specularmap_fragment>\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\t#ifdef USE_LIGHTMAP\n\t\tvec4 lightMapTexel= texture2D( lightMap, vUv2 );\n\t\treflectedLight.indirectDiffuse += lightMapTexelToLinear( lightMapTexel ).rgb * lightMapIntensity;\n\t#else\n\t\treflectedLight.indirectDiffuse += vec3( 1.0 );\n\t#endif\n\t#include <aomap_fragment>\n\treflectedLight.indirectDiffuse *= diffuseColor.rgb;\n\tvec3 outgoingLight = reflectedLight.indirectDiffuse;\n\t#include <envmap_fragment>\n\t#include <output_fragment>\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n\t#include <dithering_fragment>\n}";
|
|
|
|
const vertex$9 = "#define LAMBERT\nvarying vec3 vLightFront;\nvarying vec3 vIndirectFront;\n#ifdef DOUBLE_SIDED\n\tvarying vec3 vLightBack;\n\tvarying vec3 vIndirectBack;\n#endif\n#include <common>\n#include <uv_pars_vertex>\n#include <uv2_pars_vertex>\n#include <envmap_pars_vertex>\n#include <bsdfs>\n#include <lights_pars_begin>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <shadowmap_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <uv2_vertex>\n\t#include <color_vertex>\n\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\t#include <worldpos_vertex>\n\t#include <envmap_vertex>\n\t#include <lights_lambert_vertex>\n\t#include <shadowmap_vertex>\n\t#include <fog_vertex>\n}";
|
|
const fragment$9 = "uniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float opacity;\nvarying vec3 vLightFront;\nvarying vec3 vIndirectFront;\n#ifdef DOUBLE_SIDED\n\tvarying vec3 vLightBack;\n\tvarying vec3 vIndirectBack;\n#endif\n#include <common>\n#include <packing>\n#include <dithering_pars_fragment>\n#include <color_pars_fragment>\n#include <uv_pars_fragment>\n#include <uv2_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <aomap_pars_fragment>\n#include <lightmap_pars_fragment>\n#include <emissivemap_pars_fragment>\n#include <envmap_common_pars_fragment>\n#include <envmap_pars_fragment>\n#include <cube_uv_reflection_fragment>\n#include <bsdfs>\n#include <lights_pars_begin>\n#include <fog_pars_fragment>\n#include <shadowmap_pars_fragment>\n#include <shadowmask_pars_fragment>\n#include <specularmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <color_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\t#include <specularmap_fragment>\n\t#include <emissivemap_fragment>\n\t#ifdef DOUBLE_SIDED\n\t\treflectedLight.indirectDiffuse += ( gl_FrontFacing ) ? vIndirectFront : vIndirectBack;\n\t#else\n\t\treflectedLight.indirectDiffuse += vIndirectFront;\n\t#endif\n\t#include <lightmap_fragment>\n\treflectedLight.indirectDiffuse *= BRDF_Lambert( diffuseColor.rgb );\n\t#ifdef DOUBLE_SIDED\n\t\treflectedLight.directDiffuse = ( gl_FrontFacing ) ? vLightFront : vLightBack;\n\t#else\n\t\treflectedLight.directDiffuse = vLightFront;\n\t#endif\n\treflectedLight.directDiffuse *= BRDF_Lambert( diffuseColor.rgb ) * getShadowMask();\n\t#include <aomap_fragment>\n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + totalEmissiveRadiance;\n\t#include <envmap_fragment>\n\t#include <output_fragment>\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n\t#include <dithering_fragment>\n}";
|
|
|
|
const vertex$8 = "#define MATCAP\nvarying vec3 vViewPosition;\n#include <common>\n#include <uv_pars_vertex>\n#include <color_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <fog_pars_vertex>\n#include <normal_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <color_vertex>\n\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n\t#include <normal_vertex>\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\t#include <fog_vertex>\n\tvViewPosition = - mvPosition.xyz;\n}";
|
|
const fragment$8 = "#define MATCAP\nuniform vec3 diffuse;\nuniform float opacity;\nuniform sampler2D matcap;\nvarying vec3 vViewPosition;\n#include <common>\n#include <dithering_pars_fragment>\n#include <color_pars_fragment>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <fog_pars_fragment>\n#include <normal_pars_fragment>\n#include <bumpmap_pars_fragment>\n#include <normalmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <color_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\t#include <normal_fragment_begin>\n\t#include <normal_fragment_maps>\n\tvec3 viewDir = normalize( vViewPosition );\n\tvec3 x = normalize( vec3( viewDir.z, 0.0, - viewDir.x ) );\n\tvec3 y = cross( viewDir, x );\n\tvec2 uv = vec2( dot( x, normal ), dot( y, normal ) ) * 0.495 + 0.5;\n\t#ifdef USE_MATCAP\n\t\tvec4 matcapColor = texture2D( matcap, uv );\n\t\tmatcapColor = matcapTexelToLinear( matcapColor );\n\t#else\n\t\tvec4 matcapColor = vec4( 1.0 );\n\t#endif\n\tvec3 outgoingLight = diffuseColor.rgb * matcapColor.rgb;\n\t#include <output_fragment>\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n\t#include <dithering_fragment>\n}";
|
|
|
|
const vertex$7 = "#define NORMAL\n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( TANGENTSPACE_NORMALMAP )\n\tvarying vec3 vViewPosition;\n#endif\n#include <common>\n#include <uv_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <normal_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n\t#include <normal_vertex>\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( TANGENTSPACE_NORMALMAP )\n\tvViewPosition = - mvPosition.xyz;\n#endif\n}";
|
|
const fragment$7 = "#define NORMAL\nuniform float opacity;\n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( TANGENTSPACE_NORMALMAP )\n\tvarying vec3 vViewPosition;\n#endif\n#include <packing>\n#include <uv_pars_fragment>\n#include <normal_pars_fragment>\n#include <bumpmap_pars_fragment>\n#include <normalmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\t#include <logdepthbuf_fragment>\n\t#include <normal_fragment_begin>\n\t#include <normal_fragment_maps>\n\tgl_FragColor = vec4( packNormalToRGB( normal ), opacity );\n}";
|
|
|
|
const vertex$6 = "#define PHONG\nvarying vec3 vViewPosition;\n#include <common>\n#include <uv_pars_vertex>\n#include <uv2_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <envmap_pars_vertex>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <normal_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <shadowmap_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <uv2_vertex>\n\t#include <color_vertex>\n\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n\t#include <normal_vertex>\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\tvViewPosition = - mvPosition.xyz;\n\t#include <worldpos_vertex>\n\t#include <envmap_vertex>\n\t#include <shadowmap_vertex>\n\t#include <fog_vertex>\n}";
|
|
const fragment$6 = "#define PHONG\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform vec3 specular;\nuniform float shininess;\nuniform float opacity;\n#include <common>\n#include <packing>\n#include <dithering_pars_fragment>\n#include <color_pars_fragment>\n#include <uv_pars_fragment>\n#include <uv2_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <aomap_pars_fragment>\n#include <lightmap_pars_fragment>\n#include <emissivemap_pars_fragment>\n#include <envmap_common_pars_fragment>\n#include <envmap_pars_fragment>\n#include <cube_uv_reflection_fragment>\n#include <fog_pars_fragment>\n#include <bsdfs>\n#include <lights_pars_begin>\n#include <normal_pars_fragment>\n#include <lights_phong_pars_fragment>\n#include <shadowmap_pars_fragment>\n#include <bumpmap_pars_fragment>\n#include <normalmap_pars_fragment>\n#include <specularmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <color_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\t#include <specularmap_fragment>\n\t#include <normal_fragment_begin>\n\t#include <normal_fragment_maps>\n\t#include <emissivemap_fragment>\n\t#include <lights_phong_fragment>\n\t#include <lights_fragment_begin>\n\t#include <lights_fragment_maps>\n\t#include <lights_fragment_end>\n\t#include <aomap_fragment>\n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + reflectedLight.directSpecular + reflectedLight.indirectSpecular + totalEmissiveRadiance;\n\t#include <envmap_fragment>\n\t#include <output_fragment>\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n\t#include <dithering_fragment>\n}";
|
|
|
|
const vertex$5 = "#define STANDARD\nvarying vec3 vViewPosition;\n#ifdef USE_TRANSMISSION\n\tvarying vec3 vWorldPosition;\n#endif\n#include <common>\n#include <uv_pars_vertex>\n#include <uv2_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <normal_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <shadowmap_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <uv2_vertex>\n\t#include <color_vertex>\n\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n\t#include <normal_vertex>\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\tvViewPosition = - mvPosition.xyz;\n\t#include <worldpos_vertex>\n\t#include <shadowmap_vertex>\n\t#include <fog_vertex>\n#ifdef USE_TRANSMISSION\n\tvWorldPosition = worldPosition.xyz;\n#endif\n}";
|
|
const fragment$5 = "#define STANDARD\n#ifdef PHYSICAL\n\t#define IOR\n\t#define SPECULAR\n#endif\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float roughness;\nuniform float metalness;\nuniform float opacity;\n#ifdef IOR\n\tuniform float ior;\n#endif\n#ifdef SPECULAR\n\tuniform float specularIntensity;\n\tuniform vec3 specularTint;\n\t#ifdef USE_SPECULARINTENSITYMAP\n\t\tuniform sampler2D specularIntensityMap;\n\t#endif\n\t#ifdef USE_SPECULARTINTMAP\n\t\tuniform sampler2D specularTintMap;\n\t#endif\n#endif\n#ifdef USE_CLEARCOAT\n\tuniform float clearcoat;\n\tuniform float clearcoatRoughness;\n#endif\n#ifdef USE_SHEEN\n\tuniform vec3 sheenTint;\n\tuniform float sheenRoughness;\n#endif\nvarying vec3 vViewPosition;\n#include <common>\n#include <packing>\n#include <dithering_pars_fragment>\n#include <color_pars_fragment>\n#include <uv_pars_fragment>\n#include <uv2_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <aomap_pars_fragment>\n#include <lightmap_pars_fragment>\n#include <emissivemap_pars_fragment>\n#include <bsdfs>\n#include <cube_uv_reflection_fragment>\n#include <envmap_common_pars_fragment>\n#include <envmap_physical_pars_fragment>\n#include <fog_pars_fragment>\n#include <lights_pars_begin>\n#include <normal_pars_fragment>\n#include <lights_physical_pars_fragment>\n#include <transmission_pars_fragment>\n#include <shadowmap_pars_fragment>\n#include <bumpmap_pars_fragment>\n#include <normalmap_pars_fragment>\n#include <clearcoat_pars_fragment>\n#include <roughnessmap_pars_fragment>\n#include <metalnessmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <color_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\t#include <roughnessmap_fragment>\n\t#include <metalnessmap_fragment>\n\t#include <normal_fragment_begin>\n\t#include <normal_fragment_maps>\n\t#include <clearcoat_normal_fragment_begin>\n\t#include <clearcoat_normal_fragment_maps>\n\t#include <emissivemap_fragment>\n\t#include <lights_physical_fragment>\n\t#include <lights_fragment_begin>\n\t#include <lights_fragment_maps>\n\t#include <lights_fragment_end>\n\t#include <aomap_fragment>\n\tvec3 totalDiffuse = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse;\n\tvec3 totalSpecular = reflectedLight.directSpecular + reflectedLight.indirectSpecular;\n\t#include <transmission_fragment>\n\tvec3 outgoingLight = totalDiffuse + totalSpecular + totalEmissiveRadiance;\n\t#ifdef USE_CLEARCOAT\n\t\tfloat dotNVcc = saturate( dot( geometry.clearcoatNormal, geometry.viewDir ) );\n\t\tvec3 Fcc = F_Schlick( material.clearcoatF0, material.clearcoatF90, dotNVcc );\n\t\toutgoingLight = outgoingLight * ( 1.0 - clearcoat * Fcc ) + clearcoatSpecular * clearcoat;\n\t#endif\n\t#include <output_fragment>\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n\t#include <dithering_fragment>\n}";
|
|
|
|
const vertex$4 = "#define TOON\nvarying vec3 vViewPosition;\n#include <common>\n#include <uv_pars_vertex>\n#include <uv2_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <normal_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <shadowmap_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <uv2_vertex>\n\t#include <color_vertex>\n\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n\t#include <normal_vertex>\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\tvViewPosition = - mvPosition.xyz;\n\t#include <worldpos_vertex>\n\t#include <shadowmap_vertex>\n\t#include <fog_vertex>\n}";
|
|
const fragment$4 = "#define TOON\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float opacity;\n#include <common>\n#include <packing>\n#include <dithering_pars_fragment>\n#include <color_pars_fragment>\n#include <uv_pars_fragment>\n#include <uv2_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <aomap_pars_fragment>\n#include <lightmap_pars_fragment>\n#include <emissivemap_pars_fragment>\n#include <gradientmap_pars_fragment>\n#include <fog_pars_fragment>\n#include <bsdfs>\n#include <lights_pars_begin>\n#include <normal_pars_fragment>\n#include <lights_toon_pars_fragment>\n#include <shadowmap_pars_fragment>\n#include <bumpmap_pars_fragment>\n#include <normalmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <color_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\t#include <normal_fragment_begin>\n\t#include <normal_fragment_maps>\n\t#include <emissivemap_fragment>\n\t#include <lights_toon_fragment>\n\t#include <lights_fragment_begin>\n\t#include <lights_fragment_maps>\n\t#include <lights_fragment_end>\n\t#include <aomap_fragment>\n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + totalEmissiveRadiance;\n\t#include <output_fragment>\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n\t#include <dithering_fragment>\n}";
|
|
|
|
const vertex$3 = "uniform float size;\nuniform float scale;\n#include <common>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <color_vertex>\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <project_vertex>\n\tgl_PointSize = size;\n\t#ifdef USE_SIZEATTENUATION\n\t\tbool isPerspective = isPerspectiveMatrix( projectionMatrix );\n\t\tif ( isPerspective ) gl_PointSize *= ( scale / - mvPosition.z );\n\t#endif\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\t#include <worldpos_vertex>\n\t#include <fog_vertex>\n}";
|
|
const fragment$3 = "uniform vec3 diffuse;\nuniform float opacity;\n#include <common>\n#include <color_pars_fragment>\n#include <map_particle_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <fog_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec3 outgoingLight = vec3( 0.0 );\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include <logdepthbuf_fragment>\n\t#include <map_particle_fragment>\n\t#include <color_fragment>\n\t#include <alphatest_fragment>\n\toutgoingLight = diffuseColor.rgb;\n\t#include <output_fragment>\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n}";
|
|
|
|
const vertex$2 = "#include <common>\n#include <fog_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <shadowmap_pars_vertex>\nvoid main() {\n\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <project_vertex>\n\t#include <worldpos_vertex>\n\t#include <shadowmap_vertex>\n\t#include <fog_vertex>\n}";
|
|
const fragment$2 = "uniform vec3 color;\nuniform float opacity;\n#include <common>\n#include <packing>\n#include <fog_pars_fragment>\n#include <bsdfs>\n#include <lights_pars_begin>\n#include <shadowmap_pars_fragment>\n#include <shadowmask_pars_fragment>\nvoid main() {\n\tgl_FragColor = vec4( color, opacity * ( 1.0 - getShadowMask() ) );\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n}";
|
|
|
|
const vertex$1 = "uniform float rotation;\nuniform vec2 center;\n#include <common>\n#include <uv_pars_vertex>\n#include <fog_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\tvec4 mvPosition = modelViewMatrix * vec4( 0.0, 0.0, 0.0, 1.0 );\n\tvec2 scale;\n\tscale.x = length( vec3( modelMatrix[ 0 ].x, modelMatrix[ 0 ].y, modelMatrix[ 0 ].z ) );\n\tscale.y = length( vec3( modelMatrix[ 1 ].x, modelMatrix[ 1 ].y, modelMatrix[ 1 ].z ) );\n\t#ifndef USE_SIZEATTENUATION\n\t\tbool isPerspective = isPerspectiveMatrix( projectionMatrix );\n\t\tif ( isPerspective ) scale *= - mvPosition.z;\n\t#endif\n\tvec2 alignedPosition = ( position.xy - ( center - vec2( 0.5 ) ) ) * scale;\n\tvec2 rotatedPosition;\n\trotatedPosition.x = cos( rotation ) * alignedPosition.x - sin( rotation ) * alignedPosition.y;\n\trotatedPosition.y = sin( rotation ) * alignedPosition.x + cos( rotation ) * alignedPosition.y;\n\tmvPosition.xy += rotatedPosition;\n\tgl_Position = projectionMatrix * mvPosition;\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\t#include <fog_vertex>\n}";
|
|
const fragment$1 = "uniform vec3 diffuse;\nuniform float opacity;\n#include <common>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <fog_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec3 outgoingLight = vec3( 0.0 );\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\toutgoingLight = diffuseColor.rgb;\n\t#include <output_fragment>\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n}";
|
|
|
|
const ShaderChunk = {
|
|
alphamap_fragment: alphamap_fragment,
|
|
alphamap_pars_fragment: alphamap_pars_fragment,
|
|
alphatest_fragment: alphatest_fragment,
|
|
alphatest_pars_fragment: alphatest_pars_fragment,
|
|
aomap_fragment: aomap_fragment,
|
|
aomap_pars_fragment: aomap_pars_fragment,
|
|
begin_vertex: begin_vertex,
|
|
beginnormal_vertex: beginnormal_vertex,
|
|
bsdfs: bsdfs,
|
|
bumpmap_pars_fragment: bumpmap_pars_fragment,
|
|
clipping_planes_fragment: clipping_planes_fragment,
|
|
clipping_planes_pars_fragment: clipping_planes_pars_fragment,
|
|
clipping_planes_pars_vertex: clipping_planes_pars_vertex,
|
|
clipping_planes_vertex: clipping_planes_vertex,
|
|
color_fragment: color_fragment,
|
|
color_pars_fragment: color_pars_fragment,
|
|
color_pars_vertex: color_pars_vertex,
|
|
color_vertex: color_vertex,
|
|
common: common,
|
|
cube_uv_reflection_fragment: cube_uv_reflection_fragment,
|
|
defaultnormal_vertex: defaultnormal_vertex,
|
|
displacementmap_pars_vertex: displacementmap_pars_vertex,
|
|
displacementmap_vertex: displacementmap_vertex,
|
|
emissivemap_fragment: emissivemap_fragment,
|
|
emissivemap_pars_fragment: emissivemap_pars_fragment,
|
|
encodings_fragment: encodings_fragment,
|
|
encodings_pars_fragment: encodings_pars_fragment,
|
|
envmap_fragment: envmap_fragment,
|
|
envmap_common_pars_fragment: envmap_common_pars_fragment,
|
|
envmap_pars_fragment: envmap_pars_fragment,
|
|
envmap_pars_vertex: envmap_pars_vertex,
|
|
envmap_physical_pars_fragment: envmap_physical_pars_fragment,
|
|
envmap_vertex: envmap_vertex,
|
|
fog_vertex: fog_vertex,
|
|
fog_pars_vertex: fog_pars_vertex,
|
|
fog_fragment: fog_fragment,
|
|
fog_pars_fragment: fog_pars_fragment,
|
|
gradientmap_pars_fragment: gradientmap_pars_fragment,
|
|
lightmap_fragment: lightmap_fragment,
|
|
lightmap_pars_fragment: lightmap_pars_fragment,
|
|
lights_lambert_vertex: lights_lambert_vertex,
|
|
lights_pars_begin: lights_pars_begin,
|
|
lights_toon_fragment: lights_toon_fragment,
|
|
lights_toon_pars_fragment: lights_toon_pars_fragment,
|
|
lights_phong_fragment: lights_phong_fragment,
|
|
lights_phong_pars_fragment: lights_phong_pars_fragment,
|
|
lights_physical_fragment: lights_physical_fragment,
|
|
lights_physical_pars_fragment: lights_physical_pars_fragment,
|
|
lights_fragment_begin: lights_fragment_begin,
|
|
lights_fragment_maps: lights_fragment_maps,
|
|
lights_fragment_end: lights_fragment_end,
|
|
logdepthbuf_fragment: logdepthbuf_fragment,
|
|
logdepthbuf_pars_fragment: logdepthbuf_pars_fragment,
|
|
logdepthbuf_pars_vertex: logdepthbuf_pars_vertex,
|
|
logdepthbuf_vertex: logdepthbuf_vertex,
|
|
map_fragment: map_fragment,
|
|
map_pars_fragment: map_pars_fragment,
|
|
map_particle_fragment: map_particle_fragment,
|
|
map_particle_pars_fragment: map_particle_pars_fragment,
|
|
metalnessmap_fragment: metalnessmap_fragment,
|
|
metalnessmap_pars_fragment: metalnessmap_pars_fragment,
|
|
morphnormal_vertex: morphnormal_vertex,
|
|
morphtarget_pars_vertex: morphtarget_pars_vertex,
|
|
morphtarget_vertex: morphtarget_vertex,
|
|
normal_fragment_begin: normal_fragment_begin,
|
|
normal_fragment_maps: normal_fragment_maps,
|
|
normal_pars_fragment: normal_pars_fragment,
|
|
normal_pars_vertex: normal_pars_vertex,
|
|
normal_vertex: normal_vertex,
|
|
normalmap_pars_fragment: normalmap_pars_fragment,
|
|
clearcoat_normal_fragment_begin: clearcoat_normal_fragment_begin,
|
|
clearcoat_normal_fragment_maps: clearcoat_normal_fragment_maps,
|
|
clearcoat_pars_fragment: clearcoat_pars_fragment,
|
|
output_fragment: output_fragment,
|
|
packing: packing,
|
|
premultiplied_alpha_fragment: premultiplied_alpha_fragment,
|
|
project_vertex: project_vertex,
|
|
dithering_fragment: dithering_fragment,
|
|
dithering_pars_fragment: dithering_pars_fragment,
|
|
roughnessmap_fragment: roughnessmap_fragment,
|
|
roughnessmap_pars_fragment: roughnessmap_pars_fragment,
|
|
shadowmap_pars_fragment: shadowmap_pars_fragment,
|
|
shadowmap_pars_vertex: shadowmap_pars_vertex,
|
|
shadowmap_vertex: shadowmap_vertex,
|
|
shadowmask_pars_fragment: shadowmask_pars_fragment,
|
|
skinbase_vertex: skinbase_vertex,
|
|
skinning_pars_vertex: skinning_pars_vertex,
|
|
skinning_vertex: skinning_vertex,
|
|
skinnormal_vertex: skinnormal_vertex,
|
|
specularmap_fragment: specularmap_fragment,
|
|
specularmap_pars_fragment: specularmap_pars_fragment,
|
|
tonemapping_fragment: tonemapping_fragment,
|
|
tonemapping_pars_fragment: tonemapping_pars_fragment,
|
|
transmission_fragment: transmission_fragment,
|
|
transmission_pars_fragment: transmission_pars_fragment,
|
|
uv_pars_fragment: uv_pars_fragment,
|
|
uv_pars_vertex: uv_pars_vertex,
|
|
uv_vertex: uv_vertex,
|
|
uv2_pars_fragment: uv2_pars_fragment,
|
|
uv2_pars_vertex: uv2_pars_vertex,
|
|
uv2_vertex: uv2_vertex,
|
|
worldpos_vertex: worldpos_vertex,
|
|
background_vert: vertex$g,
|
|
background_frag: fragment$g,
|
|
cube_vert: vertex$f,
|
|
cube_frag: fragment$f,
|
|
depth_vert: vertex$e,
|
|
depth_frag: fragment$e,
|
|
distanceRGBA_vert: vertex$d,
|
|
distanceRGBA_frag: fragment$d,
|
|
equirect_vert: vertex$c,
|
|
equirect_frag: fragment$c,
|
|
linedashed_vert: vertex$b,
|
|
linedashed_frag: fragment$b,
|
|
meshbasic_vert: vertex$a,
|
|
meshbasic_frag: fragment$a,
|
|
meshlambert_vert: vertex$9,
|
|
meshlambert_frag: fragment$9,
|
|
meshmatcap_vert: vertex$8,
|
|
meshmatcap_frag: fragment$8,
|
|
meshnormal_vert: vertex$7,
|
|
meshnormal_frag: fragment$7,
|
|
meshphong_vert: vertex$6,
|
|
meshphong_frag: fragment$6,
|
|
meshphysical_vert: vertex$5,
|
|
meshphysical_frag: fragment$5,
|
|
meshtoon_vert: vertex$4,
|
|
meshtoon_frag: fragment$4,
|
|
points_vert: vertex$3,
|
|
points_frag: fragment$3,
|
|
shadow_vert: vertex$2,
|
|
shadow_frag: fragment$2,
|
|
sprite_vert: vertex$1,
|
|
sprite_frag: fragment$1
|
|
};
|
|
|
|
/**
|
|
* Uniforms library for shared webgl shaders
|
|
*/
|
|
|
|
const UniformsLib = {
|
|
common: {
|
|
diffuse: {
|
|
value: new Color(0xffffff)
|
|
},
|
|
opacity: {
|
|
value: 1.0
|
|
},
|
|
map: {
|
|
value: null
|
|
},
|
|
uvTransform: {
|
|
value: new Matrix3()
|
|
},
|
|
uv2Transform: {
|
|
value: new Matrix3()
|
|
},
|
|
alphaMap: {
|
|
value: null
|
|
},
|
|
alphaTest: {
|
|
value: 0
|
|
}
|
|
},
|
|
specularmap: {
|
|
specularMap: {
|
|
value: null
|
|
}
|
|
},
|
|
envmap: {
|
|
envMap: {
|
|
value: null
|
|
},
|
|
flipEnvMap: {
|
|
value: -1
|
|
},
|
|
reflectivity: {
|
|
value: 1.0
|
|
},
|
|
// basic, lambert, phong
|
|
ior: {
|
|
value: 1.5
|
|
},
|
|
// standard, physical
|
|
refractionRatio: {
|
|
value: 0.98
|
|
},
|
|
maxMipLevel: {
|
|
value: 0
|
|
}
|
|
},
|
|
aomap: {
|
|
aoMap: {
|
|
value: null
|
|
},
|
|
aoMapIntensity: {
|
|
value: 1
|
|
}
|
|
},
|
|
lightmap: {
|
|
lightMap: {
|
|
value: null
|
|
},
|
|
lightMapIntensity: {
|
|
value: 1
|
|
}
|
|
},
|
|
emissivemap: {
|
|
emissiveMap: {
|
|
value: null
|
|
}
|
|
},
|
|
bumpmap: {
|
|
bumpMap: {
|
|
value: null
|
|
},
|
|
bumpScale: {
|
|
value: 1
|
|
}
|
|
},
|
|
normalmap: {
|
|
normalMap: {
|
|
value: null
|
|
},
|
|
normalScale: {
|
|
value: new Vector2(1, 1)
|
|
}
|
|
},
|
|
displacementmap: {
|
|
displacementMap: {
|
|
value: null
|
|
},
|
|
displacementScale: {
|
|
value: 1
|
|
},
|
|
displacementBias: {
|
|
value: 0
|
|
}
|
|
},
|
|
roughnessmap: {
|
|
roughnessMap: {
|
|
value: null
|
|
}
|
|
},
|
|
metalnessmap: {
|
|
metalnessMap: {
|
|
value: null
|
|
}
|
|
},
|
|
gradientmap: {
|
|
gradientMap: {
|
|
value: null
|
|
}
|
|
},
|
|
fog: {
|
|
fogDensity: {
|
|
value: 0.00025
|
|
},
|
|
fogNear: {
|
|
value: 1
|
|
},
|
|
fogFar: {
|
|
value: 2000
|
|
},
|
|
fogColor: {
|
|
value: new Color(0xffffff)
|
|
}
|
|
},
|
|
lights: {
|
|
ambientLightColor: {
|
|
value: []
|
|
},
|
|
lightProbe: {
|
|
value: []
|
|
},
|
|
directionalLights: {
|
|
value: [],
|
|
properties: {
|
|
direction: {},
|
|
color: {}
|
|
}
|
|
},
|
|
directionalLightShadows: {
|
|
value: [],
|
|
properties: {
|
|
shadowBias: {},
|
|
shadowNormalBias: {},
|
|
shadowRadius: {},
|
|
shadowMapSize: {}
|
|
}
|
|
},
|
|
directionalShadowMap: {
|
|
value: []
|
|
},
|
|
directionalShadowMatrix: {
|
|
value: []
|
|
},
|
|
spotLights: {
|
|
value: [],
|
|
properties: {
|
|
color: {},
|
|
position: {},
|
|
direction: {},
|
|
distance: {},
|
|
coneCos: {},
|
|
penumbraCos: {},
|
|
decay: {}
|
|
}
|
|
},
|
|
spotLightShadows: {
|
|
value: [],
|
|
properties: {
|
|
shadowBias: {},
|
|
shadowNormalBias: {},
|
|
shadowRadius: {},
|
|
shadowMapSize: {}
|
|
}
|
|
},
|
|
spotShadowMap: {
|
|
value: []
|
|
},
|
|
spotShadowMatrix: {
|
|
value: []
|
|
},
|
|
pointLights: {
|
|
value: [],
|
|
properties: {
|
|
color: {},
|
|
position: {},
|
|
decay: {},
|
|
distance: {}
|
|
}
|
|
},
|
|
pointLightShadows: {
|
|
value: [],
|
|
properties: {
|
|
shadowBias: {},
|
|
shadowNormalBias: {},
|
|
shadowRadius: {},
|
|
shadowMapSize: {},
|
|
shadowCameraNear: {},
|
|
shadowCameraFar: {}
|
|
}
|
|
},
|
|
pointShadowMap: {
|
|
value: []
|
|
},
|
|
pointShadowMatrix: {
|
|
value: []
|
|
},
|
|
hemisphereLights: {
|
|
value: [],
|
|
properties: {
|
|
direction: {},
|
|
skyColor: {},
|
|
groundColor: {}
|
|
}
|
|
},
|
|
// TODO (abelnation): RectAreaLight BRDF data needs to be moved from example to main src
|
|
rectAreaLights: {
|
|
value: [],
|
|
properties: {
|
|
color: {},
|
|
position: {},
|
|
width: {},
|
|
height: {}
|
|
}
|
|
},
|
|
ltc_1: {
|
|
value: null
|
|
},
|
|
ltc_2: {
|
|
value: null
|
|
}
|
|
},
|
|
points: {
|
|
diffuse: {
|
|
value: new Color(0xffffff)
|
|
},
|
|
opacity: {
|
|
value: 1.0
|
|
},
|
|
size: {
|
|
value: 1.0
|
|
},
|
|
scale: {
|
|
value: 1.0
|
|
},
|
|
map: {
|
|
value: null
|
|
},
|
|
alphaMap: {
|
|
value: null
|
|
},
|
|
alphaTest: {
|
|
value: 0
|
|
},
|
|
uvTransform: {
|
|
value: new Matrix3()
|
|
}
|
|
},
|
|
sprite: {
|
|
diffuse: {
|
|
value: new Color(0xffffff)
|
|
},
|
|
opacity: {
|
|
value: 1.0
|
|
},
|
|
center: {
|
|
value: new Vector2(0.5, 0.5)
|
|
},
|
|
rotation: {
|
|
value: 0.0
|
|
},
|
|
map: {
|
|
value: null
|
|
},
|
|
alphaMap: {
|
|
value: null
|
|
},
|
|
alphaTest: {
|
|
value: 0
|
|
},
|
|
uvTransform: {
|
|
value: new Matrix3()
|
|
}
|
|
}
|
|
};
|
|
|
|
const ShaderLib = {
|
|
basic: {
|
|
uniforms: mergeUniforms([UniformsLib.common, UniformsLib.specularmap, UniformsLib.envmap, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.fog]),
|
|
vertexShader: ShaderChunk.meshbasic_vert,
|
|
fragmentShader: ShaderChunk.meshbasic_frag
|
|
},
|
|
lambert: {
|
|
uniforms: mergeUniforms([UniformsLib.common, UniformsLib.specularmap, UniformsLib.envmap, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.emissivemap, UniformsLib.fog, UniformsLib.lights, {
|
|
emissive: {
|
|
value: new Color(0x000000)
|
|
}
|
|
}]),
|
|
vertexShader: ShaderChunk.meshlambert_vert,
|
|
fragmentShader: ShaderChunk.meshlambert_frag
|
|
},
|
|
phong: {
|
|
uniforms: mergeUniforms([UniformsLib.common, UniformsLib.specularmap, UniformsLib.envmap, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.emissivemap, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, UniformsLib.fog, UniformsLib.lights, {
|
|
emissive: {
|
|
value: new Color(0x000000)
|
|
},
|
|
specular: {
|
|
value: new Color(0x111111)
|
|
},
|
|
shininess: {
|
|
value: 30
|
|
}
|
|
}]),
|
|
vertexShader: ShaderChunk.meshphong_vert,
|
|
fragmentShader: ShaderChunk.meshphong_frag
|
|
},
|
|
standard: {
|
|
uniforms: mergeUniforms([UniformsLib.common, UniformsLib.envmap, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.emissivemap, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, UniformsLib.roughnessmap, UniformsLib.metalnessmap, UniformsLib.fog, UniformsLib.lights, {
|
|
emissive: {
|
|
value: new Color(0x000000)
|
|
},
|
|
roughness: {
|
|
value: 1.0
|
|
},
|
|
metalness: {
|
|
value: 0.0
|
|
},
|
|
envMapIntensity: {
|
|
value: 1
|
|
} // temporary
|
|
|
|
}]),
|
|
vertexShader: ShaderChunk.meshphysical_vert,
|
|
fragmentShader: ShaderChunk.meshphysical_frag
|
|
},
|
|
toon: {
|
|
uniforms: mergeUniforms([UniformsLib.common, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.emissivemap, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, UniformsLib.gradientmap, UniformsLib.fog, UniformsLib.lights, {
|
|
emissive: {
|
|
value: new Color(0x000000)
|
|
}
|
|
}]),
|
|
vertexShader: ShaderChunk.meshtoon_vert,
|
|
fragmentShader: ShaderChunk.meshtoon_frag
|
|
},
|
|
matcap: {
|
|
uniforms: mergeUniforms([UniformsLib.common, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, UniformsLib.fog, {
|
|
matcap: {
|
|
value: null
|
|
}
|
|
}]),
|
|
vertexShader: ShaderChunk.meshmatcap_vert,
|
|
fragmentShader: ShaderChunk.meshmatcap_frag
|
|
},
|
|
points: {
|
|
uniforms: mergeUniforms([UniformsLib.points, UniformsLib.fog]),
|
|
vertexShader: ShaderChunk.points_vert,
|
|
fragmentShader: ShaderChunk.points_frag
|
|
},
|
|
dashed: {
|
|
uniforms: mergeUniforms([UniformsLib.common, UniformsLib.fog, {
|
|
scale: {
|
|
value: 1
|
|
},
|
|
dashSize: {
|
|
value: 1
|
|
},
|
|
totalSize: {
|
|
value: 2
|
|
}
|
|
}]),
|
|
vertexShader: ShaderChunk.linedashed_vert,
|
|
fragmentShader: ShaderChunk.linedashed_frag
|
|
},
|
|
depth: {
|
|
uniforms: mergeUniforms([UniformsLib.common, UniformsLib.displacementmap]),
|
|
vertexShader: ShaderChunk.depth_vert,
|
|
fragmentShader: ShaderChunk.depth_frag
|
|
},
|
|
normal: {
|
|
uniforms: mergeUniforms([UniformsLib.common, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, {
|
|
opacity: {
|
|
value: 1.0
|
|
}
|
|
}]),
|
|
vertexShader: ShaderChunk.meshnormal_vert,
|
|
fragmentShader: ShaderChunk.meshnormal_frag
|
|
},
|
|
sprite: {
|
|
uniforms: mergeUniforms([UniformsLib.sprite, UniformsLib.fog]),
|
|
vertexShader: ShaderChunk.sprite_vert,
|
|
fragmentShader: ShaderChunk.sprite_frag
|
|
},
|
|
background: {
|
|
uniforms: {
|
|
uvTransform: {
|
|
value: new Matrix3()
|
|
},
|
|
t2D: {
|
|
value: null
|
|
}
|
|
},
|
|
vertexShader: ShaderChunk.background_vert,
|
|
fragmentShader: ShaderChunk.background_frag
|
|
},
|
|
|
|
/* -------------------------------------------------------------------------
|
|
// Cube map shader
|
|
------------------------------------------------------------------------- */
|
|
cube: {
|
|
uniforms: mergeUniforms([UniformsLib.envmap, {
|
|
opacity: {
|
|
value: 1.0
|
|
}
|
|
}]),
|
|
vertexShader: ShaderChunk.cube_vert,
|
|
fragmentShader: ShaderChunk.cube_frag
|
|
},
|
|
equirect: {
|
|
uniforms: {
|
|
tEquirect: {
|
|
value: null
|
|
}
|
|
},
|
|
vertexShader: ShaderChunk.equirect_vert,
|
|
fragmentShader: ShaderChunk.equirect_frag
|
|
},
|
|
distanceRGBA: {
|
|
uniforms: mergeUniforms([UniformsLib.common, UniformsLib.displacementmap, {
|
|
referencePosition: {
|
|
value: new Vector3()
|
|
},
|
|
nearDistance: {
|
|
value: 1
|
|
},
|
|
farDistance: {
|
|
value: 1000
|
|
}
|
|
}]),
|
|
vertexShader: ShaderChunk.distanceRGBA_vert,
|
|
fragmentShader: ShaderChunk.distanceRGBA_frag
|
|
},
|
|
shadow: {
|
|
uniforms: mergeUniforms([UniformsLib.lights, UniformsLib.fog, {
|
|
color: {
|
|
value: new Color(0x00000)
|
|
},
|
|
opacity: {
|
|
value: 1.0
|
|
}
|
|
}]),
|
|
vertexShader: ShaderChunk.shadow_vert,
|
|
fragmentShader: ShaderChunk.shadow_frag
|
|
}
|
|
};
|
|
ShaderLib.physical = {
|
|
uniforms: mergeUniforms([ShaderLib.standard.uniforms, {
|
|
clearcoat: {
|
|
value: 0
|
|
},
|
|
clearcoatMap: {
|
|
value: null
|
|
},
|
|
clearcoatRoughness: {
|
|
value: 0
|
|
},
|
|
clearcoatRoughnessMap: {
|
|
value: null
|
|
},
|
|
clearcoatNormalScale: {
|
|
value: new Vector2(1, 1)
|
|
},
|
|
clearcoatNormalMap: {
|
|
value: null
|
|
},
|
|
sheen: {
|
|
value: 0
|
|
},
|
|
sheenTint: {
|
|
value: new Color(0x000000)
|
|
},
|
|
sheenRoughness: {
|
|
value: 0
|
|
},
|
|
transmission: {
|
|
value: 0
|
|
},
|
|
transmissionMap: {
|
|
value: null
|
|
},
|
|
transmissionSamplerSize: {
|
|
value: new Vector2()
|
|
},
|
|
transmissionSamplerMap: {
|
|
value: null
|
|
},
|
|
thickness: {
|
|
value: 0
|
|
},
|
|
thicknessMap: {
|
|
value: null
|
|
},
|
|
attenuationDistance: {
|
|
value: 0
|
|
},
|
|
attenuationTint: {
|
|
value: new Color(0x000000)
|
|
},
|
|
specularIntensity: {
|
|
value: 0
|
|
},
|
|
specularIntensityMap: {
|
|
value: null
|
|
},
|
|
specularTint: {
|
|
value: new Color(1, 1, 1)
|
|
},
|
|
specularTintMap: {
|
|
value: null
|
|
}
|
|
}]),
|
|
vertexShader: ShaderChunk.meshphysical_vert,
|
|
fragmentShader: ShaderChunk.meshphysical_frag
|
|
};
|
|
|
|
function WebGLBackground(renderer, cubemaps, state, objects, premultipliedAlpha) {
|
|
const clearColor = new Color(0x000000);
|
|
let clearAlpha = 0;
|
|
let planeMesh;
|
|
let boxMesh;
|
|
let currentBackground = null;
|
|
let currentBackgroundVersion = 0;
|
|
let currentTonemapping = null;
|
|
|
|
function render(renderList, scene) {
|
|
let forceClear = false;
|
|
let background = scene.isScene === true ? scene.background : null;
|
|
|
|
if (background && background.isTexture) {
|
|
background = cubemaps.get(background);
|
|
} // Ignore background in AR
|
|
// TODO: Reconsider this.
|
|
|
|
|
|
const xr = renderer.xr;
|
|
const session = xr.getSession && xr.getSession();
|
|
|
|
if (session && session.environmentBlendMode === 'additive') {
|
|
background = null;
|
|
}
|
|
|
|
if (background === null) {
|
|
setClear(clearColor, clearAlpha);
|
|
} else if (background && background.isColor) {
|
|
setClear(background, 1);
|
|
forceClear = true;
|
|
}
|
|
|
|
if (renderer.autoClear || forceClear) {
|
|
renderer.clear(renderer.autoClearColor, renderer.autoClearDepth, renderer.autoClearStencil);
|
|
}
|
|
|
|
if (background && (background.isCubeTexture || background.mapping === CubeUVReflectionMapping)) {
|
|
if (boxMesh === undefined) {
|
|
boxMesh = new Mesh(new BoxGeometry(1, 1, 1), new ShaderMaterial({
|
|
name: 'BackgroundCubeMaterial',
|
|
uniforms: cloneUniforms(ShaderLib.cube.uniforms),
|
|
vertexShader: ShaderLib.cube.vertexShader,
|
|
fragmentShader: ShaderLib.cube.fragmentShader,
|
|
side: BackSide,
|
|
depthTest: false,
|
|
depthWrite: false,
|
|
fog: false
|
|
}));
|
|
boxMesh.geometry.deleteAttribute('normal');
|
|
boxMesh.geometry.deleteAttribute('uv');
|
|
|
|
boxMesh.onBeforeRender = function (renderer, scene, camera) {
|
|
this.matrixWorld.copyPosition(camera.matrixWorld);
|
|
}; // enable code injection for non-built-in material
|
|
|
|
|
|
Object.defineProperty(boxMesh.material, 'envMap', {
|
|
get: function () {
|
|
return this.uniforms.envMap.value;
|
|
}
|
|
});
|
|
objects.update(boxMesh);
|
|
}
|
|
|
|
boxMesh.material.uniforms.envMap.value = background;
|
|
boxMesh.material.uniforms.flipEnvMap.value = background.isCubeTexture && background.isRenderTargetTexture === false ? -1 : 1;
|
|
|
|
if (currentBackground !== background || currentBackgroundVersion !== background.version || currentTonemapping !== renderer.toneMapping) {
|
|
boxMesh.material.needsUpdate = true;
|
|
currentBackground = background;
|
|
currentBackgroundVersion = background.version;
|
|
currentTonemapping = renderer.toneMapping;
|
|
} // push to the pre-sorted opaque render list
|
|
|
|
|
|
renderList.unshift(boxMesh, boxMesh.geometry, boxMesh.material, 0, 0, null);
|
|
} else if (background && background.isTexture) {
|
|
if (planeMesh === undefined) {
|
|
planeMesh = new Mesh(new PlaneGeometry(2, 2), new ShaderMaterial({
|
|
name: 'BackgroundMaterial',
|
|
uniforms: cloneUniforms(ShaderLib.background.uniforms),
|
|
vertexShader: ShaderLib.background.vertexShader,
|
|
fragmentShader: ShaderLib.background.fragmentShader,
|
|
side: FrontSide,
|
|
depthTest: false,
|
|
depthWrite: false,
|
|
fog: false
|
|
}));
|
|
planeMesh.geometry.deleteAttribute('normal'); // enable code injection for non-built-in material
|
|
|
|
Object.defineProperty(planeMesh.material, 'map', {
|
|
get: function () {
|
|
return this.uniforms.t2D.value;
|
|
}
|
|
});
|
|
objects.update(planeMesh);
|
|
}
|
|
|
|
planeMesh.material.uniforms.t2D.value = background;
|
|
|
|
if (background.matrixAutoUpdate === true) {
|
|
background.updateMatrix();
|
|
}
|
|
|
|
planeMesh.material.uniforms.uvTransform.value.copy(background.matrix);
|
|
|
|
if (currentBackground !== background || currentBackgroundVersion !== background.version || currentTonemapping !== renderer.toneMapping) {
|
|
planeMesh.material.needsUpdate = true;
|
|
currentBackground = background;
|
|
currentBackgroundVersion = background.version;
|
|
currentTonemapping = renderer.toneMapping;
|
|
} // push to the pre-sorted opaque render list
|
|
|
|
|
|
renderList.unshift(planeMesh, planeMesh.geometry, planeMesh.material, 0, 0, null);
|
|
}
|
|
}
|
|
|
|
function setClear(color, alpha) {
|
|
state.buffers.color.setClear(color.r, color.g, color.b, alpha, premultipliedAlpha);
|
|
}
|
|
|
|
return {
|
|
getClearColor: function () {
|
|
return clearColor;
|
|
},
|
|
setClearColor: function (color, alpha = 1) {
|
|
clearColor.set(color);
|
|
clearAlpha = alpha;
|
|
setClear(clearColor, clearAlpha);
|
|
},
|
|
getClearAlpha: function () {
|
|
return clearAlpha;
|
|
},
|
|
setClearAlpha: function (alpha) {
|
|
clearAlpha = alpha;
|
|
setClear(clearColor, clearAlpha);
|
|
},
|
|
render: render
|
|
};
|
|
}
|
|
|
|
function WebGLBindingStates(gl, extensions, attributes, capabilities) {
|
|
const maxVertexAttributes = gl.getParameter(gl.MAX_VERTEX_ATTRIBS);
|
|
const extension = capabilities.isWebGL2 ? null : extensions.get('OES_vertex_array_object');
|
|
const vaoAvailable = capabilities.isWebGL2 || extension !== null;
|
|
const bindingStates = {};
|
|
const defaultState = createBindingState(null);
|
|
let currentState = defaultState;
|
|
|
|
function setup(object, material, program, geometry, index) {
|
|
let updateBuffers = false;
|
|
|
|
if (vaoAvailable) {
|
|
const state = getBindingState(geometry, program, material);
|
|
|
|
if (currentState !== state) {
|
|
currentState = state;
|
|
bindVertexArrayObject(currentState.object);
|
|
}
|
|
|
|
updateBuffers = needsUpdate(geometry, index);
|
|
if (updateBuffers) saveCache(geometry, index);
|
|
} else {
|
|
const wireframe = material.wireframe === true;
|
|
|
|
if (currentState.geometry !== geometry.id || currentState.program !== program.id || currentState.wireframe !== wireframe) {
|
|
currentState.geometry = geometry.id;
|
|
currentState.program = program.id;
|
|
currentState.wireframe = wireframe;
|
|
updateBuffers = true;
|
|
}
|
|
}
|
|
|
|
if (object.isInstancedMesh === true) {
|
|
updateBuffers = true;
|
|
}
|
|
|
|
if (index !== null) {
|
|
attributes.update(index, gl.ELEMENT_ARRAY_BUFFER);
|
|
}
|
|
|
|
if (updateBuffers) {
|
|
setupVertexAttributes(object, material, program, geometry);
|
|
|
|
if (index !== null) {
|
|
gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, attributes.get(index).buffer);
|
|
}
|
|
}
|
|
}
|
|
|
|
function createVertexArrayObject() {
|
|
if (capabilities.isWebGL2) return gl.createVertexArray();
|
|
return extension.createVertexArrayOES();
|
|
}
|
|
|
|
function bindVertexArrayObject(vao) {
|
|
if (capabilities.isWebGL2) return gl.bindVertexArray(vao);
|
|
return extension.bindVertexArrayOES(vao);
|
|
}
|
|
|
|
function deleteVertexArrayObject(vao) {
|
|
if (capabilities.isWebGL2) return gl.deleteVertexArray(vao);
|
|
return extension.deleteVertexArrayOES(vao);
|
|
}
|
|
|
|
function getBindingState(geometry, program, material) {
|
|
const wireframe = material.wireframe === true;
|
|
let programMap = bindingStates[geometry.id];
|
|
|
|
if (programMap === undefined) {
|
|
programMap = {};
|
|
bindingStates[geometry.id] = programMap;
|
|
}
|
|
|
|
let stateMap = programMap[program.id];
|
|
|
|
if (stateMap === undefined) {
|
|
stateMap = {};
|
|
programMap[program.id] = stateMap;
|
|
}
|
|
|
|
let state = stateMap[wireframe];
|
|
|
|
if (state === undefined) {
|
|
state = createBindingState(createVertexArrayObject());
|
|
stateMap[wireframe] = state;
|
|
}
|
|
|
|
return state;
|
|
}
|
|
|
|
function createBindingState(vao) {
|
|
const newAttributes = [];
|
|
const enabledAttributes = [];
|
|
const attributeDivisors = [];
|
|
|
|
for (let i = 0; i < maxVertexAttributes; i++) {
|
|
newAttributes[i] = 0;
|
|
enabledAttributes[i] = 0;
|
|
attributeDivisors[i] = 0;
|
|
}
|
|
|
|
return {
|
|
// for backward compatibility on non-VAO support browser
|
|
geometry: null,
|
|
program: null,
|
|
wireframe: false,
|
|
newAttributes: newAttributes,
|
|
enabledAttributes: enabledAttributes,
|
|
attributeDivisors: attributeDivisors,
|
|
object: vao,
|
|
attributes: {},
|
|
index: null
|
|
};
|
|
}
|
|
|
|
function needsUpdate(geometry, index) {
|
|
const cachedAttributes = currentState.attributes;
|
|
const geometryAttributes = geometry.attributes;
|
|
let attributesNum = 0;
|
|
|
|
for (const key in geometryAttributes) {
|
|
const cachedAttribute = cachedAttributes[key];
|
|
const geometryAttribute = geometryAttributes[key];
|
|
if (cachedAttribute === undefined) return true;
|
|
if (cachedAttribute.attribute !== geometryAttribute) return true;
|
|
if (cachedAttribute.data !== geometryAttribute.data) return true;
|
|
attributesNum++;
|
|
}
|
|
|
|
if (currentState.attributesNum !== attributesNum) return true;
|
|
if (currentState.index !== index) return true;
|
|
return false;
|
|
}
|
|
|
|
function saveCache(geometry, index) {
|
|
const cache = {};
|
|
const attributes = geometry.attributes;
|
|
let attributesNum = 0;
|
|
|
|
for (const key in attributes) {
|
|
const attribute = attributes[key];
|
|
const data = {};
|
|
data.attribute = attribute;
|
|
|
|
if (attribute.data) {
|
|
data.data = attribute.data;
|
|
}
|
|
|
|
cache[key] = data;
|
|
attributesNum++;
|
|
}
|
|
|
|
currentState.attributes = cache;
|
|
currentState.attributesNum = attributesNum;
|
|
currentState.index = index;
|
|
}
|
|
|
|
function initAttributes() {
|
|
const newAttributes = currentState.newAttributes;
|
|
|
|
for (let i = 0, il = newAttributes.length; i < il; i++) {
|
|
newAttributes[i] = 0;
|
|
}
|
|
}
|
|
|
|
function enableAttribute(attribute) {
|
|
enableAttributeAndDivisor(attribute, 0);
|
|
}
|
|
|
|
function enableAttributeAndDivisor(attribute, meshPerAttribute) {
|
|
const newAttributes = currentState.newAttributes;
|
|
const enabledAttributes = currentState.enabledAttributes;
|
|
const attributeDivisors = currentState.attributeDivisors;
|
|
newAttributes[attribute] = 1;
|
|
|
|
if (enabledAttributes[attribute] === 0) {
|
|
gl.enableVertexAttribArray(attribute);
|
|
enabledAttributes[attribute] = 1;
|
|
}
|
|
|
|
if (attributeDivisors[attribute] !== meshPerAttribute) {
|
|
const extension = capabilities.isWebGL2 ? gl : extensions.get('ANGLE_instanced_arrays');
|
|
extension[capabilities.isWebGL2 ? 'vertexAttribDivisor' : 'vertexAttribDivisorANGLE'](attribute, meshPerAttribute);
|
|
attributeDivisors[attribute] = meshPerAttribute;
|
|
}
|
|
}
|
|
|
|
function disableUnusedAttributes() {
|
|
const newAttributes = currentState.newAttributes;
|
|
const enabledAttributes = currentState.enabledAttributes;
|
|
|
|
for (let i = 0, il = enabledAttributes.length; i < il; i++) {
|
|
if (enabledAttributes[i] !== newAttributes[i]) {
|
|
gl.disableVertexAttribArray(i);
|
|
enabledAttributes[i] = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
function vertexAttribPointer(index, size, type, normalized, stride, offset) {
|
|
if (capabilities.isWebGL2 === true && (type === gl.INT || type === gl.UNSIGNED_INT)) {
|
|
gl.vertexAttribIPointer(index, size, type, stride, offset);
|
|
} else {
|
|
gl.vertexAttribPointer(index, size, type, normalized, stride, offset);
|
|
}
|
|
}
|
|
|
|
function setupVertexAttributes(object, material, program, geometry) {
|
|
if (capabilities.isWebGL2 === false && (object.isInstancedMesh || geometry.isInstancedBufferGeometry)) {
|
|
if (extensions.get('ANGLE_instanced_arrays') === null) return;
|
|
}
|
|
|
|
initAttributes();
|
|
const geometryAttributes = geometry.attributes;
|
|
const programAttributes = program.getAttributes();
|
|
const materialDefaultAttributeValues = material.defaultAttributeValues;
|
|
|
|
for (const name in programAttributes) {
|
|
const programAttribute = programAttributes[name];
|
|
|
|
if (programAttribute.location >= 0) {
|
|
let geometryAttribute = geometryAttributes[name];
|
|
|
|
if (geometryAttribute === undefined) {
|
|
if (name === 'instanceMatrix' && object.instanceMatrix) geometryAttribute = object.instanceMatrix;
|
|
if (name === 'instanceColor' && object.instanceColor) geometryAttribute = object.instanceColor;
|
|
}
|
|
|
|
if (geometryAttribute !== undefined) {
|
|
const normalized = geometryAttribute.normalized;
|
|
const size = geometryAttribute.itemSize;
|
|
const attribute = attributes.get(geometryAttribute); // TODO Attribute may not be available on context restore
|
|
|
|
if (attribute === undefined) continue;
|
|
const buffer = attribute.buffer;
|
|
const type = attribute.type;
|
|
const bytesPerElement = attribute.bytesPerElement;
|
|
|
|
if (geometryAttribute.isInterleavedBufferAttribute) {
|
|
const data = geometryAttribute.data;
|
|
const stride = data.stride;
|
|
const offset = geometryAttribute.offset;
|
|
|
|
if (data && data.isInstancedInterleavedBuffer) {
|
|
for (let i = 0; i < programAttribute.locationSize; i++) {
|
|
enableAttributeAndDivisor(programAttribute.location + i, data.meshPerAttribute);
|
|
}
|
|
|
|
if (object.isInstancedMesh !== true && geometry._maxInstanceCount === undefined) {
|
|
geometry._maxInstanceCount = data.meshPerAttribute * data.count;
|
|
}
|
|
} else {
|
|
for (let i = 0; i < programAttribute.locationSize; i++) {
|
|
enableAttribute(programAttribute.location + i);
|
|
}
|
|
}
|
|
|
|
gl.bindBuffer(gl.ARRAY_BUFFER, buffer);
|
|
|
|
for (let i = 0; i < programAttribute.locationSize; i++) {
|
|
vertexAttribPointer(programAttribute.location + i, size / programAttribute.locationSize, type, normalized, stride * bytesPerElement, (offset + size / programAttribute.locationSize * i) * bytesPerElement);
|
|
}
|
|
} else {
|
|
if (geometryAttribute.isInstancedBufferAttribute) {
|
|
for (let i = 0; i < programAttribute.locationSize; i++) {
|
|
enableAttributeAndDivisor(programAttribute.location + i, geometryAttribute.meshPerAttribute);
|
|
}
|
|
|
|
if (object.isInstancedMesh !== true && geometry._maxInstanceCount === undefined) {
|
|
geometry._maxInstanceCount = geometryAttribute.meshPerAttribute * geometryAttribute.count;
|
|
}
|
|
} else {
|
|
for (let i = 0; i < programAttribute.locationSize; i++) {
|
|
enableAttribute(programAttribute.location + i);
|
|
}
|
|
}
|
|
|
|
gl.bindBuffer(gl.ARRAY_BUFFER, buffer);
|
|
|
|
for (let i = 0; i < programAttribute.locationSize; i++) {
|
|
vertexAttribPointer(programAttribute.location + i, size / programAttribute.locationSize, type, normalized, size * bytesPerElement, size / programAttribute.locationSize * i * bytesPerElement);
|
|
}
|
|
}
|
|
} else if (materialDefaultAttributeValues !== undefined) {
|
|
const value = materialDefaultAttributeValues[name];
|
|
|
|
if (value !== undefined) {
|
|
switch (value.length) {
|
|
case 2:
|
|
gl.vertexAttrib2fv(programAttribute.location, value);
|
|
break;
|
|
|
|
case 3:
|
|
gl.vertexAttrib3fv(programAttribute.location, value);
|
|
break;
|
|
|
|
case 4:
|
|
gl.vertexAttrib4fv(programAttribute.location, value);
|
|
break;
|
|
|
|
default:
|
|
gl.vertexAttrib1fv(programAttribute.location, value);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
disableUnusedAttributes();
|
|
}
|
|
|
|
function dispose() {
|
|
reset();
|
|
|
|
for (const geometryId in bindingStates) {
|
|
const programMap = bindingStates[geometryId];
|
|
|
|
for (const programId in programMap) {
|
|
const stateMap = programMap[programId];
|
|
|
|
for (const wireframe in stateMap) {
|
|
deleteVertexArrayObject(stateMap[wireframe].object);
|
|
delete stateMap[wireframe];
|
|
}
|
|
|
|
delete programMap[programId];
|
|
}
|
|
|
|
delete bindingStates[geometryId];
|
|
}
|
|
}
|
|
|
|
function releaseStatesOfGeometry(geometry) {
|
|
if (bindingStates[geometry.id] === undefined) return;
|
|
const programMap = bindingStates[geometry.id];
|
|
|
|
for (const programId in programMap) {
|
|
const stateMap = programMap[programId];
|
|
|
|
for (const wireframe in stateMap) {
|
|
deleteVertexArrayObject(stateMap[wireframe].object);
|
|
delete stateMap[wireframe];
|
|
}
|
|
|
|
delete programMap[programId];
|
|
}
|
|
|
|
delete bindingStates[geometry.id];
|
|
}
|
|
|
|
function releaseStatesOfProgram(program) {
|
|
for (const geometryId in bindingStates) {
|
|
const programMap = bindingStates[geometryId];
|
|
if (programMap[program.id] === undefined) continue;
|
|
const stateMap = programMap[program.id];
|
|
|
|
for (const wireframe in stateMap) {
|
|
deleteVertexArrayObject(stateMap[wireframe].object);
|
|
delete stateMap[wireframe];
|
|
}
|
|
|
|
delete programMap[program.id];
|
|
}
|
|
}
|
|
|
|
function reset() {
|
|
resetDefaultState();
|
|
if (currentState === defaultState) return;
|
|
currentState = defaultState;
|
|
bindVertexArrayObject(currentState.object);
|
|
} // for backward-compatilibity
|
|
|
|
|
|
function resetDefaultState() {
|
|
defaultState.geometry = null;
|
|
defaultState.program = null;
|
|
defaultState.wireframe = false;
|
|
}
|
|
|
|
return {
|
|
setup: setup,
|
|
reset: reset,
|
|
resetDefaultState: resetDefaultState,
|
|
dispose: dispose,
|
|
releaseStatesOfGeometry: releaseStatesOfGeometry,
|
|
releaseStatesOfProgram: releaseStatesOfProgram,
|
|
initAttributes: initAttributes,
|
|
enableAttribute: enableAttribute,
|
|
disableUnusedAttributes: disableUnusedAttributes
|
|
};
|
|
}
|
|
|
|
function WebGLBufferRenderer(gl, extensions, info, capabilities) {
|
|
const isWebGL2 = capabilities.isWebGL2;
|
|
let mode;
|
|
|
|
function setMode(value) {
|
|
mode = value;
|
|
}
|
|
|
|
function render(start, count) {
|
|
gl.drawArrays(mode, start, count);
|
|
info.update(count, mode, 1);
|
|
}
|
|
|
|
function renderInstances(start, count, primcount) {
|
|
if (primcount === 0) return;
|
|
let extension, methodName;
|
|
|
|
if (isWebGL2) {
|
|
extension = gl;
|
|
methodName = 'drawArraysInstanced';
|
|
} else {
|
|
extension = extensions.get('ANGLE_instanced_arrays');
|
|
methodName = 'drawArraysInstancedANGLE';
|
|
|
|
if (extension === null) {
|
|
console.error('THREE.WebGLBufferRenderer: using THREE.InstancedBufferGeometry but hardware does not support extension ANGLE_instanced_arrays.');
|
|
return;
|
|
}
|
|
}
|
|
|
|
extension[methodName](mode, start, count, primcount);
|
|
info.update(count, mode, primcount);
|
|
} //
|
|
|
|
|
|
this.setMode = setMode;
|
|
this.render = render;
|
|
this.renderInstances = renderInstances;
|
|
}
|
|
|
|
function WebGLCapabilities(gl, extensions, parameters) {
|
|
let maxAnisotropy;
|
|
|
|
function getMaxAnisotropy() {
|
|
if (maxAnisotropy !== undefined) return maxAnisotropy;
|
|
|
|
if (extensions.has('EXT_texture_filter_anisotropic') === true) {
|
|
const extension = extensions.get('EXT_texture_filter_anisotropic');
|
|
maxAnisotropy = gl.getParameter(extension.MAX_TEXTURE_MAX_ANISOTROPY_EXT);
|
|
} else {
|
|
maxAnisotropy = 0;
|
|
}
|
|
|
|
return maxAnisotropy;
|
|
}
|
|
|
|
function getMaxPrecision(precision) {
|
|
if (precision === 'highp') {
|
|
if (gl.getShaderPrecisionFormat(gl.VERTEX_SHADER, gl.HIGH_FLOAT).precision > 0 && gl.getShaderPrecisionFormat(gl.FRAGMENT_SHADER, gl.HIGH_FLOAT).precision > 0) {
|
|
return 'highp';
|
|
}
|
|
|
|
precision = 'mediump';
|
|
}
|
|
|
|
if (precision === 'mediump') {
|
|
if (gl.getShaderPrecisionFormat(gl.VERTEX_SHADER, gl.MEDIUM_FLOAT).precision > 0 && gl.getShaderPrecisionFormat(gl.FRAGMENT_SHADER, gl.MEDIUM_FLOAT).precision > 0) {
|
|
return 'mediump';
|
|
}
|
|
}
|
|
|
|
return 'lowp';
|
|
}
|
|
/* eslint-disable no-undef */
|
|
|
|
|
|
const isWebGL2 = typeof WebGL2RenderingContext !== 'undefined' && gl instanceof WebGL2RenderingContext || typeof WebGL2ComputeRenderingContext !== 'undefined' && gl instanceof WebGL2ComputeRenderingContext;
|
|
/* eslint-enable no-undef */
|
|
|
|
let precision = parameters.precision !== undefined ? parameters.precision : 'highp';
|
|
const maxPrecision = getMaxPrecision(precision);
|
|
|
|
if (maxPrecision !== precision) {
|
|
console.warn('THREE.WebGLRenderer:', precision, 'not supported, using', maxPrecision, 'instead.');
|
|
precision = maxPrecision;
|
|
}
|
|
|
|
const drawBuffers = isWebGL2 || extensions.has('WEBGL_draw_buffers');
|
|
const logarithmicDepthBuffer = parameters.logarithmicDepthBuffer === true;
|
|
const maxTextures = gl.getParameter(gl.MAX_TEXTURE_IMAGE_UNITS);
|
|
const maxVertexTextures = gl.getParameter(gl.MAX_VERTEX_TEXTURE_IMAGE_UNITS);
|
|
const maxTextureSize = gl.getParameter(gl.MAX_TEXTURE_SIZE);
|
|
const maxCubemapSize = gl.getParameter(gl.MAX_CUBE_MAP_TEXTURE_SIZE);
|
|
const maxAttributes = gl.getParameter(gl.MAX_VERTEX_ATTRIBS);
|
|
const maxVertexUniforms = gl.getParameter(gl.MAX_VERTEX_UNIFORM_VECTORS);
|
|
const maxVaryings = gl.getParameter(gl.MAX_VARYING_VECTORS);
|
|
const maxFragmentUniforms = gl.getParameter(gl.MAX_FRAGMENT_UNIFORM_VECTORS);
|
|
const vertexTextures = maxVertexTextures > 0;
|
|
const floatFragmentTextures = isWebGL2 || extensions.has('OES_texture_float');
|
|
const floatVertexTextures = vertexTextures && floatFragmentTextures;
|
|
const maxSamples = isWebGL2 ? gl.getParameter(gl.MAX_SAMPLES) : 0;
|
|
return {
|
|
isWebGL2: isWebGL2,
|
|
drawBuffers: drawBuffers,
|
|
getMaxAnisotropy: getMaxAnisotropy,
|
|
getMaxPrecision: getMaxPrecision,
|
|
precision: precision,
|
|
logarithmicDepthBuffer: logarithmicDepthBuffer,
|
|
maxTextures: maxTextures,
|
|
maxVertexTextures: maxVertexTextures,
|
|
maxTextureSize: maxTextureSize,
|
|
maxCubemapSize: maxCubemapSize,
|
|
maxAttributes: maxAttributes,
|
|
maxVertexUniforms: maxVertexUniforms,
|
|
maxVaryings: maxVaryings,
|
|
maxFragmentUniforms: maxFragmentUniforms,
|
|
vertexTextures: vertexTextures,
|
|
floatFragmentTextures: floatFragmentTextures,
|
|
floatVertexTextures: floatVertexTextures,
|
|
maxSamples: maxSamples
|
|
};
|
|
}
|
|
|
|
function WebGLClipping(properties) {
|
|
const scope = this;
|
|
let globalState = null,
|
|
numGlobalPlanes = 0,
|
|
localClippingEnabled = false,
|
|
renderingShadows = false;
|
|
const plane = new Plane(),
|
|
viewNormalMatrix = new Matrix3(),
|
|
uniform = {
|
|
value: null,
|
|
needsUpdate: false
|
|
};
|
|
this.uniform = uniform;
|
|
this.numPlanes = 0;
|
|
this.numIntersection = 0;
|
|
|
|
this.init = function (planes, enableLocalClipping, camera) {
|
|
const enabled = planes.length !== 0 || enableLocalClipping || // enable state of previous frame - the clipping code has to
|
|
// run another frame in order to reset the state:
|
|
numGlobalPlanes !== 0 || localClippingEnabled;
|
|
localClippingEnabled = enableLocalClipping;
|
|
globalState = projectPlanes(planes, camera, 0);
|
|
numGlobalPlanes = planes.length;
|
|
return enabled;
|
|
};
|
|
|
|
this.beginShadows = function () {
|
|
renderingShadows = true;
|
|
projectPlanes(null);
|
|
};
|
|
|
|
this.endShadows = function () {
|
|
renderingShadows = false;
|
|
resetGlobalState();
|
|
};
|
|
|
|
this.setState = function (material, camera, useCache) {
|
|
const planes = material.clippingPlanes,
|
|
clipIntersection = material.clipIntersection,
|
|
clipShadows = material.clipShadows;
|
|
const materialProperties = properties.get(material);
|
|
|
|
if (!localClippingEnabled || planes === null || planes.length === 0 || renderingShadows && !clipShadows) {
|
|
// there's no local clipping
|
|
if (renderingShadows) {
|
|
// there's no global clipping
|
|
projectPlanes(null);
|
|
} else {
|
|
resetGlobalState();
|
|
}
|
|
} else {
|
|
const nGlobal = renderingShadows ? 0 : numGlobalPlanes,
|
|
lGlobal = nGlobal * 4;
|
|
let dstArray = materialProperties.clippingState || null;
|
|
uniform.value = dstArray; // ensure unique state
|
|
|
|
dstArray = projectPlanes(planes, camera, lGlobal, useCache);
|
|
|
|
for (let i = 0; i !== lGlobal; ++i) {
|
|
dstArray[i] = globalState[i];
|
|
}
|
|
|
|
materialProperties.clippingState = dstArray;
|
|
this.numIntersection = clipIntersection ? this.numPlanes : 0;
|
|
this.numPlanes += nGlobal;
|
|
}
|
|
};
|
|
|
|
function resetGlobalState() {
|
|
if (uniform.value !== globalState) {
|
|
uniform.value = globalState;
|
|
uniform.needsUpdate = numGlobalPlanes > 0;
|
|
}
|
|
|
|
scope.numPlanes = numGlobalPlanes;
|
|
scope.numIntersection = 0;
|
|
}
|
|
|
|
function projectPlanes(planes, camera, dstOffset, skipTransform) {
|
|
const nPlanes = planes !== null ? planes.length : 0;
|
|
let dstArray = null;
|
|
|
|
if (nPlanes !== 0) {
|
|
dstArray = uniform.value;
|
|
|
|
if (skipTransform !== true || dstArray === null) {
|
|
const flatSize = dstOffset + nPlanes * 4,
|
|
viewMatrix = camera.matrixWorldInverse;
|
|
viewNormalMatrix.getNormalMatrix(viewMatrix);
|
|
|
|
if (dstArray === null || dstArray.length < flatSize) {
|
|
dstArray = new Float32Array(flatSize);
|
|
}
|
|
|
|
for (let i = 0, i4 = dstOffset; i !== nPlanes; ++i, i4 += 4) {
|
|
plane.copy(planes[i]).applyMatrix4(viewMatrix, viewNormalMatrix);
|
|
plane.normal.toArray(dstArray, i4);
|
|
dstArray[i4 + 3] = plane.constant;
|
|
}
|
|
}
|
|
|
|
uniform.value = dstArray;
|
|
uniform.needsUpdate = true;
|
|
}
|
|
|
|
scope.numPlanes = nPlanes;
|
|
scope.numIntersection = 0;
|
|
return dstArray;
|
|
}
|
|
}
|
|
|
|
function WebGLCubeMaps(renderer) {
|
|
let cubemaps = new WeakMap();
|
|
|
|
function mapTextureMapping(texture, mapping) {
|
|
if (mapping === EquirectangularReflectionMapping) {
|
|
texture.mapping = CubeReflectionMapping;
|
|
} else if (mapping === EquirectangularRefractionMapping) {
|
|
texture.mapping = CubeRefractionMapping;
|
|
}
|
|
|
|
return texture;
|
|
}
|
|
|
|
function get(texture) {
|
|
if (texture && texture.isTexture && texture.isRenderTargetTexture === false) {
|
|
const mapping = texture.mapping;
|
|
|
|
if (mapping === EquirectangularReflectionMapping || mapping === EquirectangularRefractionMapping) {
|
|
if (cubemaps.has(texture)) {
|
|
const cubemap = cubemaps.get(texture).texture;
|
|
return mapTextureMapping(cubemap, texture.mapping);
|
|
} else {
|
|
const image = texture.image;
|
|
|
|
if (image && image.height > 0) {
|
|
const currentRenderTarget = renderer.getRenderTarget();
|
|
const renderTarget = new WebGLCubeRenderTarget(image.height / 2);
|
|
renderTarget.fromEquirectangularTexture(renderer, texture);
|
|
cubemaps.set(texture, renderTarget);
|
|
renderer.setRenderTarget(currentRenderTarget);
|
|
texture.addEventListener('dispose', onTextureDispose);
|
|
return mapTextureMapping(renderTarget.texture, texture.mapping);
|
|
} else {
|
|
// image not yet ready. try the conversion next frame
|
|
return null;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return texture;
|
|
}
|
|
|
|
function onTextureDispose(event) {
|
|
const texture = event.target;
|
|
texture.removeEventListener('dispose', onTextureDispose);
|
|
const cubemap = cubemaps.get(texture);
|
|
|
|
if (cubemap !== undefined) {
|
|
cubemaps.delete(texture);
|
|
cubemap.dispose();
|
|
}
|
|
}
|
|
|
|
function dispose() {
|
|
cubemaps = new WeakMap();
|
|
}
|
|
|
|
return {
|
|
get: get,
|
|
dispose: dispose
|
|
};
|
|
}
|
|
|
|
class OrthographicCamera extends Camera {
|
|
constructor(left = -1, right = 1, top = 1, bottom = -1, near = 0.1, far = 2000) {
|
|
super();
|
|
this.type = 'OrthographicCamera';
|
|
this.zoom = 1;
|
|
this.view = null;
|
|
this.left = left;
|
|
this.right = right;
|
|
this.top = top;
|
|
this.bottom = bottom;
|
|
this.near = near;
|
|
this.far = far;
|
|
this.updateProjectionMatrix();
|
|
}
|
|
|
|
copy(source, recursive) {
|
|
super.copy(source, recursive);
|
|
this.left = source.left;
|
|
this.right = source.right;
|
|
this.top = source.top;
|
|
this.bottom = source.bottom;
|
|
this.near = source.near;
|
|
this.far = source.far;
|
|
this.zoom = source.zoom;
|
|
this.view = source.view === null ? null : Object.assign({}, source.view);
|
|
return this;
|
|
}
|
|
|
|
setViewOffset(fullWidth, fullHeight, x, y, width, height) {
|
|
if (this.view === null) {
|
|
this.view = {
|
|
enabled: true,
|
|
fullWidth: 1,
|
|
fullHeight: 1,
|
|
offsetX: 0,
|
|
offsetY: 0,
|
|
width: 1,
|
|
height: 1
|
|
};
|
|
}
|
|
|
|
this.view.enabled = true;
|
|
this.view.fullWidth = fullWidth;
|
|
this.view.fullHeight = fullHeight;
|
|
this.view.offsetX = x;
|
|
this.view.offsetY = y;
|
|
this.view.width = width;
|
|
this.view.height = height;
|
|
this.updateProjectionMatrix();
|
|
}
|
|
|
|
clearViewOffset() {
|
|
if (this.view !== null) {
|
|
this.view.enabled = false;
|
|
}
|
|
|
|
this.updateProjectionMatrix();
|
|
}
|
|
|
|
updateProjectionMatrix() {
|
|
const dx = (this.right - this.left) / (2 * this.zoom);
|
|
const dy = (this.top - this.bottom) / (2 * this.zoom);
|
|
const cx = (this.right + this.left) / 2;
|
|
const cy = (this.top + this.bottom) / 2;
|
|
let left = cx - dx;
|
|
let right = cx + dx;
|
|
let top = cy + dy;
|
|
let bottom = cy - dy;
|
|
|
|
if (this.view !== null && this.view.enabled) {
|
|
const scaleW = (this.right - this.left) / this.view.fullWidth / this.zoom;
|
|
const scaleH = (this.top - this.bottom) / this.view.fullHeight / this.zoom;
|
|
left += scaleW * this.view.offsetX;
|
|
right = left + scaleW * this.view.width;
|
|
top -= scaleH * this.view.offsetY;
|
|
bottom = top - scaleH * this.view.height;
|
|
}
|
|
|
|
this.projectionMatrix.makeOrthographic(left, right, top, bottom, this.near, this.far);
|
|
this.projectionMatrixInverse.copy(this.projectionMatrix).invert();
|
|
}
|
|
|
|
toJSON(meta) {
|
|
const data = super.toJSON(meta);
|
|
data.object.zoom = this.zoom;
|
|
data.object.left = this.left;
|
|
data.object.right = this.right;
|
|
data.object.top = this.top;
|
|
data.object.bottom = this.bottom;
|
|
data.object.near = this.near;
|
|
data.object.far = this.far;
|
|
if (this.view !== null) data.object.view = Object.assign({}, this.view);
|
|
return data;
|
|
}
|
|
|
|
}
|
|
|
|
OrthographicCamera.prototype.isOrthographicCamera = true;
|
|
|
|
class RawShaderMaterial extends ShaderMaterial {
|
|
constructor(parameters) {
|
|
super(parameters);
|
|
this.type = 'RawShaderMaterial';
|
|
}
|
|
|
|
}
|
|
|
|
RawShaderMaterial.prototype.isRawShaderMaterial = true;
|
|
|
|
const LOD_MIN = 4;
|
|
const LOD_MAX = 8;
|
|
const SIZE_MAX = Math.pow(2, LOD_MAX); // The standard deviations (radians) associated with the extra mips. These are
|
|
// chosen to approximate a Trowbridge-Reitz distribution function times the
|
|
// geometric shadowing function. These sigma values squared must match the
|
|
// variance #defines in cube_uv_reflection_fragment.glsl.js.
|
|
|
|
const EXTRA_LOD_SIGMA = [0.125, 0.215, 0.35, 0.446, 0.526, 0.582];
|
|
const TOTAL_LODS = LOD_MAX - LOD_MIN + 1 + EXTRA_LOD_SIGMA.length; // The maximum length of the blur for loop. Smaller sigmas will use fewer
|
|
// samples and exit early, but not recompile the shader.
|
|
|
|
const MAX_SAMPLES = 20;
|
|
const ENCODINGS = {
|
|
[LinearEncoding]: 0,
|
|
[sRGBEncoding]: 1,
|
|
[RGBEEncoding]: 2,
|
|
[RGBM7Encoding]: 3,
|
|
[RGBM16Encoding]: 4,
|
|
[RGBDEncoding]: 5,
|
|
[GammaEncoding]: 6
|
|
};
|
|
|
|
const _flatCamera = /*@__PURE__*/new OrthographicCamera();
|
|
|
|
const {
|
|
_lodPlanes,
|
|
_sizeLods,
|
|
_sigmas
|
|
} = /*@__PURE__*/_createPlanes();
|
|
|
|
const _clearColor = /*@__PURE__*/new Color();
|
|
|
|
let _oldTarget = null; // Golden Ratio
|
|
|
|
const PHI = (1 + Math.sqrt(5)) / 2;
|
|
const INV_PHI = 1 / PHI; // Vertices of a dodecahedron (except the opposites, which represent the
|
|
// same axis), used as axis directions evenly spread on a sphere.
|
|
|
|
const _axisDirections = [/*@__PURE__*/new Vector3(1, 1, 1), /*@__PURE__*/new Vector3(-1, 1, 1), /*@__PURE__*/new Vector3(1, 1, -1), /*@__PURE__*/new Vector3(-1, 1, -1), /*@__PURE__*/new Vector3(0, PHI, INV_PHI), /*@__PURE__*/new Vector3(0, PHI, -INV_PHI), /*@__PURE__*/new Vector3(INV_PHI, 0, PHI), /*@__PURE__*/new Vector3(-INV_PHI, 0, PHI), /*@__PURE__*/new Vector3(PHI, INV_PHI, 0), /*@__PURE__*/new Vector3(-PHI, INV_PHI, 0)];
|
|
/**
|
|
* This class generates a Prefiltered, Mipmapped Radiance Environment Map
|
|
* (PMREM) from a cubeMap environment texture. This allows different levels of
|
|
* blur to be quickly accessed based on material roughness. It is packed into a
|
|
* special CubeUV format that allows us to perform custom interpolation so that
|
|
* we can support nonlinear formats such as RGBE. Unlike a traditional mipmap
|
|
* chain, it only goes down to the LOD_MIN level (above), and then creates extra
|
|
* even more filtered 'mips' at the same LOD_MIN resolution, associated with
|
|
* higher roughness levels. In this way we maintain resolution to smoothly
|
|
* interpolate diffuse lighting while limiting sampling computation.
|
|
*
|
|
* Paper: Fast, Accurate Image-Based Lighting
|
|
* https://drive.google.com/file/d/15y8r_UpKlU9SvV4ILb0C3qCPecS8pvLz/view
|
|
*/
|
|
|
|
class PMREMGenerator {
|
|
constructor(renderer) {
|
|
this._renderer = renderer;
|
|
this._pingPongRenderTarget = null;
|
|
this._blurMaterial = _getBlurShader(MAX_SAMPLES);
|
|
this._equirectShader = null;
|
|
this._cubemapShader = null;
|
|
|
|
this._compileMaterial(this._blurMaterial);
|
|
}
|
|
/**
|
|
* Generates a PMREM from a supplied Scene, which can be faster than using an
|
|
* image if networking bandwidth is low. Optional sigma specifies a blur radius
|
|
* in radians to be applied to the scene before PMREM generation. Optional near
|
|
* and far planes ensure the scene is rendered in its entirety (the cubeCamera
|
|
* is placed at the origin).
|
|
*/
|
|
|
|
|
|
fromScene(scene, sigma = 0, near = 0.1, far = 100) {
|
|
_oldTarget = this._renderer.getRenderTarget();
|
|
|
|
const cubeUVRenderTarget = this._allocateTargets();
|
|
|
|
this._sceneToCubeUV(scene, near, far, cubeUVRenderTarget);
|
|
|
|
if (sigma > 0) {
|
|
this._blur(cubeUVRenderTarget, 0, 0, sigma);
|
|
}
|
|
|
|
this._applyPMREM(cubeUVRenderTarget);
|
|
|
|
this._cleanup(cubeUVRenderTarget);
|
|
|
|
return cubeUVRenderTarget;
|
|
}
|
|
/**
|
|
* Generates a PMREM from an equirectangular texture, which can be either LDR
|
|
* (RGBFormat) or HDR (RGBEFormat). The ideal input image size is 1k (1024 x 512),
|
|
* as this matches best with the 256 x 256 cubemap output.
|
|
*/
|
|
|
|
|
|
fromEquirectangular(equirectangular) {
|
|
return this._fromTexture(equirectangular);
|
|
}
|
|
/**
|
|
* Generates a PMREM from an cubemap texture, which can be either LDR
|
|
* (RGBFormat) or HDR (RGBEFormat). The ideal input cube size is 256 x 256,
|
|
* as this matches best with the 256 x 256 cubemap output.
|
|
*/
|
|
|
|
|
|
fromCubemap(cubemap) {
|
|
return this._fromTexture(cubemap);
|
|
}
|
|
/**
|
|
* Pre-compiles the cubemap shader. You can get faster start-up by invoking this method during
|
|
* your texture's network fetch for increased concurrency.
|
|
*/
|
|
|
|
|
|
compileCubemapShader() {
|
|
if (this._cubemapShader === null) {
|
|
this._cubemapShader = _getCubemapShader();
|
|
|
|
this._compileMaterial(this._cubemapShader);
|
|
}
|
|
}
|
|
/**
|
|
* Pre-compiles the equirectangular shader. You can get faster start-up by invoking this method during
|
|
* your texture's network fetch for increased concurrency.
|
|
*/
|
|
|
|
|
|
compileEquirectangularShader() {
|
|
if (this._equirectShader === null) {
|
|
this._equirectShader = _getEquirectShader();
|
|
|
|
this._compileMaterial(this._equirectShader);
|
|
}
|
|
}
|
|
/**
|
|
* Disposes of the PMREMGenerator's internal memory. Note that PMREMGenerator is a static class,
|
|
* so you should not need more than one PMREMGenerator object. If you do, calling dispose() on
|
|
* one of them will cause any others to also become unusable.
|
|
*/
|
|
|
|
|
|
dispose() {
|
|
this._blurMaterial.dispose();
|
|
|
|
if (this._cubemapShader !== null) this._cubemapShader.dispose();
|
|
if (this._equirectShader !== null) this._equirectShader.dispose();
|
|
|
|
for (let i = 0; i < _lodPlanes.length; i++) {
|
|
_lodPlanes[i].dispose();
|
|
}
|
|
} // private interface
|
|
|
|
|
|
_cleanup(outputTarget) {
|
|
this._pingPongRenderTarget.dispose();
|
|
|
|
this._renderer.setRenderTarget(_oldTarget);
|
|
|
|
outputTarget.scissorTest = false;
|
|
|
|
_setViewport(outputTarget, 0, 0, outputTarget.width, outputTarget.height);
|
|
}
|
|
|
|
_fromTexture(texture) {
|
|
_oldTarget = this._renderer.getRenderTarget();
|
|
|
|
const cubeUVRenderTarget = this._allocateTargets(texture);
|
|
|
|
this._textureToCubeUV(texture, cubeUVRenderTarget);
|
|
|
|
this._applyPMREM(cubeUVRenderTarget);
|
|
|
|
this._cleanup(cubeUVRenderTarget);
|
|
|
|
return cubeUVRenderTarget;
|
|
}
|
|
|
|
_allocateTargets(texture) {
|
|
// warning: null texture is valid
|
|
const params = {
|
|
magFilter: NearestFilter,
|
|
minFilter: NearestFilter,
|
|
generateMipmaps: false,
|
|
type: UnsignedByteType,
|
|
format: RGBEFormat,
|
|
encoding: _isLDR(texture) ? texture.encoding : RGBEEncoding,
|
|
depthBuffer: false
|
|
};
|
|
|
|
const cubeUVRenderTarget = _createRenderTarget(params);
|
|
|
|
cubeUVRenderTarget.depthBuffer = texture ? false : true;
|
|
this._pingPongRenderTarget = _createRenderTarget(params);
|
|
return cubeUVRenderTarget;
|
|
}
|
|
|
|
_compileMaterial(material) {
|
|
const tmpMesh = new Mesh(_lodPlanes[0], material);
|
|
|
|
this._renderer.compile(tmpMesh, _flatCamera);
|
|
}
|
|
|
|
_sceneToCubeUV(scene, near, far, cubeUVRenderTarget) {
|
|
const fov = 90;
|
|
const aspect = 1;
|
|
const cubeCamera = new PerspectiveCamera(fov, aspect, near, far);
|
|
const upSign = [1, -1, 1, 1, 1, 1];
|
|
const forwardSign = [1, 1, 1, -1, -1, -1];
|
|
const renderer = this._renderer;
|
|
const originalAutoClear = renderer.autoClear;
|
|
const outputEncoding = renderer.outputEncoding;
|
|
const toneMapping = renderer.toneMapping;
|
|
renderer.getClearColor(_clearColor);
|
|
renderer.toneMapping = NoToneMapping;
|
|
renderer.outputEncoding = LinearEncoding;
|
|
renderer.autoClear = false;
|
|
const backgroundMaterial = new MeshBasicMaterial({
|
|
name: 'PMREM.Background',
|
|
side: BackSide,
|
|
depthWrite: false,
|
|
depthTest: false
|
|
});
|
|
const backgroundBox = new Mesh(new BoxGeometry(), backgroundMaterial);
|
|
let useSolidColor = false;
|
|
const background = scene.background;
|
|
|
|
if (background) {
|
|
if (background.isColor) {
|
|
backgroundMaterial.color.copy(background);
|
|
scene.background = null;
|
|
useSolidColor = true;
|
|
}
|
|
} else {
|
|
backgroundMaterial.color.copy(_clearColor);
|
|
useSolidColor = true;
|
|
}
|
|
|
|
for (let i = 0; i < 6; i++) {
|
|
const col = i % 3;
|
|
|
|
if (col == 0) {
|
|
cubeCamera.up.set(0, upSign[i], 0);
|
|
cubeCamera.lookAt(forwardSign[i], 0, 0);
|
|
} else if (col == 1) {
|
|
cubeCamera.up.set(0, 0, upSign[i]);
|
|
cubeCamera.lookAt(0, forwardSign[i], 0);
|
|
} else {
|
|
cubeCamera.up.set(0, upSign[i], 0);
|
|
cubeCamera.lookAt(0, 0, forwardSign[i]);
|
|
}
|
|
|
|
_setViewport(cubeUVRenderTarget, col * SIZE_MAX, i > 2 ? SIZE_MAX : 0, SIZE_MAX, SIZE_MAX);
|
|
|
|
renderer.setRenderTarget(cubeUVRenderTarget);
|
|
|
|
if (useSolidColor) {
|
|
renderer.render(backgroundBox, cubeCamera);
|
|
}
|
|
|
|
renderer.render(scene, cubeCamera);
|
|
}
|
|
|
|
backgroundBox.geometry.dispose();
|
|
backgroundBox.material.dispose();
|
|
renderer.toneMapping = toneMapping;
|
|
renderer.outputEncoding = outputEncoding;
|
|
renderer.autoClear = originalAutoClear;
|
|
scene.background = background;
|
|
}
|
|
|
|
_setEncoding(uniform, texture) {
|
|
if (this._renderer.capabilities.isWebGL2 === true && texture.format === RGBAFormat && texture.type === UnsignedByteType && texture.encoding === sRGBEncoding) {
|
|
uniform.value = ENCODINGS[LinearEncoding];
|
|
} else {
|
|
uniform.value = ENCODINGS[texture.encoding];
|
|
}
|
|
}
|
|
|
|
_textureToCubeUV(texture, cubeUVRenderTarget) {
|
|
const renderer = this._renderer;
|
|
|
|
if (texture.isCubeTexture) {
|
|
if (this._cubemapShader == null) {
|
|
this._cubemapShader = _getCubemapShader();
|
|
}
|
|
} else {
|
|
if (this._equirectShader == null) {
|
|
this._equirectShader = _getEquirectShader();
|
|
}
|
|
}
|
|
|
|
const material = texture.isCubeTexture ? this._cubemapShader : this._equirectShader;
|
|
const mesh = new Mesh(_lodPlanes[0], material);
|
|
const uniforms = material.uniforms;
|
|
uniforms['envMap'].value = texture;
|
|
|
|
if (!texture.isCubeTexture) {
|
|
uniforms['texelSize'].value.set(1.0 / texture.image.width, 1.0 / texture.image.height);
|
|
}
|
|
|
|
this._setEncoding(uniforms['inputEncoding'], texture);
|
|
|
|
this._setEncoding(uniforms['outputEncoding'], cubeUVRenderTarget.texture);
|
|
|
|
_setViewport(cubeUVRenderTarget, 0, 0, 3 * SIZE_MAX, 2 * SIZE_MAX);
|
|
|
|
renderer.setRenderTarget(cubeUVRenderTarget);
|
|
renderer.render(mesh, _flatCamera);
|
|
}
|
|
|
|
_applyPMREM(cubeUVRenderTarget) {
|
|
const renderer = this._renderer;
|
|
const autoClear = renderer.autoClear;
|
|
renderer.autoClear = false;
|
|
|
|
for (let i = 1; i < TOTAL_LODS; i++) {
|
|
const sigma = Math.sqrt(_sigmas[i] * _sigmas[i] - _sigmas[i - 1] * _sigmas[i - 1]);
|
|
const poleAxis = _axisDirections[(i - 1) % _axisDirections.length];
|
|
|
|
this._blur(cubeUVRenderTarget, i - 1, i, sigma, poleAxis);
|
|
}
|
|
|
|
renderer.autoClear = autoClear;
|
|
}
|
|
/**
|
|
* This is a two-pass Gaussian blur for a cubemap. Normally this is done
|
|
* vertically and horizontally, but this breaks down on a cube. Here we apply
|
|
* the blur latitudinally (around the poles), and then longitudinally (towards
|
|
* the poles) to approximate the orthogonally-separable blur. It is least
|
|
* accurate at the poles, but still does a decent job.
|
|
*/
|
|
|
|
|
|
_blur(cubeUVRenderTarget, lodIn, lodOut, sigma, poleAxis) {
|
|
const pingPongRenderTarget = this._pingPongRenderTarget;
|
|
|
|
this._halfBlur(cubeUVRenderTarget, pingPongRenderTarget, lodIn, lodOut, sigma, 'latitudinal', poleAxis);
|
|
|
|
this._halfBlur(pingPongRenderTarget, cubeUVRenderTarget, lodOut, lodOut, sigma, 'longitudinal', poleAxis);
|
|
}
|
|
|
|
_halfBlur(targetIn, targetOut, lodIn, lodOut, sigmaRadians, direction, poleAxis) {
|
|
const renderer = this._renderer;
|
|
const blurMaterial = this._blurMaterial;
|
|
|
|
if (direction !== 'latitudinal' && direction !== 'longitudinal') {
|
|
console.error('blur direction must be either latitudinal or longitudinal!');
|
|
} // Number of standard deviations at which to cut off the discrete approximation.
|
|
|
|
|
|
const STANDARD_DEVIATIONS = 3;
|
|
const blurMesh = new Mesh(_lodPlanes[lodOut], blurMaterial);
|
|
const blurUniforms = blurMaterial.uniforms;
|
|
const pixels = _sizeLods[lodIn] - 1;
|
|
const radiansPerPixel = isFinite(sigmaRadians) ? Math.PI / (2 * pixels) : 2 * Math.PI / (2 * MAX_SAMPLES - 1);
|
|
const sigmaPixels = sigmaRadians / radiansPerPixel;
|
|
const samples = isFinite(sigmaRadians) ? 1 + Math.floor(STANDARD_DEVIATIONS * sigmaPixels) : MAX_SAMPLES;
|
|
|
|
if (samples > MAX_SAMPLES) {
|
|
console.warn(`sigmaRadians, ${sigmaRadians}, is too large and will clip, as it requested ${samples} samples when the maximum is set to ${MAX_SAMPLES}`);
|
|
}
|
|
|
|
const weights = [];
|
|
let sum = 0;
|
|
|
|
for (let i = 0; i < MAX_SAMPLES; ++i) {
|
|
const x = i / sigmaPixels;
|
|
const weight = Math.exp(-x * x / 2);
|
|
weights.push(weight);
|
|
|
|
if (i == 0) {
|
|
sum += weight;
|
|
} else if (i < samples) {
|
|
sum += 2 * weight;
|
|
}
|
|
}
|
|
|
|
for (let i = 0; i < weights.length; i++) {
|
|
weights[i] = weights[i] / sum;
|
|
}
|
|
|
|
blurUniforms['envMap'].value = targetIn.texture;
|
|
blurUniforms['samples'].value = samples;
|
|
blurUniforms['weights'].value = weights;
|
|
blurUniforms['latitudinal'].value = direction === 'latitudinal';
|
|
|
|
if (poleAxis) {
|
|
blurUniforms['poleAxis'].value = poleAxis;
|
|
}
|
|
|
|
blurUniforms['dTheta'].value = radiansPerPixel;
|
|
blurUniforms['mipInt'].value = LOD_MAX - lodIn;
|
|
|
|
this._setEncoding(blurUniforms['inputEncoding'], targetIn.texture);
|
|
|
|
this._setEncoding(blurUniforms['outputEncoding'], targetIn.texture);
|
|
|
|
const outputSize = _sizeLods[lodOut];
|
|
const x = 3 * Math.max(0, SIZE_MAX - 2 * outputSize);
|
|
const y = (lodOut === 0 ? 0 : 2 * SIZE_MAX) + 2 * outputSize * (lodOut > LOD_MAX - LOD_MIN ? lodOut - LOD_MAX + LOD_MIN : 0);
|
|
|
|
_setViewport(targetOut, x, y, 3 * outputSize, 2 * outputSize);
|
|
|
|
renderer.setRenderTarget(targetOut);
|
|
renderer.render(blurMesh, _flatCamera);
|
|
}
|
|
|
|
}
|
|
|
|
function _isLDR(texture) {
|
|
if (texture === undefined || texture.type !== UnsignedByteType) return false;
|
|
return texture.encoding === LinearEncoding || texture.encoding === sRGBEncoding || texture.encoding === GammaEncoding;
|
|
}
|
|
|
|
function _createPlanes() {
|
|
const _lodPlanes = [];
|
|
const _sizeLods = [];
|
|
const _sigmas = [];
|
|
let lod = LOD_MAX;
|
|
|
|
for (let i = 0; i < TOTAL_LODS; i++) {
|
|
const sizeLod = Math.pow(2, lod);
|
|
|
|
_sizeLods.push(sizeLod);
|
|
|
|
let sigma = 1.0 / sizeLod;
|
|
|
|
if (i > LOD_MAX - LOD_MIN) {
|
|
sigma = EXTRA_LOD_SIGMA[i - LOD_MAX + LOD_MIN - 1];
|
|
} else if (i == 0) {
|
|
sigma = 0;
|
|
}
|
|
|
|
_sigmas.push(sigma);
|
|
|
|
const texelSize = 1.0 / (sizeLod - 1);
|
|
const min = -texelSize / 2;
|
|
const max = 1 + texelSize / 2;
|
|
const uv1 = [min, min, max, min, max, max, min, min, max, max, min, max];
|
|
const cubeFaces = 6;
|
|
const vertices = 6;
|
|
const positionSize = 3;
|
|
const uvSize = 2;
|
|
const faceIndexSize = 1;
|
|
const position = new Float32Array(positionSize * vertices * cubeFaces);
|
|
const uv = new Float32Array(uvSize * vertices * cubeFaces);
|
|
const faceIndex = new Float32Array(faceIndexSize * vertices * cubeFaces);
|
|
|
|
for (let face = 0; face < cubeFaces; face++) {
|
|
const x = face % 3 * 2 / 3 - 1;
|
|
const y = face > 2 ? 0 : -1;
|
|
const coordinates = [x, y, 0, x + 2 / 3, y, 0, x + 2 / 3, y + 1, 0, x, y, 0, x + 2 / 3, y + 1, 0, x, y + 1, 0];
|
|
position.set(coordinates, positionSize * vertices * face);
|
|
uv.set(uv1, uvSize * vertices * face);
|
|
const fill = [face, face, face, face, face, face];
|
|
faceIndex.set(fill, faceIndexSize * vertices * face);
|
|
}
|
|
|
|
const planes = new BufferGeometry();
|
|
planes.setAttribute('position', new BufferAttribute(position, positionSize));
|
|
planes.setAttribute('uv', new BufferAttribute(uv, uvSize));
|
|
planes.setAttribute('faceIndex', new BufferAttribute(faceIndex, faceIndexSize));
|
|
|
|
_lodPlanes.push(planes);
|
|
|
|
if (lod > LOD_MIN) {
|
|
lod--;
|
|
}
|
|
}
|
|
|
|
return {
|
|
_lodPlanes,
|
|
_sizeLods,
|
|
_sigmas
|
|
};
|
|
}
|
|
|
|
function _createRenderTarget(params) {
|
|
const cubeUVRenderTarget = new WebGLRenderTarget(3 * SIZE_MAX, 3 * SIZE_MAX, params);
|
|
cubeUVRenderTarget.texture.mapping = CubeUVReflectionMapping;
|
|
cubeUVRenderTarget.texture.name = 'PMREM.cubeUv';
|
|
cubeUVRenderTarget.scissorTest = true;
|
|
return cubeUVRenderTarget;
|
|
}
|
|
|
|
function _setViewport(target, x, y, width, height) {
|
|
target.viewport.set(x, y, width, height);
|
|
target.scissor.set(x, y, width, height);
|
|
}
|
|
|
|
function _getBlurShader(maxSamples) {
|
|
const weights = new Float32Array(maxSamples);
|
|
const poleAxis = new Vector3(0, 1, 0);
|
|
const shaderMaterial = new RawShaderMaterial({
|
|
name: 'SphericalGaussianBlur',
|
|
defines: {
|
|
'n': maxSamples
|
|
},
|
|
uniforms: {
|
|
'envMap': {
|
|
value: null
|
|
},
|
|
'samples': {
|
|
value: 1
|
|
},
|
|
'weights': {
|
|
value: weights
|
|
},
|
|
'latitudinal': {
|
|
value: false
|
|
},
|
|
'dTheta': {
|
|
value: 0
|
|
},
|
|
'mipInt': {
|
|
value: 0
|
|
},
|
|
'poleAxis': {
|
|
value: poleAxis
|
|
},
|
|
'inputEncoding': {
|
|
value: ENCODINGS[LinearEncoding]
|
|
},
|
|
'outputEncoding': {
|
|
value: ENCODINGS[LinearEncoding]
|
|
}
|
|
},
|
|
vertexShader: _getCommonVertexShader(),
|
|
fragmentShader:
|
|
/* glsl */
|
|
`
|
|
|
|
precision mediump float;
|
|
precision mediump int;
|
|
|
|
varying vec3 vOutputDirection;
|
|
|
|
uniform sampler2D envMap;
|
|
uniform int samples;
|
|
uniform float weights[ n ];
|
|
uniform bool latitudinal;
|
|
uniform float dTheta;
|
|
uniform float mipInt;
|
|
uniform vec3 poleAxis;
|
|
|
|
${_getEncodings()}
|
|
|
|
#define ENVMAP_TYPE_CUBE_UV
|
|
#include <cube_uv_reflection_fragment>
|
|
|
|
vec3 getSample( float theta, vec3 axis ) {
|
|
|
|
float cosTheta = cos( theta );
|
|
// Rodrigues' axis-angle rotation
|
|
vec3 sampleDirection = vOutputDirection * cosTheta
|
|
+ cross( axis, vOutputDirection ) * sin( theta )
|
|
+ axis * dot( axis, vOutputDirection ) * ( 1.0 - cosTheta );
|
|
|
|
return bilinearCubeUV( envMap, sampleDirection, mipInt );
|
|
|
|
}
|
|
|
|
void main() {
|
|
|
|
vec3 axis = latitudinal ? poleAxis : cross( poleAxis, vOutputDirection );
|
|
|
|
if ( all( equal( axis, vec3( 0.0 ) ) ) ) {
|
|
|
|
axis = vec3( vOutputDirection.z, 0.0, - vOutputDirection.x );
|
|
|
|
}
|
|
|
|
axis = normalize( axis );
|
|
|
|
gl_FragColor = vec4( 0.0, 0.0, 0.0, 1.0 );
|
|
gl_FragColor.rgb += weights[ 0 ] * getSample( 0.0, axis );
|
|
|
|
for ( int i = 1; i < n; i++ ) {
|
|
|
|
if ( i >= samples ) {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
float theta = dTheta * float( i );
|
|
gl_FragColor.rgb += weights[ i ] * getSample( -1.0 * theta, axis );
|
|
gl_FragColor.rgb += weights[ i ] * getSample( theta, axis );
|
|
|
|
}
|
|
|
|
gl_FragColor = linearToOutputTexel( gl_FragColor );
|
|
|
|
}
|
|
`,
|
|
blending: NoBlending,
|
|
depthTest: false,
|
|
depthWrite: false
|
|
});
|
|
return shaderMaterial;
|
|
}
|
|
|
|
function _getEquirectShader() {
|
|
const texelSize = new Vector2(1, 1);
|
|
const shaderMaterial = new RawShaderMaterial({
|
|
name: 'EquirectangularToCubeUV',
|
|
uniforms: {
|
|
'envMap': {
|
|
value: null
|
|
},
|
|
'texelSize': {
|
|
value: texelSize
|
|
},
|
|
'inputEncoding': {
|
|
value: ENCODINGS[LinearEncoding]
|
|
},
|
|
'outputEncoding': {
|
|
value: ENCODINGS[LinearEncoding]
|
|
}
|
|
},
|
|
vertexShader: _getCommonVertexShader(),
|
|
fragmentShader:
|
|
/* glsl */
|
|
`
|
|
|
|
precision mediump float;
|
|
precision mediump int;
|
|
|
|
varying vec3 vOutputDirection;
|
|
|
|
uniform sampler2D envMap;
|
|
uniform vec2 texelSize;
|
|
|
|
${_getEncodings()}
|
|
|
|
#include <common>
|
|
|
|
void main() {
|
|
|
|
gl_FragColor = vec4( 0.0, 0.0, 0.0, 1.0 );
|
|
|
|
vec3 outputDirection = normalize( vOutputDirection );
|
|
vec2 uv = equirectUv( outputDirection );
|
|
|
|
vec2 f = fract( uv / texelSize - 0.5 );
|
|
uv -= f * texelSize;
|
|
vec3 tl = envMapTexelToLinear( texture2D ( envMap, uv ) ).rgb;
|
|
uv.x += texelSize.x;
|
|
vec3 tr = envMapTexelToLinear( texture2D ( envMap, uv ) ).rgb;
|
|
uv.y += texelSize.y;
|
|
vec3 br = envMapTexelToLinear( texture2D ( envMap, uv ) ).rgb;
|
|
uv.x -= texelSize.x;
|
|
vec3 bl = envMapTexelToLinear( texture2D ( envMap, uv ) ).rgb;
|
|
|
|
vec3 tm = mix( tl, tr, f.x );
|
|
vec3 bm = mix( bl, br, f.x );
|
|
gl_FragColor.rgb = mix( tm, bm, f.y );
|
|
|
|
gl_FragColor = linearToOutputTexel( gl_FragColor );
|
|
|
|
}
|
|
`,
|
|
blending: NoBlending,
|
|
depthTest: false,
|
|
depthWrite: false
|
|
});
|
|
return shaderMaterial;
|
|
}
|
|
|
|
function _getCubemapShader() {
|
|
const shaderMaterial = new RawShaderMaterial({
|
|
name: 'CubemapToCubeUV',
|
|
uniforms: {
|
|
'envMap': {
|
|
value: null
|
|
},
|
|
'inputEncoding': {
|
|
value: ENCODINGS[LinearEncoding]
|
|
},
|
|
'outputEncoding': {
|
|
value: ENCODINGS[LinearEncoding]
|
|
}
|
|
},
|
|
vertexShader: _getCommonVertexShader(),
|
|
fragmentShader:
|
|
/* glsl */
|
|
`
|
|
|
|
precision mediump float;
|
|
precision mediump int;
|
|
|
|
varying vec3 vOutputDirection;
|
|
|
|
uniform samplerCube envMap;
|
|
|
|
${_getEncodings()}
|
|
|
|
void main() {
|
|
|
|
gl_FragColor = vec4( 0.0, 0.0, 0.0, 1.0 );
|
|
gl_FragColor.rgb = envMapTexelToLinear( textureCube( envMap, vec3( - vOutputDirection.x, vOutputDirection.yz ) ) ).rgb;
|
|
gl_FragColor = linearToOutputTexel( gl_FragColor );
|
|
|
|
}
|
|
`,
|
|
blending: NoBlending,
|
|
depthTest: false,
|
|
depthWrite: false
|
|
});
|
|
return shaderMaterial;
|
|
}
|
|
|
|
function _getCommonVertexShader() {
|
|
return (
|
|
/* glsl */
|
|
`
|
|
|
|
precision mediump float;
|
|
precision mediump int;
|
|
|
|
attribute vec3 position;
|
|
attribute vec2 uv;
|
|
attribute float faceIndex;
|
|
|
|
varying vec3 vOutputDirection;
|
|
|
|
// RH coordinate system; PMREM face-indexing convention
|
|
vec3 getDirection( vec2 uv, float face ) {
|
|
|
|
uv = 2.0 * uv - 1.0;
|
|
|
|
vec3 direction = vec3( uv, 1.0 );
|
|
|
|
if ( face == 0.0 ) {
|
|
|
|
direction = direction.zyx; // ( 1, v, u ) pos x
|
|
|
|
} else if ( face == 1.0 ) {
|
|
|
|
direction = direction.xzy;
|
|
direction.xz *= -1.0; // ( -u, 1, -v ) pos y
|
|
|
|
} else if ( face == 2.0 ) {
|
|
|
|
direction.x *= -1.0; // ( -u, v, 1 ) pos z
|
|
|
|
} else if ( face == 3.0 ) {
|
|
|
|
direction = direction.zyx;
|
|
direction.xz *= -1.0; // ( -1, v, -u ) neg x
|
|
|
|
} else if ( face == 4.0 ) {
|
|
|
|
direction = direction.xzy;
|
|
direction.xy *= -1.0; // ( -u, -1, v ) neg y
|
|
|
|
} else if ( face == 5.0 ) {
|
|
|
|
direction.z *= -1.0; // ( u, v, -1 ) neg z
|
|
|
|
}
|
|
|
|
return direction;
|
|
|
|
}
|
|
|
|
void main() {
|
|
|
|
vOutputDirection = getDirection( uv, faceIndex );
|
|
gl_Position = vec4( position, 1.0 );
|
|
|
|
}
|
|
`
|
|
);
|
|
}
|
|
|
|
function _getEncodings() {
|
|
return (
|
|
/* glsl */
|
|
`
|
|
|
|
uniform int inputEncoding;
|
|
uniform int outputEncoding;
|
|
|
|
#include <encodings_pars_fragment>
|
|
|
|
vec4 inputTexelToLinear( vec4 value ) {
|
|
|
|
if ( inputEncoding == 0 ) {
|
|
|
|
return value;
|
|
|
|
} else if ( inputEncoding == 1 ) {
|
|
|
|
return sRGBToLinear( value );
|
|
|
|
} else if ( inputEncoding == 2 ) {
|
|
|
|
return RGBEToLinear( value );
|
|
|
|
} else if ( inputEncoding == 3 ) {
|
|
|
|
return RGBMToLinear( value, 7.0 );
|
|
|
|
} else if ( inputEncoding == 4 ) {
|
|
|
|
return RGBMToLinear( value, 16.0 );
|
|
|
|
} else if ( inputEncoding == 5 ) {
|
|
|
|
return RGBDToLinear( value, 256.0 );
|
|
|
|
} else {
|
|
|
|
return GammaToLinear( value, 2.2 );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
vec4 linearToOutputTexel( vec4 value ) {
|
|
|
|
if ( outputEncoding == 0 ) {
|
|
|
|
return value;
|
|
|
|
} else if ( outputEncoding == 1 ) {
|
|
|
|
return LinearTosRGB( value );
|
|
|
|
} else if ( outputEncoding == 2 ) {
|
|
|
|
return LinearToRGBE( value );
|
|
|
|
} else if ( outputEncoding == 3 ) {
|
|
|
|
return LinearToRGBM( value, 7.0 );
|
|
|
|
} else if ( outputEncoding == 4 ) {
|
|
|
|
return LinearToRGBM( value, 16.0 );
|
|
|
|
} else if ( outputEncoding == 5 ) {
|
|
|
|
return LinearToRGBD( value, 256.0 );
|
|
|
|
} else {
|
|
|
|
return LinearToGamma( value, 2.2 );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
vec4 envMapTexelToLinear( vec4 color ) {
|
|
|
|
return inputTexelToLinear( color );
|
|
|
|
}
|
|
`
|
|
);
|
|
}
|
|
|
|
function WebGLCubeUVMaps(renderer) {
|
|
let cubeUVmaps = new WeakMap();
|
|
let pmremGenerator = null;
|
|
|
|
function get(texture) {
|
|
if (texture && texture.isTexture && texture.isRenderTargetTexture === false) {
|
|
const mapping = texture.mapping;
|
|
const isEquirectMap = mapping === EquirectangularReflectionMapping || mapping === EquirectangularRefractionMapping;
|
|
const isCubeMap = mapping === CubeReflectionMapping || mapping === CubeRefractionMapping;
|
|
|
|
if (isEquirectMap || isCubeMap) {
|
|
// equirect/cube map to cubeUV conversion
|
|
if (cubeUVmaps.has(texture)) {
|
|
return cubeUVmaps.get(texture).texture;
|
|
} else {
|
|
const image = texture.image;
|
|
|
|
if (isEquirectMap && image && image.height > 0 || isCubeMap && image && isCubeTextureComplete(image)) {
|
|
const currentRenderTarget = renderer.getRenderTarget();
|
|
if (pmremGenerator === null) pmremGenerator = new PMREMGenerator(renderer);
|
|
const renderTarget = isEquirectMap ? pmremGenerator.fromEquirectangular(texture) : pmremGenerator.fromCubemap(texture);
|
|
cubeUVmaps.set(texture, renderTarget);
|
|
renderer.setRenderTarget(currentRenderTarget);
|
|
texture.addEventListener('dispose', onTextureDispose);
|
|
return renderTarget.texture;
|
|
} else {
|
|
// image not yet ready. try the conversion next frame
|
|
return null;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return texture;
|
|
}
|
|
|
|
function isCubeTextureComplete(image) {
|
|
let count = 0;
|
|
const length = 6;
|
|
|
|
for (let i = 0; i < length; i++) {
|
|
if (image[i] !== undefined) count++;
|
|
}
|
|
|
|
return count === length;
|
|
}
|
|
|
|
function onTextureDispose(event) {
|
|
const texture = event.target;
|
|
texture.removeEventListener('dispose', onTextureDispose);
|
|
const cubemapUV = cubeUVmaps.get(texture);
|
|
|
|
if (cubemapUV !== undefined) {
|
|
cubeUVmaps.delete(texture);
|
|
cubemapUV.dispose();
|
|
}
|
|
}
|
|
|
|
function dispose() {
|
|
cubeUVmaps = new WeakMap();
|
|
|
|
if (pmremGenerator !== null) {
|
|
pmremGenerator.dispose();
|
|
pmremGenerator = null;
|
|
}
|
|
}
|
|
|
|
return {
|
|
get: get,
|
|
dispose: dispose
|
|
};
|
|
}
|
|
|
|
function WebGLExtensions(gl) {
|
|
const extensions = {};
|
|
|
|
function getExtension(name) {
|
|
if (extensions[name] !== undefined) {
|
|
return extensions[name];
|
|
}
|
|
|
|
let extension;
|
|
|
|
switch (name) {
|
|
case 'WEBGL_depth_texture':
|
|
extension = gl.getExtension('WEBGL_depth_texture') || gl.getExtension('MOZ_WEBGL_depth_texture') || gl.getExtension('WEBKIT_WEBGL_depth_texture');
|
|
break;
|
|
|
|
case 'EXT_texture_filter_anisotropic':
|
|
extension = gl.getExtension('EXT_texture_filter_anisotropic') || gl.getExtension('MOZ_EXT_texture_filter_anisotropic') || gl.getExtension('WEBKIT_EXT_texture_filter_anisotropic');
|
|
break;
|
|
|
|
case 'WEBGL_compressed_texture_s3tc':
|
|
extension = gl.getExtension('WEBGL_compressed_texture_s3tc') || gl.getExtension('MOZ_WEBGL_compressed_texture_s3tc') || gl.getExtension('WEBKIT_WEBGL_compressed_texture_s3tc');
|
|
break;
|
|
|
|
case 'WEBGL_compressed_texture_pvrtc':
|
|
extension = gl.getExtension('WEBGL_compressed_texture_pvrtc') || gl.getExtension('WEBKIT_WEBGL_compressed_texture_pvrtc');
|
|
break;
|
|
|
|
default:
|
|
extension = gl.getExtension(name);
|
|
}
|
|
|
|
extensions[name] = extension;
|
|
return extension;
|
|
}
|
|
|
|
return {
|
|
has: function (name) {
|
|
return getExtension(name) !== null;
|
|
},
|
|
init: function (capabilities) {
|
|
if (capabilities.isWebGL2) {
|
|
getExtension('EXT_color_buffer_float');
|
|
} else {
|
|
getExtension('WEBGL_depth_texture');
|
|
getExtension('OES_texture_float');
|
|
getExtension('OES_texture_half_float');
|
|
getExtension('OES_texture_half_float_linear');
|
|
getExtension('OES_standard_derivatives');
|
|
getExtension('OES_element_index_uint');
|
|
getExtension('OES_vertex_array_object');
|
|
getExtension('ANGLE_instanced_arrays');
|
|
}
|
|
|
|
getExtension('OES_texture_float_linear');
|
|
getExtension('EXT_color_buffer_half_float');
|
|
},
|
|
get: function (name) {
|
|
const extension = getExtension(name);
|
|
|
|
if (extension === null) {
|
|
console.warn('THREE.WebGLRenderer: ' + name + ' extension not supported.');
|
|
}
|
|
|
|
return extension;
|
|
}
|
|
};
|
|
}
|
|
|
|
function WebGLGeometries(gl, attributes, info, bindingStates) {
|
|
const geometries = {};
|
|
const wireframeAttributes = new WeakMap();
|
|
|
|
function onGeometryDispose(event) {
|
|
const geometry = event.target;
|
|
|
|
if (geometry.index !== null) {
|
|
attributes.remove(geometry.index);
|
|
}
|
|
|
|
for (const name in geometry.attributes) {
|
|
attributes.remove(geometry.attributes[name]);
|
|
}
|
|
|
|
geometry.removeEventListener('dispose', onGeometryDispose);
|
|
delete geometries[geometry.id];
|
|
const attribute = wireframeAttributes.get(geometry);
|
|
|
|
if (attribute) {
|
|
attributes.remove(attribute);
|
|
wireframeAttributes.delete(geometry);
|
|
}
|
|
|
|
bindingStates.releaseStatesOfGeometry(geometry);
|
|
|
|
if (geometry.isInstancedBufferGeometry === true) {
|
|
delete geometry._maxInstanceCount;
|
|
} //
|
|
|
|
|
|
info.memory.geometries--;
|
|
}
|
|
|
|
function get(object, geometry) {
|
|
if (geometries[geometry.id] === true) return geometry;
|
|
geometry.addEventListener('dispose', onGeometryDispose);
|
|
geometries[geometry.id] = true;
|
|
info.memory.geometries++;
|
|
return geometry;
|
|
}
|
|
|
|
function update(geometry) {
|
|
const geometryAttributes = geometry.attributes; // Updating index buffer in VAO now. See WebGLBindingStates.
|
|
|
|
for (const name in geometryAttributes) {
|
|
attributes.update(geometryAttributes[name], gl.ARRAY_BUFFER);
|
|
} // morph targets
|
|
|
|
|
|
const morphAttributes = geometry.morphAttributes;
|
|
|
|
for (const name in morphAttributes) {
|
|
const array = morphAttributes[name];
|
|
|
|
for (let i = 0, l = array.length; i < l; i++) {
|
|
attributes.update(array[i], gl.ARRAY_BUFFER);
|
|
}
|
|
}
|
|
}
|
|
|
|
function updateWireframeAttribute(geometry) {
|
|
const indices = [];
|
|
const geometryIndex = geometry.index;
|
|
const geometryPosition = geometry.attributes.position;
|
|
let version = 0;
|
|
|
|
if (geometryIndex !== null) {
|
|
const array = geometryIndex.array;
|
|
version = geometryIndex.version;
|
|
|
|
for (let i = 0, l = array.length; i < l; i += 3) {
|
|
const a = array[i + 0];
|
|
const b = array[i + 1];
|
|
const c = array[i + 2];
|
|
indices.push(a, b, b, c, c, a);
|
|
}
|
|
} else {
|
|
const array = geometryPosition.array;
|
|
version = geometryPosition.version;
|
|
|
|
for (let i = 0, l = array.length / 3 - 1; i < l; i += 3) {
|
|
const a = i + 0;
|
|
const b = i + 1;
|
|
const c = i + 2;
|
|
indices.push(a, b, b, c, c, a);
|
|
}
|
|
}
|
|
|
|
const attribute = new (arrayMax(indices) > 65535 ? Uint32BufferAttribute : Uint16BufferAttribute)(indices, 1);
|
|
attribute.version = version; // Updating index buffer in VAO now. See WebGLBindingStates
|
|
//
|
|
|
|
const previousAttribute = wireframeAttributes.get(geometry);
|
|
if (previousAttribute) attributes.remove(previousAttribute); //
|
|
|
|
wireframeAttributes.set(geometry, attribute);
|
|
}
|
|
|
|
function getWireframeAttribute(geometry) {
|
|
const currentAttribute = wireframeAttributes.get(geometry);
|
|
|
|
if (currentAttribute) {
|
|
const geometryIndex = geometry.index;
|
|
|
|
if (geometryIndex !== null) {
|
|
// if the attribute is obsolete, create a new one
|
|
if (currentAttribute.version < geometryIndex.version) {
|
|
updateWireframeAttribute(geometry);
|
|
}
|
|
}
|
|
} else {
|
|
updateWireframeAttribute(geometry);
|
|
}
|
|
|
|
return wireframeAttributes.get(geometry);
|
|
}
|
|
|
|
return {
|
|
get: get,
|
|
update: update,
|
|
getWireframeAttribute: getWireframeAttribute
|
|
};
|
|
}
|
|
|
|
function WebGLIndexedBufferRenderer(gl, extensions, info, capabilities) {
|
|
const isWebGL2 = capabilities.isWebGL2;
|
|
let mode;
|
|
|
|
function setMode(value) {
|
|
mode = value;
|
|
}
|
|
|
|
let type, bytesPerElement;
|
|
|
|
function setIndex(value) {
|
|
type = value.type;
|
|
bytesPerElement = value.bytesPerElement;
|
|
}
|
|
|
|
function render(start, count) {
|
|
gl.drawElements(mode, count, type, start * bytesPerElement);
|
|
info.update(count, mode, 1);
|
|
}
|
|
|
|
function renderInstances(start, count, primcount) {
|
|
if (primcount === 0) return;
|
|
let extension, methodName;
|
|
|
|
if (isWebGL2) {
|
|
extension = gl;
|
|
methodName = 'drawElementsInstanced';
|
|
} else {
|
|
extension = extensions.get('ANGLE_instanced_arrays');
|
|
methodName = 'drawElementsInstancedANGLE';
|
|
|
|
if (extension === null) {
|
|
console.error('THREE.WebGLIndexedBufferRenderer: using THREE.InstancedBufferGeometry but hardware does not support extension ANGLE_instanced_arrays.');
|
|
return;
|
|
}
|
|
}
|
|
|
|
extension[methodName](mode, count, type, start * bytesPerElement, primcount);
|
|
info.update(count, mode, primcount);
|
|
} //
|
|
|
|
|
|
this.setMode = setMode;
|
|
this.setIndex = setIndex;
|
|
this.render = render;
|
|
this.renderInstances = renderInstances;
|
|
}
|
|
|
|
function WebGLInfo(gl) {
|
|
const memory = {
|
|
geometries: 0,
|
|
textures: 0
|
|
};
|
|
const render = {
|
|
frame: 0,
|
|
calls: 0,
|
|
triangles: 0,
|
|
points: 0,
|
|
lines: 0
|
|
};
|
|
|
|
function update(count, mode, instanceCount) {
|
|
render.calls++;
|
|
|
|
switch (mode) {
|
|
case gl.TRIANGLES:
|
|
render.triangles += instanceCount * (count / 3);
|
|
break;
|
|
|
|
case gl.LINES:
|
|
render.lines += instanceCount * (count / 2);
|
|
break;
|
|
|
|
case gl.LINE_STRIP:
|
|
render.lines += instanceCount * (count - 1);
|
|
break;
|
|
|
|
case gl.LINE_LOOP:
|
|
render.lines += instanceCount * count;
|
|
break;
|
|
|
|
case gl.POINTS:
|
|
render.points += instanceCount * count;
|
|
break;
|
|
|
|
default:
|
|
console.error('THREE.WebGLInfo: Unknown draw mode:', mode);
|
|
break;
|
|
}
|
|
}
|
|
|
|
function reset() {
|
|
render.frame++;
|
|
render.calls = 0;
|
|
render.triangles = 0;
|
|
render.points = 0;
|
|
render.lines = 0;
|
|
}
|
|
|
|
return {
|
|
memory: memory,
|
|
render: render,
|
|
programs: null,
|
|
autoReset: true,
|
|
reset: reset,
|
|
update: update
|
|
};
|
|
}
|
|
|
|
class DataTexture2DArray extends Texture {
|
|
constructor(data = null, width = 1, height = 1, depth = 1) {
|
|
super(null);
|
|
this.image = {
|
|
data,
|
|
width,
|
|
height,
|
|
depth
|
|
};
|
|
this.magFilter = NearestFilter;
|
|
this.minFilter = NearestFilter;
|
|
this.wrapR = ClampToEdgeWrapping;
|
|
this.generateMipmaps = false;
|
|
this.flipY = false;
|
|
this.unpackAlignment = 1;
|
|
this.needsUpdate = true;
|
|
}
|
|
|
|
}
|
|
|
|
DataTexture2DArray.prototype.isDataTexture2DArray = true;
|
|
|
|
function numericalSort(a, b) {
|
|
return a[0] - b[0];
|
|
}
|
|
|
|
function absNumericalSort(a, b) {
|
|
return Math.abs(b[1]) - Math.abs(a[1]);
|
|
}
|
|
|
|
function denormalize(morph, attribute) {
|
|
let denominator = 1;
|
|
const array = attribute.isInterleavedBufferAttribute ? attribute.data.array : attribute.array;
|
|
if (array instanceof Int8Array) denominator = 127;else if (array instanceof Int16Array) denominator = 32767;else if (array instanceof Int32Array) denominator = 2147483647;else console.error('THREE.WebGLMorphtargets: Unsupported morph attribute data type: ', array);
|
|
morph.divideScalar(denominator);
|
|
}
|
|
|
|
function WebGLMorphtargets(gl, capabilities, textures) {
|
|
const influencesList = {};
|
|
const morphInfluences = new Float32Array(8);
|
|
const morphTextures = new WeakMap();
|
|
const morph = new Vector3();
|
|
const workInfluences = [];
|
|
|
|
for (let i = 0; i < 8; i++) {
|
|
workInfluences[i] = [i, 0];
|
|
}
|
|
|
|
function update(object, geometry, material, program) {
|
|
const objectInfluences = object.morphTargetInfluences;
|
|
|
|
if (capabilities.isWebGL2 === true) {
|
|
// instead of using attributes, the WebGL 2 code path encodes morph targets
|
|
// into an array of data textures. Each layer represents a single morph target.
|
|
const numberOfMorphTargets = geometry.morphAttributes.position.length;
|
|
let entry = morphTextures.get(geometry);
|
|
|
|
if (entry === undefined || entry.count !== numberOfMorphTargets) {
|
|
if (entry !== undefined) entry.texture.dispose();
|
|
const hasMorphNormals = geometry.morphAttributes.normal !== undefined;
|
|
const morphTargets = geometry.morphAttributes.position;
|
|
const morphNormals = geometry.morphAttributes.normal || [];
|
|
const numberOfVertices = geometry.attributes.position.count;
|
|
const numberOfVertexData = hasMorphNormals === true ? 2 : 1; // (v,n) vs. (v)
|
|
|
|
let width = numberOfVertices * numberOfVertexData;
|
|
let height = 1;
|
|
|
|
if (width > capabilities.maxTextureSize) {
|
|
height = Math.ceil(width / capabilities.maxTextureSize);
|
|
width = capabilities.maxTextureSize;
|
|
}
|
|
|
|
const buffer = new Float32Array(width * height * 4 * numberOfMorphTargets);
|
|
const texture = new DataTexture2DArray(buffer, width, height, numberOfMorphTargets);
|
|
texture.format = RGBAFormat; // using RGBA since RGB might be emulated (and is thus slower)
|
|
|
|
texture.type = FloatType; // fill buffer
|
|
|
|
const vertexDataStride = numberOfVertexData * 4;
|
|
|
|
for (let i = 0; i < numberOfMorphTargets; i++) {
|
|
const morphTarget = morphTargets[i];
|
|
const morphNormal = morphNormals[i];
|
|
const offset = width * height * 4 * i;
|
|
|
|
for (let j = 0; j < morphTarget.count; j++) {
|
|
morph.fromBufferAttribute(morphTarget, j);
|
|
if (morphTarget.normalized === true) denormalize(morph, morphTarget);
|
|
const stride = j * vertexDataStride;
|
|
buffer[offset + stride + 0] = morph.x;
|
|
buffer[offset + stride + 1] = morph.y;
|
|
buffer[offset + stride + 2] = morph.z;
|
|
buffer[offset + stride + 3] = 0;
|
|
|
|
if (hasMorphNormals === true) {
|
|
morph.fromBufferAttribute(morphNormal, j);
|
|
if (morphNormal.normalized === true) denormalize(morph, morphNormal);
|
|
buffer[offset + stride + 4] = morph.x;
|
|
buffer[offset + stride + 5] = morph.y;
|
|
buffer[offset + stride + 6] = morph.z;
|
|
buffer[offset + stride + 7] = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
entry = {
|
|
count: numberOfMorphTargets,
|
|
texture: texture,
|
|
size: new Vector2(width, height)
|
|
};
|
|
morphTextures.set(geometry, entry);
|
|
} //
|
|
|
|
|
|
let morphInfluencesSum = 0;
|
|
|
|
for (let i = 0; i < objectInfluences.length; i++) {
|
|
morphInfluencesSum += objectInfluences[i];
|
|
}
|
|
|
|
const morphBaseInfluence = geometry.morphTargetsRelative ? 1 : 1 - morphInfluencesSum;
|
|
program.getUniforms().setValue(gl, 'morphTargetBaseInfluence', morphBaseInfluence);
|
|
program.getUniforms().setValue(gl, 'morphTargetInfluences', objectInfluences);
|
|
program.getUniforms().setValue(gl, 'morphTargetsTexture', entry.texture, textures);
|
|
program.getUniforms().setValue(gl, 'morphTargetsTextureSize', entry.size);
|
|
} else {
|
|
// When object doesn't have morph target influences defined, we treat it as a 0-length array
|
|
// This is important to make sure we set up morphTargetBaseInfluence / morphTargetInfluences
|
|
const length = objectInfluences === undefined ? 0 : objectInfluences.length;
|
|
let influences = influencesList[geometry.id];
|
|
|
|
if (influences === undefined || influences.length !== length) {
|
|
// initialise list
|
|
influences = [];
|
|
|
|
for (let i = 0; i < length; i++) {
|
|
influences[i] = [i, 0];
|
|
}
|
|
|
|
influencesList[geometry.id] = influences;
|
|
} // Collect influences
|
|
|
|
|
|
for (let i = 0; i < length; i++) {
|
|
const influence = influences[i];
|
|
influence[0] = i;
|
|
influence[1] = objectInfluences[i];
|
|
}
|
|
|
|
influences.sort(absNumericalSort);
|
|
|
|
for (let i = 0; i < 8; i++) {
|
|
if (i < length && influences[i][1]) {
|
|
workInfluences[i][0] = influences[i][0];
|
|
workInfluences[i][1] = influences[i][1];
|
|
} else {
|
|
workInfluences[i][0] = Number.MAX_SAFE_INTEGER;
|
|
workInfluences[i][1] = 0;
|
|
}
|
|
}
|
|
|
|
workInfluences.sort(numericalSort);
|
|
const morphTargets = geometry.morphAttributes.position;
|
|
const morphNormals = geometry.morphAttributes.normal;
|
|
let morphInfluencesSum = 0;
|
|
|
|
for (let i = 0; i < 8; i++) {
|
|
const influence = workInfluences[i];
|
|
const index = influence[0];
|
|
const value = influence[1];
|
|
|
|
if (index !== Number.MAX_SAFE_INTEGER && value) {
|
|
if (morphTargets && geometry.getAttribute('morphTarget' + i) !== morphTargets[index]) {
|
|
geometry.setAttribute('morphTarget' + i, morphTargets[index]);
|
|
}
|
|
|
|
if (morphNormals && geometry.getAttribute('morphNormal' + i) !== morphNormals[index]) {
|
|
geometry.setAttribute('morphNormal' + i, morphNormals[index]);
|
|
}
|
|
|
|
morphInfluences[i] = value;
|
|
morphInfluencesSum += value;
|
|
} else {
|
|
if (morphTargets && geometry.hasAttribute('morphTarget' + i) === true) {
|
|
geometry.deleteAttribute('morphTarget' + i);
|
|
}
|
|
|
|
if (morphNormals && geometry.hasAttribute('morphNormal' + i) === true) {
|
|
geometry.deleteAttribute('morphNormal' + i);
|
|
}
|
|
|
|
morphInfluences[i] = 0;
|
|
}
|
|
} // GLSL shader uses formula baseinfluence * base + sum(target * influence)
|
|
// This allows us to switch between absolute morphs and relative morphs without changing shader code
|
|
// When baseinfluence = 1 - sum(influence), the above is equivalent to sum((target - base) * influence)
|
|
|
|
|
|
const morphBaseInfluence = geometry.morphTargetsRelative ? 1 : 1 - morphInfluencesSum;
|
|
program.getUniforms().setValue(gl, 'morphTargetBaseInfluence', morphBaseInfluence);
|
|
program.getUniforms().setValue(gl, 'morphTargetInfluences', morphInfluences);
|
|
}
|
|
}
|
|
|
|
return {
|
|
update: update
|
|
};
|
|
}
|
|
|
|
function WebGLObjects(gl, geometries, attributes, info) {
|
|
let updateMap = new WeakMap();
|
|
|
|
function update(object) {
|
|
const frame = info.render.frame;
|
|
const geometry = object.geometry;
|
|
const buffergeometry = geometries.get(object, geometry); // Update once per frame
|
|
|
|
if (updateMap.get(buffergeometry) !== frame) {
|
|
geometries.update(buffergeometry);
|
|
updateMap.set(buffergeometry, frame);
|
|
}
|
|
|
|
if (object.isInstancedMesh) {
|
|
if (object.hasEventListener('dispose', onInstancedMeshDispose) === false) {
|
|
object.addEventListener('dispose', onInstancedMeshDispose);
|
|
}
|
|
|
|
attributes.update(object.instanceMatrix, gl.ARRAY_BUFFER);
|
|
|
|
if (object.instanceColor !== null) {
|
|
attributes.update(object.instanceColor, gl.ARRAY_BUFFER);
|
|
}
|
|
}
|
|
|
|
return buffergeometry;
|
|
}
|
|
|
|
function dispose() {
|
|
updateMap = new WeakMap();
|
|
}
|
|
|
|
function onInstancedMeshDispose(event) {
|
|
const instancedMesh = event.target;
|
|
instancedMesh.removeEventListener('dispose', onInstancedMeshDispose);
|
|
attributes.remove(instancedMesh.instanceMatrix);
|
|
if (instancedMesh.instanceColor !== null) attributes.remove(instancedMesh.instanceColor);
|
|
}
|
|
|
|
return {
|
|
update: update,
|
|
dispose: dispose
|
|
};
|
|
}
|
|
|
|
class DataTexture3D extends Texture {
|
|
constructor(data = null, width = 1, height = 1, depth = 1) {
|
|
// We're going to add .setXXX() methods for setting properties later.
|
|
// Users can still set in DataTexture3D directly.
|
|
//
|
|
// const texture = new THREE.DataTexture3D( data, width, height, depth );
|
|
// texture.anisotropy = 16;
|
|
//
|
|
// See #14839
|
|
super(null);
|
|
this.image = {
|
|
data,
|
|
width,
|
|
height,
|
|
depth
|
|
};
|
|
this.magFilter = NearestFilter;
|
|
this.minFilter = NearestFilter;
|
|
this.wrapR = ClampToEdgeWrapping;
|
|
this.generateMipmaps = false;
|
|
this.flipY = false;
|
|
this.unpackAlignment = 1;
|
|
this.needsUpdate = true;
|
|
}
|
|
|
|
}
|
|
|
|
DataTexture3D.prototype.isDataTexture3D = true;
|
|
|
|
/**
|
|
* Uniforms of a program.
|
|
* Those form a tree structure with a special top-level container for the root,
|
|
* which you get by calling 'new WebGLUniforms( gl, program )'.
|
|
*
|
|
*
|
|
* Properties of inner nodes including the top-level container:
|
|
*
|
|
* .seq - array of nested uniforms
|
|
* .map - nested uniforms by name
|
|
*
|
|
*
|
|
* Methods of all nodes except the top-level container:
|
|
*
|
|
* .setValue( gl, value, [textures] )
|
|
*
|
|
* uploads a uniform value(s)
|
|
* the 'textures' parameter is needed for sampler uniforms
|
|
*
|
|
*
|
|
* Static methods of the top-level container (textures factorizations):
|
|
*
|
|
* .upload( gl, seq, values, textures )
|
|
*
|
|
* sets uniforms in 'seq' to 'values[id].value'
|
|
*
|
|
* .seqWithValue( seq, values ) : filteredSeq
|
|
*
|
|
* filters 'seq' entries with corresponding entry in values
|
|
*
|
|
*
|
|
* Methods of the top-level container (textures factorizations):
|
|
*
|
|
* .setValue( gl, name, value, textures )
|
|
*
|
|
* sets uniform with name 'name' to 'value'
|
|
*
|
|
* .setOptional( gl, obj, prop )
|
|
*
|
|
* like .set for an optional property of the object
|
|
*
|
|
*/
|
|
const emptyTexture = new Texture();
|
|
const emptyTexture2dArray = new DataTexture2DArray();
|
|
const emptyTexture3d = new DataTexture3D();
|
|
const emptyCubeTexture = new CubeTexture(); // --- Utilities ---
|
|
// Array Caches (provide typed arrays for temporary by size)
|
|
|
|
const arrayCacheF32 = [];
|
|
const arrayCacheI32 = []; // Float32Array caches used for uploading Matrix uniforms
|
|
|
|
const mat4array = new Float32Array(16);
|
|
const mat3array = new Float32Array(9);
|
|
const mat2array = new Float32Array(4); // Flattening for arrays of vectors and matrices
|
|
|
|
function flatten(array, nBlocks, blockSize) {
|
|
const firstElem = array[0];
|
|
if (firstElem <= 0 || firstElem > 0) return array; // unoptimized: ! isNaN( firstElem )
|
|
// see http://jacksondunstan.com/articles/983
|
|
|
|
const n = nBlocks * blockSize;
|
|
let r = arrayCacheF32[n];
|
|
|
|
if (r === undefined) {
|
|
r = new Float32Array(n);
|
|
arrayCacheF32[n] = r;
|
|
}
|
|
|
|
if (nBlocks !== 0) {
|
|
firstElem.toArray(r, 0);
|
|
|
|
for (let i = 1, offset = 0; i !== nBlocks; ++i) {
|
|
offset += blockSize;
|
|
array[i].toArray(r, offset);
|
|
}
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
function arraysEqual(a, b) {
|
|
if (a.length !== b.length) return false;
|
|
|
|
for (let i = 0, l = a.length; i < l; i++) {
|
|
if (a[i] !== b[i]) return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
function copyArray(a, b) {
|
|
for (let i = 0, l = b.length; i < l; i++) {
|
|
a[i] = b[i];
|
|
}
|
|
} // Texture unit allocation
|
|
|
|
|
|
function allocTexUnits(textures, n) {
|
|
let r = arrayCacheI32[n];
|
|
|
|
if (r === undefined) {
|
|
r = new Int32Array(n);
|
|
arrayCacheI32[n] = r;
|
|
}
|
|
|
|
for (let i = 0; i !== n; ++i) {
|
|
r[i] = textures.allocateTextureUnit();
|
|
}
|
|
|
|
return r;
|
|
} // --- Setters ---
|
|
// Note: Defining these methods externally, because they come in a bunch
|
|
// and this way their names minify.
|
|
// Single scalar
|
|
|
|
|
|
function setValueV1f(gl, v) {
|
|
const cache = this.cache;
|
|
if (cache[0] === v) return;
|
|
gl.uniform1f(this.addr, v);
|
|
cache[0] = v;
|
|
} // Single float vector (from flat array or THREE.VectorN)
|
|
|
|
|
|
function setValueV2f(gl, v) {
|
|
const cache = this.cache;
|
|
|
|
if (v.x !== undefined) {
|
|
if (cache[0] !== v.x || cache[1] !== v.y) {
|
|
gl.uniform2f(this.addr, v.x, v.y);
|
|
cache[0] = v.x;
|
|
cache[1] = v.y;
|
|
}
|
|
} else {
|
|
if (arraysEqual(cache, v)) return;
|
|
gl.uniform2fv(this.addr, v);
|
|
copyArray(cache, v);
|
|
}
|
|
}
|
|
|
|
function setValueV3f(gl, v) {
|
|
const cache = this.cache;
|
|
|
|
if (v.x !== undefined) {
|
|
if (cache[0] !== v.x || cache[1] !== v.y || cache[2] !== v.z) {
|
|
gl.uniform3f(this.addr, v.x, v.y, v.z);
|
|
cache[0] = v.x;
|
|
cache[1] = v.y;
|
|
cache[2] = v.z;
|
|
}
|
|
} else if (v.r !== undefined) {
|
|
if (cache[0] !== v.r || cache[1] !== v.g || cache[2] !== v.b) {
|
|
gl.uniform3f(this.addr, v.r, v.g, v.b);
|
|
cache[0] = v.r;
|
|
cache[1] = v.g;
|
|
cache[2] = v.b;
|
|
}
|
|
} else {
|
|
if (arraysEqual(cache, v)) return;
|
|
gl.uniform3fv(this.addr, v);
|
|
copyArray(cache, v);
|
|
}
|
|
}
|
|
|
|
function setValueV4f(gl, v) {
|
|
const cache = this.cache;
|
|
|
|
if (v.x !== undefined) {
|
|
if (cache[0] !== v.x || cache[1] !== v.y || cache[2] !== v.z || cache[3] !== v.w) {
|
|
gl.uniform4f(this.addr, v.x, v.y, v.z, v.w);
|
|
cache[0] = v.x;
|
|
cache[1] = v.y;
|
|
cache[2] = v.z;
|
|
cache[3] = v.w;
|
|
}
|
|
} else {
|
|
if (arraysEqual(cache, v)) return;
|
|
gl.uniform4fv(this.addr, v);
|
|
copyArray(cache, v);
|
|
}
|
|
} // Single matrix (from flat array or THREE.MatrixN)
|
|
|
|
|
|
function setValueM2(gl, v) {
|
|
const cache = this.cache;
|
|
const elements = v.elements;
|
|
|
|
if (elements === undefined) {
|
|
if (arraysEqual(cache, v)) return;
|
|
gl.uniformMatrix2fv(this.addr, false, v);
|
|
copyArray(cache, v);
|
|
} else {
|
|
if (arraysEqual(cache, elements)) return;
|
|
mat2array.set(elements);
|
|
gl.uniformMatrix2fv(this.addr, false, mat2array);
|
|
copyArray(cache, elements);
|
|
}
|
|
}
|
|
|
|
function setValueM3(gl, v) {
|
|
const cache = this.cache;
|
|
const elements = v.elements;
|
|
|
|
if (elements === undefined) {
|
|
if (arraysEqual(cache, v)) return;
|
|
gl.uniformMatrix3fv(this.addr, false, v);
|
|
copyArray(cache, v);
|
|
} else {
|
|
if (arraysEqual(cache, elements)) return;
|
|
mat3array.set(elements);
|
|
gl.uniformMatrix3fv(this.addr, false, mat3array);
|
|
copyArray(cache, elements);
|
|
}
|
|
}
|
|
|
|
function setValueM4(gl, v) {
|
|
const cache = this.cache;
|
|
const elements = v.elements;
|
|
|
|
if (elements === undefined) {
|
|
if (arraysEqual(cache, v)) return;
|
|
gl.uniformMatrix4fv(this.addr, false, v);
|
|
copyArray(cache, v);
|
|
} else {
|
|
if (arraysEqual(cache, elements)) return;
|
|
mat4array.set(elements);
|
|
gl.uniformMatrix4fv(this.addr, false, mat4array);
|
|
copyArray(cache, elements);
|
|
}
|
|
} // Single integer / boolean
|
|
|
|
|
|
function setValueV1i(gl, v) {
|
|
const cache = this.cache;
|
|
if (cache[0] === v) return;
|
|
gl.uniform1i(this.addr, v);
|
|
cache[0] = v;
|
|
} // Single integer / boolean vector (from flat array)
|
|
|
|
|
|
function setValueV2i(gl, v) {
|
|
const cache = this.cache;
|
|
if (arraysEqual(cache, v)) return;
|
|
gl.uniform2iv(this.addr, v);
|
|
copyArray(cache, v);
|
|
}
|
|
|
|
function setValueV3i(gl, v) {
|
|
const cache = this.cache;
|
|
if (arraysEqual(cache, v)) return;
|
|
gl.uniform3iv(this.addr, v);
|
|
copyArray(cache, v);
|
|
}
|
|
|
|
function setValueV4i(gl, v) {
|
|
const cache = this.cache;
|
|
if (arraysEqual(cache, v)) return;
|
|
gl.uniform4iv(this.addr, v);
|
|
copyArray(cache, v);
|
|
} // Single unsigned integer
|
|
|
|
|
|
function setValueV1ui(gl, v) {
|
|
const cache = this.cache;
|
|
if (cache[0] === v) return;
|
|
gl.uniform1ui(this.addr, v);
|
|
cache[0] = v;
|
|
} // Single unsigned integer vector (from flat array)
|
|
|
|
|
|
function setValueV2ui(gl, v) {
|
|
const cache = this.cache;
|
|
if (arraysEqual(cache, v)) return;
|
|
gl.uniform2uiv(this.addr, v);
|
|
copyArray(cache, v);
|
|
}
|
|
|
|
function setValueV3ui(gl, v) {
|
|
const cache = this.cache;
|
|
if (arraysEqual(cache, v)) return;
|
|
gl.uniform3uiv(this.addr, v);
|
|
copyArray(cache, v);
|
|
}
|
|
|
|
function setValueV4ui(gl, v) {
|
|
const cache = this.cache;
|
|
if (arraysEqual(cache, v)) return;
|
|
gl.uniform4uiv(this.addr, v);
|
|
copyArray(cache, v);
|
|
} // Single texture (2D / Cube)
|
|
|
|
|
|
function setValueT1(gl, v, textures) {
|
|
const cache = this.cache;
|
|
const unit = textures.allocateTextureUnit();
|
|
|
|
if (cache[0] !== unit) {
|
|
gl.uniform1i(this.addr, unit);
|
|
cache[0] = unit;
|
|
}
|
|
|
|
textures.safeSetTexture2D(v || emptyTexture, unit);
|
|
}
|
|
|
|
function setValueT3D1(gl, v, textures) {
|
|
const cache = this.cache;
|
|
const unit = textures.allocateTextureUnit();
|
|
|
|
if (cache[0] !== unit) {
|
|
gl.uniform1i(this.addr, unit);
|
|
cache[0] = unit;
|
|
}
|
|
|
|
textures.setTexture3D(v || emptyTexture3d, unit);
|
|
}
|
|
|
|
function setValueT6(gl, v, textures) {
|
|
const cache = this.cache;
|
|
const unit = textures.allocateTextureUnit();
|
|
|
|
if (cache[0] !== unit) {
|
|
gl.uniform1i(this.addr, unit);
|
|
cache[0] = unit;
|
|
}
|
|
|
|
textures.safeSetTextureCube(v || emptyCubeTexture, unit);
|
|
}
|
|
|
|
function setValueT2DArray1(gl, v, textures) {
|
|
const cache = this.cache;
|
|
const unit = textures.allocateTextureUnit();
|
|
|
|
if (cache[0] !== unit) {
|
|
gl.uniform1i(this.addr, unit);
|
|
cache[0] = unit;
|
|
}
|
|
|
|
textures.setTexture2DArray(v || emptyTexture2dArray, unit);
|
|
} // Helper to pick the right setter for the singular case
|
|
|
|
|
|
function getSingularSetter(type) {
|
|
switch (type) {
|
|
case 0x1406:
|
|
return setValueV1f;
|
|
// FLOAT
|
|
|
|
case 0x8b50:
|
|
return setValueV2f;
|
|
// _VEC2
|
|
|
|
case 0x8b51:
|
|
return setValueV3f;
|
|
// _VEC3
|
|
|
|
case 0x8b52:
|
|
return setValueV4f;
|
|
// _VEC4
|
|
|
|
case 0x8b5a:
|
|
return setValueM2;
|
|
// _MAT2
|
|
|
|
case 0x8b5b:
|
|
return setValueM3;
|
|
// _MAT3
|
|
|
|
case 0x8b5c:
|
|
return setValueM4;
|
|
// _MAT4
|
|
|
|
case 0x1404:
|
|
case 0x8b56:
|
|
return setValueV1i;
|
|
// INT, BOOL
|
|
|
|
case 0x8b53:
|
|
case 0x8b57:
|
|
return setValueV2i;
|
|
// _VEC2
|
|
|
|
case 0x8b54:
|
|
case 0x8b58:
|
|
return setValueV3i;
|
|
// _VEC3
|
|
|
|
case 0x8b55:
|
|
case 0x8b59:
|
|
return setValueV4i;
|
|
// _VEC4
|
|
|
|
case 0x1405:
|
|
return setValueV1ui;
|
|
// UINT
|
|
|
|
case 0x8dc6:
|
|
return setValueV2ui;
|
|
// _VEC2
|
|
|
|
case 0x8dc7:
|
|
return setValueV3ui;
|
|
// _VEC3
|
|
|
|
case 0x8dc8:
|
|
return setValueV4ui;
|
|
// _VEC4
|
|
|
|
case 0x8b5e: // SAMPLER_2D
|
|
|
|
case 0x8d66: // SAMPLER_EXTERNAL_OES
|
|
|
|
case 0x8dca: // INT_SAMPLER_2D
|
|
|
|
case 0x8dd2: // UNSIGNED_INT_SAMPLER_2D
|
|
|
|
case 0x8b62:
|
|
// SAMPLER_2D_SHADOW
|
|
return setValueT1;
|
|
|
|
case 0x8b5f: // SAMPLER_3D
|
|
|
|
case 0x8dcb: // INT_SAMPLER_3D
|
|
|
|
case 0x8dd3:
|
|
// UNSIGNED_INT_SAMPLER_3D
|
|
return setValueT3D1;
|
|
|
|
case 0x8b60: // SAMPLER_CUBE
|
|
|
|
case 0x8dcc: // INT_SAMPLER_CUBE
|
|
|
|
case 0x8dd4: // UNSIGNED_INT_SAMPLER_CUBE
|
|
|
|
case 0x8dc5:
|
|
// SAMPLER_CUBE_SHADOW
|
|
return setValueT6;
|
|
|
|
case 0x8dc1: // SAMPLER_2D_ARRAY
|
|
|
|
case 0x8dcf: // INT_SAMPLER_2D_ARRAY
|
|
|
|
case 0x8dd7: // UNSIGNED_INT_SAMPLER_2D_ARRAY
|
|
|
|
case 0x8dc4:
|
|
// SAMPLER_2D_ARRAY_SHADOW
|
|
return setValueT2DArray1;
|
|
}
|
|
} // Array of scalars
|
|
|
|
|
|
function setValueV1fArray(gl, v) {
|
|
gl.uniform1fv(this.addr, v);
|
|
} // Array of vectors (from flat array or array of THREE.VectorN)
|
|
|
|
|
|
function setValueV2fArray(gl, v) {
|
|
const data = flatten(v, this.size, 2);
|
|
gl.uniform2fv(this.addr, data);
|
|
}
|
|
|
|
function setValueV3fArray(gl, v) {
|
|
const data = flatten(v, this.size, 3);
|
|
gl.uniform3fv(this.addr, data);
|
|
}
|
|
|
|
function setValueV4fArray(gl, v) {
|
|
const data = flatten(v, this.size, 4);
|
|
gl.uniform4fv(this.addr, data);
|
|
} // Array of matrices (from flat array or array of THREE.MatrixN)
|
|
|
|
|
|
function setValueM2Array(gl, v) {
|
|
const data = flatten(v, this.size, 4);
|
|
gl.uniformMatrix2fv(this.addr, false, data);
|
|
}
|
|
|
|
function setValueM3Array(gl, v) {
|
|
const data = flatten(v, this.size, 9);
|
|
gl.uniformMatrix3fv(this.addr, false, data);
|
|
}
|
|
|
|
function setValueM4Array(gl, v) {
|
|
const data = flatten(v, this.size, 16);
|
|
gl.uniformMatrix4fv(this.addr, false, data);
|
|
} // Array of integer / boolean
|
|
|
|
|
|
function setValueV1iArray(gl, v) {
|
|
gl.uniform1iv(this.addr, v);
|
|
} // Array of integer / boolean vectors (from flat array)
|
|
|
|
|
|
function setValueV2iArray(gl, v) {
|
|
gl.uniform2iv(this.addr, v);
|
|
}
|
|
|
|
function setValueV3iArray(gl, v) {
|
|
gl.uniform3iv(this.addr, v);
|
|
}
|
|
|
|
function setValueV4iArray(gl, v) {
|
|
gl.uniform4iv(this.addr, v);
|
|
} // Array of unsigned integer
|
|
|
|
|
|
function setValueV1uiArray(gl, v) {
|
|
gl.uniform1uiv(this.addr, v);
|
|
} // Array of unsigned integer vectors (from flat array)
|
|
|
|
|
|
function setValueV2uiArray(gl, v) {
|
|
gl.uniform2uiv(this.addr, v);
|
|
}
|
|
|
|
function setValueV3uiArray(gl, v) {
|
|
gl.uniform3uiv(this.addr, v);
|
|
}
|
|
|
|
function setValueV4uiArray(gl, v) {
|
|
gl.uniform4uiv(this.addr, v);
|
|
} // Array of textures (2D / Cube)
|
|
|
|
|
|
function setValueT1Array(gl, v, textures) {
|
|
const n = v.length;
|
|
const units = allocTexUnits(textures, n);
|
|
gl.uniform1iv(this.addr, units);
|
|
|
|
for (let i = 0; i !== n; ++i) {
|
|
textures.safeSetTexture2D(v[i] || emptyTexture, units[i]);
|
|
}
|
|
}
|
|
|
|
function setValueT6Array(gl, v, textures) {
|
|
const n = v.length;
|
|
const units = allocTexUnits(textures, n);
|
|
gl.uniform1iv(this.addr, units);
|
|
|
|
for (let i = 0; i !== n; ++i) {
|
|
textures.safeSetTextureCube(v[i] || emptyCubeTexture, units[i]);
|
|
}
|
|
} // Helper to pick the right setter for a pure (bottom-level) array
|
|
|
|
|
|
function getPureArraySetter(type) {
|
|
switch (type) {
|
|
case 0x1406:
|
|
return setValueV1fArray;
|
|
// FLOAT
|
|
|
|
case 0x8b50:
|
|
return setValueV2fArray;
|
|
// _VEC2
|
|
|
|
case 0x8b51:
|
|
return setValueV3fArray;
|
|
// _VEC3
|
|
|
|
case 0x8b52:
|
|
return setValueV4fArray;
|
|
// _VEC4
|
|
|
|
case 0x8b5a:
|
|
return setValueM2Array;
|
|
// _MAT2
|
|
|
|
case 0x8b5b:
|
|
return setValueM3Array;
|
|
// _MAT3
|
|
|
|
case 0x8b5c:
|
|
return setValueM4Array;
|
|
// _MAT4
|
|
|
|
case 0x1404:
|
|
case 0x8b56:
|
|
return setValueV1iArray;
|
|
// INT, BOOL
|
|
|
|
case 0x8b53:
|
|
case 0x8b57:
|
|
return setValueV2iArray;
|
|
// _VEC2
|
|
|
|
case 0x8b54:
|
|
case 0x8b58:
|
|
return setValueV3iArray;
|
|
// _VEC3
|
|
|
|
case 0x8b55:
|
|
case 0x8b59:
|
|
return setValueV4iArray;
|
|
// _VEC4
|
|
|
|
case 0x1405:
|
|
return setValueV1uiArray;
|
|
// UINT
|
|
|
|
case 0x8dc6:
|
|
return setValueV2uiArray;
|
|
// _VEC2
|
|
|
|
case 0x8dc7:
|
|
return setValueV3uiArray;
|
|
// _VEC3
|
|
|
|
case 0x8dc8:
|
|
return setValueV4uiArray;
|
|
// _VEC4
|
|
|
|
case 0x8b5e: // SAMPLER_2D
|
|
|
|
case 0x8d66: // SAMPLER_EXTERNAL_OES
|
|
|
|
case 0x8dca: // INT_SAMPLER_2D
|
|
|
|
case 0x8dd2: // UNSIGNED_INT_SAMPLER_2D
|
|
|
|
case 0x8b62:
|
|
// SAMPLER_2D_SHADOW
|
|
return setValueT1Array;
|
|
|
|
case 0x8b60: // SAMPLER_CUBE
|
|
|
|
case 0x8dcc: // INT_SAMPLER_CUBE
|
|
|
|
case 0x8dd4: // UNSIGNED_INT_SAMPLER_CUBE
|
|
|
|
case 0x8dc5:
|
|
// SAMPLER_CUBE_SHADOW
|
|
return setValueT6Array;
|
|
}
|
|
} // --- Uniform Classes ---
|
|
|
|
|
|
function SingleUniform(id, activeInfo, addr) {
|
|
this.id = id;
|
|
this.addr = addr;
|
|
this.cache = [];
|
|
this.setValue = getSingularSetter(activeInfo.type); // this.path = activeInfo.name; // DEBUG
|
|
}
|
|
|
|
function PureArrayUniform(id, activeInfo, addr) {
|
|
this.id = id;
|
|
this.addr = addr;
|
|
this.cache = [];
|
|
this.size = activeInfo.size;
|
|
this.setValue = getPureArraySetter(activeInfo.type); // this.path = activeInfo.name; // DEBUG
|
|
}
|
|
|
|
PureArrayUniform.prototype.updateCache = function (data) {
|
|
const cache = this.cache;
|
|
|
|
if (data instanceof Float32Array && cache.length !== data.length) {
|
|
this.cache = new Float32Array(data.length);
|
|
}
|
|
|
|
copyArray(cache, data);
|
|
};
|
|
|
|
function StructuredUniform(id) {
|
|
this.id = id;
|
|
this.seq = [];
|
|
this.map = {};
|
|
}
|
|
|
|
StructuredUniform.prototype.setValue = function (gl, value, textures) {
|
|
const seq = this.seq;
|
|
|
|
for (let i = 0, n = seq.length; i !== n; ++i) {
|
|
const u = seq[i];
|
|
u.setValue(gl, value[u.id], textures);
|
|
}
|
|
}; // --- Top-level ---
|
|
// Parser - builds up the property tree from the path strings
|
|
|
|
|
|
const RePathPart = /(\w+)(\])?(\[|\.)?/g; // extracts
|
|
// - the identifier (member name or array index)
|
|
// - followed by an optional right bracket (found when array index)
|
|
// - followed by an optional left bracket or dot (type of subscript)
|
|
//
|
|
// Note: These portions can be read in a non-overlapping fashion and
|
|
// allow straightforward parsing of the hierarchy that WebGL encodes
|
|
// in the uniform names.
|
|
|
|
function addUniform(container, uniformObject) {
|
|
container.seq.push(uniformObject);
|
|
container.map[uniformObject.id] = uniformObject;
|
|
}
|
|
|
|
function parseUniform(activeInfo, addr, container) {
|
|
const path = activeInfo.name,
|
|
pathLength = path.length; // reset RegExp object, because of the early exit of a previous run
|
|
|
|
RePathPart.lastIndex = 0;
|
|
|
|
while (true) {
|
|
const match = RePathPart.exec(path),
|
|
matchEnd = RePathPart.lastIndex;
|
|
let id = match[1];
|
|
const idIsIndex = match[2] === ']',
|
|
subscript = match[3];
|
|
if (idIsIndex) id = id | 0; // convert to integer
|
|
|
|
if (subscript === undefined || subscript === '[' && matchEnd + 2 === pathLength) {
|
|
// bare name or "pure" bottom-level array "[0]" suffix
|
|
addUniform(container, subscript === undefined ? new SingleUniform(id, activeInfo, addr) : new PureArrayUniform(id, activeInfo, addr));
|
|
break;
|
|
} else {
|
|
// step into inner node / create it in case it doesn't exist
|
|
const map = container.map;
|
|
let next = map[id];
|
|
|
|
if (next === undefined) {
|
|
next = new StructuredUniform(id);
|
|
addUniform(container, next);
|
|
}
|
|
|
|
container = next;
|
|
}
|
|
}
|
|
} // Root Container
|
|
|
|
|
|
function WebGLUniforms(gl, program) {
|
|
this.seq = [];
|
|
this.map = {};
|
|
const n = gl.getProgramParameter(program, gl.ACTIVE_UNIFORMS);
|
|
|
|
for (let i = 0; i < n; ++i) {
|
|
const info = gl.getActiveUniform(program, i),
|
|
addr = gl.getUniformLocation(program, info.name);
|
|
parseUniform(info, addr, this);
|
|
}
|
|
}
|
|
|
|
WebGLUniforms.prototype.setValue = function (gl, name, value, textures) {
|
|
const u = this.map[name];
|
|
if (u !== undefined) u.setValue(gl, value, textures);
|
|
};
|
|
|
|
WebGLUniforms.prototype.setOptional = function (gl, object, name) {
|
|
const v = object[name];
|
|
if (v !== undefined) this.setValue(gl, name, v);
|
|
}; // Static interface
|
|
|
|
|
|
WebGLUniforms.upload = function (gl, seq, values, textures) {
|
|
for (let i = 0, n = seq.length; i !== n; ++i) {
|
|
const u = seq[i],
|
|
v = values[u.id];
|
|
|
|
if (v.needsUpdate !== false) {
|
|
// note: always updating when .needsUpdate is undefined
|
|
u.setValue(gl, v.value, textures);
|
|
}
|
|
}
|
|
};
|
|
|
|
WebGLUniforms.seqWithValue = function (seq, values) {
|
|
const r = [];
|
|
|
|
for (let i = 0, n = seq.length; i !== n; ++i) {
|
|
const u = seq[i];
|
|
if (u.id in values) r.push(u);
|
|
}
|
|
|
|
return r;
|
|
};
|
|
|
|
function WebGLShader(gl, type, string) {
|
|
const shader = gl.createShader(type);
|
|
gl.shaderSource(shader, string);
|
|
gl.compileShader(shader);
|
|
return shader;
|
|
}
|
|
|
|
let programIdCount = 0;
|
|
|
|
function addLineNumbers(string) {
|
|
const lines = string.split('\n');
|
|
|
|
for (let i = 0; i < lines.length; i++) {
|
|
lines[i] = i + 1 + ': ' + lines[i];
|
|
}
|
|
|
|
return lines.join('\n');
|
|
}
|
|
|
|
function getEncodingComponents(encoding) {
|
|
switch (encoding) {
|
|
case LinearEncoding:
|
|
return ['Linear', '( value )'];
|
|
|
|
case sRGBEncoding:
|
|
return ['sRGB', '( value )'];
|
|
|
|
case RGBEEncoding:
|
|
return ['RGBE', '( value )'];
|
|
|
|
case RGBM7Encoding:
|
|
return ['RGBM', '( value, 7.0 )'];
|
|
|
|
case RGBM16Encoding:
|
|
return ['RGBM', '( value, 16.0 )'];
|
|
|
|
case RGBDEncoding:
|
|
return ['RGBD', '( value, 256.0 )'];
|
|
|
|
case GammaEncoding:
|
|
return ['Gamma', '( value, float( GAMMA_FACTOR ) )'];
|
|
|
|
case LogLuvEncoding:
|
|
return ['LogLuv', '( value )'];
|
|
|
|
default:
|
|
console.warn('THREE.WebGLProgram: Unsupported encoding:', encoding);
|
|
return ['Linear', '( value )'];
|
|
}
|
|
}
|
|
|
|
function getShaderErrors(gl, shader, type) {
|
|
const status = gl.getShaderParameter(shader, gl.COMPILE_STATUS);
|
|
const errors = gl.getShaderInfoLog(shader).trim();
|
|
if (status && errors === '') return ''; // --enable-privileged-webgl-extension
|
|
// console.log( '**' + type + '**', gl.getExtension( 'WEBGL_debug_shaders' ).getTranslatedShaderSource( shader ) );
|
|
|
|
return type.toUpperCase() + '\n\n' + errors + '\n\n' + addLineNumbers(gl.getShaderSource(shader));
|
|
}
|
|
|
|
function getTexelDecodingFunction(functionName, encoding) {
|
|
const components = getEncodingComponents(encoding);
|
|
return 'vec4 ' + functionName + '( vec4 value ) { return ' + components[0] + 'ToLinear' + components[1] + '; }';
|
|
}
|
|
|
|
function getTexelEncodingFunction(functionName, encoding) {
|
|
const components = getEncodingComponents(encoding);
|
|
return 'vec4 ' + functionName + '( vec4 value ) { return LinearTo' + components[0] + components[1] + '; }';
|
|
}
|
|
|
|
function getToneMappingFunction(functionName, toneMapping) {
|
|
let toneMappingName;
|
|
|
|
switch (toneMapping) {
|
|
case LinearToneMapping:
|
|
toneMappingName = 'Linear';
|
|
break;
|
|
|
|
case ReinhardToneMapping:
|
|
toneMappingName = 'Reinhard';
|
|
break;
|
|
|
|
case CineonToneMapping:
|
|
toneMappingName = 'OptimizedCineon';
|
|
break;
|
|
|
|
case ACESFilmicToneMapping:
|
|
toneMappingName = 'ACESFilmic';
|
|
break;
|
|
|
|
case CustomToneMapping:
|
|
toneMappingName = 'Custom';
|
|
break;
|
|
|
|
default:
|
|
console.warn('THREE.WebGLProgram: Unsupported toneMapping:', toneMapping);
|
|
toneMappingName = 'Linear';
|
|
}
|
|
|
|
return 'vec3 ' + functionName + '( vec3 color ) { return ' + toneMappingName + 'ToneMapping( color ); }';
|
|
}
|
|
|
|
function generateExtensions(parameters) {
|
|
const chunks = [parameters.extensionDerivatives || parameters.envMapCubeUV || parameters.bumpMap || parameters.tangentSpaceNormalMap || parameters.clearcoatNormalMap || parameters.flatShading || parameters.shaderID === 'physical' ? '#extension GL_OES_standard_derivatives : enable' : '', (parameters.extensionFragDepth || parameters.logarithmicDepthBuffer) && parameters.rendererExtensionFragDepth ? '#extension GL_EXT_frag_depth : enable' : '', parameters.extensionDrawBuffers && parameters.rendererExtensionDrawBuffers ? '#extension GL_EXT_draw_buffers : require' : '', (parameters.extensionShaderTextureLOD || parameters.envMap || parameters.transmission) && parameters.rendererExtensionShaderTextureLod ? '#extension GL_EXT_shader_texture_lod : enable' : ''];
|
|
return chunks.filter(filterEmptyLine).join('\n');
|
|
}
|
|
|
|
function generateDefines(defines) {
|
|
const chunks = [];
|
|
|
|
for (const name in defines) {
|
|
const value = defines[name];
|
|
if (value === false) continue;
|
|
chunks.push('#define ' + name + ' ' + value);
|
|
}
|
|
|
|
return chunks.join('\n');
|
|
}
|
|
|
|
function fetchAttributeLocations(gl, program) {
|
|
const attributes = {};
|
|
const n = gl.getProgramParameter(program, gl.ACTIVE_ATTRIBUTES);
|
|
|
|
for (let i = 0; i < n; i++) {
|
|
const info = gl.getActiveAttrib(program, i);
|
|
const name = info.name;
|
|
let locationSize = 1;
|
|
if (info.type === gl.FLOAT_MAT2) locationSize = 2;
|
|
if (info.type === gl.FLOAT_MAT3) locationSize = 3;
|
|
if (info.type === gl.FLOAT_MAT4) locationSize = 4; // console.log( 'THREE.WebGLProgram: ACTIVE VERTEX ATTRIBUTE:', name, i );
|
|
|
|
attributes[name] = {
|
|
type: info.type,
|
|
location: gl.getAttribLocation(program, name),
|
|
locationSize: locationSize
|
|
};
|
|
}
|
|
|
|
return attributes;
|
|
}
|
|
|
|
function filterEmptyLine(string) {
|
|
return string !== '';
|
|
}
|
|
|
|
function replaceLightNums(string, parameters) {
|
|
return string.replace(/NUM_DIR_LIGHTS/g, parameters.numDirLights).replace(/NUM_SPOT_LIGHTS/g, parameters.numSpotLights).replace(/NUM_RECT_AREA_LIGHTS/g, parameters.numRectAreaLights).replace(/NUM_POINT_LIGHTS/g, parameters.numPointLights).replace(/NUM_HEMI_LIGHTS/g, parameters.numHemiLights).replace(/NUM_DIR_LIGHT_SHADOWS/g, parameters.numDirLightShadows).replace(/NUM_SPOT_LIGHT_SHADOWS/g, parameters.numSpotLightShadows).replace(/NUM_POINT_LIGHT_SHADOWS/g, parameters.numPointLightShadows);
|
|
}
|
|
|
|
function replaceClippingPlaneNums(string, parameters) {
|
|
return string.replace(/NUM_CLIPPING_PLANES/g, parameters.numClippingPlanes).replace(/UNION_CLIPPING_PLANES/g, parameters.numClippingPlanes - parameters.numClipIntersection);
|
|
} // Resolve Includes
|
|
|
|
|
|
const includePattern = /^[ \t]*#include +<([\w\d./]+)>/gm;
|
|
|
|
function resolveIncludes(string) {
|
|
return string.replace(includePattern, includeReplacer);
|
|
}
|
|
|
|
function includeReplacer(match, include) {
|
|
const string = ShaderChunk[include];
|
|
|
|
if (string === undefined) {
|
|
throw new Error('Can not resolve #include <' + include + '>');
|
|
}
|
|
|
|
return resolveIncludes(string);
|
|
} // Unroll Loops
|
|
|
|
|
|
const deprecatedUnrollLoopPattern = /#pragma unroll_loop[\s]+?for \( int i \= (\d+)\; i < (\d+)\; i \+\+ \) \{([\s\S]+?)(?=\})\}/g;
|
|
const unrollLoopPattern = /#pragma unroll_loop_start\s+for\s*\(\s*int\s+i\s*=\s*(\d+)\s*;\s*i\s*<\s*(\d+)\s*;\s*i\s*\+\+\s*\)\s*{([\s\S]+?)}\s+#pragma unroll_loop_end/g;
|
|
|
|
function unrollLoops(string) {
|
|
return string.replace(unrollLoopPattern, loopReplacer).replace(deprecatedUnrollLoopPattern, deprecatedLoopReplacer);
|
|
}
|
|
|
|
function deprecatedLoopReplacer(match, start, end, snippet) {
|
|
console.warn('WebGLProgram: #pragma unroll_loop shader syntax is deprecated. Please use #pragma unroll_loop_start syntax instead.');
|
|
return loopReplacer(match, start, end, snippet);
|
|
}
|
|
|
|
function loopReplacer(match, start, end, snippet) {
|
|
let string = '';
|
|
|
|
for (let i = parseInt(start); i < parseInt(end); i++) {
|
|
string += snippet.replace(/\[\s*i\s*\]/g, '[ ' + i + ' ]').replace(/UNROLLED_LOOP_INDEX/g, i);
|
|
}
|
|
|
|
return string;
|
|
} //
|
|
|
|
|
|
function generatePrecision(parameters) {
|
|
let precisionstring = 'precision ' + parameters.precision + ' float;\nprecision ' + parameters.precision + ' int;';
|
|
|
|
if (parameters.precision === 'highp') {
|
|
precisionstring += '\n#define HIGH_PRECISION';
|
|
} else if (parameters.precision === 'mediump') {
|
|
precisionstring += '\n#define MEDIUM_PRECISION';
|
|
} else if (parameters.precision === 'lowp') {
|
|
precisionstring += '\n#define LOW_PRECISION';
|
|
}
|
|
|
|
return precisionstring;
|
|
}
|
|
|
|
function generateShadowMapTypeDefine(parameters) {
|
|
let shadowMapTypeDefine = 'SHADOWMAP_TYPE_BASIC';
|
|
|
|
if (parameters.shadowMapType === PCFShadowMap) {
|
|
shadowMapTypeDefine = 'SHADOWMAP_TYPE_PCF';
|
|
} else if (parameters.shadowMapType === PCFSoftShadowMap) {
|
|
shadowMapTypeDefine = 'SHADOWMAP_TYPE_PCF_SOFT';
|
|
} else if (parameters.shadowMapType === VSMShadowMap) {
|
|
shadowMapTypeDefine = 'SHADOWMAP_TYPE_VSM';
|
|
}
|
|
|
|
return shadowMapTypeDefine;
|
|
}
|
|
|
|
function generateEnvMapTypeDefine(parameters) {
|
|
let envMapTypeDefine = 'ENVMAP_TYPE_CUBE';
|
|
|
|
if (parameters.envMap) {
|
|
switch (parameters.envMapMode) {
|
|
case CubeReflectionMapping:
|
|
case CubeRefractionMapping:
|
|
envMapTypeDefine = 'ENVMAP_TYPE_CUBE';
|
|
break;
|
|
|
|
case CubeUVReflectionMapping:
|
|
case CubeUVRefractionMapping:
|
|
envMapTypeDefine = 'ENVMAP_TYPE_CUBE_UV';
|
|
break;
|
|
}
|
|
}
|
|
|
|
return envMapTypeDefine;
|
|
}
|
|
|
|
function generateEnvMapModeDefine(parameters) {
|
|
let envMapModeDefine = 'ENVMAP_MODE_REFLECTION';
|
|
|
|
if (parameters.envMap) {
|
|
switch (parameters.envMapMode) {
|
|
case CubeRefractionMapping:
|
|
case CubeUVRefractionMapping:
|
|
envMapModeDefine = 'ENVMAP_MODE_REFRACTION';
|
|
break;
|
|
}
|
|
}
|
|
|
|
return envMapModeDefine;
|
|
}
|
|
|
|
function generateEnvMapBlendingDefine(parameters) {
|
|
let envMapBlendingDefine = 'ENVMAP_BLENDING_NONE';
|
|
|
|
if (parameters.envMap) {
|
|
switch (parameters.combine) {
|
|
case MultiplyOperation:
|
|
envMapBlendingDefine = 'ENVMAP_BLENDING_MULTIPLY';
|
|
break;
|
|
|
|
case MixOperation:
|
|
envMapBlendingDefine = 'ENVMAP_BLENDING_MIX';
|
|
break;
|
|
|
|
case AddOperation:
|
|
envMapBlendingDefine = 'ENVMAP_BLENDING_ADD';
|
|
break;
|
|
}
|
|
}
|
|
|
|
return envMapBlendingDefine;
|
|
}
|
|
|
|
function WebGLProgram(renderer, cacheKey, parameters, bindingStates) {
|
|
// TODO Send this event to Three.js DevTools
|
|
// console.log( 'WebGLProgram', cacheKey );
|
|
const gl = renderer.getContext();
|
|
const defines = parameters.defines;
|
|
let vertexShader = parameters.vertexShader;
|
|
let fragmentShader = parameters.fragmentShader;
|
|
const shadowMapTypeDefine = generateShadowMapTypeDefine(parameters);
|
|
const envMapTypeDefine = generateEnvMapTypeDefine(parameters);
|
|
const envMapModeDefine = generateEnvMapModeDefine(parameters);
|
|
const envMapBlendingDefine = generateEnvMapBlendingDefine(parameters);
|
|
const gammaFactorDefine = renderer.gammaFactor > 0 ? renderer.gammaFactor : 1.0;
|
|
const customExtensions = parameters.isWebGL2 ? '' : generateExtensions(parameters);
|
|
const customDefines = generateDefines(defines);
|
|
const program = gl.createProgram();
|
|
let prefixVertex, prefixFragment;
|
|
let versionString = parameters.glslVersion ? '#version ' + parameters.glslVersion + '\n' : '';
|
|
|
|
if (parameters.isRawShaderMaterial) {
|
|
prefixVertex = [customDefines].filter(filterEmptyLine).join('\n');
|
|
|
|
if (prefixVertex.length > 0) {
|
|
prefixVertex += '\n';
|
|
}
|
|
|
|
prefixFragment = [customExtensions, customDefines].filter(filterEmptyLine).join('\n');
|
|
|
|
if (prefixFragment.length > 0) {
|
|
prefixFragment += '\n';
|
|
}
|
|
} else {
|
|
prefixVertex = [generatePrecision(parameters), '#define SHADER_NAME ' + parameters.shaderName, customDefines, parameters.instancing ? '#define USE_INSTANCING' : '', parameters.instancingColor ? '#define USE_INSTANCING_COLOR' : '', parameters.supportsVertexTextures ? '#define VERTEX_TEXTURES' : '', '#define GAMMA_FACTOR ' + gammaFactorDefine, '#define MAX_BONES ' + parameters.maxBones, parameters.useFog && parameters.fog ? '#define USE_FOG' : '', parameters.useFog && parameters.fogExp2 ? '#define FOG_EXP2' : '', parameters.map ? '#define USE_MAP' : '', parameters.envMap ? '#define USE_ENVMAP' : '', parameters.envMap ? '#define ' + envMapModeDefine : '', parameters.lightMap ? '#define USE_LIGHTMAP' : '', parameters.aoMap ? '#define USE_AOMAP' : '', parameters.emissiveMap ? '#define USE_EMISSIVEMAP' : '', parameters.bumpMap ? '#define USE_BUMPMAP' : '', parameters.normalMap ? '#define USE_NORMALMAP' : '', parameters.normalMap && parameters.objectSpaceNormalMap ? '#define OBJECTSPACE_NORMALMAP' : '', parameters.normalMap && parameters.tangentSpaceNormalMap ? '#define TANGENTSPACE_NORMALMAP' : '', parameters.clearcoatMap ? '#define USE_CLEARCOATMAP' : '', parameters.clearcoatRoughnessMap ? '#define USE_CLEARCOAT_ROUGHNESSMAP' : '', parameters.clearcoatNormalMap ? '#define USE_CLEARCOAT_NORMALMAP' : '', parameters.displacementMap && parameters.supportsVertexTextures ? '#define USE_DISPLACEMENTMAP' : '', parameters.specularMap ? '#define USE_SPECULARMAP' : '', parameters.specularIntensityMap ? '#define USE_SPECULARINTENSITYMAP' : '', parameters.specularTintMap ? '#define USE_SPECULARTINTMAP' : '', parameters.roughnessMap ? '#define USE_ROUGHNESSMAP' : '', parameters.metalnessMap ? '#define USE_METALNESSMAP' : '', parameters.alphaMap ? '#define USE_ALPHAMAP' : '', parameters.transmission ? '#define USE_TRANSMISSION' : '', parameters.transmissionMap ? '#define USE_TRANSMISSIONMAP' : '', parameters.thicknessMap ? '#define USE_THICKNESSMAP' : '', parameters.vertexTangents ? '#define USE_TANGENT' : '', parameters.vertexColors ? '#define USE_COLOR' : '', parameters.vertexAlphas ? '#define USE_COLOR_ALPHA' : '', parameters.vertexUvs ? '#define USE_UV' : '', parameters.uvsVertexOnly ? '#define UVS_VERTEX_ONLY' : '', parameters.flatShading ? '#define FLAT_SHADED' : '', parameters.skinning ? '#define USE_SKINNING' : '', parameters.useVertexTexture ? '#define BONE_TEXTURE' : '', parameters.morphTargets ? '#define USE_MORPHTARGETS' : '', parameters.morphNormals && parameters.flatShading === false ? '#define USE_MORPHNORMALS' : '', parameters.morphTargets && parameters.isWebGL2 ? '#define MORPHTARGETS_TEXTURE' : '', parameters.morphTargets && parameters.isWebGL2 ? '#define MORPHTARGETS_COUNT ' + parameters.morphTargetsCount : '', parameters.doubleSided ? '#define DOUBLE_SIDED' : '', parameters.flipSided ? '#define FLIP_SIDED' : '', parameters.shadowMapEnabled ? '#define USE_SHADOWMAP' : '', parameters.shadowMapEnabled ? '#define ' + shadowMapTypeDefine : '', parameters.sizeAttenuation ? '#define USE_SIZEATTENUATION' : '', parameters.logarithmicDepthBuffer ? '#define USE_LOGDEPTHBUF' : '', parameters.logarithmicDepthBuffer && parameters.rendererExtensionFragDepth ? '#define USE_LOGDEPTHBUF_EXT' : '', 'uniform mat4 modelMatrix;', 'uniform mat4 modelViewMatrix;', 'uniform mat4 projectionMatrix;', 'uniform mat4 viewMatrix;', 'uniform mat3 normalMatrix;', 'uniform vec3 cameraPosition;', 'uniform bool isOrthographic;', '#ifdef USE_INSTANCING', ' attribute mat4 instanceMatrix;', '#endif', '#ifdef USE_INSTANCING_COLOR', ' attribute vec3 instanceColor;', '#endif', 'attribute vec3 position;', 'attribute vec3 normal;', 'attribute vec2 uv;', '#ifdef USE_TANGENT', ' attribute vec4 tangent;', '#endif', '#if defined( USE_COLOR_ALPHA )', ' attribute vec4 color;', '#elif defined( USE_COLOR )', ' attribute vec3 color;', '#endif', '#if ( defined( USE_MORPHTARGETS ) && ! defined( MORPHTARGETS_TEXTURE ) )', ' attribute vec3 morphTarget0;', ' attribute vec3 morphTarget1;', ' attribute vec3 morphTarget2;', ' attribute vec3 morphTarget3;', ' #ifdef USE_MORPHNORMALS', ' attribute vec3 morphNormal0;', ' attribute vec3 morphNormal1;', ' attribute vec3 morphNormal2;', ' attribute vec3 morphNormal3;', ' #else', ' attribute vec3 morphTarget4;', ' attribute vec3 morphTarget5;', ' attribute vec3 morphTarget6;', ' attribute vec3 morphTarget7;', ' #endif', '#endif', '#ifdef USE_SKINNING', ' attribute vec4 skinIndex;', ' attribute vec4 skinWeight;', '#endif', '\n'].filter(filterEmptyLine).join('\n');
|
|
prefixFragment = [customExtensions, generatePrecision(parameters), '#define SHADER_NAME ' + parameters.shaderName, customDefines, '#define GAMMA_FACTOR ' + gammaFactorDefine, parameters.useFog && parameters.fog ? '#define USE_FOG' : '', parameters.useFog && parameters.fogExp2 ? '#define FOG_EXP2' : '', parameters.map ? '#define USE_MAP' : '', parameters.matcap ? '#define USE_MATCAP' : '', parameters.envMap ? '#define USE_ENVMAP' : '', parameters.envMap ? '#define ' + envMapTypeDefine : '', parameters.envMap ? '#define ' + envMapModeDefine : '', parameters.envMap ? '#define ' + envMapBlendingDefine : '', parameters.lightMap ? '#define USE_LIGHTMAP' : '', parameters.aoMap ? '#define USE_AOMAP' : '', parameters.emissiveMap ? '#define USE_EMISSIVEMAP' : '', parameters.bumpMap ? '#define USE_BUMPMAP' : '', parameters.normalMap ? '#define USE_NORMALMAP' : '', parameters.normalMap && parameters.objectSpaceNormalMap ? '#define OBJECTSPACE_NORMALMAP' : '', parameters.normalMap && parameters.tangentSpaceNormalMap ? '#define TANGENTSPACE_NORMALMAP' : '', parameters.clearcoat ? '#define USE_CLEARCOAT' : '', parameters.clearcoatMap ? '#define USE_CLEARCOATMAP' : '', parameters.clearcoatRoughnessMap ? '#define USE_CLEARCOAT_ROUGHNESSMAP' : '', parameters.clearcoatNormalMap ? '#define USE_CLEARCOAT_NORMALMAP' : '', parameters.specularMap ? '#define USE_SPECULARMAP' : '', parameters.specularIntensityMap ? '#define USE_SPECULARINTENSITYMAP' : '', parameters.specularTintMap ? '#define USE_SPECULARTINTMAP' : '', parameters.roughnessMap ? '#define USE_ROUGHNESSMAP' : '', parameters.metalnessMap ? '#define USE_METALNESSMAP' : '', parameters.alphaMap ? '#define USE_ALPHAMAP' : '', parameters.alphaTest ? '#define USE_ALPHATEST' : '', parameters.sheen ? '#define USE_SHEEN' : '', parameters.transmission ? '#define USE_TRANSMISSION' : '', parameters.transmissionMap ? '#define USE_TRANSMISSIONMAP' : '', parameters.thicknessMap ? '#define USE_THICKNESSMAP' : '', parameters.vertexTangents ? '#define USE_TANGENT' : '', parameters.vertexColors || parameters.instancingColor ? '#define USE_COLOR' : '', parameters.vertexAlphas ? '#define USE_COLOR_ALPHA' : '', parameters.vertexUvs ? '#define USE_UV' : '', parameters.uvsVertexOnly ? '#define UVS_VERTEX_ONLY' : '', parameters.gradientMap ? '#define USE_GRADIENTMAP' : '', parameters.flatShading ? '#define FLAT_SHADED' : '', parameters.doubleSided ? '#define DOUBLE_SIDED' : '', parameters.flipSided ? '#define FLIP_SIDED' : '', parameters.shadowMapEnabled ? '#define USE_SHADOWMAP' : '', parameters.shadowMapEnabled ? '#define ' + shadowMapTypeDefine : '', parameters.premultipliedAlpha ? '#define PREMULTIPLIED_ALPHA' : '', parameters.physicallyCorrectLights ? '#define PHYSICALLY_CORRECT_LIGHTS' : '', parameters.logarithmicDepthBuffer ? '#define USE_LOGDEPTHBUF' : '', parameters.logarithmicDepthBuffer && parameters.rendererExtensionFragDepth ? '#define USE_LOGDEPTHBUF_EXT' : '', (parameters.extensionShaderTextureLOD || parameters.envMap) && parameters.rendererExtensionShaderTextureLod ? '#define TEXTURE_LOD_EXT' : '', 'uniform mat4 viewMatrix;', 'uniform vec3 cameraPosition;', 'uniform bool isOrthographic;', parameters.toneMapping !== NoToneMapping ? '#define TONE_MAPPING' : '', parameters.toneMapping !== NoToneMapping ? ShaderChunk['tonemapping_pars_fragment'] : '', // this code is required here because it is used by the toneMapping() function defined below
|
|
parameters.toneMapping !== NoToneMapping ? getToneMappingFunction('toneMapping', parameters.toneMapping) : '', parameters.dithering ? '#define DITHERING' : '', parameters.format === RGBFormat ? '#define OPAQUE' : '', ShaderChunk['encodings_pars_fragment'], // this code is required here because it is used by the various encoding/decoding function defined below
|
|
parameters.map ? getTexelDecodingFunction('mapTexelToLinear', parameters.mapEncoding) : '', parameters.matcap ? getTexelDecodingFunction('matcapTexelToLinear', parameters.matcapEncoding) : '', parameters.envMap ? getTexelDecodingFunction('envMapTexelToLinear', parameters.envMapEncoding) : '', parameters.emissiveMap ? getTexelDecodingFunction('emissiveMapTexelToLinear', parameters.emissiveMapEncoding) : '', parameters.specularTintMap ? getTexelDecodingFunction('specularTintMapTexelToLinear', parameters.specularTintMapEncoding) : '', parameters.lightMap ? getTexelDecodingFunction('lightMapTexelToLinear', parameters.lightMapEncoding) : '', getTexelEncodingFunction('linearToOutputTexel', parameters.outputEncoding), parameters.depthPacking ? '#define DEPTH_PACKING ' + parameters.depthPacking : '', '\n'].filter(filterEmptyLine).join('\n');
|
|
}
|
|
|
|
vertexShader = resolveIncludes(vertexShader);
|
|
vertexShader = replaceLightNums(vertexShader, parameters);
|
|
vertexShader = replaceClippingPlaneNums(vertexShader, parameters);
|
|
fragmentShader = resolveIncludes(fragmentShader);
|
|
fragmentShader = replaceLightNums(fragmentShader, parameters);
|
|
fragmentShader = replaceClippingPlaneNums(fragmentShader, parameters);
|
|
vertexShader = unrollLoops(vertexShader);
|
|
fragmentShader = unrollLoops(fragmentShader);
|
|
|
|
if (parameters.isWebGL2 && parameters.isRawShaderMaterial !== true) {
|
|
// GLSL 3.0 conversion for built-in materials and ShaderMaterial
|
|
versionString = '#version 300 es\n';
|
|
prefixVertex = ['precision mediump sampler2DArray;', '#define attribute in', '#define varying out', '#define texture2D texture'].join('\n') + '\n' + prefixVertex;
|
|
prefixFragment = ['#define varying in', parameters.glslVersion === GLSL3 ? '' : 'out highp vec4 pc_fragColor;', parameters.glslVersion === GLSL3 ? '' : '#define gl_FragColor pc_fragColor', '#define gl_FragDepthEXT gl_FragDepth', '#define texture2D texture', '#define textureCube texture', '#define texture2DProj textureProj', '#define texture2DLodEXT textureLod', '#define texture2DProjLodEXT textureProjLod', '#define textureCubeLodEXT textureLod', '#define texture2DGradEXT textureGrad', '#define texture2DProjGradEXT textureProjGrad', '#define textureCubeGradEXT textureGrad'].join('\n') + '\n' + prefixFragment;
|
|
}
|
|
|
|
const vertexGlsl = versionString + prefixVertex + vertexShader;
|
|
const fragmentGlsl = versionString + prefixFragment + fragmentShader; // console.log( '*VERTEX*', vertexGlsl );
|
|
// console.log( '*FRAGMENT*', fragmentGlsl );
|
|
|
|
const glVertexShader = WebGLShader(gl, gl.VERTEX_SHADER, vertexGlsl);
|
|
const glFragmentShader = WebGLShader(gl, gl.FRAGMENT_SHADER, fragmentGlsl);
|
|
gl.attachShader(program, glVertexShader);
|
|
gl.attachShader(program, glFragmentShader); // Force a particular attribute to index 0.
|
|
|
|
if (parameters.index0AttributeName !== undefined) {
|
|
gl.bindAttribLocation(program, 0, parameters.index0AttributeName);
|
|
} else if (parameters.morphTargets === true) {
|
|
// programs with morphTargets displace position out of attribute 0
|
|
gl.bindAttribLocation(program, 0, 'position');
|
|
}
|
|
|
|
gl.linkProgram(program); // check for link errors
|
|
|
|
if (renderer.debug.checkShaderErrors) {
|
|
const programLog = gl.getProgramInfoLog(program).trim();
|
|
const vertexLog = gl.getShaderInfoLog(glVertexShader).trim();
|
|
const fragmentLog = gl.getShaderInfoLog(glFragmentShader).trim();
|
|
let runnable = true;
|
|
let haveDiagnostics = true;
|
|
|
|
if (gl.getProgramParameter(program, gl.LINK_STATUS) === false) {
|
|
runnable = false;
|
|
const vertexErrors = getShaderErrors(gl, glVertexShader, 'vertex');
|
|
const fragmentErrors = getShaderErrors(gl, glFragmentShader, 'fragment');
|
|
console.error('THREE.WebGLProgram: Shader Error ' + gl.getError() + ' - ' + 'VALIDATE_STATUS ' + gl.getProgramParameter(program, gl.VALIDATE_STATUS) + '\n\n' + 'Program Info Log: ' + programLog + '\n' + vertexErrors + '\n' + fragmentErrors);
|
|
} else if (programLog !== '') {
|
|
console.warn('THREE.WebGLProgram: Program Info Log:', programLog);
|
|
} else if (vertexLog === '' || fragmentLog === '') {
|
|
haveDiagnostics = false;
|
|
}
|
|
|
|
if (haveDiagnostics) {
|
|
this.diagnostics = {
|
|
runnable: runnable,
|
|
programLog: programLog,
|
|
vertexShader: {
|
|
log: vertexLog,
|
|
prefix: prefixVertex
|
|
},
|
|
fragmentShader: {
|
|
log: fragmentLog,
|
|
prefix: prefixFragment
|
|
}
|
|
};
|
|
}
|
|
} // Clean up
|
|
// Crashes in iOS9 and iOS10. #18402
|
|
// gl.detachShader( program, glVertexShader );
|
|
// gl.detachShader( program, glFragmentShader );
|
|
|
|
|
|
gl.deleteShader(glVertexShader);
|
|
gl.deleteShader(glFragmentShader); // set up caching for uniform locations
|
|
|
|
let cachedUniforms;
|
|
|
|
this.getUniforms = function () {
|
|
if (cachedUniforms === undefined) {
|
|
cachedUniforms = new WebGLUniforms(gl, program);
|
|
}
|
|
|
|
return cachedUniforms;
|
|
}; // set up caching for attribute locations
|
|
|
|
|
|
let cachedAttributes;
|
|
|
|
this.getAttributes = function () {
|
|
if (cachedAttributes === undefined) {
|
|
cachedAttributes = fetchAttributeLocations(gl, program);
|
|
}
|
|
|
|
return cachedAttributes;
|
|
}; // free resource
|
|
|
|
|
|
this.destroy = function () {
|
|
bindingStates.releaseStatesOfProgram(this);
|
|
gl.deleteProgram(program);
|
|
this.program = undefined;
|
|
}; //
|
|
|
|
|
|
this.name = parameters.shaderName;
|
|
this.id = programIdCount++;
|
|
this.cacheKey = cacheKey;
|
|
this.usedTimes = 1;
|
|
this.program = program;
|
|
this.vertexShader = glVertexShader;
|
|
this.fragmentShader = glFragmentShader;
|
|
return this;
|
|
}
|
|
|
|
function WebGLPrograms(renderer, cubemaps, cubeuvmaps, extensions, capabilities, bindingStates, clipping) {
|
|
const programs = [];
|
|
const isWebGL2 = capabilities.isWebGL2;
|
|
const logarithmicDepthBuffer = capabilities.logarithmicDepthBuffer;
|
|
const floatVertexTextures = capabilities.floatVertexTextures;
|
|
const maxVertexUniforms = capabilities.maxVertexUniforms;
|
|
const vertexTextures = capabilities.vertexTextures;
|
|
let precision = capabilities.precision;
|
|
const shaderIDs = {
|
|
MeshDepthMaterial: 'depth',
|
|
MeshDistanceMaterial: 'distanceRGBA',
|
|
MeshNormalMaterial: 'normal',
|
|
MeshBasicMaterial: 'basic',
|
|
MeshLambertMaterial: 'lambert',
|
|
MeshPhongMaterial: 'phong',
|
|
MeshToonMaterial: 'toon',
|
|
MeshStandardMaterial: 'physical',
|
|
MeshPhysicalMaterial: 'physical',
|
|
MeshMatcapMaterial: 'matcap',
|
|
LineBasicMaterial: 'basic',
|
|
LineDashedMaterial: 'dashed',
|
|
PointsMaterial: 'points',
|
|
ShadowMaterial: 'shadow',
|
|
SpriteMaterial: 'sprite'
|
|
};
|
|
const parameterNames = ['precision', 'isWebGL2', 'supportsVertexTextures', 'outputEncoding', 'instancing', 'instancingColor', 'map', 'mapEncoding', 'matcap', 'matcapEncoding', 'envMap', 'envMapMode', 'envMapEncoding', 'envMapCubeUV', 'lightMap', 'lightMapEncoding', 'aoMap', 'emissiveMap', 'emissiveMapEncoding', 'bumpMap', 'normalMap', 'objectSpaceNormalMap', 'tangentSpaceNormalMap', 'clearcoat', 'clearcoatMap', 'clearcoatRoughnessMap', 'clearcoatNormalMap', 'displacementMap', 'specularMap', 'specularIntensityMap', 'specularTintMap', 'specularTintMapEncoding', 'roughnessMap', 'metalnessMap', 'gradientMap', 'alphaMap', 'alphaTest', 'combine', 'vertexColors', 'vertexAlphas', 'vertexTangents', 'vertexUvs', 'uvsVertexOnly', 'fog', 'useFog', 'fogExp2', 'flatShading', 'sizeAttenuation', 'logarithmicDepthBuffer', 'skinning', 'maxBones', 'useVertexTexture', 'morphTargets', 'morphNormals', 'morphTargetsCount', 'premultipliedAlpha', 'numDirLights', 'numPointLights', 'numSpotLights', 'numHemiLights', 'numRectAreaLights', 'numDirLightShadows', 'numPointLightShadows', 'numSpotLightShadows', 'shadowMapEnabled', 'shadowMapType', 'toneMapping', 'physicallyCorrectLights', 'doubleSided', 'flipSided', 'numClippingPlanes', 'numClipIntersection', 'depthPacking', 'dithering', 'format', 'sheen', 'transmission', 'transmissionMap', 'thicknessMap'];
|
|
|
|
function getMaxBones(object) {
|
|
const skeleton = object.skeleton;
|
|
const bones = skeleton.bones;
|
|
|
|
if (floatVertexTextures) {
|
|
return 1024;
|
|
} else {
|
|
// default for when object is not specified
|
|
// ( for example when prebuilding shader to be used with multiple objects )
|
|
//
|
|
// - leave some extra space for other uniforms
|
|
// - limit here is ANGLE's 254 max uniform vectors
|
|
// (up to 54 should be safe)
|
|
const nVertexUniforms = maxVertexUniforms;
|
|
const nVertexMatrices = Math.floor((nVertexUniforms - 20) / 4);
|
|
const maxBones = Math.min(nVertexMatrices, bones.length);
|
|
|
|
if (maxBones < bones.length) {
|
|
console.warn('THREE.WebGLRenderer: Skeleton has ' + bones.length + ' bones. This GPU supports ' + maxBones + '.');
|
|
return 0;
|
|
}
|
|
|
|
return maxBones;
|
|
}
|
|
}
|
|
|
|
function getTextureEncodingFromMap(map) {
|
|
let encoding;
|
|
|
|
if (map && map.isTexture) {
|
|
encoding = map.encoding;
|
|
} else if (map && map.isWebGLRenderTarget) {
|
|
console.warn('THREE.WebGLPrograms.getTextureEncodingFromMap: don\'t use render targets as textures. Use their .texture property instead.');
|
|
encoding = map.texture.encoding;
|
|
} else {
|
|
encoding = LinearEncoding;
|
|
}
|
|
|
|
if (isWebGL2 && map && map.isTexture && map.format === RGBAFormat && map.type === UnsignedByteType && map.encoding === sRGBEncoding) {
|
|
encoding = LinearEncoding; // disable inline decode for sRGB textures in WebGL 2
|
|
}
|
|
|
|
return encoding;
|
|
}
|
|
|
|
function getParameters(material, lights, shadows, scene, object) {
|
|
const fog = scene.fog;
|
|
const environment = material.isMeshStandardMaterial ? scene.environment : null;
|
|
const envMap = (material.isMeshStandardMaterial ? cubeuvmaps : cubemaps).get(material.envMap || environment);
|
|
const shaderID = shaderIDs[material.type]; // heuristics to create shader parameters according to lights in the scene
|
|
// (not to blow over maxLights budget)
|
|
|
|
const maxBones = object.isSkinnedMesh ? getMaxBones(object) : 0;
|
|
|
|
if (material.precision !== null) {
|
|
precision = capabilities.getMaxPrecision(material.precision);
|
|
|
|
if (precision !== material.precision) {
|
|
console.warn('THREE.WebGLProgram.getParameters:', material.precision, 'not supported, using', precision, 'instead.');
|
|
}
|
|
}
|
|
|
|
let vertexShader, fragmentShader;
|
|
|
|
if (shaderID) {
|
|
const shader = ShaderLib[shaderID];
|
|
vertexShader = shader.vertexShader;
|
|
fragmentShader = shader.fragmentShader;
|
|
} else {
|
|
vertexShader = material.vertexShader;
|
|
fragmentShader = material.fragmentShader;
|
|
}
|
|
|
|
const currentRenderTarget = renderer.getRenderTarget();
|
|
const useAlphaTest = material.alphaTest > 0;
|
|
const useClearcoat = material.clearcoat > 0;
|
|
const parameters = {
|
|
isWebGL2: isWebGL2,
|
|
shaderID: shaderID,
|
|
shaderName: material.type,
|
|
vertexShader: vertexShader,
|
|
fragmentShader: fragmentShader,
|
|
defines: material.defines,
|
|
isRawShaderMaterial: material.isRawShaderMaterial === true,
|
|
glslVersion: material.glslVersion,
|
|
precision: precision,
|
|
instancing: object.isInstancedMesh === true,
|
|
instancingColor: object.isInstancedMesh === true && object.instanceColor !== null,
|
|
supportsVertexTextures: vertexTextures,
|
|
outputEncoding: currentRenderTarget !== null ? getTextureEncodingFromMap(currentRenderTarget.texture) : renderer.outputEncoding,
|
|
map: !!material.map,
|
|
mapEncoding: getTextureEncodingFromMap(material.map),
|
|
matcap: !!material.matcap,
|
|
matcapEncoding: getTextureEncodingFromMap(material.matcap),
|
|
envMap: !!envMap,
|
|
envMapMode: envMap && envMap.mapping,
|
|
envMapEncoding: getTextureEncodingFromMap(envMap),
|
|
envMapCubeUV: !!envMap && (envMap.mapping === CubeUVReflectionMapping || envMap.mapping === CubeUVRefractionMapping),
|
|
lightMap: !!material.lightMap,
|
|
lightMapEncoding: getTextureEncodingFromMap(material.lightMap),
|
|
aoMap: !!material.aoMap,
|
|
emissiveMap: !!material.emissiveMap,
|
|
emissiveMapEncoding: getTextureEncodingFromMap(material.emissiveMap),
|
|
bumpMap: !!material.bumpMap,
|
|
normalMap: !!material.normalMap,
|
|
objectSpaceNormalMap: material.normalMapType === ObjectSpaceNormalMap,
|
|
tangentSpaceNormalMap: material.normalMapType === TangentSpaceNormalMap,
|
|
clearcoat: useClearcoat,
|
|
clearcoatMap: useClearcoat && !!material.clearcoatMap,
|
|
clearcoatRoughnessMap: useClearcoat && !!material.clearcoatRoughnessMap,
|
|
clearcoatNormalMap: useClearcoat && !!material.clearcoatNormalMap,
|
|
displacementMap: !!material.displacementMap,
|
|
roughnessMap: !!material.roughnessMap,
|
|
metalnessMap: !!material.metalnessMap,
|
|
specularMap: !!material.specularMap,
|
|
specularIntensityMap: !!material.specularIntensityMap,
|
|
specularTintMap: !!material.specularTintMap,
|
|
specularTintMapEncoding: getTextureEncodingFromMap(material.specularTintMap),
|
|
alphaMap: !!material.alphaMap,
|
|
alphaTest: useAlphaTest,
|
|
gradientMap: !!material.gradientMap,
|
|
sheen: material.sheen > 0,
|
|
transmission: material.transmission > 0,
|
|
transmissionMap: !!material.transmissionMap,
|
|
thicknessMap: !!material.thicknessMap,
|
|
combine: material.combine,
|
|
vertexTangents: !!material.normalMap && !!object.geometry && !!object.geometry.attributes.tangent,
|
|
vertexColors: material.vertexColors,
|
|
vertexAlphas: material.vertexColors === true && !!object.geometry && !!object.geometry.attributes.color && object.geometry.attributes.color.itemSize === 4,
|
|
vertexUvs: !!material.map || !!material.bumpMap || !!material.normalMap || !!material.specularMap || !!material.alphaMap || !!material.emissiveMap || !!material.roughnessMap || !!material.metalnessMap || !!material.clearcoatMap || !!material.clearcoatRoughnessMap || !!material.clearcoatNormalMap || !!material.displacementMap || !!material.transmissionMap || !!material.thicknessMap || !!material.specularIntensityMap || !!material.specularTintMap,
|
|
uvsVertexOnly: !(!!material.map || !!material.bumpMap || !!material.normalMap || !!material.specularMap || !!material.alphaMap || !!material.emissiveMap || !!material.roughnessMap || !!material.metalnessMap || !!material.clearcoatNormalMap || material.transmission > 0 || !!material.transmissionMap || !!material.thicknessMap || !!material.specularIntensityMap || !!material.specularTintMap) && !!material.displacementMap,
|
|
fog: !!fog,
|
|
useFog: material.fog,
|
|
fogExp2: fog && fog.isFogExp2,
|
|
flatShading: !!material.flatShading,
|
|
sizeAttenuation: material.sizeAttenuation,
|
|
logarithmicDepthBuffer: logarithmicDepthBuffer,
|
|
skinning: object.isSkinnedMesh === true && maxBones > 0,
|
|
maxBones: maxBones,
|
|
useVertexTexture: floatVertexTextures,
|
|
morphTargets: !!object.geometry && !!object.geometry.morphAttributes.position,
|
|
morphNormals: !!object.geometry && !!object.geometry.morphAttributes.normal,
|
|
morphTargetsCount: !!object.geometry && !!object.geometry.morphAttributes.position ? object.geometry.morphAttributes.position.length : 0,
|
|
numDirLights: lights.directional.length,
|
|
numPointLights: lights.point.length,
|
|
numSpotLights: lights.spot.length,
|
|
numRectAreaLights: lights.rectArea.length,
|
|
numHemiLights: lights.hemi.length,
|
|
numDirLightShadows: lights.directionalShadowMap.length,
|
|
numPointLightShadows: lights.pointShadowMap.length,
|
|
numSpotLightShadows: lights.spotShadowMap.length,
|
|
numClippingPlanes: clipping.numPlanes,
|
|
numClipIntersection: clipping.numIntersection,
|
|
format: material.format,
|
|
dithering: material.dithering,
|
|
shadowMapEnabled: renderer.shadowMap.enabled && shadows.length > 0,
|
|
shadowMapType: renderer.shadowMap.type,
|
|
toneMapping: material.toneMapped ? renderer.toneMapping : NoToneMapping,
|
|
physicallyCorrectLights: renderer.physicallyCorrectLights,
|
|
premultipliedAlpha: material.premultipliedAlpha,
|
|
doubleSided: material.side === DoubleSide,
|
|
flipSided: material.side === BackSide,
|
|
depthPacking: material.depthPacking !== undefined ? material.depthPacking : false,
|
|
index0AttributeName: material.index0AttributeName,
|
|
extensionDerivatives: material.extensions && material.extensions.derivatives,
|
|
extensionFragDepth: material.extensions && material.extensions.fragDepth,
|
|
extensionDrawBuffers: material.extensions && material.extensions.drawBuffers,
|
|
extensionShaderTextureLOD: material.extensions && material.extensions.shaderTextureLOD,
|
|
rendererExtensionFragDepth: isWebGL2 || extensions.has('EXT_frag_depth'),
|
|
rendererExtensionDrawBuffers: isWebGL2 || extensions.has('WEBGL_draw_buffers'),
|
|
rendererExtensionShaderTextureLod: isWebGL2 || extensions.has('EXT_shader_texture_lod'),
|
|
customProgramCacheKey: material.customProgramCacheKey()
|
|
};
|
|
return parameters;
|
|
}
|
|
|
|
function getProgramCacheKey(parameters) {
|
|
const array = [];
|
|
|
|
if (parameters.shaderID) {
|
|
array.push(parameters.shaderID);
|
|
} else {
|
|
array.push(hashString(parameters.fragmentShader));
|
|
array.push(hashString(parameters.vertexShader));
|
|
}
|
|
|
|
if (parameters.defines !== undefined) {
|
|
for (const name in parameters.defines) {
|
|
array.push(name);
|
|
array.push(parameters.defines[name]);
|
|
}
|
|
}
|
|
|
|
if (parameters.isRawShaderMaterial === false) {
|
|
for (let i = 0; i < parameterNames.length; i++) {
|
|
array.push(parameters[parameterNames[i]]);
|
|
}
|
|
|
|
array.push(renderer.outputEncoding);
|
|
array.push(renderer.gammaFactor);
|
|
}
|
|
|
|
array.push(parameters.customProgramCacheKey);
|
|
return array.join();
|
|
}
|
|
|
|
function getUniforms(material) {
|
|
const shaderID = shaderIDs[material.type];
|
|
let uniforms;
|
|
|
|
if (shaderID) {
|
|
const shader = ShaderLib[shaderID];
|
|
uniforms = UniformsUtils.clone(shader.uniforms);
|
|
} else {
|
|
uniforms = material.uniforms;
|
|
}
|
|
|
|
return uniforms;
|
|
}
|
|
|
|
function acquireProgram(parameters, cacheKey) {
|
|
let program; // Check if code has been already compiled
|
|
|
|
for (let p = 0, pl = programs.length; p < pl; p++) {
|
|
const preexistingProgram = programs[p];
|
|
|
|
if (preexistingProgram.cacheKey === cacheKey) {
|
|
program = preexistingProgram;
|
|
++program.usedTimes;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (program === undefined) {
|
|
program = new WebGLProgram(renderer, cacheKey, parameters, bindingStates);
|
|
programs.push(program);
|
|
}
|
|
|
|
return program;
|
|
}
|
|
|
|
function releaseProgram(program) {
|
|
if (--program.usedTimes === 0) {
|
|
// Remove from unordered set
|
|
const i = programs.indexOf(program);
|
|
programs[i] = programs[programs.length - 1];
|
|
programs.pop(); // Free WebGL resources
|
|
|
|
program.destroy();
|
|
}
|
|
}
|
|
|
|
return {
|
|
getParameters: getParameters,
|
|
getProgramCacheKey: getProgramCacheKey,
|
|
getUniforms: getUniforms,
|
|
acquireProgram: acquireProgram,
|
|
releaseProgram: releaseProgram,
|
|
// Exposed for resource monitoring & error feedback via renderer.info:
|
|
programs: programs
|
|
};
|
|
}
|
|
|
|
function WebGLProperties() {
|
|
let properties = new WeakMap();
|
|
|
|
function get(object) {
|
|
let map = properties.get(object);
|
|
|
|
if (map === undefined) {
|
|
map = {};
|
|
properties.set(object, map);
|
|
}
|
|
|
|
return map;
|
|
}
|
|
|
|
function remove(object) {
|
|
properties.delete(object);
|
|
}
|
|
|
|
function update(object, key, value) {
|
|
properties.get(object)[key] = value;
|
|
}
|
|
|
|
function dispose() {
|
|
properties = new WeakMap();
|
|
}
|
|
|
|
return {
|
|
get: get,
|
|
remove: remove,
|
|
update: update,
|
|
dispose: dispose
|
|
};
|
|
}
|
|
|
|
function painterSortStable(a, b) {
|
|
if (a.groupOrder !== b.groupOrder) {
|
|
return a.groupOrder - b.groupOrder;
|
|
} else if (a.renderOrder !== b.renderOrder) {
|
|
return a.renderOrder - b.renderOrder;
|
|
} else if (a.program !== b.program) {
|
|
return a.program.id - b.program.id;
|
|
} else if (a.material.id !== b.material.id) {
|
|
return a.material.id - b.material.id;
|
|
} else if (a.z !== b.z) {
|
|
return a.z - b.z;
|
|
} else {
|
|
return a.id - b.id;
|
|
}
|
|
}
|
|
|
|
function reversePainterSortStable(a, b) {
|
|
if (a.groupOrder !== b.groupOrder) {
|
|
return a.groupOrder - b.groupOrder;
|
|
} else if (a.renderOrder !== b.renderOrder) {
|
|
return a.renderOrder - b.renderOrder;
|
|
} else if (a.z !== b.z) {
|
|
return b.z - a.z;
|
|
} else {
|
|
return a.id - b.id;
|
|
}
|
|
}
|
|
|
|
function WebGLRenderList(properties) {
|
|
const renderItems = [];
|
|
let renderItemsIndex = 0;
|
|
const opaque = [];
|
|
const transmissive = [];
|
|
const transparent = [];
|
|
const defaultProgram = {
|
|
id: -1
|
|
};
|
|
|
|
function init() {
|
|
renderItemsIndex = 0;
|
|
opaque.length = 0;
|
|
transmissive.length = 0;
|
|
transparent.length = 0;
|
|
}
|
|
|
|
function getNextRenderItem(object, geometry, material, groupOrder, z, group) {
|
|
let renderItem = renderItems[renderItemsIndex];
|
|
const materialProperties = properties.get(material);
|
|
|
|
if (renderItem === undefined) {
|
|
renderItem = {
|
|
id: object.id,
|
|
object: object,
|
|
geometry: geometry,
|
|
material: material,
|
|
program: materialProperties.program || defaultProgram,
|
|
groupOrder: groupOrder,
|
|
renderOrder: object.renderOrder,
|
|
z: z,
|
|
group: group
|
|
};
|
|
renderItems[renderItemsIndex] = renderItem;
|
|
} else {
|
|
renderItem.id = object.id;
|
|
renderItem.object = object;
|
|
renderItem.geometry = geometry;
|
|
renderItem.material = material;
|
|
renderItem.program = materialProperties.program || defaultProgram;
|
|
renderItem.groupOrder = groupOrder;
|
|
renderItem.renderOrder = object.renderOrder;
|
|
renderItem.z = z;
|
|
renderItem.group = group;
|
|
}
|
|
|
|
renderItemsIndex++;
|
|
return renderItem;
|
|
}
|
|
|
|
function push(object, geometry, material, groupOrder, z, group) {
|
|
const renderItem = getNextRenderItem(object, geometry, material, groupOrder, z, group);
|
|
|
|
if (material.transmission > 0.0) {
|
|
transmissive.push(renderItem);
|
|
} else if (material.transparent === true) {
|
|
transparent.push(renderItem);
|
|
} else {
|
|
opaque.push(renderItem);
|
|
}
|
|
}
|
|
|
|
function unshift(object, geometry, material, groupOrder, z, group) {
|
|
const renderItem = getNextRenderItem(object, geometry, material, groupOrder, z, group);
|
|
|
|
if (material.transmission > 0.0) {
|
|
transmissive.unshift(renderItem);
|
|
} else if (material.transparent === true) {
|
|
transparent.unshift(renderItem);
|
|
} else {
|
|
opaque.unshift(renderItem);
|
|
}
|
|
}
|
|
|
|
function sort(customOpaqueSort, customTransparentSort) {
|
|
if (opaque.length > 1) opaque.sort(customOpaqueSort || painterSortStable);
|
|
if (transmissive.length > 1) transmissive.sort(customTransparentSort || reversePainterSortStable);
|
|
if (transparent.length > 1) transparent.sort(customTransparentSort || reversePainterSortStable);
|
|
}
|
|
|
|
function finish() {
|
|
// Clear references from inactive renderItems in the list
|
|
for (let i = renderItemsIndex, il = renderItems.length; i < il; i++) {
|
|
const renderItem = renderItems[i];
|
|
if (renderItem.id === null) break;
|
|
renderItem.id = null;
|
|
renderItem.object = null;
|
|
renderItem.geometry = null;
|
|
renderItem.material = null;
|
|
renderItem.program = null;
|
|
renderItem.group = null;
|
|
}
|
|
}
|
|
|
|
return {
|
|
opaque: opaque,
|
|
transmissive: transmissive,
|
|
transparent: transparent,
|
|
init: init,
|
|
push: push,
|
|
unshift: unshift,
|
|
finish: finish,
|
|
sort: sort
|
|
};
|
|
}
|
|
|
|
function WebGLRenderLists(properties) {
|
|
let lists = new WeakMap();
|
|
|
|
function get(scene, renderCallDepth) {
|
|
let list;
|
|
|
|
if (lists.has(scene) === false) {
|
|
list = new WebGLRenderList(properties);
|
|
lists.set(scene, [list]);
|
|
} else {
|
|
if (renderCallDepth >= lists.get(scene).length) {
|
|
list = new WebGLRenderList(properties);
|
|
lists.get(scene).push(list);
|
|
} else {
|
|
list = lists.get(scene)[renderCallDepth];
|
|
}
|
|
}
|
|
|
|
return list;
|
|
}
|
|
|
|
function dispose() {
|
|
lists = new WeakMap();
|
|
}
|
|
|
|
return {
|
|
get: get,
|
|
dispose: dispose
|
|
};
|
|
}
|
|
|
|
function UniformsCache() {
|
|
const lights = {};
|
|
return {
|
|
get: function (light) {
|
|
if (lights[light.id] !== undefined) {
|
|
return lights[light.id];
|
|
}
|
|
|
|
let uniforms;
|
|
|
|
switch (light.type) {
|
|
case 'DirectionalLight':
|
|
uniforms = {
|
|
direction: new Vector3(),
|
|
color: new Color()
|
|
};
|
|
break;
|
|
|
|
case 'SpotLight':
|
|
uniforms = {
|
|
position: new Vector3(),
|
|
direction: new Vector3(),
|
|
color: new Color(),
|
|
distance: 0,
|
|
coneCos: 0,
|
|
penumbraCos: 0,
|
|
decay: 0
|
|
};
|
|
break;
|
|
|
|
case 'PointLight':
|
|
uniforms = {
|
|
position: new Vector3(),
|
|
color: new Color(),
|
|
distance: 0,
|
|
decay: 0
|
|
};
|
|
break;
|
|
|
|
case 'HemisphereLight':
|
|
uniforms = {
|
|
direction: new Vector3(),
|
|
skyColor: new Color(),
|
|
groundColor: new Color()
|
|
};
|
|
break;
|
|
|
|
case 'RectAreaLight':
|
|
uniforms = {
|
|
color: new Color(),
|
|
position: new Vector3(),
|
|
halfWidth: new Vector3(),
|
|
halfHeight: new Vector3()
|
|
};
|
|
break;
|
|
}
|
|
|
|
lights[light.id] = uniforms;
|
|
return uniforms;
|
|
}
|
|
};
|
|
}
|
|
|
|
function ShadowUniformsCache() {
|
|
const lights = {};
|
|
return {
|
|
get: function (light) {
|
|
if (lights[light.id] !== undefined) {
|
|
return lights[light.id];
|
|
}
|
|
|
|
let uniforms;
|
|
|
|
switch (light.type) {
|
|
case 'DirectionalLight':
|
|
uniforms = {
|
|
shadowBias: 0,
|
|
shadowNormalBias: 0,
|
|
shadowRadius: 1,
|
|
shadowMapSize: new Vector2()
|
|
};
|
|
break;
|
|
|
|
case 'SpotLight':
|
|
uniforms = {
|
|
shadowBias: 0,
|
|
shadowNormalBias: 0,
|
|
shadowRadius: 1,
|
|
shadowMapSize: new Vector2()
|
|
};
|
|
break;
|
|
|
|
case 'PointLight':
|
|
uniforms = {
|
|
shadowBias: 0,
|
|
shadowNormalBias: 0,
|
|
shadowRadius: 1,
|
|
shadowMapSize: new Vector2(),
|
|
shadowCameraNear: 1,
|
|
shadowCameraFar: 1000
|
|
};
|
|
break;
|
|
// TODO (abelnation): set RectAreaLight shadow uniforms
|
|
}
|
|
|
|
lights[light.id] = uniforms;
|
|
return uniforms;
|
|
}
|
|
};
|
|
}
|
|
|
|
let nextVersion = 0;
|
|
|
|
function shadowCastingLightsFirst(lightA, lightB) {
|
|
return (lightB.castShadow ? 1 : 0) - (lightA.castShadow ? 1 : 0);
|
|
}
|
|
|
|
function WebGLLights(extensions, capabilities) {
|
|
const cache = new UniformsCache();
|
|
const shadowCache = ShadowUniformsCache();
|
|
const state = {
|
|
version: 0,
|
|
hash: {
|
|
directionalLength: -1,
|
|
pointLength: -1,
|
|
spotLength: -1,
|
|
rectAreaLength: -1,
|
|
hemiLength: -1,
|
|
numDirectionalShadows: -1,
|
|
numPointShadows: -1,
|
|
numSpotShadows: -1
|
|
},
|
|
ambient: [0, 0, 0],
|
|
probe: [],
|
|
directional: [],
|
|
directionalShadow: [],
|
|
directionalShadowMap: [],
|
|
directionalShadowMatrix: [],
|
|
spot: [],
|
|
spotShadow: [],
|
|
spotShadowMap: [],
|
|
spotShadowMatrix: [],
|
|
rectArea: [],
|
|
rectAreaLTC1: null,
|
|
rectAreaLTC2: null,
|
|
point: [],
|
|
pointShadow: [],
|
|
pointShadowMap: [],
|
|
pointShadowMatrix: [],
|
|
hemi: []
|
|
};
|
|
|
|
for (let i = 0; i < 9; i++) state.probe.push(new Vector3());
|
|
|
|
const vector3 = new Vector3();
|
|
const matrix4 = new Matrix4();
|
|
const matrix42 = new Matrix4();
|
|
|
|
function setup(lights, physicallyCorrectLights) {
|
|
let r = 0,
|
|
g = 0,
|
|
b = 0;
|
|
|
|
for (let i = 0; i < 9; i++) state.probe[i].set(0, 0, 0);
|
|
|
|
let directionalLength = 0;
|
|
let pointLength = 0;
|
|
let spotLength = 0;
|
|
let rectAreaLength = 0;
|
|
let hemiLength = 0;
|
|
let numDirectionalShadows = 0;
|
|
let numPointShadows = 0;
|
|
let numSpotShadows = 0;
|
|
lights.sort(shadowCastingLightsFirst); // artist-friendly light intensity scaling factor
|
|
|
|
const scaleFactor = physicallyCorrectLights !== true ? Math.PI : 1;
|
|
|
|
for (let i = 0, l = lights.length; i < l; i++) {
|
|
const light = lights[i];
|
|
const color = light.color;
|
|
const intensity = light.intensity;
|
|
const distance = light.distance;
|
|
const shadowMap = light.shadow && light.shadow.map ? light.shadow.map.texture : null;
|
|
|
|
if (light.isAmbientLight) {
|
|
r += color.r * intensity * scaleFactor;
|
|
g += color.g * intensity * scaleFactor;
|
|
b += color.b * intensity * scaleFactor;
|
|
} else if (light.isLightProbe) {
|
|
for (let j = 0; j < 9; j++) {
|
|
state.probe[j].addScaledVector(light.sh.coefficients[j], intensity);
|
|
}
|
|
} else if (light.isDirectionalLight) {
|
|
const uniforms = cache.get(light);
|
|
uniforms.color.copy(light.color).multiplyScalar(light.intensity * scaleFactor);
|
|
|
|
if (light.castShadow) {
|
|
const shadow = light.shadow;
|
|
const shadowUniforms = shadowCache.get(light);
|
|
shadowUniforms.shadowBias = shadow.bias;
|
|
shadowUniforms.shadowNormalBias = shadow.normalBias;
|
|
shadowUniforms.shadowRadius = shadow.radius;
|
|
shadowUniforms.shadowMapSize = shadow.mapSize;
|
|
state.directionalShadow[directionalLength] = shadowUniforms;
|
|
state.directionalShadowMap[directionalLength] = shadowMap;
|
|
state.directionalShadowMatrix[directionalLength] = light.shadow.matrix;
|
|
numDirectionalShadows++;
|
|
}
|
|
|
|
state.directional[directionalLength] = uniforms;
|
|
directionalLength++;
|
|
} else if (light.isSpotLight) {
|
|
const uniforms = cache.get(light);
|
|
uniforms.position.setFromMatrixPosition(light.matrixWorld);
|
|
uniforms.color.copy(color).multiplyScalar(intensity * scaleFactor);
|
|
uniforms.distance = distance;
|
|
uniforms.coneCos = Math.cos(light.angle);
|
|
uniforms.penumbraCos = Math.cos(light.angle * (1 - light.penumbra));
|
|
uniforms.decay = light.decay;
|
|
|
|
if (light.castShadow) {
|
|
const shadow = light.shadow;
|
|
const shadowUniforms = shadowCache.get(light);
|
|
shadowUniforms.shadowBias = shadow.bias;
|
|
shadowUniforms.shadowNormalBias = shadow.normalBias;
|
|
shadowUniforms.shadowRadius = shadow.radius;
|
|
shadowUniforms.shadowMapSize = shadow.mapSize;
|
|
state.spotShadow[spotLength] = shadowUniforms;
|
|
state.spotShadowMap[spotLength] = shadowMap;
|
|
state.spotShadowMatrix[spotLength] = light.shadow.matrix;
|
|
numSpotShadows++;
|
|
}
|
|
|
|
state.spot[spotLength] = uniforms;
|
|
spotLength++;
|
|
} else if (light.isRectAreaLight) {
|
|
const uniforms = cache.get(light); // (a) intensity is the total visible light emitted
|
|
//uniforms.color.copy( color ).multiplyScalar( intensity / ( light.width * light.height * Math.PI ) );
|
|
// (b) intensity is the brightness of the light
|
|
|
|
uniforms.color.copy(color).multiplyScalar(intensity);
|
|
uniforms.halfWidth.set(light.width * 0.5, 0.0, 0.0);
|
|
uniforms.halfHeight.set(0.0, light.height * 0.5, 0.0);
|
|
state.rectArea[rectAreaLength] = uniforms;
|
|
rectAreaLength++;
|
|
} else if (light.isPointLight) {
|
|
const uniforms = cache.get(light);
|
|
uniforms.color.copy(light.color).multiplyScalar(light.intensity * scaleFactor);
|
|
uniforms.distance = light.distance;
|
|
uniforms.decay = light.decay;
|
|
|
|
if (light.castShadow) {
|
|
const shadow = light.shadow;
|
|
const shadowUniforms = shadowCache.get(light);
|
|
shadowUniforms.shadowBias = shadow.bias;
|
|
shadowUniforms.shadowNormalBias = shadow.normalBias;
|
|
shadowUniforms.shadowRadius = shadow.radius;
|
|
shadowUniforms.shadowMapSize = shadow.mapSize;
|
|
shadowUniforms.shadowCameraNear = shadow.camera.near;
|
|
shadowUniforms.shadowCameraFar = shadow.camera.far;
|
|
state.pointShadow[pointLength] = shadowUniforms;
|
|
state.pointShadowMap[pointLength] = shadowMap;
|
|
state.pointShadowMatrix[pointLength] = light.shadow.matrix;
|
|
numPointShadows++;
|
|
}
|
|
|
|
state.point[pointLength] = uniforms;
|
|
pointLength++;
|
|
} else if (light.isHemisphereLight) {
|
|
const uniforms = cache.get(light);
|
|
uniforms.skyColor.copy(light.color).multiplyScalar(intensity * scaleFactor);
|
|
uniforms.groundColor.copy(light.groundColor).multiplyScalar(intensity * scaleFactor);
|
|
state.hemi[hemiLength] = uniforms;
|
|
hemiLength++;
|
|
}
|
|
}
|
|
|
|
if (rectAreaLength > 0) {
|
|
if (capabilities.isWebGL2) {
|
|
// WebGL 2
|
|
state.rectAreaLTC1 = UniformsLib.LTC_FLOAT_1;
|
|
state.rectAreaLTC2 = UniformsLib.LTC_FLOAT_2;
|
|
} else {
|
|
// WebGL 1
|
|
if (extensions.has('OES_texture_float_linear') === true) {
|
|
state.rectAreaLTC1 = UniformsLib.LTC_FLOAT_1;
|
|
state.rectAreaLTC2 = UniformsLib.LTC_FLOAT_2;
|
|
} else if (extensions.has('OES_texture_half_float_linear') === true) {
|
|
state.rectAreaLTC1 = UniformsLib.LTC_HALF_1;
|
|
state.rectAreaLTC2 = UniformsLib.LTC_HALF_2;
|
|
} else {
|
|
console.error('THREE.WebGLRenderer: Unable to use RectAreaLight. Missing WebGL extensions.');
|
|
}
|
|
}
|
|
}
|
|
|
|
state.ambient[0] = r;
|
|
state.ambient[1] = g;
|
|
state.ambient[2] = b;
|
|
const hash = state.hash;
|
|
|
|
if (hash.directionalLength !== directionalLength || hash.pointLength !== pointLength || hash.spotLength !== spotLength || hash.rectAreaLength !== rectAreaLength || hash.hemiLength !== hemiLength || hash.numDirectionalShadows !== numDirectionalShadows || hash.numPointShadows !== numPointShadows || hash.numSpotShadows !== numSpotShadows) {
|
|
state.directional.length = directionalLength;
|
|
state.spot.length = spotLength;
|
|
state.rectArea.length = rectAreaLength;
|
|
state.point.length = pointLength;
|
|
state.hemi.length = hemiLength;
|
|
state.directionalShadow.length = numDirectionalShadows;
|
|
state.directionalShadowMap.length = numDirectionalShadows;
|
|
state.pointShadow.length = numPointShadows;
|
|
state.pointShadowMap.length = numPointShadows;
|
|
state.spotShadow.length = numSpotShadows;
|
|
state.spotShadowMap.length = numSpotShadows;
|
|
state.directionalShadowMatrix.length = numDirectionalShadows;
|
|
state.pointShadowMatrix.length = numPointShadows;
|
|
state.spotShadowMatrix.length = numSpotShadows;
|
|
hash.directionalLength = directionalLength;
|
|
hash.pointLength = pointLength;
|
|
hash.spotLength = spotLength;
|
|
hash.rectAreaLength = rectAreaLength;
|
|
hash.hemiLength = hemiLength;
|
|
hash.numDirectionalShadows = numDirectionalShadows;
|
|
hash.numPointShadows = numPointShadows;
|
|
hash.numSpotShadows = numSpotShadows;
|
|
state.version = nextVersion++;
|
|
}
|
|
}
|
|
|
|
function setupView(lights, camera) {
|
|
let directionalLength = 0;
|
|
let pointLength = 0;
|
|
let spotLength = 0;
|
|
let rectAreaLength = 0;
|
|
let hemiLength = 0;
|
|
const viewMatrix = camera.matrixWorldInverse;
|
|
|
|
for (let i = 0, l = lights.length; i < l; i++) {
|
|
const light = lights[i];
|
|
|
|
if (light.isDirectionalLight) {
|
|
const uniforms = state.directional[directionalLength];
|
|
uniforms.direction.setFromMatrixPosition(light.matrixWorld);
|
|
vector3.setFromMatrixPosition(light.target.matrixWorld);
|
|
uniforms.direction.sub(vector3);
|
|
uniforms.direction.transformDirection(viewMatrix);
|
|
directionalLength++;
|
|
} else if (light.isSpotLight) {
|
|
const uniforms = state.spot[spotLength];
|
|
uniforms.position.setFromMatrixPosition(light.matrixWorld);
|
|
uniforms.position.applyMatrix4(viewMatrix);
|
|
uniforms.direction.setFromMatrixPosition(light.matrixWorld);
|
|
vector3.setFromMatrixPosition(light.target.matrixWorld);
|
|
uniforms.direction.sub(vector3);
|
|
uniforms.direction.transformDirection(viewMatrix);
|
|
spotLength++;
|
|
} else if (light.isRectAreaLight) {
|
|
const uniforms = state.rectArea[rectAreaLength];
|
|
uniforms.position.setFromMatrixPosition(light.matrixWorld);
|
|
uniforms.position.applyMatrix4(viewMatrix); // extract local rotation of light to derive width/height half vectors
|
|
|
|
matrix42.identity();
|
|
matrix4.copy(light.matrixWorld);
|
|
matrix4.premultiply(viewMatrix);
|
|
matrix42.extractRotation(matrix4);
|
|
uniforms.halfWidth.set(light.width * 0.5, 0.0, 0.0);
|
|
uniforms.halfHeight.set(0.0, light.height * 0.5, 0.0);
|
|
uniforms.halfWidth.applyMatrix4(matrix42);
|
|
uniforms.halfHeight.applyMatrix4(matrix42);
|
|
rectAreaLength++;
|
|
} else if (light.isPointLight) {
|
|
const uniforms = state.point[pointLength];
|
|
uniforms.position.setFromMatrixPosition(light.matrixWorld);
|
|
uniforms.position.applyMatrix4(viewMatrix);
|
|
pointLength++;
|
|
} else if (light.isHemisphereLight) {
|
|
const uniforms = state.hemi[hemiLength];
|
|
uniforms.direction.setFromMatrixPosition(light.matrixWorld);
|
|
uniforms.direction.transformDirection(viewMatrix);
|
|
uniforms.direction.normalize();
|
|
hemiLength++;
|
|
}
|
|
}
|
|
}
|
|
|
|
return {
|
|
setup: setup,
|
|
setupView: setupView,
|
|
state: state
|
|
};
|
|
}
|
|
|
|
function WebGLRenderState(extensions, capabilities) {
|
|
const lights = new WebGLLights(extensions, capabilities);
|
|
const lightsArray = [];
|
|
const shadowsArray = [];
|
|
|
|
function init() {
|
|
lightsArray.length = 0;
|
|
shadowsArray.length = 0;
|
|
}
|
|
|
|
function pushLight(light) {
|
|
lightsArray.push(light);
|
|
}
|
|
|
|
function pushShadow(shadowLight) {
|
|
shadowsArray.push(shadowLight);
|
|
}
|
|
|
|
function setupLights(physicallyCorrectLights) {
|
|
lights.setup(lightsArray, physicallyCorrectLights);
|
|
}
|
|
|
|
function setupLightsView(camera) {
|
|
lights.setupView(lightsArray, camera);
|
|
}
|
|
|
|
const state = {
|
|
lightsArray: lightsArray,
|
|
shadowsArray: shadowsArray,
|
|
lights: lights
|
|
};
|
|
return {
|
|
init: init,
|
|
state: state,
|
|
setupLights: setupLights,
|
|
setupLightsView: setupLightsView,
|
|
pushLight: pushLight,
|
|
pushShadow: pushShadow
|
|
};
|
|
}
|
|
|
|
function WebGLRenderStates(extensions, capabilities) {
|
|
let renderStates = new WeakMap();
|
|
|
|
function get(scene, renderCallDepth = 0) {
|
|
let renderState;
|
|
|
|
if (renderStates.has(scene) === false) {
|
|
renderState = new WebGLRenderState(extensions, capabilities);
|
|
renderStates.set(scene, [renderState]);
|
|
} else {
|
|
if (renderCallDepth >= renderStates.get(scene).length) {
|
|
renderState = new WebGLRenderState(extensions, capabilities);
|
|
renderStates.get(scene).push(renderState);
|
|
} else {
|
|
renderState = renderStates.get(scene)[renderCallDepth];
|
|
}
|
|
}
|
|
|
|
return renderState;
|
|
}
|
|
|
|
function dispose() {
|
|
renderStates = new WeakMap();
|
|
}
|
|
|
|
return {
|
|
get: get,
|
|
dispose: dispose
|
|
};
|
|
}
|
|
|
|
/**
|
|
* parameters = {
|
|
*
|
|
* opacity: <float>,
|
|
*
|
|
* map: new THREE.Texture( <Image> ),
|
|
*
|
|
* alphaMap: new THREE.Texture( <Image> ),
|
|
*
|
|
* displacementMap: new THREE.Texture( <Image> ),
|
|
* displacementScale: <float>,
|
|
* displacementBias: <float>,
|
|
*
|
|
* wireframe: <boolean>,
|
|
* wireframeLinewidth: <float>
|
|
* }
|
|
*/
|
|
|
|
class MeshDepthMaterial extends Material {
|
|
constructor(parameters) {
|
|
super();
|
|
this.type = 'MeshDepthMaterial';
|
|
this.depthPacking = BasicDepthPacking;
|
|
this.map = null;
|
|
this.alphaMap = null;
|
|
this.displacementMap = null;
|
|
this.displacementScale = 1;
|
|
this.displacementBias = 0;
|
|
this.wireframe = false;
|
|
this.wireframeLinewidth = 1;
|
|
this.fog = false;
|
|
this.setValues(parameters);
|
|
}
|
|
|
|
copy(source) {
|
|
super.copy(source);
|
|
this.depthPacking = source.depthPacking;
|
|
this.map = source.map;
|
|
this.alphaMap = source.alphaMap;
|
|
this.displacementMap = source.displacementMap;
|
|
this.displacementScale = source.displacementScale;
|
|
this.displacementBias = source.displacementBias;
|
|
this.wireframe = source.wireframe;
|
|
this.wireframeLinewidth = source.wireframeLinewidth;
|
|
return this;
|
|
}
|
|
|
|
}
|
|
|
|
MeshDepthMaterial.prototype.isMeshDepthMaterial = true;
|
|
|
|
/**
|
|
* parameters = {
|
|
*
|
|
* referencePosition: <float>,
|
|
* nearDistance: <float>,
|
|
* farDistance: <float>,
|
|
*
|
|
* map: new THREE.Texture( <Image> ),
|
|
*
|
|
* alphaMap: new THREE.Texture( <Image> ),
|
|
*
|
|
* displacementMap: new THREE.Texture( <Image> ),
|
|
* displacementScale: <float>,
|
|
* displacementBias: <float>
|
|
*
|
|
* }
|
|
*/
|
|
|
|
class MeshDistanceMaterial extends Material {
|
|
constructor(parameters) {
|
|
super();
|
|
this.type = 'MeshDistanceMaterial';
|
|
this.referencePosition = new Vector3();
|
|
this.nearDistance = 1;
|
|
this.farDistance = 1000;
|
|
this.map = null;
|
|
this.alphaMap = null;
|
|
this.displacementMap = null;
|
|
this.displacementScale = 1;
|
|
this.displacementBias = 0;
|
|
this.fog = false;
|
|
this.setValues(parameters);
|
|
}
|
|
|
|
copy(source) {
|
|
super.copy(source);
|
|
this.referencePosition.copy(source.referencePosition);
|
|
this.nearDistance = source.nearDistance;
|
|
this.farDistance = source.farDistance;
|
|
this.map = source.map;
|
|
this.alphaMap = source.alphaMap;
|
|
this.displacementMap = source.displacementMap;
|
|
this.displacementScale = source.displacementScale;
|
|
this.displacementBias = source.displacementBias;
|
|
return this;
|
|
}
|
|
|
|
}
|
|
|
|
MeshDistanceMaterial.prototype.isMeshDistanceMaterial = true;
|
|
|
|
const vertex = "void main() {\n\tgl_Position = vec4( position, 1.0 );\n}";
|
|
const fragment = "uniform sampler2D shadow_pass;\nuniform vec2 resolution;\nuniform float radius;\nuniform float samples;\n#include <packing>\nvoid main() {\n\tfloat mean = 0.0;\n\tfloat squared_mean = 0.0;\n\tfloat uvStride = samples <= 1.0 ? 0.0 : 2.0 / ( samples - 1.0 );\n\tfloat uvStart = samples <= 1.0 ? 0.0 : - 1.0;\n\tfor ( float i = 0.0; i < samples; i ++ ) {\n\t\tfloat uvOffset = uvStart + i * uvStride;\n\t\t#ifdef HORIZONTAL_PASS\n\t\t\tvec2 distribution = unpackRGBATo2Half( texture2D( shadow_pass, ( gl_FragCoord.xy + vec2( uvOffset, 0.0 ) * radius ) / resolution ) );\n\t\t\tmean += distribution.x;\n\t\t\tsquared_mean += distribution.y * distribution.y + distribution.x * distribution.x;\n\t\t#else\n\t\t\tfloat depth = unpackRGBAToDepth( texture2D( shadow_pass, ( gl_FragCoord.xy + vec2( 0.0, uvOffset ) * radius ) / resolution ) );\n\t\t\tmean += depth;\n\t\t\tsquared_mean += depth * depth;\n\t\t#endif\n\t}\n\tmean = mean / samples;\n\tsquared_mean = squared_mean / samples;\n\tfloat std_dev = sqrt( squared_mean - mean * mean );\n\tgl_FragColor = pack2HalfToRGBA( vec2( mean, std_dev ) );\n}";
|
|
|
|
function WebGLShadowMap(_renderer, _objects, _capabilities) {
|
|
let _frustum = new Frustum();
|
|
|
|
const _shadowMapSize = new Vector2(),
|
|
_viewportSize = new Vector2(),
|
|
_viewport = new Vector4(),
|
|
_depthMaterial = new MeshDepthMaterial({
|
|
depthPacking: RGBADepthPacking
|
|
}),
|
|
_distanceMaterial = new MeshDistanceMaterial(),
|
|
_materialCache = {},
|
|
_maxTextureSize = _capabilities.maxTextureSize;
|
|
|
|
const shadowSide = {
|
|
0: BackSide,
|
|
1: FrontSide,
|
|
2: DoubleSide
|
|
};
|
|
const shadowMaterialVertical = new ShaderMaterial({
|
|
uniforms: {
|
|
shadow_pass: {
|
|
value: null
|
|
},
|
|
resolution: {
|
|
value: new Vector2()
|
|
},
|
|
radius: {
|
|
value: 4.0
|
|
},
|
|
samples: {
|
|
value: 8.0
|
|
}
|
|
},
|
|
vertexShader: vertex,
|
|
fragmentShader: fragment
|
|
});
|
|
const shadowMaterialHorizontal = shadowMaterialVertical.clone();
|
|
shadowMaterialHorizontal.defines.HORIZONTAL_PASS = 1;
|
|
const fullScreenTri = new BufferGeometry();
|
|
fullScreenTri.setAttribute('position', new BufferAttribute(new Float32Array([-1, -1, 0.5, 3, -1, 0.5, -1, 3, 0.5]), 3));
|
|
const fullScreenMesh = new Mesh(fullScreenTri, shadowMaterialVertical);
|
|
const scope = this;
|
|
this.enabled = false;
|
|
this.autoUpdate = true;
|
|
this.needsUpdate = false;
|
|
this.type = PCFShadowMap;
|
|
|
|
this.render = function (lights, scene, camera) {
|
|
if (scope.enabled === false) return;
|
|
if (scope.autoUpdate === false && scope.needsUpdate === false) return;
|
|
if (lights.length === 0) return;
|
|
|
|
const currentRenderTarget = _renderer.getRenderTarget();
|
|
|
|
const activeCubeFace = _renderer.getActiveCubeFace();
|
|
|
|
const activeMipmapLevel = _renderer.getActiveMipmapLevel();
|
|
|
|
const _state = _renderer.state; // Set GL state for depth map.
|
|
|
|
_state.setBlending(NoBlending);
|
|
|
|
_state.buffers.color.setClear(1, 1, 1, 1);
|
|
|
|
_state.buffers.depth.setTest(true);
|
|
|
|
_state.setScissorTest(false); // render depth map
|
|
|
|
|
|
for (let i = 0, il = lights.length; i < il; i++) {
|
|
const light = lights[i];
|
|
const shadow = light.shadow;
|
|
|
|
if (shadow === undefined) {
|
|
console.warn('THREE.WebGLShadowMap:', light, 'has no shadow.');
|
|
continue;
|
|
}
|
|
|
|
if (shadow.autoUpdate === false && shadow.needsUpdate === false) continue;
|
|
|
|
_shadowMapSize.copy(shadow.mapSize);
|
|
|
|
const shadowFrameExtents = shadow.getFrameExtents();
|
|
|
|
_shadowMapSize.multiply(shadowFrameExtents);
|
|
|
|
_viewportSize.copy(shadow.mapSize);
|
|
|
|
if (_shadowMapSize.x > _maxTextureSize || _shadowMapSize.y > _maxTextureSize) {
|
|
if (_shadowMapSize.x > _maxTextureSize) {
|
|
_viewportSize.x = Math.floor(_maxTextureSize / shadowFrameExtents.x);
|
|
_shadowMapSize.x = _viewportSize.x * shadowFrameExtents.x;
|
|
shadow.mapSize.x = _viewportSize.x;
|
|
}
|
|
|
|
if (_shadowMapSize.y > _maxTextureSize) {
|
|
_viewportSize.y = Math.floor(_maxTextureSize / shadowFrameExtents.y);
|
|
_shadowMapSize.y = _viewportSize.y * shadowFrameExtents.y;
|
|
shadow.mapSize.y = _viewportSize.y;
|
|
}
|
|
}
|
|
|
|
if (shadow.map === null && !shadow.isPointLightShadow && this.type === VSMShadowMap) {
|
|
const pars = {
|
|
minFilter: LinearFilter,
|
|
magFilter: LinearFilter,
|
|
format: RGBAFormat
|
|
};
|
|
shadow.map = new WebGLRenderTarget(_shadowMapSize.x, _shadowMapSize.y, pars);
|
|
shadow.map.texture.name = light.name + '.shadowMap';
|
|
shadow.mapPass = new WebGLRenderTarget(_shadowMapSize.x, _shadowMapSize.y, pars);
|
|
shadow.camera.updateProjectionMatrix();
|
|
}
|
|
|
|
if (shadow.map === null) {
|
|
const pars = {
|
|
minFilter: NearestFilter,
|
|
magFilter: NearestFilter,
|
|
format: RGBAFormat
|
|
};
|
|
shadow.map = new WebGLRenderTarget(_shadowMapSize.x, _shadowMapSize.y, pars);
|
|
shadow.map.texture.name = light.name + '.shadowMap';
|
|
shadow.camera.updateProjectionMatrix();
|
|
}
|
|
|
|
_renderer.setRenderTarget(shadow.map);
|
|
|
|
_renderer.clear();
|
|
|
|
const viewportCount = shadow.getViewportCount();
|
|
|
|
for (let vp = 0; vp < viewportCount; vp++) {
|
|
const viewport = shadow.getViewport(vp);
|
|
|
|
_viewport.set(_viewportSize.x * viewport.x, _viewportSize.y * viewport.y, _viewportSize.x * viewport.z, _viewportSize.y * viewport.w);
|
|
|
|
_state.viewport(_viewport);
|
|
|
|
shadow.updateMatrices(light, vp);
|
|
_frustum = shadow.getFrustum();
|
|
renderObject(scene, camera, shadow.camera, light, this.type);
|
|
} // do blur pass for VSM
|
|
|
|
|
|
if (!shadow.isPointLightShadow && this.type === VSMShadowMap) {
|
|
VSMPass(shadow, camera);
|
|
}
|
|
|
|
shadow.needsUpdate = false;
|
|
}
|
|
|
|
scope.needsUpdate = false;
|
|
|
|
_renderer.setRenderTarget(currentRenderTarget, activeCubeFace, activeMipmapLevel);
|
|
};
|
|
|
|
function VSMPass(shadow, camera) {
|
|
const geometry = _objects.update(fullScreenMesh); // vertical pass
|
|
|
|
|
|
shadowMaterialVertical.uniforms.shadow_pass.value = shadow.map.texture;
|
|
shadowMaterialVertical.uniforms.resolution.value = shadow.mapSize;
|
|
shadowMaterialVertical.uniforms.radius.value = shadow.radius;
|
|
shadowMaterialVertical.uniforms.samples.value = shadow.blurSamples;
|
|
|
|
_renderer.setRenderTarget(shadow.mapPass);
|
|
|
|
_renderer.clear();
|
|
|
|
_renderer.renderBufferDirect(camera, null, geometry, shadowMaterialVertical, fullScreenMesh, null); // horizontal pass
|
|
|
|
|
|
shadowMaterialHorizontal.uniforms.shadow_pass.value = shadow.mapPass.texture;
|
|
shadowMaterialHorizontal.uniforms.resolution.value = shadow.mapSize;
|
|
shadowMaterialHorizontal.uniforms.radius.value = shadow.radius;
|
|
shadowMaterialHorizontal.uniforms.samples.value = shadow.blurSamples;
|
|
|
|
_renderer.setRenderTarget(shadow.map);
|
|
|
|
_renderer.clear();
|
|
|
|
_renderer.renderBufferDirect(camera, null, geometry, shadowMaterialHorizontal, fullScreenMesh, null);
|
|
}
|
|
|
|
function getDepthMaterial(object, geometry, material, light, shadowCameraNear, shadowCameraFar, type) {
|
|
let result = null;
|
|
const customMaterial = light.isPointLight === true ? object.customDistanceMaterial : object.customDepthMaterial;
|
|
|
|
if (customMaterial !== undefined) {
|
|
result = customMaterial;
|
|
} else {
|
|
result = light.isPointLight === true ? _distanceMaterial : _depthMaterial;
|
|
}
|
|
|
|
if (_renderer.localClippingEnabled && material.clipShadows === true && material.clippingPlanes.length !== 0 || material.displacementMap && material.displacementScale !== 0 || material.alphaMap && material.alphaTest > 0) {
|
|
// in this case we need a unique material instance reflecting the
|
|
// appropriate state
|
|
const keyA = result.uuid,
|
|
keyB = material.uuid;
|
|
let materialsForVariant = _materialCache[keyA];
|
|
|
|
if (materialsForVariant === undefined) {
|
|
materialsForVariant = {};
|
|
_materialCache[keyA] = materialsForVariant;
|
|
}
|
|
|
|
let cachedMaterial = materialsForVariant[keyB];
|
|
|
|
if (cachedMaterial === undefined) {
|
|
cachedMaterial = result.clone();
|
|
materialsForVariant[keyB] = cachedMaterial;
|
|
}
|
|
|
|
result = cachedMaterial;
|
|
}
|
|
|
|
result.visible = material.visible;
|
|
result.wireframe = material.wireframe;
|
|
|
|
if (type === VSMShadowMap) {
|
|
result.side = material.shadowSide !== null ? material.shadowSide : material.side;
|
|
} else {
|
|
result.side = material.shadowSide !== null ? material.shadowSide : shadowSide[material.side];
|
|
}
|
|
|
|
result.alphaMap = material.alphaMap;
|
|
result.alphaTest = material.alphaTest;
|
|
result.clipShadows = material.clipShadows;
|
|
result.clippingPlanes = material.clippingPlanes;
|
|
result.clipIntersection = material.clipIntersection;
|
|
result.displacementMap = material.displacementMap;
|
|
result.displacementScale = material.displacementScale;
|
|
result.displacementBias = material.displacementBias;
|
|
result.wireframeLinewidth = material.wireframeLinewidth;
|
|
result.linewidth = material.linewidth;
|
|
|
|
if (light.isPointLight === true && result.isMeshDistanceMaterial === true) {
|
|
result.referencePosition.setFromMatrixPosition(light.matrixWorld);
|
|
result.nearDistance = shadowCameraNear;
|
|
result.farDistance = shadowCameraFar;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
function renderObject(object, camera, shadowCamera, light, type) {
|
|
if (object.visible === false) return;
|
|
const visible = object.layers.test(camera.layers);
|
|
|
|
if (visible && (object.isMesh || object.isLine || object.isPoints)) {
|
|
if ((object.castShadow || object.receiveShadow && type === VSMShadowMap) && (!object.frustumCulled || _frustum.intersectsObject(object))) {
|
|
object.modelViewMatrix.multiplyMatrices(shadowCamera.matrixWorldInverse, object.matrixWorld);
|
|
|
|
const geometry = _objects.update(object);
|
|
|
|
const material = object.material;
|
|
|
|
if (Array.isArray(material)) {
|
|
const groups = geometry.groups;
|
|
|
|
for (let k = 0, kl = groups.length; k < kl; k++) {
|
|
const group = groups[k];
|
|
const groupMaterial = material[group.materialIndex];
|
|
|
|
if (groupMaterial && groupMaterial.visible) {
|
|
const depthMaterial = getDepthMaterial(object, geometry, groupMaterial, light, shadowCamera.near, shadowCamera.far, type);
|
|
|
|
_renderer.renderBufferDirect(shadowCamera, null, geometry, depthMaterial, object, group);
|
|
}
|
|
}
|
|
} else if (material.visible) {
|
|
const depthMaterial = getDepthMaterial(object, geometry, material, light, shadowCamera.near, shadowCamera.far, type);
|
|
|
|
_renderer.renderBufferDirect(shadowCamera, null, geometry, depthMaterial, object, null);
|
|
}
|
|
}
|
|
}
|
|
|
|
const children = object.children;
|
|
|
|
for (let i = 0, l = children.length; i < l; i++) {
|
|
renderObject(children[i], camera, shadowCamera, light, type);
|
|
}
|
|
}
|
|
}
|
|
|
|
function WebGLState(gl, extensions, capabilities) {
|
|
const isWebGL2 = capabilities.isWebGL2;
|
|
|
|
function ColorBuffer() {
|
|
let locked = false;
|
|
const color = new Vector4();
|
|
let currentColorMask = null;
|
|
const currentColorClear = new Vector4(0, 0, 0, 0);
|
|
return {
|
|
setMask: function (colorMask) {
|
|
if (currentColorMask !== colorMask && !locked) {
|
|
gl.colorMask(colorMask, colorMask, colorMask, colorMask);
|
|
currentColorMask = colorMask;
|
|
}
|
|
},
|
|
setLocked: function (lock) {
|
|
locked = lock;
|
|
},
|
|
setClear: function (r, g, b, a, premultipliedAlpha) {
|
|
if (premultipliedAlpha === true) {
|
|
r *= a;
|
|
g *= a;
|
|
b *= a;
|
|
}
|
|
|
|
color.set(r, g, b, a);
|
|
|
|
if (currentColorClear.equals(color) === false) {
|
|
gl.clearColor(r, g, b, a);
|
|
currentColorClear.copy(color);
|
|
}
|
|
},
|
|
reset: function () {
|
|
locked = false;
|
|
currentColorMask = null;
|
|
currentColorClear.set(-1, 0, 0, 0); // set to invalid state
|
|
}
|
|
};
|
|
}
|
|
|
|
function DepthBuffer() {
|
|
let locked = false;
|
|
let currentDepthMask = null;
|
|
let currentDepthFunc = null;
|
|
let currentDepthClear = null;
|
|
return {
|
|
setTest: function (depthTest) {
|
|
if (depthTest) {
|
|
enable(gl.DEPTH_TEST);
|
|
} else {
|
|
disable(gl.DEPTH_TEST);
|
|
}
|
|
},
|
|
setMask: function (depthMask) {
|
|
if (currentDepthMask !== depthMask && !locked) {
|
|
gl.depthMask(depthMask);
|
|
currentDepthMask = depthMask;
|
|
}
|
|
},
|
|
setFunc: function (depthFunc) {
|
|
if (currentDepthFunc !== depthFunc) {
|
|
if (depthFunc) {
|
|
switch (depthFunc) {
|
|
case NeverDepth:
|
|
gl.depthFunc(gl.NEVER);
|
|
break;
|
|
|
|
case AlwaysDepth:
|
|
gl.depthFunc(gl.ALWAYS);
|
|
break;
|
|
|
|
case LessDepth:
|
|
gl.depthFunc(gl.LESS);
|
|
break;
|
|
|
|
case LessEqualDepth:
|
|
gl.depthFunc(gl.LEQUAL);
|
|
break;
|
|
|
|
case EqualDepth:
|
|
gl.depthFunc(gl.EQUAL);
|
|
break;
|
|
|
|
case GreaterEqualDepth:
|
|
gl.depthFunc(gl.GEQUAL);
|
|
break;
|
|
|
|
case GreaterDepth:
|
|
gl.depthFunc(gl.GREATER);
|
|
break;
|
|
|
|
case NotEqualDepth:
|
|
gl.depthFunc(gl.NOTEQUAL);
|
|
break;
|
|
|
|
default:
|
|
gl.depthFunc(gl.LEQUAL);
|
|
}
|
|
} else {
|
|
gl.depthFunc(gl.LEQUAL);
|
|
}
|
|
|
|
currentDepthFunc = depthFunc;
|
|
}
|
|
},
|
|
setLocked: function (lock) {
|
|
locked = lock;
|
|
},
|
|
setClear: function (depth) {
|
|
if (currentDepthClear !== depth) {
|
|
gl.clearDepth(depth);
|
|
currentDepthClear = depth;
|
|
}
|
|
},
|
|
reset: function () {
|
|
locked = false;
|
|
currentDepthMask = null;
|
|
currentDepthFunc = null;
|
|
currentDepthClear = null;
|
|
}
|
|
};
|
|
}
|
|
|
|
function StencilBuffer() {
|
|
let locked = false;
|
|
let currentStencilMask = null;
|
|
let currentStencilFunc = null;
|
|
let currentStencilRef = null;
|
|
let currentStencilFuncMask = null;
|
|
let currentStencilFail = null;
|
|
let currentStencilZFail = null;
|
|
let currentStencilZPass = null;
|
|
let currentStencilClear = null;
|
|
return {
|
|
setTest: function (stencilTest) {
|
|
if (!locked) {
|
|
if (stencilTest) {
|
|
enable(gl.STENCIL_TEST);
|
|
} else {
|
|
disable(gl.STENCIL_TEST);
|
|
}
|
|
}
|
|
},
|
|
setMask: function (stencilMask) {
|
|
if (currentStencilMask !== stencilMask && !locked) {
|
|
gl.stencilMask(stencilMask);
|
|
currentStencilMask = stencilMask;
|
|
}
|
|
},
|
|
setFunc: function (stencilFunc, stencilRef, stencilMask) {
|
|
if (currentStencilFunc !== stencilFunc || currentStencilRef !== stencilRef || currentStencilFuncMask !== stencilMask) {
|
|
gl.stencilFunc(stencilFunc, stencilRef, stencilMask);
|
|
currentStencilFunc = stencilFunc;
|
|
currentStencilRef = stencilRef;
|
|
currentStencilFuncMask = stencilMask;
|
|
}
|
|
},
|
|
setOp: function (stencilFail, stencilZFail, stencilZPass) {
|
|
if (currentStencilFail !== stencilFail || currentStencilZFail !== stencilZFail || currentStencilZPass !== stencilZPass) {
|
|
gl.stencilOp(stencilFail, stencilZFail, stencilZPass);
|
|
currentStencilFail = stencilFail;
|
|
currentStencilZFail = stencilZFail;
|
|
currentStencilZPass = stencilZPass;
|
|
}
|
|
},
|
|
setLocked: function (lock) {
|
|
locked = lock;
|
|
},
|
|
setClear: function (stencil) {
|
|
if (currentStencilClear !== stencil) {
|
|
gl.clearStencil(stencil);
|
|
currentStencilClear = stencil;
|
|
}
|
|
},
|
|
reset: function () {
|
|
locked = false;
|
|
currentStencilMask = null;
|
|
currentStencilFunc = null;
|
|
currentStencilRef = null;
|
|
currentStencilFuncMask = null;
|
|
currentStencilFail = null;
|
|
currentStencilZFail = null;
|
|
currentStencilZPass = null;
|
|
currentStencilClear = null;
|
|
}
|
|
};
|
|
} //
|
|
|
|
|
|
const colorBuffer = new ColorBuffer();
|
|
const depthBuffer = new DepthBuffer();
|
|
const stencilBuffer = new StencilBuffer();
|
|
let enabledCapabilities = {};
|
|
let xrFramebuffer = null;
|
|
let currentBoundFramebuffers = {};
|
|
let currentProgram = null;
|
|
let currentBlendingEnabled = false;
|
|
let currentBlending = null;
|
|
let currentBlendEquation = null;
|
|
let currentBlendSrc = null;
|
|
let currentBlendDst = null;
|
|
let currentBlendEquationAlpha = null;
|
|
let currentBlendSrcAlpha = null;
|
|
let currentBlendDstAlpha = null;
|
|
let currentPremultipledAlpha = false;
|
|
let currentFlipSided = null;
|
|
let currentCullFace = null;
|
|
let currentLineWidth = null;
|
|
let currentPolygonOffsetFactor = null;
|
|
let currentPolygonOffsetUnits = null;
|
|
const maxTextures = gl.getParameter(gl.MAX_COMBINED_TEXTURE_IMAGE_UNITS);
|
|
let lineWidthAvailable = false;
|
|
let version = 0;
|
|
const glVersion = gl.getParameter(gl.VERSION);
|
|
|
|
if (glVersion.indexOf('WebGL') !== -1) {
|
|
version = parseFloat(/^WebGL (\d)/.exec(glVersion)[1]);
|
|
lineWidthAvailable = version >= 1.0;
|
|
} else if (glVersion.indexOf('OpenGL ES') !== -1) {
|
|
version = parseFloat(/^OpenGL ES (\d)/.exec(glVersion)[1]);
|
|
lineWidthAvailable = version >= 2.0;
|
|
}
|
|
|
|
let currentTextureSlot = null;
|
|
let currentBoundTextures = {};
|
|
const scissorParam = gl.getParameter(gl.SCISSOR_BOX);
|
|
const viewportParam = gl.getParameter(gl.VIEWPORT);
|
|
const currentScissor = new Vector4().fromArray(scissorParam);
|
|
const currentViewport = new Vector4().fromArray(viewportParam);
|
|
|
|
function createTexture(type, target, count) {
|
|
const data = new Uint8Array(4); // 4 is required to match default unpack alignment of 4.
|
|
|
|
const texture = gl.createTexture();
|
|
gl.bindTexture(type, texture);
|
|
gl.texParameteri(type, gl.TEXTURE_MIN_FILTER, gl.NEAREST);
|
|
gl.texParameteri(type, gl.TEXTURE_MAG_FILTER, gl.NEAREST);
|
|
|
|
for (let i = 0; i < count; i++) {
|
|
gl.texImage2D(target + i, 0, gl.RGBA, 1, 1, 0, gl.RGBA, gl.UNSIGNED_BYTE, data);
|
|
}
|
|
|
|
return texture;
|
|
}
|
|
|
|
const emptyTextures = {};
|
|
emptyTextures[gl.TEXTURE_2D] = createTexture(gl.TEXTURE_2D, gl.TEXTURE_2D, 1);
|
|
emptyTextures[gl.TEXTURE_CUBE_MAP] = createTexture(gl.TEXTURE_CUBE_MAP, gl.TEXTURE_CUBE_MAP_POSITIVE_X, 6); // init
|
|
|
|
colorBuffer.setClear(0, 0, 0, 1);
|
|
depthBuffer.setClear(1);
|
|
stencilBuffer.setClear(0);
|
|
enable(gl.DEPTH_TEST);
|
|
depthBuffer.setFunc(LessEqualDepth);
|
|
setFlipSided(false);
|
|
setCullFace(CullFaceBack);
|
|
enable(gl.CULL_FACE);
|
|
setBlending(NoBlending); //
|
|
|
|
function enable(id) {
|
|
if (enabledCapabilities[id] !== true) {
|
|
gl.enable(id);
|
|
enabledCapabilities[id] = true;
|
|
}
|
|
}
|
|
|
|
function disable(id) {
|
|
if (enabledCapabilities[id] !== false) {
|
|
gl.disable(id);
|
|
enabledCapabilities[id] = false;
|
|
}
|
|
}
|
|
|
|
function bindXRFramebuffer(framebuffer) {
|
|
if (framebuffer !== xrFramebuffer) {
|
|
gl.bindFramebuffer(gl.FRAMEBUFFER, framebuffer);
|
|
xrFramebuffer = framebuffer;
|
|
}
|
|
}
|
|
|
|
function bindFramebuffer(target, framebuffer) {
|
|
if (framebuffer === null && xrFramebuffer !== null) framebuffer = xrFramebuffer; // use active XR framebuffer if available
|
|
|
|
if (currentBoundFramebuffers[target] !== framebuffer) {
|
|
gl.bindFramebuffer(target, framebuffer);
|
|
currentBoundFramebuffers[target] = framebuffer;
|
|
|
|
if (isWebGL2) {
|
|
// gl.DRAW_FRAMEBUFFER is equivalent to gl.FRAMEBUFFER
|
|
if (target === gl.DRAW_FRAMEBUFFER) {
|
|
currentBoundFramebuffers[gl.FRAMEBUFFER] = framebuffer;
|
|
}
|
|
|
|
if (target === gl.FRAMEBUFFER) {
|
|
currentBoundFramebuffers[gl.DRAW_FRAMEBUFFER] = framebuffer;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
function useProgram(program) {
|
|
if (currentProgram !== program) {
|
|
gl.useProgram(program);
|
|
currentProgram = program;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
const equationToGL = {
|
|
[AddEquation]: gl.FUNC_ADD,
|
|
[SubtractEquation]: gl.FUNC_SUBTRACT,
|
|
[ReverseSubtractEquation]: gl.FUNC_REVERSE_SUBTRACT
|
|
};
|
|
|
|
if (isWebGL2) {
|
|
equationToGL[MinEquation] = gl.MIN;
|
|
equationToGL[MaxEquation] = gl.MAX;
|
|
} else {
|
|
const extension = extensions.get('EXT_blend_minmax');
|
|
|
|
if (extension !== null) {
|
|
equationToGL[MinEquation] = extension.MIN_EXT;
|
|
equationToGL[MaxEquation] = extension.MAX_EXT;
|
|
}
|
|
}
|
|
|
|
const factorToGL = {
|
|
[ZeroFactor]: gl.ZERO,
|
|
[OneFactor]: gl.ONE,
|
|
[SrcColorFactor]: gl.SRC_COLOR,
|
|
[SrcAlphaFactor]: gl.SRC_ALPHA,
|
|
[SrcAlphaSaturateFactor]: gl.SRC_ALPHA_SATURATE,
|
|
[DstColorFactor]: gl.DST_COLOR,
|
|
[DstAlphaFactor]: gl.DST_ALPHA,
|
|
[OneMinusSrcColorFactor]: gl.ONE_MINUS_SRC_COLOR,
|
|
[OneMinusSrcAlphaFactor]: gl.ONE_MINUS_SRC_ALPHA,
|
|
[OneMinusDstColorFactor]: gl.ONE_MINUS_DST_COLOR,
|
|
[OneMinusDstAlphaFactor]: gl.ONE_MINUS_DST_ALPHA
|
|
};
|
|
|
|
function setBlending(blending, blendEquation, blendSrc, blendDst, blendEquationAlpha, blendSrcAlpha, blendDstAlpha, premultipliedAlpha) {
|
|
if (blending === NoBlending) {
|
|
if (currentBlendingEnabled === true) {
|
|
disable(gl.BLEND);
|
|
currentBlendingEnabled = false;
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
if (currentBlendingEnabled === false) {
|
|
enable(gl.BLEND);
|
|
currentBlendingEnabled = true;
|
|
}
|
|
|
|
if (blending !== CustomBlending) {
|
|
if (blending !== currentBlending || premultipliedAlpha !== currentPremultipledAlpha) {
|
|
if (currentBlendEquation !== AddEquation || currentBlendEquationAlpha !== AddEquation) {
|
|
gl.blendEquation(gl.FUNC_ADD);
|
|
currentBlendEquation = AddEquation;
|
|
currentBlendEquationAlpha = AddEquation;
|
|
}
|
|
|
|
if (premultipliedAlpha) {
|
|
switch (blending) {
|
|
case NormalBlending:
|
|
gl.blendFuncSeparate(gl.ONE, gl.ONE_MINUS_SRC_ALPHA, gl.ONE, gl.ONE_MINUS_SRC_ALPHA);
|
|
break;
|
|
|
|
case AdditiveBlending:
|
|
gl.blendFunc(gl.ONE, gl.ONE);
|
|
break;
|
|
|
|
case SubtractiveBlending:
|
|
gl.blendFuncSeparate(gl.ZERO, gl.ZERO, gl.ONE_MINUS_SRC_COLOR, gl.ONE_MINUS_SRC_ALPHA);
|
|
break;
|
|
|
|
case MultiplyBlending:
|
|
gl.blendFuncSeparate(gl.ZERO, gl.SRC_COLOR, gl.ZERO, gl.SRC_ALPHA);
|
|
break;
|
|
|
|
default:
|
|
console.error('THREE.WebGLState: Invalid blending: ', blending);
|
|
break;
|
|
}
|
|
} else {
|
|
switch (blending) {
|
|
case NormalBlending:
|
|
gl.blendFuncSeparate(gl.SRC_ALPHA, gl.ONE_MINUS_SRC_ALPHA, gl.ONE, gl.ONE_MINUS_SRC_ALPHA);
|
|
break;
|
|
|
|
case AdditiveBlending:
|
|
gl.blendFunc(gl.SRC_ALPHA, gl.ONE);
|
|
break;
|
|
|
|
case SubtractiveBlending:
|
|
gl.blendFunc(gl.ZERO, gl.ONE_MINUS_SRC_COLOR);
|
|
break;
|
|
|
|
case MultiplyBlending:
|
|
gl.blendFunc(gl.ZERO, gl.SRC_COLOR);
|
|
break;
|
|
|
|
default:
|
|
console.error('THREE.WebGLState: Invalid blending: ', blending);
|
|
break;
|
|
}
|
|
}
|
|
|
|
currentBlendSrc = null;
|
|
currentBlendDst = null;
|
|
currentBlendSrcAlpha = null;
|
|
currentBlendDstAlpha = null;
|
|
currentBlending = blending;
|
|
currentPremultipledAlpha = premultipliedAlpha;
|
|
}
|
|
|
|
return;
|
|
} // custom blending
|
|
|
|
|
|
blendEquationAlpha = blendEquationAlpha || blendEquation;
|
|
blendSrcAlpha = blendSrcAlpha || blendSrc;
|
|
blendDstAlpha = blendDstAlpha || blendDst;
|
|
|
|
if (blendEquation !== currentBlendEquation || blendEquationAlpha !== currentBlendEquationAlpha) {
|
|
gl.blendEquationSeparate(equationToGL[blendEquation], equationToGL[blendEquationAlpha]);
|
|
currentBlendEquation = blendEquation;
|
|
currentBlendEquationAlpha = blendEquationAlpha;
|
|
}
|
|
|
|
if (blendSrc !== currentBlendSrc || blendDst !== currentBlendDst || blendSrcAlpha !== currentBlendSrcAlpha || blendDstAlpha !== currentBlendDstAlpha) {
|
|
gl.blendFuncSeparate(factorToGL[blendSrc], factorToGL[blendDst], factorToGL[blendSrcAlpha], factorToGL[blendDstAlpha]);
|
|
currentBlendSrc = blendSrc;
|
|
currentBlendDst = blendDst;
|
|
currentBlendSrcAlpha = blendSrcAlpha;
|
|
currentBlendDstAlpha = blendDstAlpha;
|
|
}
|
|
|
|
currentBlending = blending;
|
|
currentPremultipledAlpha = null;
|
|
}
|
|
|
|
function setMaterial(material, frontFaceCW) {
|
|
material.side === DoubleSide ? disable(gl.CULL_FACE) : enable(gl.CULL_FACE);
|
|
let flipSided = material.side === BackSide;
|
|
if (frontFaceCW) flipSided = !flipSided;
|
|
setFlipSided(flipSided);
|
|
material.blending === NormalBlending && material.transparent === false ? setBlending(NoBlending) : setBlending(material.blending, material.blendEquation, material.blendSrc, material.blendDst, material.blendEquationAlpha, material.blendSrcAlpha, material.blendDstAlpha, material.premultipliedAlpha);
|
|
depthBuffer.setFunc(material.depthFunc);
|
|
depthBuffer.setTest(material.depthTest);
|
|
depthBuffer.setMask(material.depthWrite);
|
|
colorBuffer.setMask(material.colorWrite);
|
|
const stencilWrite = material.stencilWrite;
|
|
stencilBuffer.setTest(stencilWrite);
|
|
|
|
if (stencilWrite) {
|
|
stencilBuffer.setMask(material.stencilWriteMask);
|
|
stencilBuffer.setFunc(material.stencilFunc, material.stencilRef, material.stencilFuncMask);
|
|
stencilBuffer.setOp(material.stencilFail, material.stencilZFail, material.stencilZPass);
|
|
}
|
|
|
|
setPolygonOffset(material.polygonOffset, material.polygonOffsetFactor, material.polygonOffsetUnits);
|
|
material.alphaToCoverage === true ? enable(gl.SAMPLE_ALPHA_TO_COVERAGE) : disable(gl.SAMPLE_ALPHA_TO_COVERAGE);
|
|
} //
|
|
|
|
|
|
function setFlipSided(flipSided) {
|
|
if (currentFlipSided !== flipSided) {
|
|
if (flipSided) {
|
|
gl.frontFace(gl.CW);
|
|
} else {
|
|
gl.frontFace(gl.CCW);
|
|
}
|
|
|
|
currentFlipSided = flipSided;
|
|
}
|
|
}
|
|
|
|
function setCullFace(cullFace) {
|
|
if (cullFace !== CullFaceNone) {
|
|
enable(gl.CULL_FACE);
|
|
|
|
if (cullFace !== currentCullFace) {
|
|
if (cullFace === CullFaceBack) {
|
|
gl.cullFace(gl.BACK);
|
|
} else if (cullFace === CullFaceFront) {
|
|
gl.cullFace(gl.FRONT);
|
|
} else {
|
|
gl.cullFace(gl.FRONT_AND_BACK);
|
|
}
|
|
}
|
|
} else {
|
|
disable(gl.CULL_FACE);
|
|
}
|
|
|
|
currentCullFace = cullFace;
|
|
}
|
|
|
|
function setLineWidth(width) {
|
|
if (width !== currentLineWidth) {
|
|
if (lineWidthAvailable) gl.lineWidth(width);
|
|
currentLineWidth = width;
|
|
}
|
|
}
|
|
|
|
function setPolygonOffset(polygonOffset, factor, units) {
|
|
if (polygonOffset) {
|
|
enable(gl.POLYGON_OFFSET_FILL);
|
|
|
|
if (currentPolygonOffsetFactor !== factor || currentPolygonOffsetUnits !== units) {
|
|
gl.polygonOffset(factor, units);
|
|
currentPolygonOffsetFactor = factor;
|
|
currentPolygonOffsetUnits = units;
|
|
}
|
|
} else {
|
|
disable(gl.POLYGON_OFFSET_FILL);
|
|
}
|
|
}
|
|
|
|
function setScissorTest(scissorTest) {
|
|
if (scissorTest) {
|
|
enable(gl.SCISSOR_TEST);
|
|
} else {
|
|
disable(gl.SCISSOR_TEST);
|
|
}
|
|
} // texture
|
|
|
|
|
|
function activeTexture(webglSlot) {
|
|
if (webglSlot === undefined) webglSlot = gl.TEXTURE0 + maxTextures - 1;
|
|
|
|
if (currentTextureSlot !== webglSlot) {
|
|
gl.activeTexture(webglSlot);
|
|
currentTextureSlot = webglSlot;
|
|
}
|
|
}
|
|
|
|
function bindTexture(webglType, webglTexture) {
|
|
if (currentTextureSlot === null) {
|
|
activeTexture();
|
|
}
|
|
|
|
let boundTexture = currentBoundTextures[currentTextureSlot];
|
|
|
|
if (boundTexture === undefined) {
|
|
boundTexture = {
|
|
type: undefined,
|
|
texture: undefined
|
|
};
|
|
currentBoundTextures[currentTextureSlot] = boundTexture;
|
|
}
|
|
|
|
if (boundTexture.type !== webglType || boundTexture.texture !== webglTexture) {
|
|
gl.bindTexture(webglType, webglTexture || emptyTextures[webglType]);
|
|
boundTexture.type = webglType;
|
|
boundTexture.texture = webglTexture;
|
|
}
|
|
}
|
|
|
|
function unbindTexture() {
|
|
const boundTexture = currentBoundTextures[currentTextureSlot];
|
|
|
|
if (boundTexture !== undefined && boundTexture.type !== undefined) {
|
|
gl.bindTexture(boundTexture.type, null);
|
|
boundTexture.type = undefined;
|
|
boundTexture.texture = undefined;
|
|
}
|
|
}
|
|
|
|
function compressedTexImage2D() {
|
|
try {
|
|
gl.compressedTexImage2D.apply(gl, arguments);
|
|
} catch (error) {
|
|
console.error('THREE.WebGLState:', error);
|
|
}
|
|
}
|
|
|
|
function texImage2D() {
|
|
try {
|
|
gl.texImage2D.apply(gl, arguments);
|
|
} catch (error) {
|
|
console.error('THREE.WebGLState:', error);
|
|
}
|
|
}
|
|
|
|
function texImage3D() {
|
|
try {
|
|
gl.texImage3D.apply(gl, arguments);
|
|
} catch (error) {
|
|
console.error('THREE.WebGLState:', error);
|
|
}
|
|
} //
|
|
|
|
|
|
function scissor(scissor) {
|
|
if (currentScissor.equals(scissor) === false) {
|
|
gl.scissor(scissor.x, scissor.y, scissor.z, scissor.w);
|
|
currentScissor.copy(scissor);
|
|
}
|
|
}
|
|
|
|
function viewport(viewport) {
|
|
if (currentViewport.equals(viewport) === false) {
|
|
gl.viewport(viewport.x, viewport.y, viewport.z, viewport.w);
|
|
currentViewport.copy(viewport);
|
|
}
|
|
} //
|
|
|
|
|
|
function reset() {
|
|
// reset state
|
|
gl.disable(gl.BLEND);
|
|
gl.disable(gl.CULL_FACE);
|
|
gl.disable(gl.DEPTH_TEST);
|
|
gl.disable(gl.POLYGON_OFFSET_FILL);
|
|
gl.disable(gl.SCISSOR_TEST);
|
|
gl.disable(gl.STENCIL_TEST);
|
|
gl.disable(gl.SAMPLE_ALPHA_TO_COVERAGE);
|
|
gl.blendEquation(gl.FUNC_ADD);
|
|
gl.blendFunc(gl.ONE, gl.ZERO);
|
|
gl.blendFuncSeparate(gl.ONE, gl.ZERO, gl.ONE, gl.ZERO);
|
|
gl.colorMask(true, true, true, true);
|
|
gl.clearColor(0, 0, 0, 0);
|
|
gl.depthMask(true);
|
|
gl.depthFunc(gl.LESS);
|
|
gl.clearDepth(1);
|
|
gl.stencilMask(0xffffffff);
|
|
gl.stencilFunc(gl.ALWAYS, 0, 0xffffffff);
|
|
gl.stencilOp(gl.KEEP, gl.KEEP, gl.KEEP);
|
|
gl.clearStencil(0);
|
|
gl.cullFace(gl.BACK);
|
|
gl.frontFace(gl.CCW);
|
|
gl.polygonOffset(0, 0);
|
|
gl.activeTexture(gl.TEXTURE0);
|
|
gl.bindFramebuffer(gl.FRAMEBUFFER, null);
|
|
|
|
if (isWebGL2 === true) {
|
|
gl.bindFramebuffer(gl.DRAW_FRAMEBUFFER, null);
|
|
gl.bindFramebuffer(gl.READ_FRAMEBUFFER, null);
|
|
}
|
|
|
|
gl.useProgram(null);
|
|
gl.lineWidth(1);
|
|
gl.scissor(0, 0, gl.canvas.width, gl.canvas.height);
|
|
gl.viewport(0, 0, gl.canvas.width, gl.canvas.height); // reset internals
|
|
|
|
enabledCapabilities = {};
|
|
currentTextureSlot = null;
|
|
currentBoundTextures = {};
|
|
xrFramebuffer = null;
|
|
currentBoundFramebuffers = {};
|
|
currentProgram = null;
|
|
currentBlendingEnabled = false;
|
|
currentBlending = null;
|
|
currentBlendEquation = null;
|
|
currentBlendSrc = null;
|
|
currentBlendDst = null;
|
|
currentBlendEquationAlpha = null;
|
|
currentBlendSrcAlpha = null;
|
|
currentBlendDstAlpha = null;
|
|
currentPremultipledAlpha = false;
|
|
currentFlipSided = null;
|
|
currentCullFace = null;
|
|
currentLineWidth = null;
|
|
currentPolygonOffsetFactor = null;
|
|
currentPolygonOffsetUnits = null;
|
|
currentScissor.set(0, 0, gl.canvas.width, gl.canvas.height);
|
|
currentViewport.set(0, 0, gl.canvas.width, gl.canvas.height);
|
|
colorBuffer.reset();
|
|
depthBuffer.reset();
|
|
stencilBuffer.reset();
|
|
}
|
|
|
|
return {
|
|
buffers: {
|
|
color: colorBuffer,
|
|
depth: depthBuffer,
|
|
stencil: stencilBuffer
|
|
},
|
|
enable: enable,
|
|
disable: disable,
|
|
bindFramebuffer: bindFramebuffer,
|
|
bindXRFramebuffer: bindXRFramebuffer,
|
|
useProgram: useProgram,
|
|
setBlending: setBlending,
|
|
setMaterial: setMaterial,
|
|
setFlipSided: setFlipSided,
|
|
setCullFace: setCullFace,
|
|
setLineWidth: setLineWidth,
|
|
setPolygonOffset: setPolygonOffset,
|
|
setScissorTest: setScissorTest,
|
|
activeTexture: activeTexture,
|
|
bindTexture: bindTexture,
|
|
unbindTexture: unbindTexture,
|
|
compressedTexImage2D: compressedTexImage2D,
|
|
texImage2D: texImage2D,
|
|
texImage3D: texImage3D,
|
|
scissor: scissor,
|
|
viewport: viewport,
|
|
reset: reset
|
|
};
|
|
}
|
|
|
|
function WebGLTextures(_gl, extensions, state, properties, capabilities, utils, info) {
|
|
const isWebGL2 = capabilities.isWebGL2;
|
|
const maxTextures = capabilities.maxTextures;
|
|
const maxCubemapSize = capabilities.maxCubemapSize;
|
|
const maxTextureSize = capabilities.maxTextureSize;
|
|
const maxSamples = capabilities.maxSamples;
|
|
|
|
const _videoTextures = new WeakMap();
|
|
|
|
let _canvas; // cordova iOS (as of 5.0) still uses UIWebView, which provides OffscreenCanvas,
|
|
// also OffscreenCanvas.getContext("webgl"), but not OffscreenCanvas.getContext("2d")!
|
|
// Some implementations may only implement OffscreenCanvas partially (e.g. lacking 2d).
|
|
|
|
|
|
let useOffscreenCanvas = false;
|
|
|
|
try {
|
|
useOffscreenCanvas = typeof OffscreenCanvas !== 'undefined' && new OffscreenCanvas(1, 1).getContext('2d') !== null;
|
|
} catch (err) {// Ignore any errors
|
|
}
|
|
|
|
function createCanvas(width, height) {
|
|
// Use OffscreenCanvas when available. Specially needed in web workers
|
|
return useOffscreenCanvas ? new OffscreenCanvas(width, height) : createElementNS('canvas');
|
|
}
|
|
|
|
function resizeImage(image, needsPowerOfTwo, needsNewCanvas, maxSize) {
|
|
let scale = 1; // handle case if texture exceeds max size
|
|
|
|
if (image.width > maxSize || image.height > maxSize) {
|
|
scale = maxSize / Math.max(image.width, image.height);
|
|
} // only perform resize if necessary
|
|
|
|
|
|
if (scale < 1 || needsPowerOfTwo === true) {
|
|
// only perform resize for certain image types
|
|
if (typeof HTMLImageElement !== 'undefined' && image instanceof HTMLImageElement || typeof HTMLCanvasElement !== 'undefined' && image instanceof HTMLCanvasElement || typeof ImageBitmap !== 'undefined' && image instanceof ImageBitmap) {
|
|
const floor = needsPowerOfTwo ? floorPowerOfTwo : Math.floor;
|
|
const width = floor(scale * image.width);
|
|
const height = floor(scale * image.height);
|
|
if (_canvas === undefined) _canvas = createCanvas(width, height); // cube textures can't reuse the same canvas
|
|
|
|
const canvas = needsNewCanvas ? createCanvas(width, height) : _canvas;
|
|
canvas.width = width;
|
|
canvas.height = height;
|
|
const context = canvas.getContext('2d');
|
|
context.drawImage(image, 0, 0, width, height);
|
|
console.warn('THREE.WebGLRenderer: Texture has been resized from (' + image.width + 'x' + image.height + ') to (' + width + 'x' + height + ').');
|
|
return canvas;
|
|
} else {
|
|
if ('data' in image) {
|
|
console.warn('THREE.WebGLRenderer: Image in DataTexture is too big (' + image.width + 'x' + image.height + ').');
|
|
}
|
|
|
|
return image;
|
|
}
|
|
}
|
|
|
|
return image;
|
|
}
|
|
|
|
function isPowerOfTwo$1(image) {
|
|
return isPowerOfTwo(image.width) && isPowerOfTwo(image.height);
|
|
}
|
|
|
|
function textureNeedsPowerOfTwo(texture) {
|
|
if (isWebGL2) return false;
|
|
return texture.wrapS !== ClampToEdgeWrapping || texture.wrapT !== ClampToEdgeWrapping || texture.minFilter !== NearestFilter && texture.minFilter !== LinearFilter;
|
|
}
|
|
|
|
function textureNeedsGenerateMipmaps(texture, supportsMips) {
|
|
return texture.generateMipmaps && supportsMips && texture.minFilter !== NearestFilter && texture.minFilter !== LinearFilter;
|
|
}
|
|
|
|
function generateMipmap(target, texture, width, height, depth = 1) {
|
|
_gl.generateMipmap(target);
|
|
|
|
const textureProperties = properties.get(texture);
|
|
textureProperties.__maxMipLevel = Math.log2(Math.max(width, height, depth));
|
|
}
|
|
|
|
function getInternalFormat(internalFormatName, glFormat, glType, encoding) {
|
|
if (isWebGL2 === false) return glFormat;
|
|
|
|
if (internalFormatName !== null) {
|
|
if (_gl[internalFormatName] !== undefined) return _gl[internalFormatName];
|
|
console.warn('THREE.WebGLRenderer: Attempt to use non-existing WebGL internal format \'' + internalFormatName + '\'');
|
|
}
|
|
|
|
let internalFormat = glFormat;
|
|
|
|
if (glFormat === _gl.RED) {
|
|
if (glType === _gl.FLOAT) internalFormat = _gl.R32F;
|
|
if (glType === _gl.HALF_FLOAT) internalFormat = _gl.R16F;
|
|
if (glType === _gl.UNSIGNED_BYTE) internalFormat = _gl.R8;
|
|
}
|
|
|
|
if (glFormat === _gl.RGB) {
|
|
if (glType === _gl.FLOAT) internalFormat = _gl.RGB32F;
|
|
if (glType === _gl.HALF_FLOAT) internalFormat = _gl.RGB16F;
|
|
if (glType === _gl.UNSIGNED_BYTE) internalFormat = _gl.RGB8;
|
|
}
|
|
|
|
if (glFormat === _gl.RGBA) {
|
|
if (glType === _gl.FLOAT) internalFormat = _gl.RGBA32F;
|
|
if (glType === _gl.HALF_FLOAT) internalFormat = _gl.RGBA16F;
|
|
if (glType === _gl.UNSIGNED_BYTE) internalFormat = encoding === sRGBEncoding ? _gl.SRGB8_ALPHA8 : _gl.RGBA8;
|
|
}
|
|
|
|
if (internalFormat === _gl.R16F || internalFormat === _gl.R32F || internalFormat === _gl.RGBA16F || internalFormat === _gl.RGBA32F) {
|
|
extensions.get('EXT_color_buffer_float');
|
|
}
|
|
|
|
return internalFormat;
|
|
} // Fallback filters for non-power-of-2 textures
|
|
|
|
|
|
function filterFallback(f) {
|
|
if (f === NearestFilter || f === NearestMipmapNearestFilter || f === NearestMipmapLinearFilter) {
|
|
return _gl.NEAREST;
|
|
}
|
|
|
|
return _gl.LINEAR;
|
|
} //
|
|
|
|
|
|
function onTextureDispose(event) {
|
|
const texture = event.target;
|
|
texture.removeEventListener('dispose', onTextureDispose);
|
|
deallocateTexture(texture);
|
|
|
|
if (texture.isVideoTexture) {
|
|
_videoTextures.delete(texture);
|
|
}
|
|
|
|
info.memory.textures--;
|
|
}
|
|
|
|
function onRenderTargetDispose(event) {
|
|
const renderTarget = event.target;
|
|
renderTarget.removeEventListener('dispose', onRenderTargetDispose);
|
|
deallocateRenderTarget(renderTarget);
|
|
} //
|
|
|
|
|
|
function deallocateTexture(texture) {
|
|
const textureProperties = properties.get(texture);
|
|
if (textureProperties.__webglInit === undefined) return;
|
|
|
|
_gl.deleteTexture(textureProperties.__webglTexture);
|
|
|
|
properties.remove(texture);
|
|
}
|
|
|
|
function deallocateRenderTarget(renderTarget) {
|
|
const texture = renderTarget.texture;
|
|
const renderTargetProperties = properties.get(renderTarget);
|
|
const textureProperties = properties.get(texture);
|
|
if (!renderTarget) return;
|
|
|
|
if (textureProperties.__webglTexture !== undefined) {
|
|
_gl.deleteTexture(textureProperties.__webglTexture);
|
|
|
|
info.memory.textures--;
|
|
}
|
|
|
|
if (renderTarget.depthTexture) {
|
|
renderTarget.depthTexture.dispose();
|
|
}
|
|
|
|
if (renderTarget.isWebGLCubeRenderTarget) {
|
|
for (let i = 0; i < 6; i++) {
|
|
_gl.deleteFramebuffer(renderTargetProperties.__webglFramebuffer[i]);
|
|
|
|
if (renderTargetProperties.__webglDepthbuffer) _gl.deleteRenderbuffer(renderTargetProperties.__webglDepthbuffer[i]);
|
|
}
|
|
} else {
|
|
_gl.deleteFramebuffer(renderTargetProperties.__webglFramebuffer);
|
|
|
|
if (renderTargetProperties.__webglDepthbuffer) _gl.deleteRenderbuffer(renderTargetProperties.__webglDepthbuffer);
|
|
if (renderTargetProperties.__webglMultisampledFramebuffer) _gl.deleteFramebuffer(renderTargetProperties.__webglMultisampledFramebuffer);
|
|
if (renderTargetProperties.__webglColorRenderbuffer) _gl.deleteRenderbuffer(renderTargetProperties.__webglColorRenderbuffer);
|
|
if (renderTargetProperties.__webglDepthRenderbuffer) _gl.deleteRenderbuffer(renderTargetProperties.__webglDepthRenderbuffer);
|
|
}
|
|
|
|
if (renderTarget.isWebGLMultipleRenderTargets) {
|
|
for (let i = 0, il = texture.length; i < il; i++) {
|
|
const attachmentProperties = properties.get(texture[i]);
|
|
|
|
if (attachmentProperties.__webglTexture) {
|
|
_gl.deleteTexture(attachmentProperties.__webglTexture);
|
|
|
|
info.memory.textures--;
|
|
}
|
|
|
|
properties.remove(texture[i]);
|
|
}
|
|
}
|
|
|
|
properties.remove(texture);
|
|
properties.remove(renderTarget);
|
|
} //
|
|
|
|
|
|
let textureUnits = 0;
|
|
|
|
function resetTextureUnits() {
|
|
textureUnits = 0;
|
|
}
|
|
|
|
function allocateTextureUnit() {
|
|
const textureUnit = textureUnits;
|
|
|
|
if (textureUnit >= maxTextures) {
|
|
console.warn('THREE.WebGLTextures: Trying to use ' + textureUnit + ' texture units while this GPU supports only ' + maxTextures);
|
|
}
|
|
|
|
textureUnits += 1;
|
|
return textureUnit;
|
|
} //
|
|
|
|
|
|
function setTexture2D(texture, slot) {
|
|
const textureProperties = properties.get(texture);
|
|
if (texture.isVideoTexture) updateVideoTexture(texture);
|
|
|
|
if (texture.version > 0 && textureProperties.__version !== texture.version) {
|
|
const image = texture.image;
|
|
|
|
if (image === undefined) {
|
|
console.warn('THREE.WebGLRenderer: Texture marked for update but image is undefined');
|
|
} else if (image.complete === false) {
|
|
console.warn('THREE.WebGLRenderer: Texture marked for update but image is incomplete');
|
|
} else {
|
|
uploadTexture(textureProperties, texture, slot);
|
|
return;
|
|
}
|
|
}
|
|
|
|
state.activeTexture(_gl.TEXTURE0 + slot);
|
|
state.bindTexture(_gl.TEXTURE_2D, textureProperties.__webglTexture);
|
|
}
|
|
|
|
function setTexture2DArray(texture, slot) {
|
|
const textureProperties = properties.get(texture);
|
|
|
|
if (texture.version > 0 && textureProperties.__version !== texture.version) {
|
|
uploadTexture(textureProperties, texture, slot);
|
|
return;
|
|
}
|
|
|
|
state.activeTexture(_gl.TEXTURE0 + slot);
|
|
state.bindTexture(_gl.TEXTURE_2D_ARRAY, textureProperties.__webglTexture);
|
|
}
|
|
|
|
function setTexture3D(texture, slot) {
|
|
const textureProperties = properties.get(texture);
|
|
|
|
if (texture.version > 0 && textureProperties.__version !== texture.version) {
|
|
uploadTexture(textureProperties, texture, slot);
|
|
return;
|
|
}
|
|
|
|
state.activeTexture(_gl.TEXTURE0 + slot);
|
|
state.bindTexture(_gl.TEXTURE_3D, textureProperties.__webglTexture);
|
|
}
|
|
|
|
function setTextureCube(texture, slot) {
|
|
const textureProperties = properties.get(texture);
|
|
|
|
if (texture.version > 0 && textureProperties.__version !== texture.version) {
|
|
uploadCubeTexture(textureProperties, texture, slot);
|
|
return;
|
|
}
|
|
|
|
state.activeTexture(_gl.TEXTURE0 + slot);
|
|
state.bindTexture(_gl.TEXTURE_CUBE_MAP, textureProperties.__webglTexture);
|
|
}
|
|
|
|
const wrappingToGL = {
|
|
[RepeatWrapping]: _gl.REPEAT,
|
|
[ClampToEdgeWrapping]: _gl.CLAMP_TO_EDGE,
|
|
[MirroredRepeatWrapping]: _gl.MIRRORED_REPEAT
|
|
};
|
|
const filterToGL = {
|
|
[NearestFilter]: _gl.NEAREST,
|
|
[NearestMipmapNearestFilter]: _gl.NEAREST_MIPMAP_NEAREST,
|
|
[NearestMipmapLinearFilter]: _gl.NEAREST_MIPMAP_LINEAR,
|
|
[LinearFilter]: _gl.LINEAR,
|
|
[LinearMipmapNearestFilter]: _gl.LINEAR_MIPMAP_NEAREST,
|
|
[LinearMipmapLinearFilter]: _gl.LINEAR_MIPMAP_LINEAR
|
|
};
|
|
|
|
function setTextureParameters(textureType, texture, supportsMips) {
|
|
if (supportsMips) {
|
|
_gl.texParameteri(textureType, _gl.TEXTURE_WRAP_S, wrappingToGL[texture.wrapS]);
|
|
|
|
_gl.texParameteri(textureType, _gl.TEXTURE_WRAP_T, wrappingToGL[texture.wrapT]);
|
|
|
|
if (textureType === _gl.TEXTURE_3D || textureType === _gl.TEXTURE_2D_ARRAY) {
|
|
_gl.texParameteri(textureType, _gl.TEXTURE_WRAP_R, wrappingToGL[texture.wrapR]);
|
|
}
|
|
|
|
_gl.texParameteri(textureType, _gl.TEXTURE_MAG_FILTER, filterToGL[texture.magFilter]);
|
|
|
|
_gl.texParameteri(textureType, _gl.TEXTURE_MIN_FILTER, filterToGL[texture.minFilter]);
|
|
} else {
|
|
_gl.texParameteri(textureType, _gl.TEXTURE_WRAP_S, _gl.CLAMP_TO_EDGE);
|
|
|
|
_gl.texParameteri(textureType, _gl.TEXTURE_WRAP_T, _gl.CLAMP_TO_EDGE);
|
|
|
|
if (textureType === _gl.TEXTURE_3D || textureType === _gl.TEXTURE_2D_ARRAY) {
|
|
_gl.texParameteri(textureType, _gl.TEXTURE_WRAP_R, _gl.CLAMP_TO_EDGE);
|
|
}
|
|
|
|
if (texture.wrapS !== ClampToEdgeWrapping || texture.wrapT !== ClampToEdgeWrapping) {
|
|
console.warn('THREE.WebGLRenderer: Texture is not power of two. Texture.wrapS and Texture.wrapT should be set to THREE.ClampToEdgeWrapping.');
|
|
}
|
|
|
|
_gl.texParameteri(textureType, _gl.TEXTURE_MAG_FILTER, filterFallback(texture.magFilter));
|
|
|
|
_gl.texParameteri(textureType, _gl.TEXTURE_MIN_FILTER, filterFallback(texture.minFilter));
|
|
|
|
if (texture.minFilter !== NearestFilter && texture.minFilter !== LinearFilter) {
|
|
console.warn('THREE.WebGLRenderer: Texture is not power of two. Texture.minFilter should be set to THREE.NearestFilter or THREE.LinearFilter.');
|
|
}
|
|
}
|
|
|
|
if (extensions.has('EXT_texture_filter_anisotropic') === true) {
|
|
const extension = extensions.get('EXT_texture_filter_anisotropic');
|
|
if (texture.type === FloatType && extensions.has('OES_texture_float_linear') === false) return; // verify extension for WebGL 1 and WebGL 2
|
|
|
|
if (isWebGL2 === false && texture.type === HalfFloatType && extensions.has('OES_texture_half_float_linear') === false) return; // verify extension for WebGL 1 only
|
|
|
|
if (texture.anisotropy > 1 || properties.get(texture).__currentAnisotropy) {
|
|
_gl.texParameterf(textureType, extension.TEXTURE_MAX_ANISOTROPY_EXT, Math.min(texture.anisotropy, capabilities.getMaxAnisotropy()));
|
|
|
|
properties.get(texture).__currentAnisotropy = texture.anisotropy;
|
|
}
|
|
}
|
|
}
|
|
|
|
function initTexture(textureProperties, texture) {
|
|
if (textureProperties.__webglInit === undefined) {
|
|
textureProperties.__webglInit = true;
|
|
texture.addEventListener('dispose', onTextureDispose);
|
|
textureProperties.__webglTexture = _gl.createTexture();
|
|
info.memory.textures++;
|
|
}
|
|
}
|
|
|
|
function uploadTexture(textureProperties, texture, slot) {
|
|
let textureType = _gl.TEXTURE_2D;
|
|
if (texture.isDataTexture2DArray) textureType = _gl.TEXTURE_2D_ARRAY;
|
|
if (texture.isDataTexture3D) textureType = _gl.TEXTURE_3D;
|
|
initTexture(textureProperties, texture);
|
|
state.activeTexture(_gl.TEXTURE0 + slot);
|
|
state.bindTexture(textureType, textureProperties.__webglTexture);
|
|
|
|
_gl.pixelStorei(_gl.UNPACK_FLIP_Y_WEBGL, texture.flipY);
|
|
|
|
_gl.pixelStorei(_gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL, texture.premultiplyAlpha);
|
|
|
|
_gl.pixelStorei(_gl.UNPACK_ALIGNMENT, texture.unpackAlignment);
|
|
|
|
_gl.pixelStorei(_gl.UNPACK_COLORSPACE_CONVERSION_WEBGL, _gl.NONE);
|
|
|
|
const needsPowerOfTwo = textureNeedsPowerOfTwo(texture) && isPowerOfTwo$1(texture.image) === false;
|
|
const image = resizeImage(texture.image, needsPowerOfTwo, false, maxTextureSize);
|
|
const supportsMips = isPowerOfTwo$1(image) || isWebGL2,
|
|
glFormat = utils.convert(texture.format);
|
|
let glType = utils.convert(texture.type),
|
|
glInternalFormat = getInternalFormat(texture.internalFormat, glFormat, glType, texture.encoding);
|
|
setTextureParameters(textureType, texture, supportsMips);
|
|
let mipmap;
|
|
const mipmaps = texture.mipmaps;
|
|
|
|
if (texture.isDepthTexture) {
|
|
// populate depth texture with dummy data
|
|
glInternalFormat = _gl.DEPTH_COMPONENT;
|
|
|
|
if (isWebGL2) {
|
|
if (texture.type === FloatType) {
|
|
glInternalFormat = _gl.DEPTH_COMPONENT32F;
|
|
} else if (texture.type === UnsignedIntType) {
|
|
glInternalFormat = _gl.DEPTH_COMPONENT24;
|
|
} else if (texture.type === UnsignedInt248Type) {
|
|
glInternalFormat = _gl.DEPTH24_STENCIL8;
|
|
} else {
|
|
glInternalFormat = _gl.DEPTH_COMPONENT16; // WebGL2 requires sized internalformat for glTexImage2D
|
|
}
|
|
} else {
|
|
if (texture.type === FloatType) {
|
|
console.error('WebGLRenderer: Floating point depth texture requires WebGL2.');
|
|
}
|
|
} // validation checks for WebGL 1
|
|
|
|
|
|
if (texture.format === DepthFormat && glInternalFormat === _gl.DEPTH_COMPONENT) {
|
|
// The error INVALID_OPERATION is generated by texImage2D if format and internalformat are
|
|
// DEPTH_COMPONENT and type is not UNSIGNED_SHORT or UNSIGNED_INT
|
|
// (https://www.khronos.org/registry/webgl/extensions/WEBGL_depth_texture/)
|
|
if (texture.type !== UnsignedShortType && texture.type !== UnsignedIntType) {
|
|
console.warn('THREE.WebGLRenderer: Use UnsignedShortType or UnsignedIntType for DepthFormat DepthTexture.');
|
|
texture.type = UnsignedShortType;
|
|
glType = utils.convert(texture.type);
|
|
}
|
|
}
|
|
|
|
if (texture.format === DepthStencilFormat && glInternalFormat === _gl.DEPTH_COMPONENT) {
|
|
// Depth stencil textures need the DEPTH_STENCIL internal format
|
|
// (https://www.khronos.org/registry/webgl/extensions/WEBGL_depth_texture/)
|
|
glInternalFormat = _gl.DEPTH_STENCIL; // The error INVALID_OPERATION is generated by texImage2D if format and internalformat are
|
|
// DEPTH_STENCIL and type is not UNSIGNED_INT_24_8_WEBGL.
|
|
// (https://www.khronos.org/registry/webgl/extensions/WEBGL_depth_texture/)
|
|
|
|
if (texture.type !== UnsignedInt248Type) {
|
|
console.warn('THREE.WebGLRenderer: Use UnsignedInt248Type for DepthStencilFormat DepthTexture.');
|
|
texture.type = UnsignedInt248Type;
|
|
glType = utils.convert(texture.type);
|
|
}
|
|
} //
|
|
|
|
|
|
state.texImage2D(_gl.TEXTURE_2D, 0, glInternalFormat, image.width, image.height, 0, glFormat, glType, null);
|
|
} else if (texture.isDataTexture) {
|
|
// use manually created mipmaps if available
|
|
// if there are no manual mipmaps
|
|
// set 0 level mipmap and then use GL to generate other mipmap levels
|
|
if (mipmaps.length > 0 && supportsMips) {
|
|
for (let i = 0, il = mipmaps.length; i < il; i++) {
|
|
mipmap = mipmaps[i];
|
|
state.texImage2D(_gl.TEXTURE_2D, i, glInternalFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data);
|
|
}
|
|
|
|
texture.generateMipmaps = false;
|
|
textureProperties.__maxMipLevel = mipmaps.length - 1;
|
|
} else {
|
|
state.texImage2D(_gl.TEXTURE_2D, 0, glInternalFormat, image.width, image.height, 0, glFormat, glType, image.data);
|
|
textureProperties.__maxMipLevel = 0;
|
|
}
|
|
} else if (texture.isCompressedTexture) {
|
|
for (let i = 0, il = mipmaps.length; i < il; i++) {
|
|
mipmap = mipmaps[i];
|
|
|
|
if (texture.format !== RGBAFormat && texture.format !== RGBFormat) {
|
|
if (glFormat !== null) {
|
|
state.compressedTexImage2D(_gl.TEXTURE_2D, i, glInternalFormat, mipmap.width, mipmap.height, 0, mipmap.data);
|
|
} else {
|
|
console.warn('THREE.WebGLRenderer: Attempt to load unsupported compressed texture format in .uploadTexture()');
|
|
}
|
|
} else {
|
|
state.texImage2D(_gl.TEXTURE_2D, i, glInternalFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data);
|
|
}
|
|
}
|
|
|
|
textureProperties.__maxMipLevel = mipmaps.length - 1;
|
|
} else if (texture.isDataTexture2DArray) {
|
|
state.texImage3D(_gl.TEXTURE_2D_ARRAY, 0, glInternalFormat, image.width, image.height, image.depth, 0, glFormat, glType, image.data);
|
|
textureProperties.__maxMipLevel = 0;
|
|
} else if (texture.isDataTexture3D) {
|
|
state.texImage3D(_gl.TEXTURE_3D, 0, glInternalFormat, image.width, image.height, image.depth, 0, glFormat, glType, image.data);
|
|
textureProperties.__maxMipLevel = 0;
|
|
} else {
|
|
// regular Texture (image, video, canvas)
|
|
// use manually created mipmaps if available
|
|
// if there are no manual mipmaps
|
|
// set 0 level mipmap and then use GL to generate other mipmap levels
|
|
if (mipmaps.length > 0 && supportsMips) {
|
|
for (let i = 0, il = mipmaps.length; i < il; i++) {
|
|
mipmap = mipmaps[i];
|
|
state.texImage2D(_gl.TEXTURE_2D, i, glInternalFormat, glFormat, glType, mipmap);
|
|
}
|
|
|
|
texture.generateMipmaps = false;
|
|
textureProperties.__maxMipLevel = mipmaps.length - 1;
|
|
} else {
|
|
state.texImage2D(_gl.TEXTURE_2D, 0, glInternalFormat, glFormat, glType, image);
|
|
textureProperties.__maxMipLevel = 0;
|
|
}
|
|
}
|
|
|
|
if (textureNeedsGenerateMipmaps(texture, supportsMips)) {
|
|
generateMipmap(textureType, texture, image.width, image.height);
|
|
}
|
|
|
|
textureProperties.__version = texture.version;
|
|
if (texture.onUpdate) texture.onUpdate(texture);
|
|
}
|
|
|
|
function uploadCubeTexture(textureProperties, texture, slot) {
|
|
if (texture.image.length !== 6) return;
|
|
initTexture(textureProperties, texture);
|
|
state.activeTexture(_gl.TEXTURE0 + slot);
|
|
state.bindTexture(_gl.TEXTURE_CUBE_MAP, textureProperties.__webglTexture);
|
|
|
|
_gl.pixelStorei(_gl.UNPACK_FLIP_Y_WEBGL, texture.flipY);
|
|
|
|
_gl.pixelStorei(_gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL, texture.premultiplyAlpha);
|
|
|
|
_gl.pixelStorei(_gl.UNPACK_ALIGNMENT, texture.unpackAlignment);
|
|
|
|
_gl.pixelStorei(_gl.UNPACK_COLORSPACE_CONVERSION_WEBGL, _gl.NONE);
|
|
|
|
const isCompressed = texture && (texture.isCompressedTexture || texture.image[0].isCompressedTexture);
|
|
const isDataTexture = texture.image[0] && texture.image[0].isDataTexture;
|
|
const cubeImage = [];
|
|
|
|
for (let i = 0; i < 6; i++) {
|
|
if (!isCompressed && !isDataTexture) {
|
|
cubeImage[i] = resizeImage(texture.image[i], false, true, maxCubemapSize);
|
|
} else {
|
|
cubeImage[i] = isDataTexture ? texture.image[i].image : texture.image[i];
|
|
}
|
|
}
|
|
|
|
const image = cubeImage[0],
|
|
supportsMips = isPowerOfTwo$1(image) || isWebGL2,
|
|
glFormat = utils.convert(texture.format),
|
|
glType = utils.convert(texture.type),
|
|
glInternalFormat = getInternalFormat(texture.internalFormat, glFormat, glType, texture.encoding);
|
|
setTextureParameters(_gl.TEXTURE_CUBE_MAP, texture, supportsMips);
|
|
let mipmaps;
|
|
|
|
if (isCompressed) {
|
|
for (let i = 0; i < 6; i++) {
|
|
mipmaps = cubeImage[i].mipmaps;
|
|
|
|
for (let j = 0; j < mipmaps.length; j++) {
|
|
const mipmap = mipmaps[j];
|
|
|
|
if (texture.format !== RGBAFormat && texture.format !== RGBFormat) {
|
|
if (glFormat !== null) {
|
|
state.compressedTexImage2D(_gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, j, glInternalFormat, mipmap.width, mipmap.height, 0, mipmap.data);
|
|
} else {
|
|
console.warn('THREE.WebGLRenderer: Attempt to load unsupported compressed texture format in .setTextureCube()');
|
|
}
|
|
} else {
|
|
state.texImage2D(_gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, j, glInternalFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data);
|
|
}
|
|
}
|
|
}
|
|
|
|
textureProperties.__maxMipLevel = mipmaps.length - 1;
|
|
} else {
|
|
mipmaps = texture.mipmaps;
|
|
|
|
for (let i = 0; i < 6; i++) {
|
|
if (isDataTexture) {
|
|
state.texImage2D(_gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, glInternalFormat, cubeImage[i].width, cubeImage[i].height, 0, glFormat, glType, cubeImage[i].data);
|
|
|
|
for (let j = 0; j < mipmaps.length; j++) {
|
|
const mipmap = mipmaps[j];
|
|
const mipmapImage = mipmap.image[i].image;
|
|
state.texImage2D(_gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, j + 1, glInternalFormat, mipmapImage.width, mipmapImage.height, 0, glFormat, glType, mipmapImage.data);
|
|
}
|
|
} else {
|
|
state.texImage2D(_gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, glInternalFormat, glFormat, glType, cubeImage[i]);
|
|
|
|
for (let j = 0; j < mipmaps.length; j++) {
|
|
const mipmap = mipmaps[j];
|
|
state.texImage2D(_gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, j + 1, glInternalFormat, glFormat, glType, mipmap.image[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
textureProperties.__maxMipLevel = mipmaps.length;
|
|
}
|
|
|
|
if (textureNeedsGenerateMipmaps(texture, supportsMips)) {
|
|
// We assume images for cube map have the same size.
|
|
generateMipmap(_gl.TEXTURE_CUBE_MAP, texture, image.width, image.height);
|
|
}
|
|
|
|
textureProperties.__version = texture.version;
|
|
if (texture.onUpdate) texture.onUpdate(texture);
|
|
} // Render targets
|
|
// Setup storage for target texture and bind it to correct framebuffer
|
|
|
|
|
|
function setupFrameBufferTexture(framebuffer, renderTarget, texture, attachment, textureTarget) {
|
|
const glFormat = utils.convert(texture.format);
|
|
const glType = utils.convert(texture.type);
|
|
const glInternalFormat = getInternalFormat(texture.internalFormat, glFormat, glType, texture.encoding);
|
|
|
|
if (textureTarget === _gl.TEXTURE_3D || textureTarget === _gl.TEXTURE_2D_ARRAY) {
|
|
state.texImage3D(textureTarget, 0, glInternalFormat, renderTarget.width, renderTarget.height, renderTarget.depth, 0, glFormat, glType, null);
|
|
} else {
|
|
state.texImage2D(textureTarget, 0, glInternalFormat, renderTarget.width, renderTarget.height, 0, glFormat, glType, null);
|
|
}
|
|
|
|
state.bindFramebuffer(_gl.FRAMEBUFFER, framebuffer);
|
|
|
|
_gl.framebufferTexture2D(_gl.FRAMEBUFFER, attachment, textureTarget, properties.get(texture).__webglTexture, 0);
|
|
|
|
state.bindFramebuffer(_gl.FRAMEBUFFER, null);
|
|
} // Setup storage for internal depth/stencil buffers and bind to correct framebuffer
|
|
|
|
|
|
function setupRenderBufferStorage(renderbuffer, renderTarget, isMultisample) {
|
|
_gl.bindRenderbuffer(_gl.RENDERBUFFER, renderbuffer);
|
|
|
|
if (renderTarget.depthBuffer && !renderTarget.stencilBuffer) {
|
|
let glInternalFormat = _gl.DEPTH_COMPONENT16;
|
|
|
|
if (isMultisample) {
|
|
const depthTexture = renderTarget.depthTexture;
|
|
|
|
if (depthTexture && depthTexture.isDepthTexture) {
|
|
if (depthTexture.type === FloatType) {
|
|
glInternalFormat = _gl.DEPTH_COMPONENT32F;
|
|
} else if (depthTexture.type === UnsignedIntType) {
|
|
glInternalFormat = _gl.DEPTH_COMPONENT24;
|
|
}
|
|
}
|
|
|
|
const samples = getRenderTargetSamples(renderTarget);
|
|
|
|
_gl.renderbufferStorageMultisample(_gl.RENDERBUFFER, samples, glInternalFormat, renderTarget.width, renderTarget.height);
|
|
} else {
|
|
_gl.renderbufferStorage(_gl.RENDERBUFFER, glInternalFormat, renderTarget.width, renderTarget.height);
|
|
}
|
|
|
|
_gl.framebufferRenderbuffer(_gl.FRAMEBUFFER, _gl.DEPTH_ATTACHMENT, _gl.RENDERBUFFER, renderbuffer);
|
|
} else if (renderTarget.depthBuffer && renderTarget.stencilBuffer) {
|
|
if (isMultisample) {
|
|
const samples = getRenderTargetSamples(renderTarget);
|
|
|
|
_gl.renderbufferStorageMultisample(_gl.RENDERBUFFER, samples, _gl.DEPTH24_STENCIL8, renderTarget.width, renderTarget.height);
|
|
} else {
|
|
_gl.renderbufferStorage(_gl.RENDERBUFFER, _gl.DEPTH_STENCIL, renderTarget.width, renderTarget.height);
|
|
}
|
|
|
|
_gl.framebufferRenderbuffer(_gl.FRAMEBUFFER, _gl.DEPTH_STENCIL_ATTACHMENT, _gl.RENDERBUFFER, renderbuffer);
|
|
} else {
|
|
// Use the first texture for MRT so far
|
|
const texture = renderTarget.isWebGLMultipleRenderTargets === true ? renderTarget.texture[0] : renderTarget.texture;
|
|
const glFormat = utils.convert(texture.format);
|
|
const glType = utils.convert(texture.type);
|
|
const glInternalFormat = getInternalFormat(texture.internalFormat, glFormat, glType, texture.encoding);
|
|
|
|
if (isMultisample) {
|
|
const samples = getRenderTargetSamples(renderTarget);
|
|
|
|
_gl.renderbufferStorageMultisample(_gl.RENDERBUFFER, samples, glInternalFormat, renderTarget.width, renderTarget.height);
|
|
} else {
|
|
_gl.renderbufferStorage(_gl.RENDERBUFFER, glInternalFormat, renderTarget.width, renderTarget.height);
|
|
}
|
|
}
|
|
|
|
_gl.bindRenderbuffer(_gl.RENDERBUFFER, null);
|
|
} // Setup resources for a Depth Texture for a FBO (needs an extension)
|
|
|
|
|
|
function setupDepthTexture(framebuffer, renderTarget) {
|
|
const isCube = renderTarget && renderTarget.isWebGLCubeRenderTarget;
|
|
if (isCube) throw new Error('Depth Texture with cube render targets is not supported');
|
|
state.bindFramebuffer(_gl.FRAMEBUFFER, framebuffer);
|
|
|
|
if (!(renderTarget.depthTexture && renderTarget.depthTexture.isDepthTexture)) {
|
|
throw new Error('renderTarget.depthTexture must be an instance of THREE.DepthTexture');
|
|
} // upload an empty depth texture with framebuffer size
|
|
|
|
|
|
if (!properties.get(renderTarget.depthTexture).__webglTexture || renderTarget.depthTexture.image.width !== renderTarget.width || renderTarget.depthTexture.image.height !== renderTarget.height) {
|
|
renderTarget.depthTexture.image.width = renderTarget.width;
|
|
renderTarget.depthTexture.image.height = renderTarget.height;
|
|
renderTarget.depthTexture.needsUpdate = true;
|
|
}
|
|
|
|
setTexture2D(renderTarget.depthTexture, 0);
|
|
|
|
const webglDepthTexture = properties.get(renderTarget.depthTexture).__webglTexture;
|
|
|
|
if (renderTarget.depthTexture.format === DepthFormat) {
|
|
_gl.framebufferTexture2D(_gl.FRAMEBUFFER, _gl.DEPTH_ATTACHMENT, _gl.TEXTURE_2D, webglDepthTexture, 0);
|
|
} else if (renderTarget.depthTexture.format === DepthStencilFormat) {
|
|
_gl.framebufferTexture2D(_gl.FRAMEBUFFER, _gl.DEPTH_STENCIL_ATTACHMENT, _gl.TEXTURE_2D, webglDepthTexture, 0);
|
|
} else {
|
|
throw new Error('Unknown depthTexture format');
|
|
}
|
|
} // Setup GL resources for a non-texture depth buffer
|
|
|
|
|
|
function setupDepthRenderbuffer(renderTarget) {
|
|
const renderTargetProperties = properties.get(renderTarget);
|
|
const isCube = renderTarget.isWebGLCubeRenderTarget === true;
|
|
|
|
if (renderTarget.depthTexture) {
|
|
if (isCube) throw new Error('target.depthTexture not supported in Cube render targets');
|
|
setupDepthTexture(renderTargetProperties.__webglFramebuffer, renderTarget);
|
|
} else {
|
|
if (isCube) {
|
|
renderTargetProperties.__webglDepthbuffer = [];
|
|
|
|
for (let i = 0; i < 6; i++) {
|
|
state.bindFramebuffer(_gl.FRAMEBUFFER, renderTargetProperties.__webglFramebuffer[i]);
|
|
renderTargetProperties.__webglDepthbuffer[i] = _gl.createRenderbuffer();
|
|
setupRenderBufferStorage(renderTargetProperties.__webglDepthbuffer[i], renderTarget, false);
|
|
}
|
|
} else {
|
|
state.bindFramebuffer(_gl.FRAMEBUFFER, renderTargetProperties.__webglFramebuffer);
|
|
renderTargetProperties.__webglDepthbuffer = _gl.createRenderbuffer();
|
|
setupRenderBufferStorage(renderTargetProperties.__webglDepthbuffer, renderTarget, false);
|
|
}
|
|
}
|
|
|
|
state.bindFramebuffer(_gl.FRAMEBUFFER, null);
|
|
} // Set up GL resources for the render target
|
|
|
|
|
|
function setupRenderTarget(renderTarget) {
|
|
const texture = renderTarget.texture;
|
|
const renderTargetProperties = properties.get(renderTarget);
|
|
const textureProperties = properties.get(texture);
|
|
renderTarget.addEventListener('dispose', onRenderTargetDispose);
|
|
|
|
if (renderTarget.isWebGLMultipleRenderTargets !== true) {
|
|
textureProperties.__webglTexture = _gl.createTexture();
|
|
textureProperties.__version = texture.version;
|
|
info.memory.textures++;
|
|
}
|
|
|
|
const isCube = renderTarget.isWebGLCubeRenderTarget === true;
|
|
const isMultipleRenderTargets = renderTarget.isWebGLMultipleRenderTargets === true;
|
|
const isMultisample = renderTarget.isWebGLMultisampleRenderTarget === true;
|
|
const isRenderTarget3D = texture.isDataTexture3D || texture.isDataTexture2DArray;
|
|
const supportsMips = isPowerOfTwo$1(renderTarget) || isWebGL2; // Handles WebGL2 RGBFormat fallback - #18858
|
|
|
|
if (isWebGL2 && texture.format === RGBFormat && (texture.type === FloatType || texture.type === HalfFloatType)) {
|
|
texture.format = RGBAFormat;
|
|
console.warn('THREE.WebGLRenderer: Rendering to textures with RGB format is not supported. Using RGBA format instead.');
|
|
} // Setup framebuffer
|
|
|
|
|
|
if (isCube) {
|
|
renderTargetProperties.__webglFramebuffer = [];
|
|
|
|
for (let i = 0; i < 6; i++) {
|
|
renderTargetProperties.__webglFramebuffer[i] = _gl.createFramebuffer();
|
|
}
|
|
} else {
|
|
renderTargetProperties.__webglFramebuffer = _gl.createFramebuffer();
|
|
|
|
if (isMultipleRenderTargets) {
|
|
if (capabilities.drawBuffers) {
|
|
const textures = renderTarget.texture;
|
|
|
|
for (let i = 0, il = textures.length; i < il; i++) {
|
|
const attachmentProperties = properties.get(textures[i]);
|
|
|
|
if (attachmentProperties.__webglTexture === undefined) {
|
|
attachmentProperties.__webglTexture = _gl.createTexture();
|
|
info.memory.textures++;
|
|
}
|
|
}
|
|
} else {
|
|
console.warn('THREE.WebGLRenderer: WebGLMultipleRenderTargets can only be used with WebGL2 or WEBGL_draw_buffers extension.');
|
|
}
|
|
} else if (isMultisample) {
|
|
if (isWebGL2) {
|
|
renderTargetProperties.__webglMultisampledFramebuffer = _gl.createFramebuffer();
|
|
renderTargetProperties.__webglColorRenderbuffer = _gl.createRenderbuffer();
|
|
|
|
_gl.bindRenderbuffer(_gl.RENDERBUFFER, renderTargetProperties.__webglColorRenderbuffer);
|
|
|
|
const glFormat = utils.convert(texture.format);
|
|
const glType = utils.convert(texture.type);
|
|
const glInternalFormat = getInternalFormat(texture.internalFormat, glFormat, glType, texture.encoding);
|
|
const samples = getRenderTargetSamples(renderTarget);
|
|
|
|
_gl.renderbufferStorageMultisample(_gl.RENDERBUFFER, samples, glInternalFormat, renderTarget.width, renderTarget.height);
|
|
|
|
state.bindFramebuffer(_gl.FRAMEBUFFER, renderTargetProperties.__webglMultisampledFramebuffer);
|
|
|
|
_gl.framebufferRenderbuffer(_gl.FRAMEBUFFER, _gl.COLOR_ATTACHMENT0, _gl.RENDERBUFFER, renderTargetProperties.__webglColorRenderbuffer);
|
|
|
|
_gl.bindRenderbuffer(_gl.RENDERBUFFER, null);
|
|
|
|
if (renderTarget.depthBuffer) {
|
|
renderTargetProperties.__webglDepthRenderbuffer = _gl.createRenderbuffer();
|
|
setupRenderBufferStorage(renderTargetProperties.__webglDepthRenderbuffer, renderTarget, true);
|
|
}
|
|
|
|
state.bindFramebuffer(_gl.FRAMEBUFFER, null);
|
|
} else {
|
|
console.warn('THREE.WebGLRenderer: WebGLMultisampleRenderTarget can only be used with WebGL2.');
|
|
}
|
|
}
|
|
} // Setup color buffer
|
|
|
|
|
|
if (isCube) {
|
|
state.bindTexture(_gl.TEXTURE_CUBE_MAP, textureProperties.__webglTexture);
|
|
setTextureParameters(_gl.TEXTURE_CUBE_MAP, texture, supportsMips);
|
|
|
|
for (let i = 0; i < 6; i++) {
|
|
setupFrameBufferTexture(renderTargetProperties.__webglFramebuffer[i], renderTarget, texture, _gl.COLOR_ATTACHMENT0, _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i);
|
|
}
|
|
|
|
if (textureNeedsGenerateMipmaps(texture, supportsMips)) {
|
|
generateMipmap(_gl.TEXTURE_CUBE_MAP, texture, renderTarget.width, renderTarget.height);
|
|
}
|
|
|
|
state.unbindTexture();
|
|
} else if (isMultipleRenderTargets) {
|
|
const textures = renderTarget.texture;
|
|
|
|
for (let i = 0, il = textures.length; i < il; i++) {
|
|
const attachment = textures[i];
|
|
const attachmentProperties = properties.get(attachment);
|
|
state.bindTexture(_gl.TEXTURE_2D, attachmentProperties.__webglTexture);
|
|
setTextureParameters(_gl.TEXTURE_2D, attachment, supportsMips);
|
|
setupFrameBufferTexture(renderTargetProperties.__webglFramebuffer, renderTarget, attachment, _gl.COLOR_ATTACHMENT0 + i, _gl.TEXTURE_2D);
|
|
|
|
if (textureNeedsGenerateMipmaps(attachment, supportsMips)) {
|
|
generateMipmap(_gl.TEXTURE_2D, attachment, renderTarget.width, renderTarget.height);
|
|
}
|
|
}
|
|
|
|
state.unbindTexture();
|
|
} else {
|
|
let glTextureType = _gl.TEXTURE_2D;
|
|
|
|
if (isRenderTarget3D) {
|
|
// Render targets containing layers, i.e: Texture 3D and 2d arrays
|
|
if (isWebGL2) {
|
|
const isTexture3D = texture.isDataTexture3D;
|
|
glTextureType = isTexture3D ? _gl.TEXTURE_3D : _gl.TEXTURE_2D_ARRAY;
|
|
} else {
|
|
console.warn('THREE.DataTexture3D and THREE.DataTexture2DArray only supported with WebGL2.');
|
|
}
|
|
}
|
|
|
|
state.bindTexture(glTextureType, textureProperties.__webglTexture);
|
|
setTextureParameters(glTextureType, texture, supportsMips);
|
|
setupFrameBufferTexture(renderTargetProperties.__webglFramebuffer, renderTarget, texture, _gl.COLOR_ATTACHMENT0, glTextureType);
|
|
|
|
if (textureNeedsGenerateMipmaps(texture, supportsMips)) {
|
|
generateMipmap(glTextureType, texture, renderTarget.width, renderTarget.height, renderTarget.depth);
|
|
}
|
|
|
|
state.unbindTexture();
|
|
} // Setup depth and stencil buffers
|
|
|
|
|
|
if (renderTarget.depthBuffer) {
|
|
setupDepthRenderbuffer(renderTarget);
|
|
}
|
|
}
|
|
|
|
function updateRenderTargetMipmap(renderTarget) {
|
|
const supportsMips = isPowerOfTwo$1(renderTarget) || isWebGL2;
|
|
const textures = renderTarget.isWebGLMultipleRenderTargets === true ? renderTarget.texture : [renderTarget.texture];
|
|
|
|
for (let i = 0, il = textures.length; i < il; i++) {
|
|
const texture = textures[i];
|
|
|
|
if (textureNeedsGenerateMipmaps(texture, supportsMips)) {
|
|
const target = renderTarget.isWebGLCubeRenderTarget ? _gl.TEXTURE_CUBE_MAP : _gl.TEXTURE_2D;
|
|
|
|
const webglTexture = properties.get(texture).__webglTexture;
|
|
|
|
state.bindTexture(target, webglTexture);
|
|
generateMipmap(target, texture, renderTarget.width, renderTarget.height);
|
|
state.unbindTexture();
|
|
}
|
|
}
|
|
}
|
|
|
|
function updateMultisampleRenderTarget(renderTarget) {
|
|
if (renderTarget.isWebGLMultisampleRenderTarget) {
|
|
if (isWebGL2) {
|
|
const width = renderTarget.width;
|
|
const height = renderTarget.height;
|
|
let mask = _gl.COLOR_BUFFER_BIT;
|
|
if (renderTarget.depthBuffer) mask |= _gl.DEPTH_BUFFER_BIT;
|
|
if (renderTarget.stencilBuffer) mask |= _gl.STENCIL_BUFFER_BIT;
|
|
const renderTargetProperties = properties.get(renderTarget);
|
|
state.bindFramebuffer(_gl.READ_FRAMEBUFFER, renderTargetProperties.__webglMultisampledFramebuffer);
|
|
state.bindFramebuffer(_gl.DRAW_FRAMEBUFFER, renderTargetProperties.__webglFramebuffer);
|
|
|
|
_gl.blitFramebuffer(0, 0, width, height, 0, 0, width, height, mask, _gl.NEAREST);
|
|
|
|
state.bindFramebuffer(_gl.READ_FRAMEBUFFER, null);
|
|
state.bindFramebuffer(_gl.DRAW_FRAMEBUFFER, renderTargetProperties.__webglMultisampledFramebuffer);
|
|
} else {
|
|
console.warn('THREE.WebGLRenderer: WebGLMultisampleRenderTarget can only be used with WebGL2.');
|
|
}
|
|
}
|
|
}
|
|
|
|
function getRenderTargetSamples(renderTarget) {
|
|
return isWebGL2 && renderTarget.isWebGLMultisampleRenderTarget ? Math.min(maxSamples, renderTarget.samples) : 0;
|
|
}
|
|
|
|
function updateVideoTexture(texture) {
|
|
const frame = info.render.frame; // Check the last frame we updated the VideoTexture
|
|
|
|
if (_videoTextures.get(texture) !== frame) {
|
|
_videoTextures.set(texture, frame);
|
|
|
|
texture.update();
|
|
}
|
|
} // backwards compatibility
|
|
|
|
|
|
let warnedTexture2D = false;
|
|
let warnedTextureCube = false;
|
|
|
|
function safeSetTexture2D(texture, slot) {
|
|
if (texture && texture.isWebGLRenderTarget) {
|
|
if (warnedTexture2D === false) {
|
|
console.warn('THREE.WebGLTextures.safeSetTexture2D: don\'t use render targets as textures. Use their .texture property instead.');
|
|
warnedTexture2D = true;
|
|
}
|
|
|
|
texture = texture.texture;
|
|
}
|
|
|
|
setTexture2D(texture, slot);
|
|
}
|
|
|
|
function safeSetTextureCube(texture, slot) {
|
|
if (texture && texture.isWebGLCubeRenderTarget) {
|
|
if (warnedTextureCube === false) {
|
|
console.warn('THREE.WebGLTextures.safeSetTextureCube: don\'t use cube render targets as textures. Use their .texture property instead.');
|
|
warnedTextureCube = true;
|
|
}
|
|
|
|
texture = texture.texture;
|
|
}
|
|
|
|
setTextureCube(texture, slot);
|
|
} //
|
|
|
|
|
|
this.allocateTextureUnit = allocateTextureUnit;
|
|
this.resetTextureUnits = resetTextureUnits;
|
|
this.setTexture2D = setTexture2D;
|
|
this.setTexture2DArray = setTexture2DArray;
|
|
this.setTexture3D = setTexture3D;
|
|
this.setTextureCube = setTextureCube;
|
|
this.setupRenderTarget = setupRenderTarget;
|
|
this.updateRenderTargetMipmap = updateRenderTargetMipmap;
|
|
this.updateMultisampleRenderTarget = updateMultisampleRenderTarget;
|
|
this.safeSetTexture2D = safeSetTexture2D;
|
|
this.safeSetTextureCube = safeSetTextureCube;
|
|
}
|
|
|
|
function WebGLUtils(gl, extensions, capabilities) {
|
|
const isWebGL2 = capabilities.isWebGL2;
|
|
|
|
function convert(p) {
|
|
let extension;
|
|
if (p === UnsignedByteType) return gl.UNSIGNED_BYTE;
|
|
if (p === UnsignedShort4444Type) return gl.UNSIGNED_SHORT_4_4_4_4;
|
|
if (p === UnsignedShort5551Type) return gl.UNSIGNED_SHORT_5_5_5_1;
|
|
if (p === UnsignedShort565Type) return gl.UNSIGNED_SHORT_5_6_5;
|
|
if (p === ByteType) return gl.BYTE;
|
|
if (p === ShortType) return gl.SHORT;
|
|
if (p === UnsignedShortType) return gl.UNSIGNED_SHORT;
|
|
if (p === IntType) return gl.INT;
|
|
if (p === UnsignedIntType) return gl.UNSIGNED_INT;
|
|
if (p === FloatType) return gl.FLOAT;
|
|
|
|
if (p === HalfFloatType) {
|
|
if (isWebGL2) return gl.HALF_FLOAT;
|
|
extension = extensions.get('OES_texture_half_float');
|
|
|
|
if (extension !== null) {
|
|
return extension.HALF_FLOAT_OES;
|
|
} else {
|
|
return null;
|
|
}
|
|
}
|
|
|
|
if (p === AlphaFormat) return gl.ALPHA;
|
|
if (p === RGBFormat) return gl.RGB;
|
|
if (p === RGBAFormat) return gl.RGBA;
|
|
if (p === LuminanceFormat) return gl.LUMINANCE;
|
|
if (p === LuminanceAlphaFormat) return gl.LUMINANCE_ALPHA;
|
|
if (p === DepthFormat) return gl.DEPTH_COMPONENT;
|
|
if (p === DepthStencilFormat) return gl.DEPTH_STENCIL;
|
|
if (p === RedFormat) return gl.RED; // WebGL2 formats.
|
|
|
|
if (p === RedIntegerFormat) return gl.RED_INTEGER;
|
|
if (p === RGFormat) return gl.RG;
|
|
if (p === RGIntegerFormat) return gl.RG_INTEGER;
|
|
if (p === RGBIntegerFormat) return gl.RGB_INTEGER;
|
|
if (p === RGBAIntegerFormat) return gl.RGBA_INTEGER;
|
|
|
|
if (p === RGB_S3TC_DXT1_Format || p === RGBA_S3TC_DXT1_Format || p === RGBA_S3TC_DXT3_Format || p === RGBA_S3TC_DXT5_Format) {
|
|
extension = extensions.get('WEBGL_compressed_texture_s3tc');
|
|
|
|
if (extension !== null) {
|
|
if (p === RGB_S3TC_DXT1_Format) return extension.COMPRESSED_RGB_S3TC_DXT1_EXT;
|
|
if (p === RGBA_S3TC_DXT1_Format) return extension.COMPRESSED_RGBA_S3TC_DXT1_EXT;
|
|
if (p === RGBA_S3TC_DXT3_Format) return extension.COMPRESSED_RGBA_S3TC_DXT3_EXT;
|
|
if (p === RGBA_S3TC_DXT5_Format) return extension.COMPRESSED_RGBA_S3TC_DXT5_EXT;
|
|
} else {
|
|
return null;
|
|
}
|
|
}
|
|
|
|
if (p === RGB_PVRTC_4BPPV1_Format || p === RGB_PVRTC_2BPPV1_Format || p === RGBA_PVRTC_4BPPV1_Format || p === RGBA_PVRTC_2BPPV1_Format) {
|
|
extension = extensions.get('WEBGL_compressed_texture_pvrtc');
|
|
|
|
if (extension !== null) {
|
|
if (p === RGB_PVRTC_4BPPV1_Format) return extension.COMPRESSED_RGB_PVRTC_4BPPV1_IMG;
|
|
if (p === RGB_PVRTC_2BPPV1_Format) return extension.COMPRESSED_RGB_PVRTC_2BPPV1_IMG;
|
|
if (p === RGBA_PVRTC_4BPPV1_Format) return extension.COMPRESSED_RGBA_PVRTC_4BPPV1_IMG;
|
|
if (p === RGBA_PVRTC_2BPPV1_Format) return extension.COMPRESSED_RGBA_PVRTC_2BPPV1_IMG;
|
|
} else {
|
|
return null;
|
|
}
|
|
}
|
|
|
|
if (p === RGB_ETC1_Format) {
|
|
extension = extensions.get('WEBGL_compressed_texture_etc1');
|
|
|
|
if (extension !== null) {
|
|
return extension.COMPRESSED_RGB_ETC1_WEBGL;
|
|
} else {
|
|
return null;
|
|
}
|
|
}
|
|
|
|
if (p === RGB_ETC2_Format || p === RGBA_ETC2_EAC_Format) {
|
|
extension = extensions.get('WEBGL_compressed_texture_etc');
|
|
|
|
if (extension !== null) {
|
|
if (p === RGB_ETC2_Format) return extension.COMPRESSED_RGB8_ETC2;
|
|
if (p === RGBA_ETC2_EAC_Format) return extension.COMPRESSED_RGBA8_ETC2_EAC;
|
|
}
|
|
}
|
|
|
|
if (p === RGBA_ASTC_4x4_Format || p === RGBA_ASTC_5x4_Format || p === RGBA_ASTC_5x5_Format || p === RGBA_ASTC_6x5_Format || p === RGBA_ASTC_6x6_Format || p === RGBA_ASTC_8x5_Format || p === RGBA_ASTC_8x6_Format || p === RGBA_ASTC_8x8_Format || p === RGBA_ASTC_10x5_Format || p === RGBA_ASTC_10x6_Format || p === RGBA_ASTC_10x8_Format || p === RGBA_ASTC_10x10_Format || p === RGBA_ASTC_12x10_Format || p === RGBA_ASTC_12x12_Format || p === SRGB8_ALPHA8_ASTC_4x4_Format || p === SRGB8_ALPHA8_ASTC_5x4_Format || p === SRGB8_ALPHA8_ASTC_5x5_Format || p === SRGB8_ALPHA8_ASTC_6x5_Format || p === SRGB8_ALPHA8_ASTC_6x6_Format || p === SRGB8_ALPHA8_ASTC_8x5_Format || p === SRGB8_ALPHA8_ASTC_8x6_Format || p === SRGB8_ALPHA8_ASTC_8x8_Format || p === SRGB8_ALPHA8_ASTC_10x5_Format || p === SRGB8_ALPHA8_ASTC_10x6_Format || p === SRGB8_ALPHA8_ASTC_10x8_Format || p === SRGB8_ALPHA8_ASTC_10x10_Format || p === SRGB8_ALPHA8_ASTC_12x10_Format || p === SRGB8_ALPHA8_ASTC_12x12_Format) {
|
|
extension = extensions.get('WEBGL_compressed_texture_astc');
|
|
|
|
if (extension !== null) {
|
|
// TODO Complete?
|
|
return p;
|
|
} else {
|
|
return null;
|
|
}
|
|
}
|
|
|
|
if (p === RGBA_BPTC_Format) {
|
|
extension = extensions.get('EXT_texture_compression_bptc');
|
|
|
|
if (extension !== null) {
|
|
// TODO Complete?
|
|
return p;
|
|
} else {
|
|
return null;
|
|
}
|
|
}
|
|
|
|
if (p === UnsignedInt248Type) {
|
|
if (isWebGL2) return gl.UNSIGNED_INT_24_8;
|
|
extension = extensions.get('WEBGL_depth_texture');
|
|
|
|
if (extension !== null) {
|
|
return extension.UNSIGNED_INT_24_8_WEBGL;
|
|
} else {
|
|
return null;
|
|
}
|
|
}
|
|
}
|
|
|
|
return {
|
|
convert: convert
|
|
};
|
|
}
|
|
|
|
class ArrayCamera extends PerspectiveCamera {
|
|
constructor(array = []) {
|
|
super();
|
|
this.cameras = array;
|
|
}
|
|
|
|
}
|
|
|
|
ArrayCamera.prototype.isArrayCamera = true;
|
|
|
|
class Group extends Object3D {
|
|
constructor() {
|
|
super();
|
|
this.type = 'Group';
|
|
}
|
|
|
|
}
|
|
|
|
Group.prototype.isGroup = true;
|
|
|
|
const _moveEvent = {
|
|
type: 'move'
|
|
};
|
|
|
|
class WebXRController {
|
|
constructor() {
|
|
this._targetRay = null;
|
|
this._grip = null;
|
|
this._hand = null;
|
|
}
|
|
|
|
getHandSpace() {
|
|
if (this._hand === null) {
|
|
this._hand = new Group();
|
|
this._hand.matrixAutoUpdate = false;
|
|
this._hand.visible = false;
|
|
this._hand.joints = {};
|
|
this._hand.inputState = {
|
|
pinching: false
|
|
};
|
|
}
|
|
|
|
return this._hand;
|
|
}
|
|
|
|
getTargetRaySpace() {
|
|
if (this._targetRay === null) {
|
|
this._targetRay = new Group();
|
|
this._targetRay.matrixAutoUpdate = false;
|
|
this._targetRay.visible = false;
|
|
this._targetRay.hasLinearVelocity = false;
|
|
this._targetRay.linearVelocity = new Vector3();
|
|
this._targetRay.hasAngularVelocity = false;
|
|
this._targetRay.angularVelocity = new Vector3();
|
|
}
|
|
|
|
return this._targetRay;
|
|
}
|
|
|
|
getGripSpace() {
|
|
if (this._grip === null) {
|
|
this._grip = new Group();
|
|
this._grip.matrixAutoUpdate = false;
|
|
this._grip.visible = false;
|
|
this._grip.hasLinearVelocity = false;
|
|
this._grip.linearVelocity = new Vector3();
|
|
this._grip.hasAngularVelocity = false;
|
|
this._grip.angularVelocity = new Vector3();
|
|
}
|
|
|
|
return this._grip;
|
|
}
|
|
|
|
dispatchEvent(event) {
|
|
if (this._targetRay !== null) {
|
|
this._targetRay.dispatchEvent(event);
|
|
}
|
|
|
|
if (this._grip !== null) {
|
|
this._grip.dispatchEvent(event);
|
|
}
|
|
|
|
if (this._hand !== null) {
|
|
this._hand.dispatchEvent(event);
|
|
}
|
|
|
|
return this;
|
|
}
|
|
|
|
disconnect(inputSource) {
|
|
this.dispatchEvent({
|
|
type: 'disconnected',
|
|
data: inputSource
|
|
});
|
|
|
|
if (this._targetRay !== null) {
|
|
this._targetRay.visible = false;
|
|
}
|
|
|
|
if (this._grip !== null) {
|
|
this._grip.visible = false;
|
|
}
|
|
|
|
if (this._hand !== null) {
|
|
this._hand.visible = false;
|
|
}
|
|
|
|
return this;
|
|
}
|
|
|
|
update(inputSource, frame, referenceSpace) {
|
|
let inputPose = null;
|
|
let gripPose = null;
|
|
let handPose = null;
|
|
const targetRay = this._targetRay;
|
|
const grip = this._grip;
|
|
const hand = this._hand;
|
|
|
|
if (inputSource && frame.session.visibilityState !== 'visible-blurred') {
|
|
if (targetRay !== null) {
|
|
inputPose = frame.getPose(inputSource.targetRaySpace, referenceSpace);
|
|
|
|
if (inputPose !== null) {
|
|
targetRay.matrix.fromArray(inputPose.transform.matrix);
|
|
targetRay.matrix.decompose(targetRay.position, targetRay.rotation, targetRay.scale);
|
|
|
|
if (inputPose.linearVelocity) {
|
|
targetRay.hasLinearVelocity = true;
|
|
targetRay.linearVelocity.copy(inputPose.linearVelocity);
|
|
} else {
|
|
targetRay.hasLinearVelocity = false;
|
|
}
|
|
|
|
if (inputPose.angularVelocity) {
|
|
targetRay.hasAngularVelocity = true;
|
|
targetRay.angularVelocity.copy(inputPose.angularVelocity);
|
|
} else {
|
|
targetRay.hasAngularVelocity = false;
|
|
}
|
|
|
|
this.dispatchEvent(_moveEvent);
|
|
}
|
|
}
|
|
|
|
if (hand && inputSource.hand) {
|
|
handPose = true;
|
|
|
|
for (const inputjoint of inputSource.hand.values()) {
|
|
// Update the joints groups with the XRJoint poses
|
|
const jointPose = frame.getJointPose(inputjoint, referenceSpace);
|
|
|
|
if (hand.joints[inputjoint.jointName] === undefined) {
|
|
// The transform of this joint will be updated with the joint pose on each frame
|
|
const joint = new Group();
|
|
joint.matrixAutoUpdate = false;
|
|
joint.visible = false;
|
|
hand.joints[inputjoint.jointName] = joint; // ??
|
|
|
|
hand.add(joint);
|
|
}
|
|
|
|
const joint = hand.joints[inputjoint.jointName];
|
|
|
|
if (jointPose !== null) {
|
|
joint.matrix.fromArray(jointPose.transform.matrix);
|
|
joint.matrix.decompose(joint.position, joint.rotation, joint.scale);
|
|
joint.jointRadius = jointPose.radius;
|
|
}
|
|
|
|
joint.visible = jointPose !== null;
|
|
} // Custom events
|
|
// Check pinchz
|
|
|
|
|
|
const indexTip = hand.joints['index-finger-tip'];
|
|
const thumbTip = hand.joints['thumb-tip'];
|
|
const distance = indexTip.position.distanceTo(thumbTip.position);
|
|
const distanceToPinch = 0.02;
|
|
const threshold = 0.005;
|
|
|
|
if (hand.inputState.pinching && distance > distanceToPinch + threshold) {
|
|
hand.inputState.pinching = false;
|
|
this.dispatchEvent({
|
|
type: 'pinchend',
|
|
handedness: inputSource.handedness,
|
|
target: this
|
|
});
|
|
} else if (!hand.inputState.pinching && distance <= distanceToPinch - threshold) {
|
|
hand.inputState.pinching = true;
|
|
this.dispatchEvent({
|
|
type: 'pinchstart',
|
|
handedness: inputSource.handedness,
|
|
target: this
|
|
});
|
|
}
|
|
} else {
|
|
if (grip !== null && inputSource.gripSpace) {
|
|
gripPose = frame.getPose(inputSource.gripSpace, referenceSpace);
|
|
|
|
if (gripPose !== null) {
|
|
grip.matrix.fromArray(gripPose.transform.matrix);
|
|
grip.matrix.decompose(grip.position, grip.rotation, grip.scale);
|
|
|
|
if (gripPose.linearVelocity) {
|
|
grip.hasLinearVelocity = true;
|
|
grip.linearVelocity.copy(gripPose.linearVelocity);
|
|
} else {
|
|
grip.hasLinearVelocity = false;
|
|
}
|
|
|
|
if (gripPose.angularVelocity) {
|
|
grip.hasAngularVelocity = true;
|
|
grip.angularVelocity.copy(gripPose.angularVelocity);
|
|
} else {
|
|
grip.hasAngularVelocity = false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (targetRay !== null) {
|
|
targetRay.visible = inputPose !== null;
|
|
}
|
|
|
|
if (grip !== null) {
|
|
grip.visible = gripPose !== null;
|
|
}
|
|
|
|
if (hand !== null) {
|
|
hand.visible = handPose !== null;
|
|
}
|
|
|
|
return this;
|
|
}
|
|
|
|
}
|
|
|
|
class WebXRManager extends EventDispatcher {
|
|
constructor(renderer, gl) {
|
|
super();
|
|
const scope = this;
|
|
const state = renderer.state;
|
|
let session = null;
|
|
let framebufferScaleFactor = 1.0;
|
|
let referenceSpace = null;
|
|
let referenceSpaceType = 'local-floor';
|
|
let pose = null;
|
|
let glBinding = null;
|
|
let glFramebuffer = null;
|
|
let glProjLayer = null;
|
|
let glBaseLayer = null;
|
|
let isMultisample = false;
|
|
let glMultisampledFramebuffer = null;
|
|
let glColorRenderbuffer = null;
|
|
let glDepthRenderbuffer = null;
|
|
let xrFrame = null;
|
|
let depthStyle = null;
|
|
let clearStyle = null;
|
|
const controllers = [];
|
|
const inputSourcesMap = new Map(); //
|
|
|
|
const cameraL = new PerspectiveCamera();
|
|
cameraL.layers.enable(1);
|
|
cameraL.viewport = new Vector4();
|
|
const cameraR = new PerspectiveCamera();
|
|
cameraR.layers.enable(2);
|
|
cameraR.viewport = new Vector4();
|
|
const cameras = [cameraL, cameraR];
|
|
const cameraVR = new ArrayCamera();
|
|
cameraVR.layers.enable(1);
|
|
cameraVR.layers.enable(2);
|
|
let _currentDepthNear = null;
|
|
let _currentDepthFar = null; //
|
|
|
|
this.cameraAutoUpdate = true;
|
|
this.enabled = false;
|
|
this.isPresenting = false;
|
|
|
|
this.getController = function (index) {
|
|
let controller = controllers[index];
|
|
|
|
if (controller === undefined) {
|
|
controller = new WebXRController();
|
|
controllers[index] = controller;
|
|
}
|
|
|
|
return controller.getTargetRaySpace();
|
|
};
|
|
|
|
this.getControllerGrip = function (index) {
|
|
let controller = controllers[index];
|
|
|
|
if (controller === undefined) {
|
|
controller = new WebXRController();
|
|
controllers[index] = controller;
|
|
}
|
|
|
|
return controller.getGripSpace();
|
|
};
|
|
|
|
this.getHand = function (index) {
|
|
let controller = controllers[index];
|
|
|
|
if (controller === undefined) {
|
|
controller = new WebXRController();
|
|
controllers[index] = controller;
|
|
}
|
|
|
|
return controller.getHandSpace();
|
|
}; //
|
|
|
|
|
|
function onSessionEvent(event) {
|
|
const controller = inputSourcesMap.get(event.inputSource);
|
|
|
|
if (controller) {
|
|
controller.dispatchEvent({
|
|
type: event.type,
|
|
data: event.inputSource
|
|
});
|
|
}
|
|
}
|
|
|
|
function onSessionEnd() {
|
|
inputSourcesMap.forEach(function (controller, inputSource) {
|
|
controller.disconnect(inputSource);
|
|
});
|
|
inputSourcesMap.clear();
|
|
_currentDepthNear = null;
|
|
_currentDepthFar = null; // restore framebuffer/rendering state
|
|
|
|
state.bindXRFramebuffer(null);
|
|
renderer.setRenderTarget(renderer.getRenderTarget());
|
|
if (glFramebuffer) gl.deleteFramebuffer(glFramebuffer);
|
|
if (glMultisampledFramebuffer) gl.deleteFramebuffer(glMultisampledFramebuffer);
|
|
if (glColorRenderbuffer) gl.deleteRenderbuffer(glColorRenderbuffer);
|
|
if (glDepthRenderbuffer) gl.deleteRenderbuffer(glDepthRenderbuffer);
|
|
glFramebuffer = null;
|
|
glMultisampledFramebuffer = null;
|
|
glColorRenderbuffer = null;
|
|
glDepthRenderbuffer = null;
|
|
glBaseLayer = null;
|
|
glProjLayer = null;
|
|
glBinding = null;
|
|
session = null; //
|
|
|
|
animation.stop();
|
|
scope.isPresenting = false;
|
|
scope.dispatchEvent({
|
|
type: 'sessionend'
|
|
});
|
|
}
|
|
|
|
this.setFramebufferScaleFactor = function (value) {
|
|
framebufferScaleFactor = value;
|
|
|
|
if (scope.isPresenting === true) {
|
|
console.warn('THREE.WebXRManager: Cannot change framebuffer scale while presenting.');
|
|
}
|
|
};
|
|
|
|
this.setReferenceSpaceType = function (value) {
|
|
referenceSpaceType = value;
|
|
|
|
if (scope.isPresenting === true) {
|
|
console.warn('THREE.WebXRManager: Cannot change reference space type while presenting.');
|
|
}
|
|
};
|
|
|
|
this.getReferenceSpace = function () {
|
|
return referenceSpace;
|
|
};
|
|
|
|
this.getBaseLayer = function () {
|
|
return glProjLayer !== null ? glProjLayer : glBaseLayer;
|
|
};
|
|
|
|
this.getBinding = function () {
|
|
return glBinding;
|
|
};
|
|
|
|
this.getFrame = function () {
|
|
return xrFrame;
|
|
};
|
|
|
|
this.getSession = function () {
|
|
return session;
|
|
};
|
|
|
|
this.setSession = async function (value) {
|
|
session = value;
|
|
|
|
if (session !== null) {
|
|
session.addEventListener('select', onSessionEvent);
|
|
session.addEventListener('selectstart', onSessionEvent);
|
|
session.addEventListener('selectend', onSessionEvent);
|
|
session.addEventListener('squeeze', onSessionEvent);
|
|
session.addEventListener('squeezestart', onSessionEvent);
|
|
session.addEventListener('squeezeend', onSessionEvent);
|
|
session.addEventListener('end', onSessionEnd);
|
|
session.addEventListener('inputsourceschange', onInputSourcesChange);
|
|
const attributes = gl.getContextAttributes();
|
|
|
|
if (attributes.xrCompatible !== true) {
|
|
await gl.makeXRCompatible();
|
|
}
|
|
|
|
if (session.renderState.layers === undefined) {
|
|
const layerInit = {
|
|
antialias: attributes.antialias,
|
|
alpha: attributes.alpha,
|
|
depth: attributes.depth,
|
|
stencil: attributes.stencil,
|
|
framebufferScaleFactor: framebufferScaleFactor
|
|
};
|
|
glBaseLayer = new XRWebGLLayer(session, gl, layerInit);
|
|
session.updateRenderState({
|
|
baseLayer: glBaseLayer
|
|
});
|
|
} else if (gl instanceof WebGLRenderingContext) {
|
|
// Use old style webgl layer because we can't use MSAA
|
|
// WebGL2 support.
|
|
const layerInit = {
|
|
antialias: true,
|
|
alpha: attributes.alpha,
|
|
depth: attributes.depth,
|
|
stencil: attributes.stencil,
|
|
framebufferScaleFactor: framebufferScaleFactor
|
|
};
|
|
glBaseLayer = new XRWebGLLayer(session, gl, layerInit);
|
|
session.updateRenderState({
|
|
layers: [glBaseLayer]
|
|
});
|
|
} else {
|
|
isMultisample = attributes.antialias;
|
|
let depthFormat = null;
|
|
|
|
if (attributes.depth) {
|
|
clearStyle = gl.DEPTH_BUFFER_BIT;
|
|
if (attributes.stencil) clearStyle |= gl.STENCIL_BUFFER_BIT;
|
|
depthStyle = attributes.stencil ? gl.DEPTH_STENCIL_ATTACHMENT : gl.DEPTH_ATTACHMENT;
|
|
depthFormat = attributes.stencil ? gl.DEPTH24_STENCIL8 : gl.DEPTH_COMPONENT24;
|
|
}
|
|
|
|
const projectionlayerInit = {
|
|
colorFormat: attributes.alpha ? gl.RGBA8 : gl.RGB8,
|
|
depthFormat: depthFormat,
|
|
scaleFactor: framebufferScaleFactor
|
|
};
|
|
glBinding = new XRWebGLBinding(session, gl);
|
|
glProjLayer = glBinding.createProjectionLayer(projectionlayerInit);
|
|
glFramebuffer = gl.createFramebuffer();
|
|
session.updateRenderState({
|
|
layers: [glProjLayer]
|
|
});
|
|
|
|
if (isMultisample) {
|
|
glMultisampledFramebuffer = gl.createFramebuffer();
|
|
glColorRenderbuffer = gl.createRenderbuffer();
|
|
gl.bindRenderbuffer(gl.RENDERBUFFER, glColorRenderbuffer);
|
|
gl.renderbufferStorageMultisample(gl.RENDERBUFFER, 4, gl.RGBA8, glProjLayer.textureWidth, glProjLayer.textureHeight);
|
|
state.bindFramebuffer(gl.FRAMEBUFFER, glMultisampledFramebuffer);
|
|
gl.framebufferRenderbuffer(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0, gl.RENDERBUFFER, glColorRenderbuffer);
|
|
gl.bindRenderbuffer(gl.RENDERBUFFER, null);
|
|
|
|
if (depthFormat !== null) {
|
|
glDepthRenderbuffer = gl.createRenderbuffer();
|
|
gl.bindRenderbuffer(gl.RENDERBUFFER, glDepthRenderbuffer);
|
|
gl.renderbufferStorageMultisample(gl.RENDERBUFFER, 4, depthFormat, glProjLayer.textureWidth, glProjLayer.textureHeight);
|
|
gl.framebufferRenderbuffer(gl.FRAMEBUFFER, depthStyle, gl.RENDERBUFFER, glDepthRenderbuffer);
|
|
gl.bindRenderbuffer(gl.RENDERBUFFER, null);
|
|
}
|
|
|
|
state.bindFramebuffer(gl.FRAMEBUFFER, null);
|
|
}
|
|
}
|
|
|
|
referenceSpace = await session.requestReferenceSpace(referenceSpaceType);
|
|
animation.setContext(session);
|
|
animation.start();
|
|
scope.isPresenting = true;
|
|
scope.dispatchEvent({
|
|
type: 'sessionstart'
|
|
});
|
|
}
|
|
};
|
|
|
|
function onInputSourcesChange(event) {
|
|
const inputSources = session.inputSources; // Assign inputSources to available controllers
|
|
|
|
for (let i = 0; i < controllers.length; i++) {
|
|
inputSourcesMap.set(inputSources[i], controllers[i]);
|
|
} // Notify disconnected
|
|
|
|
|
|
for (let i = 0; i < event.removed.length; i++) {
|
|
const inputSource = event.removed[i];
|
|
const controller = inputSourcesMap.get(inputSource);
|
|
|
|
if (controller) {
|
|
controller.dispatchEvent({
|
|
type: 'disconnected',
|
|
data: inputSource
|
|
});
|
|
inputSourcesMap.delete(inputSource);
|
|
}
|
|
} // Notify connected
|
|
|
|
|
|
for (let i = 0; i < event.added.length; i++) {
|
|
const inputSource = event.added[i];
|
|
const controller = inputSourcesMap.get(inputSource);
|
|
|
|
if (controller) {
|
|
controller.dispatchEvent({
|
|
type: 'connected',
|
|
data: inputSource
|
|
});
|
|
}
|
|
}
|
|
} //
|
|
|
|
|
|
const cameraLPos = new Vector3();
|
|
const cameraRPos = new Vector3();
|
|
/**
|
|
* Assumes 2 cameras that are parallel and share an X-axis, and that
|
|
* the cameras' projection and world matrices have already been set.
|
|
* And that near and far planes are identical for both cameras.
|
|
* Visualization of this technique: https://computergraphics.stackexchange.com/a/4765
|
|
*/
|
|
|
|
function setProjectionFromUnion(camera, cameraL, cameraR) {
|
|
cameraLPos.setFromMatrixPosition(cameraL.matrixWorld);
|
|
cameraRPos.setFromMatrixPosition(cameraR.matrixWorld);
|
|
const ipd = cameraLPos.distanceTo(cameraRPos);
|
|
const projL = cameraL.projectionMatrix.elements;
|
|
const projR = cameraR.projectionMatrix.elements; // VR systems will have identical far and near planes, and
|
|
// most likely identical top and bottom frustum extents.
|
|
// Use the left camera for these values.
|
|
|
|
const near = projL[14] / (projL[10] - 1);
|
|
const far = projL[14] / (projL[10] + 1);
|
|
const topFov = (projL[9] + 1) / projL[5];
|
|
const bottomFov = (projL[9] - 1) / projL[5];
|
|
const leftFov = (projL[8] - 1) / projL[0];
|
|
const rightFov = (projR[8] + 1) / projR[0];
|
|
const left = near * leftFov;
|
|
const right = near * rightFov; // Calculate the new camera's position offset from the
|
|
// left camera. xOffset should be roughly half `ipd`.
|
|
|
|
const zOffset = ipd / (-leftFov + rightFov);
|
|
const xOffset = zOffset * -leftFov; // TODO: Better way to apply this offset?
|
|
|
|
cameraL.matrixWorld.decompose(camera.position, camera.quaternion, camera.scale);
|
|
camera.translateX(xOffset);
|
|
camera.translateZ(zOffset);
|
|
camera.matrixWorld.compose(camera.position, camera.quaternion, camera.scale);
|
|
camera.matrixWorldInverse.copy(camera.matrixWorld).invert(); // Find the union of the frustum values of the cameras and scale
|
|
// the values so that the near plane's position does not change in world space,
|
|
// although must now be relative to the new union camera.
|
|
|
|
const near2 = near + zOffset;
|
|
const far2 = far + zOffset;
|
|
const left2 = left - xOffset;
|
|
const right2 = right + (ipd - xOffset);
|
|
const top2 = topFov * far / far2 * near2;
|
|
const bottom2 = bottomFov * far / far2 * near2;
|
|
camera.projectionMatrix.makePerspective(left2, right2, top2, bottom2, near2, far2);
|
|
}
|
|
|
|
function updateCamera(camera, parent) {
|
|
if (parent === null) {
|
|
camera.matrixWorld.copy(camera.matrix);
|
|
} else {
|
|
camera.matrixWorld.multiplyMatrices(parent.matrixWorld, camera.matrix);
|
|
}
|
|
|
|
camera.matrixWorldInverse.copy(camera.matrixWorld).invert();
|
|
}
|
|
|
|
this.updateCamera = function (camera) {
|
|
if (session === null) return;
|
|
cameraVR.near = cameraR.near = cameraL.near = camera.near;
|
|
cameraVR.far = cameraR.far = cameraL.far = camera.far;
|
|
|
|
if (_currentDepthNear !== cameraVR.near || _currentDepthFar !== cameraVR.far) {
|
|
// Note that the new renderState won't apply until the next frame. See #18320
|
|
session.updateRenderState({
|
|
depthNear: cameraVR.near,
|
|
depthFar: cameraVR.far
|
|
});
|
|
_currentDepthNear = cameraVR.near;
|
|
_currentDepthFar = cameraVR.far;
|
|
}
|
|
|
|
const parent = camera.parent;
|
|
const cameras = cameraVR.cameras;
|
|
updateCamera(cameraVR, parent);
|
|
|
|
for (let i = 0; i < cameras.length; i++) {
|
|
updateCamera(cameras[i], parent);
|
|
}
|
|
|
|
cameraVR.matrixWorld.decompose(cameraVR.position, cameraVR.quaternion, cameraVR.scale); // update user camera and its children
|
|
|
|
camera.position.copy(cameraVR.position);
|
|
camera.quaternion.copy(cameraVR.quaternion);
|
|
camera.scale.copy(cameraVR.scale);
|
|
camera.matrix.copy(cameraVR.matrix);
|
|
camera.matrixWorld.copy(cameraVR.matrixWorld);
|
|
const children = camera.children;
|
|
|
|
for (let i = 0, l = children.length; i < l; i++) {
|
|
children[i].updateMatrixWorld(true);
|
|
} // update projection matrix for proper view frustum culling
|
|
|
|
|
|
if (cameras.length === 2) {
|
|
setProjectionFromUnion(cameraVR, cameraL, cameraR);
|
|
} else {
|
|
// assume single camera setup (AR)
|
|
cameraVR.projectionMatrix.copy(cameraL.projectionMatrix);
|
|
}
|
|
};
|
|
|
|
this.getCamera = function () {
|
|
return cameraVR;
|
|
};
|
|
|
|
this.getFoveation = function () {
|
|
if (glProjLayer !== null) {
|
|
return glProjLayer.fixedFoveation;
|
|
}
|
|
|
|
if (glBaseLayer !== null) {
|
|
return glBaseLayer.fixedFoveation;
|
|
}
|
|
|
|
return undefined;
|
|
};
|
|
|
|
this.setFoveation = function (foveation) {
|
|
// 0 = no foveation = full resolution
|
|
// 1 = maximum foveation = the edges render at lower resolution
|
|
if (glProjLayer !== null) {
|
|
glProjLayer.fixedFoveation = foveation;
|
|
}
|
|
|
|
if (glBaseLayer !== null && glBaseLayer.fixedFoveation !== undefined) {
|
|
glBaseLayer.fixedFoveation = foveation;
|
|
}
|
|
}; // Animation Loop
|
|
|
|
|
|
let onAnimationFrameCallback = null;
|
|
|
|
function onAnimationFrame(time, frame) {
|
|
pose = frame.getViewerPose(referenceSpace);
|
|
xrFrame = frame;
|
|
|
|
if (pose !== null) {
|
|
const views = pose.views;
|
|
|
|
if (glBaseLayer !== null) {
|
|
state.bindXRFramebuffer(glBaseLayer.framebuffer);
|
|
}
|
|
|
|
let cameraVRNeedsUpdate = false; // check if it's necessary to rebuild cameraVR's camera list
|
|
|
|
if (views.length !== cameraVR.cameras.length) {
|
|
cameraVR.cameras.length = 0;
|
|
cameraVRNeedsUpdate = true;
|
|
}
|
|
|
|
for (let i = 0; i < views.length; i++) {
|
|
const view = views[i];
|
|
let viewport = null;
|
|
|
|
if (glBaseLayer !== null) {
|
|
viewport = glBaseLayer.getViewport(view);
|
|
} else {
|
|
const glSubImage = glBinding.getViewSubImage(glProjLayer, view);
|
|
state.bindXRFramebuffer(glFramebuffer);
|
|
|
|
if (glSubImage.depthStencilTexture !== undefined) {
|
|
gl.framebufferTexture2D(gl.FRAMEBUFFER, depthStyle, gl.TEXTURE_2D, glSubImage.depthStencilTexture, 0);
|
|
}
|
|
|
|
gl.framebufferTexture2D(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0, gl.TEXTURE_2D, glSubImage.colorTexture, 0);
|
|
viewport = glSubImage.viewport;
|
|
}
|
|
|
|
const camera = cameras[i];
|
|
camera.matrix.fromArray(view.transform.matrix);
|
|
camera.projectionMatrix.fromArray(view.projectionMatrix);
|
|
camera.viewport.set(viewport.x, viewport.y, viewport.width, viewport.height);
|
|
|
|
if (i === 0) {
|
|
cameraVR.matrix.copy(camera.matrix);
|
|
}
|
|
|
|
if (cameraVRNeedsUpdate === true) {
|
|
cameraVR.cameras.push(camera);
|
|
}
|
|
}
|
|
|
|
if (isMultisample) {
|
|
state.bindXRFramebuffer(glMultisampledFramebuffer);
|
|
if (clearStyle !== null) gl.clear(clearStyle);
|
|
}
|
|
} //
|
|
|
|
|
|
const inputSources = session.inputSources;
|
|
|
|
for (let i = 0; i < controllers.length; i++) {
|
|
const controller = controllers[i];
|
|
const inputSource = inputSources[i];
|
|
controller.update(inputSource, frame, referenceSpace);
|
|
}
|
|
|
|
if (onAnimationFrameCallback) onAnimationFrameCallback(time, frame);
|
|
|
|
if (isMultisample) {
|
|
const width = glProjLayer.textureWidth;
|
|
const height = glProjLayer.textureHeight;
|
|
state.bindFramebuffer(gl.READ_FRAMEBUFFER, glMultisampledFramebuffer);
|
|
state.bindFramebuffer(gl.DRAW_FRAMEBUFFER, glFramebuffer); // Invalidate the depth here to avoid flush of the depth data to main memory.
|
|
|
|
gl.invalidateFramebuffer(gl.READ_FRAMEBUFFER, [depthStyle]);
|
|
gl.invalidateFramebuffer(gl.DRAW_FRAMEBUFFER, [depthStyle]);
|
|
gl.blitFramebuffer(0, 0, width, height, 0, 0, width, height, gl.COLOR_BUFFER_BIT, gl.NEAREST); // Invalidate the MSAA buffer because it's not needed anymore.
|
|
|
|
gl.invalidateFramebuffer(gl.READ_FRAMEBUFFER, [gl.COLOR_ATTACHMENT0]);
|
|
state.bindFramebuffer(gl.READ_FRAMEBUFFER, null);
|
|
state.bindFramebuffer(gl.DRAW_FRAMEBUFFER, null);
|
|
state.bindFramebuffer(gl.FRAMEBUFFER, glMultisampledFramebuffer);
|
|
}
|
|
|
|
xrFrame = null;
|
|
}
|
|
|
|
const animation = new WebGLAnimation();
|
|
animation.setAnimationLoop(onAnimationFrame);
|
|
|
|
this.setAnimationLoop = function (callback) {
|
|
onAnimationFrameCallback = callback;
|
|
};
|
|
|
|
this.dispose = function () {};
|
|
}
|
|
|
|
}
|
|
|
|
function WebGLMaterials(properties) {
|
|
function refreshFogUniforms(uniforms, fog) {
|
|
uniforms.fogColor.value.copy(fog.color);
|
|
|
|
if (fog.isFog) {
|
|
uniforms.fogNear.value = fog.near;
|
|
uniforms.fogFar.value = fog.far;
|
|
} else if (fog.isFogExp2) {
|
|
uniforms.fogDensity.value = fog.density;
|
|
}
|
|
}
|
|
|
|
function refreshMaterialUniforms(uniforms, material, pixelRatio, height, transmissionRenderTarget) {
|
|
if (material.isMeshBasicMaterial) {
|
|
refreshUniformsCommon(uniforms, material);
|
|
} else if (material.isMeshLambertMaterial) {
|
|
refreshUniformsCommon(uniforms, material);
|
|
refreshUniformsLambert(uniforms, material);
|
|
} else if (material.isMeshToonMaterial) {
|
|
refreshUniformsCommon(uniforms, material);
|
|
refreshUniformsToon(uniforms, material);
|
|
} else if (material.isMeshPhongMaterial) {
|
|
refreshUniformsCommon(uniforms, material);
|
|
refreshUniformsPhong(uniforms, material);
|
|
} else if (material.isMeshStandardMaterial) {
|
|
refreshUniformsCommon(uniforms, material);
|
|
|
|
if (material.isMeshPhysicalMaterial) {
|
|
refreshUniformsPhysical(uniforms, material, transmissionRenderTarget);
|
|
} else {
|
|
refreshUniformsStandard(uniforms, material);
|
|
}
|
|
} else if (material.isMeshMatcapMaterial) {
|
|
refreshUniformsCommon(uniforms, material);
|
|
refreshUniformsMatcap(uniforms, material);
|
|
} else if (material.isMeshDepthMaterial) {
|
|
refreshUniformsCommon(uniforms, material);
|
|
refreshUniformsDepth(uniforms, material);
|
|
} else if (material.isMeshDistanceMaterial) {
|
|
refreshUniformsCommon(uniforms, material);
|
|
refreshUniformsDistance(uniforms, material);
|
|
} else if (material.isMeshNormalMaterial) {
|
|
refreshUniformsCommon(uniforms, material);
|
|
refreshUniformsNormal(uniforms, material);
|
|
} else if (material.isLineBasicMaterial) {
|
|
refreshUniformsLine(uniforms, material);
|
|
|
|
if (material.isLineDashedMaterial) {
|
|
refreshUniformsDash(uniforms, material);
|
|
}
|
|
} else if (material.isPointsMaterial) {
|
|
refreshUniformsPoints(uniforms, material, pixelRatio, height);
|
|
} else if (material.isSpriteMaterial) {
|
|
refreshUniformsSprites(uniforms, material);
|
|
} else if (material.isShadowMaterial) {
|
|
uniforms.color.value.copy(material.color);
|
|
uniforms.opacity.value = material.opacity;
|
|
} else if (material.isShaderMaterial) {
|
|
material.uniformsNeedUpdate = false; // #15581
|
|
}
|
|
}
|
|
|
|
function refreshUniformsCommon(uniforms, material) {
|
|
uniforms.opacity.value = material.opacity;
|
|
|
|
if (material.color) {
|
|
uniforms.diffuse.value.copy(material.color);
|
|
}
|
|
|
|
if (material.emissive) {
|
|
uniforms.emissive.value.copy(material.emissive).multiplyScalar(material.emissiveIntensity);
|
|
}
|
|
|
|
if (material.map) {
|
|
uniforms.map.value = material.map;
|
|
}
|
|
|
|
if (material.alphaMap) {
|
|
uniforms.alphaMap.value = material.alphaMap;
|
|
}
|
|
|
|
if (material.specularMap) {
|
|
uniforms.specularMap.value = material.specularMap;
|
|
}
|
|
|
|
if (material.alphaTest > 0) {
|
|
uniforms.alphaTest.value = material.alphaTest;
|
|
}
|
|
|
|
const envMap = properties.get(material).envMap;
|
|
|
|
if (envMap) {
|
|
uniforms.envMap.value = envMap;
|
|
uniforms.flipEnvMap.value = envMap.isCubeTexture && envMap.isRenderTargetTexture === false ? -1 : 1;
|
|
uniforms.reflectivity.value = material.reflectivity;
|
|
uniforms.ior.value = material.ior;
|
|
uniforms.refractionRatio.value = material.refractionRatio;
|
|
|
|
const maxMipLevel = properties.get(envMap).__maxMipLevel;
|
|
|
|
if (maxMipLevel !== undefined) {
|
|
uniforms.maxMipLevel.value = maxMipLevel;
|
|
}
|
|
}
|
|
|
|
if (material.lightMap) {
|
|
uniforms.lightMap.value = material.lightMap;
|
|
uniforms.lightMapIntensity.value = material.lightMapIntensity;
|
|
}
|
|
|
|
if (material.aoMap) {
|
|
uniforms.aoMap.value = material.aoMap;
|
|
uniforms.aoMapIntensity.value = material.aoMapIntensity;
|
|
} // uv repeat and offset setting priorities
|
|
// 1. color map
|
|
// 2. specular map
|
|
// 3. displacementMap map
|
|
// 4. normal map
|
|
// 5. bump map
|
|
// 6. roughnessMap map
|
|
// 7. metalnessMap map
|
|
// 8. alphaMap map
|
|
// 9. emissiveMap map
|
|
// 10. clearcoat map
|
|
// 11. clearcoat normal map
|
|
// 12. clearcoat roughnessMap map
|
|
// 13. specular intensity map
|
|
// 14. specular tint map
|
|
// 15. transmission map
|
|
// 16. thickness map
|
|
|
|
|
|
let uvScaleMap;
|
|
|
|
if (material.map) {
|
|
uvScaleMap = material.map;
|
|
} else if (material.specularMap) {
|
|
uvScaleMap = material.specularMap;
|
|
} else if (material.displacementMap) {
|
|
uvScaleMap = material.displacementMap;
|
|
} else if (material.normalMap) {
|
|
uvScaleMap = material.normalMap;
|
|
} else if (material.bumpMap) {
|
|
uvScaleMap = material.bumpMap;
|
|
} else if (material.roughnessMap) {
|
|
uvScaleMap = material.roughnessMap;
|
|
} else if (material.metalnessMap) {
|
|
uvScaleMap = material.metalnessMap;
|
|
} else if (material.alphaMap) {
|
|
uvScaleMap = material.alphaMap;
|
|
} else if (material.emissiveMap) {
|
|
uvScaleMap = material.emissiveMap;
|
|
} else if (material.clearcoatMap) {
|
|
uvScaleMap = material.clearcoatMap;
|
|
} else if (material.clearcoatNormalMap) {
|
|
uvScaleMap = material.clearcoatNormalMap;
|
|
} else if (material.clearcoatRoughnessMap) {
|
|
uvScaleMap = material.clearcoatRoughnessMap;
|
|
} else if (material.specularIntensityMap) {
|
|
uvScaleMap = material.specularIntensityMap;
|
|
} else if (material.specularTintMap) {
|
|
uvScaleMap = material.specularTintMap;
|
|
} else if (material.transmissionMap) {
|
|
uvScaleMap = material.transmissionMap;
|
|
} else if (material.thicknessMap) {
|
|
uvScaleMap = material.thicknessMap;
|
|
}
|
|
|
|
if (uvScaleMap !== undefined) {
|
|
// backwards compatibility
|
|
if (uvScaleMap.isWebGLRenderTarget) {
|
|
uvScaleMap = uvScaleMap.texture;
|
|
}
|
|
|
|
if (uvScaleMap.matrixAutoUpdate === true) {
|
|
uvScaleMap.updateMatrix();
|
|
}
|
|
|
|
uniforms.uvTransform.value.copy(uvScaleMap.matrix);
|
|
} // uv repeat and offset setting priorities for uv2
|
|
// 1. ao map
|
|
// 2. light map
|
|
|
|
|
|
let uv2ScaleMap;
|
|
|
|
if (material.aoMap) {
|
|
uv2ScaleMap = material.aoMap;
|
|
} else if (material.lightMap) {
|
|
uv2ScaleMap = material.lightMap;
|
|
}
|
|
|
|
if (uv2ScaleMap !== undefined) {
|
|
// backwards compatibility
|
|
if (uv2ScaleMap.isWebGLRenderTarget) {
|
|
uv2ScaleMap = uv2ScaleMap.texture;
|
|
}
|
|
|
|
if (uv2ScaleMap.matrixAutoUpdate === true) {
|
|
uv2ScaleMap.updateMatrix();
|
|
}
|
|
|
|
uniforms.uv2Transform.value.copy(uv2ScaleMap.matrix);
|
|
}
|
|
}
|
|
|
|
function refreshUniformsLine(uniforms, material) {
|
|
uniforms.diffuse.value.copy(material.color);
|
|
uniforms.opacity.value = material.opacity;
|
|
}
|
|
|
|
function refreshUniformsDash(uniforms, material) {
|
|
uniforms.dashSize.value = material.dashSize;
|
|
uniforms.totalSize.value = material.dashSize + material.gapSize;
|
|
uniforms.scale.value = material.scale;
|
|
}
|
|
|
|
function refreshUniformsPoints(uniforms, material, pixelRatio, height) {
|
|
uniforms.diffuse.value.copy(material.color);
|
|
uniforms.opacity.value = material.opacity;
|
|
uniforms.size.value = material.size * pixelRatio;
|
|
uniforms.scale.value = height * 0.5;
|
|
|
|
if (material.map) {
|
|
uniforms.map.value = material.map;
|
|
}
|
|
|
|
if (material.alphaMap) {
|
|
uniforms.alphaMap.value = material.alphaMap;
|
|
}
|
|
|
|
if (material.alphaTest > 0) {
|
|
uniforms.alphaTest.value = material.alphaTest;
|
|
} // uv repeat and offset setting priorities
|
|
// 1. color map
|
|
// 2. alpha map
|
|
|
|
|
|
let uvScaleMap;
|
|
|
|
if (material.map) {
|
|
uvScaleMap = material.map;
|
|
} else if (material.alphaMap) {
|
|
uvScaleMap = material.alphaMap;
|
|
}
|
|
|
|
if (uvScaleMap !== undefined) {
|
|
if (uvScaleMap.matrixAutoUpdate === true) {
|
|
uvScaleMap.updateMatrix();
|
|
}
|
|
|
|
uniforms.uvTransform.value.copy(uvScaleMap.matrix);
|
|
}
|
|
}
|
|
|
|
function refreshUniformsSprites(uniforms, material) {
|
|
uniforms.diffuse.value.copy(material.color);
|
|
uniforms.opacity.value = material.opacity;
|
|
uniforms.rotation.value = material.rotation;
|
|
|
|
if (material.map) {
|
|
uniforms.map.value = material.map;
|
|
}
|
|
|
|
if (material.alphaMap) {
|
|
uniforms.alphaMap.value = material.alphaMap;
|
|
}
|
|
|
|
if (material.alphaTest > 0) {
|
|
uniforms.alphaTest.value = material.alphaTest;
|
|
} // uv repeat and offset setting priorities
|
|
// 1. color map
|
|
// 2. alpha map
|
|
|
|
|
|
let uvScaleMap;
|
|
|
|
if (material.map) {
|
|
uvScaleMap = material.map;
|
|
} else if (material.alphaMap) {
|
|
uvScaleMap = material.alphaMap;
|
|
}
|
|
|
|
if (uvScaleMap !== undefined) {
|
|
if (uvScaleMap.matrixAutoUpdate === true) {
|
|
uvScaleMap.updateMatrix();
|
|
}
|
|
|
|
uniforms.uvTransform.value.copy(uvScaleMap.matrix);
|
|
}
|
|
}
|
|
|
|
function refreshUniformsLambert(uniforms, material) {
|
|
if (material.emissiveMap) {
|
|
uniforms.emissiveMap.value = material.emissiveMap;
|
|
}
|
|
}
|
|
|
|
function refreshUniformsPhong(uniforms, material) {
|
|
uniforms.specular.value.copy(material.specular);
|
|
uniforms.shininess.value = Math.max(material.shininess, 1e-4); // to prevent pow( 0.0, 0.0 )
|
|
|
|
if (material.emissiveMap) {
|
|
uniforms.emissiveMap.value = material.emissiveMap;
|
|
}
|
|
|
|
if (material.bumpMap) {
|
|
uniforms.bumpMap.value = material.bumpMap;
|
|
uniforms.bumpScale.value = material.bumpScale;
|
|
if (material.side === BackSide) uniforms.bumpScale.value *= -1;
|
|
}
|
|
|
|
if (material.normalMap) {
|
|
uniforms.normalMap.value = material.normalMap;
|
|
uniforms.normalScale.value.copy(material.normalScale);
|
|
if (material.side === BackSide) uniforms.normalScale.value.negate();
|
|
}
|
|
|
|
if (material.displacementMap) {
|
|
uniforms.displacementMap.value = material.displacementMap;
|
|
uniforms.displacementScale.value = material.displacementScale;
|
|
uniforms.displacementBias.value = material.displacementBias;
|
|
}
|
|
}
|
|
|
|
function refreshUniformsToon(uniforms, material) {
|
|
if (material.gradientMap) {
|
|
uniforms.gradientMap.value = material.gradientMap;
|
|
}
|
|
|
|
if (material.emissiveMap) {
|
|
uniforms.emissiveMap.value = material.emissiveMap;
|
|
}
|
|
|
|
if (material.bumpMap) {
|
|
uniforms.bumpMap.value = material.bumpMap;
|
|
uniforms.bumpScale.value = material.bumpScale;
|
|
if (material.side === BackSide) uniforms.bumpScale.value *= -1;
|
|
}
|
|
|
|
if (material.normalMap) {
|
|
uniforms.normalMap.value = material.normalMap;
|
|
uniforms.normalScale.value.copy(material.normalScale);
|
|
if (material.side === BackSide) uniforms.normalScale.value.negate();
|
|
}
|
|
|
|
if (material.displacementMap) {
|
|
uniforms.displacementMap.value = material.displacementMap;
|
|
uniforms.displacementScale.value = material.displacementScale;
|
|
uniforms.displacementBias.value = material.displacementBias;
|
|
}
|
|
}
|
|
|
|
function refreshUniformsStandard(uniforms, material) {
|
|
uniforms.roughness.value = material.roughness;
|
|
uniforms.metalness.value = material.metalness;
|
|
|
|
if (material.roughnessMap) {
|
|
uniforms.roughnessMap.value = material.roughnessMap;
|
|
}
|
|
|
|
if (material.metalnessMap) {
|
|
uniforms.metalnessMap.value = material.metalnessMap;
|
|
}
|
|
|
|
if (material.emissiveMap) {
|
|
uniforms.emissiveMap.value = material.emissiveMap;
|
|
}
|
|
|
|
if (material.bumpMap) {
|
|
uniforms.bumpMap.value = material.bumpMap;
|
|
uniforms.bumpScale.value = material.bumpScale;
|
|
if (material.side === BackSide) uniforms.bumpScale.value *= -1;
|
|
}
|
|
|
|
if (material.normalMap) {
|
|
uniforms.normalMap.value = material.normalMap;
|
|
uniforms.normalScale.value.copy(material.normalScale);
|
|
if (material.side === BackSide) uniforms.normalScale.value.negate();
|
|
}
|
|
|
|
if (material.displacementMap) {
|
|
uniforms.displacementMap.value = material.displacementMap;
|
|
uniforms.displacementScale.value = material.displacementScale;
|
|
uniforms.displacementBias.value = material.displacementBias;
|
|
}
|
|
|
|
const envMap = properties.get(material).envMap;
|
|
|
|
if (envMap) {
|
|
//uniforms.envMap.value = material.envMap; // part of uniforms common
|
|
uniforms.envMapIntensity.value = material.envMapIntensity;
|
|
}
|
|
}
|
|
|
|
function refreshUniformsPhysical(uniforms, material, transmissionRenderTarget) {
|
|
refreshUniformsStandard(uniforms, material);
|
|
uniforms.ior.value = material.ior; // also part of uniforms common
|
|
|
|
if (material.sheen > 0) {
|
|
uniforms.sheenTint.value.copy(material.sheenTint).multiplyScalar(material.sheen);
|
|
uniforms.sheenRoughness.value = material.sheenRoughness;
|
|
}
|
|
|
|
if (material.clearcoat > 0) {
|
|
uniforms.clearcoat.value = material.clearcoat;
|
|
uniforms.clearcoatRoughness.value = material.clearcoatRoughness;
|
|
|
|
if (material.clearcoatMap) {
|
|
uniforms.clearcoatMap.value = material.clearcoatMap;
|
|
}
|
|
|
|
if (material.clearcoatRoughnessMap) {
|
|
uniforms.clearcoatRoughnessMap.value = material.clearcoatRoughnessMap;
|
|
}
|
|
|
|
if (material.clearcoatNormalMap) {
|
|
uniforms.clearcoatNormalScale.value.copy(material.clearcoatNormalScale);
|
|
uniforms.clearcoatNormalMap.value = material.clearcoatNormalMap;
|
|
|
|
if (material.side === BackSide) {
|
|
uniforms.clearcoatNormalScale.value.negate();
|
|
}
|
|
}
|
|
}
|
|
|
|
if (material.transmission > 0) {
|
|
uniforms.transmission.value = material.transmission;
|
|
uniforms.transmissionSamplerMap.value = transmissionRenderTarget.texture;
|
|
uniforms.transmissionSamplerSize.value.set(transmissionRenderTarget.width, transmissionRenderTarget.height);
|
|
|
|
if (material.transmissionMap) {
|
|
uniforms.transmissionMap.value = material.transmissionMap;
|
|
}
|
|
|
|
uniforms.thickness.value = material.thickness;
|
|
|
|
if (material.thicknessMap) {
|
|
uniforms.thicknessMap.value = material.thicknessMap;
|
|
}
|
|
|
|
uniforms.attenuationDistance.value = material.attenuationDistance;
|
|
uniforms.attenuationTint.value.copy(material.attenuationTint);
|
|
}
|
|
|
|
uniforms.specularIntensity.value = material.specularIntensity;
|
|
uniforms.specularTint.value.copy(material.specularTint);
|
|
|
|
if (material.specularIntensityMap) {
|
|
uniforms.specularIntensityMap.value = material.specularIntensityMap;
|
|
}
|
|
|
|
if (material.specularTintMap) {
|
|
uniforms.specularTintMap.value = material.specularTintMap;
|
|
}
|
|
}
|
|
|
|
function refreshUniformsMatcap(uniforms, material) {
|
|
if (material.matcap) {
|
|
uniforms.matcap.value = material.matcap;
|
|
}
|
|
|
|
if (material.bumpMap) {
|
|
uniforms.bumpMap.value = material.bumpMap;
|
|
uniforms.bumpScale.value = material.bumpScale;
|
|
if (material.side === BackSide) uniforms.bumpScale.value *= -1;
|
|
}
|
|
|
|
if (material.normalMap) {
|
|
uniforms.normalMap.value = material.normalMap;
|
|
uniforms.normalScale.value.copy(material.normalScale);
|
|
if (material.side === BackSide) uniforms.normalScale.value.negate();
|
|
}
|
|
|
|
if (material.displacementMap) {
|
|
uniforms.displacementMap.value = material.displacementMap;
|
|
uniforms.displacementScale.value = material.displacementScale;
|
|
uniforms.displacementBias.value = material.displacementBias;
|
|
}
|
|
}
|
|
|
|
function refreshUniformsDepth(uniforms, material) {
|
|
if (material.displacementMap) {
|
|
uniforms.displacementMap.value = material.displacementMap;
|
|
uniforms.displacementScale.value = material.displacementScale;
|
|
uniforms.displacementBias.value = material.displacementBias;
|
|
}
|
|
}
|
|
|
|
function refreshUniformsDistance(uniforms, material) {
|
|
if (material.displacementMap) {
|
|
uniforms.displacementMap.value = material.displacementMap;
|
|
uniforms.displacementScale.value = material.displacementScale;
|
|
uniforms.displacementBias.value = material.displacementBias;
|
|
}
|
|
|
|
uniforms.referencePosition.value.copy(material.referencePosition);
|
|
uniforms.nearDistance.value = material.nearDistance;
|
|
uniforms.farDistance.value = material.farDistance;
|
|
}
|
|
|
|
function refreshUniformsNormal(uniforms, material) {
|
|
if (material.bumpMap) {
|
|
uniforms.bumpMap.value = material.bumpMap;
|
|
uniforms.bumpScale.value = material.bumpScale;
|
|
if (material.side === BackSide) uniforms.bumpScale.value *= -1;
|
|
}
|
|
|
|
if (material.normalMap) {
|
|
uniforms.normalMap.value = material.normalMap;
|
|
uniforms.normalScale.value.copy(material.normalScale);
|
|
if (material.side === BackSide) uniforms.normalScale.value.negate();
|
|
}
|
|
|
|
if (material.displacementMap) {
|
|
uniforms.displacementMap.value = material.displacementMap;
|
|
uniforms.displacementScale.value = material.displacementScale;
|
|
uniforms.displacementBias.value = material.displacementBias;
|
|
}
|
|
}
|
|
|
|
return {
|
|
refreshFogUniforms: refreshFogUniforms,
|
|
refreshMaterialUniforms: refreshMaterialUniforms
|
|
};
|
|
}
|
|
|
|
function createCanvasElement() {
|
|
const canvas = createElementNS('canvas');
|
|
canvas.style.display = 'block';
|
|
return canvas;
|
|
}
|
|
|
|
function WebGLRenderer(parameters = {}) {
|
|
const _canvas = parameters.canvas !== undefined ? parameters.canvas : createCanvasElement(),
|
|
_context = parameters.context !== undefined ? parameters.context : null,
|
|
_alpha = parameters.alpha !== undefined ? parameters.alpha : false,
|
|
_depth = parameters.depth !== undefined ? parameters.depth : true,
|
|
_stencil = parameters.stencil !== undefined ? parameters.stencil : true,
|
|
_antialias = parameters.antialias !== undefined ? parameters.antialias : false,
|
|
_premultipliedAlpha = parameters.premultipliedAlpha !== undefined ? parameters.premultipliedAlpha : true,
|
|
_preserveDrawingBuffer = parameters.preserveDrawingBuffer !== undefined ? parameters.preserveDrawingBuffer : false,
|
|
_powerPreference = parameters.powerPreference !== undefined ? parameters.powerPreference : 'default',
|
|
_failIfMajorPerformanceCaveat = parameters.failIfMajorPerformanceCaveat !== undefined ? parameters.failIfMajorPerformanceCaveat : false;
|
|
|
|
let currentRenderList = null;
|
|
let currentRenderState = null; // render() can be called from within a callback triggered by another render.
|
|
// We track this so that the nested render call gets its list and state isolated from the parent render call.
|
|
|
|
const renderListStack = [];
|
|
const renderStateStack = []; // public properties
|
|
|
|
this.domElement = _canvas; // Debug configuration container
|
|
|
|
this.debug = {
|
|
/**
|
|
* Enables error checking and reporting when shader programs are being compiled
|
|
* @type {boolean}
|
|
*/
|
|
checkShaderErrors: true
|
|
}; // clearing
|
|
|
|
this.autoClear = true;
|
|
this.autoClearColor = true;
|
|
this.autoClearDepth = true;
|
|
this.autoClearStencil = true; // scene graph
|
|
|
|
this.sortObjects = true; // user-defined clipping
|
|
|
|
this.clippingPlanes = [];
|
|
this.localClippingEnabled = false; // physically based shading
|
|
|
|
this.gammaFactor = 2.0; // for backwards compatibility
|
|
|
|
this.outputEncoding = LinearEncoding; // physical lights
|
|
|
|
this.physicallyCorrectLights = false; // tone mapping
|
|
|
|
this.toneMapping = NoToneMapping;
|
|
this.toneMappingExposure = 1.0; // internal properties
|
|
|
|
const _this = this;
|
|
|
|
let _isContextLost = false; // internal state cache
|
|
|
|
let _currentActiveCubeFace = 0;
|
|
let _currentActiveMipmapLevel = 0;
|
|
let _currentRenderTarget = null;
|
|
|
|
let _currentMaterialId = -1;
|
|
|
|
let _currentCamera = null;
|
|
|
|
const _currentViewport = new Vector4();
|
|
|
|
const _currentScissor = new Vector4();
|
|
|
|
let _currentScissorTest = null; //
|
|
|
|
let _width = _canvas.width;
|
|
let _height = _canvas.height;
|
|
let _pixelRatio = 1;
|
|
let _opaqueSort = null;
|
|
let _transparentSort = null;
|
|
|
|
const _viewport = new Vector4(0, 0, _width, _height);
|
|
|
|
const _scissor = new Vector4(0, 0, _width, _height);
|
|
|
|
let _scissorTest = false; //
|
|
|
|
const _currentDrawBuffers = []; // frustum
|
|
|
|
const _frustum = new Frustum(); // clipping
|
|
|
|
|
|
let _clippingEnabled = false;
|
|
let _localClippingEnabled = false; // transmission
|
|
|
|
let _transmissionRenderTarget = null; // camera matrices cache
|
|
|
|
const _projScreenMatrix = new Matrix4();
|
|
|
|
const _vector3 = new Vector3();
|
|
|
|
const _emptyScene = {
|
|
background: null,
|
|
fog: null,
|
|
environment: null,
|
|
overrideMaterial: null,
|
|
isScene: true
|
|
};
|
|
|
|
function getTargetPixelRatio() {
|
|
return _currentRenderTarget === null ? _pixelRatio : 1;
|
|
} // initialize
|
|
|
|
|
|
let _gl = _context;
|
|
|
|
function getContext(contextNames, contextAttributes) {
|
|
for (let i = 0; i < contextNames.length; i++) {
|
|
const contextName = contextNames[i];
|
|
|
|
const context = _canvas.getContext(contextName, contextAttributes);
|
|
|
|
if (context !== null) return context;
|
|
}
|
|
|
|
return null;
|
|
}
|
|
|
|
try {
|
|
const contextAttributes = {
|
|
alpha: _alpha,
|
|
depth: _depth,
|
|
stencil: _stencil,
|
|
antialias: _antialias,
|
|
premultipliedAlpha: _premultipliedAlpha,
|
|
preserveDrawingBuffer: _preserveDrawingBuffer,
|
|
powerPreference: _powerPreference,
|
|
failIfMajorPerformanceCaveat: _failIfMajorPerformanceCaveat
|
|
}; // event listeners must be registered before WebGL context is created, see #12753
|
|
|
|
_canvas.addEventListener('webglcontextlost', onContextLost, false);
|
|
|
|
_canvas.addEventListener('webglcontextrestored', onContextRestore, false);
|
|
|
|
if (_gl === null) {
|
|
const contextNames = ['webgl2', 'webgl', 'experimental-webgl'];
|
|
|
|
if (_this.isWebGL1Renderer === true) {
|
|
contextNames.shift();
|
|
}
|
|
|
|
_gl = getContext(contextNames, contextAttributes);
|
|
|
|
if (_gl === null) {
|
|
if (getContext(contextNames)) {
|
|
throw new Error('Error creating WebGL context with your selected attributes.');
|
|
} else {
|
|
throw new Error('Error creating WebGL context.');
|
|
}
|
|
}
|
|
} // Some experimental-webgl implementations do not have getShaderPrecisionFormat
|
|
|
|
|
|
if (_gl.getShaderPrecisionFormat === undefined) {
|
|
_gl.getShaderPrecisionFormat = function () {
|
|
return {
|
|
'rangeMin': 1,
|
|
'rangeMax': 1,
|
|
'precision': 1
|
|
};
|
|
};
|
|
}
|
|
} catch (error) {
|
|
console.error('THREE.WebGLRenderer: ' + error.message);
|
|
throw error;
|
|
}
|
|
|
|
let extensions, capabilities, state, info;
|
|
let properties, textures, cubemaps, cubeuvmaps, attributes, geometries, objects;
|
|
let programCache, materials, renderLists, renderStates, clipping, shadowMap;
|
|
let background, morphtargets, bufferRenderer, indexedBufferRenderer;
|
|
let utils, bindingStates;
|
|
|
|
function initGLContext() {
|
|
extensions = new WebGLExtensions(_gl);
|
|
capabilities = new WebGLCapabilities(_gl, extensions, parameters);
|
|
extensions.init(capabilities);
|
|
utils = new WebGLUtils(_gl, extensions, capabilities);
|
|
state = new WebGLState(_gl, extensions, capabilities);
|
|
_currentDrawBuffers[0] = _gl.BACK;
|
|
info = new WebGLInfo(_gl);
|
|
properties = new WebGLProperties();
|
|
textures = new WebGLTextures(_gl, extensions, state, properties, capabilities, utils, info);
|
|
cubemaps = new WebGLCubeMaps(_this);
|
|
cubeuvmaps = new WebGLCubeUVMaps(_this);
|
|
attributes = new WebGLAttributes(_gl, capabilities);
|
|
bindingStates = new WebGLBindingStates(_gl, extensions, attributes, capabilities);
|
|
geometries = new WebGLGeometries(_gl, attributes, info, bindingStates);
|
|
objects = new WebGLObjects(_gl, geometries, attributes, info);
|
|
morphtargets = new WebGLMorphtargets(_gl, capabilities, textures);
|
|
clipping = new WebGLClipping(properties);
|
|
programCache = new WebGLPrograms(_this, cubemaps, cubeuvmaps, extensions, capabilities, bindingStates, clipping);
|
|
materials = new WebGLMaterials(properties);
|
|
renderLists = new WebGLRenderLists(properties);
|
|
renderStates = new WebGLRenderStates(extensions, capabilities);
|
|
background = new WebGLBackground(_this, cubemaps, state, objects, _premultipliedAlpha);
|
|
shadowMap = new WebGLShadowMap(_this, objects, capabilities);
|
|
bufferRenderer = new WebGLBufferRenderer(_gl, extensions, info, capabilities);
|
|
indexedBufferRenderer = new WebGLIndexedBufferRenderer(_gl, extensions, info, capabilities);
|
|
info.programs = programCache.programs;
|
|
_this.capabilities = capabilities;
|
|
_this.extensions = extensions;
|
|
_this.properties = properties;
|
|
_this.renderLists = renderLists;
|
|
_this.shadowMap = shadowMap;
|
|
_this.state = state;
|
|
_this.info = info;
|
|
}
|
|
|
|
initGLContext(); // xr
|
|
|
|
const xr = new WebXRManager(_this, _gl);
|
|
this.xr = xr; // API
|
|
|
|
this.getContext = function () {
|
|
return _gl;
|
|
};
|
|
|
|
this.getContextAttributes = function () {
|
|
return _gl.getContextAttributes();
|
|
};
|
|
|
|
this.forceContextLoss = function () {
|
|
const extension = extensions.get('WEBGL_lose_context');
|
|
if (extension) extension.loseContext();
|
|
};
|
|
|
|
this.forceContextRestore = function () {
|
|
const extension = extensions.get('WEBGL_lose_context');
|
|
if (extension) extension.restoreContext();
|
|
};
|
|
|
|
this.getPixelRatio = function () {
|
|
return _pixelRatio;
|
|
};
|
|
|
|
this.setPixelRatio = function (value) {
|
|
if (value === undefined) return;
|
|
_pixelRatio = value;
|
|
this.setSize(_width, _height, false);
|
|
};
|
|
|
|
this.getSize = function (target) {
|
|
return target.set(_width, _height);
|
|
};
|
|
|
|
this.setSize = function (width, height, updateStyle) {
|
|
if (xr.isPresenting) {
|
|
console.warn('THREE.WebGLRenderer: Can\'t change size while VR device is presenting.');
|
|
return;
|
|
}
|
|
|
|
_width = width;
|
|
_height = height;
|
|
_canvas.width = Math.floor(width * _pixelRatio);
|
|
_canvas.height = Math.floor(height * _pixelRatio);
|
|
|
|
if (updateStyle !== false) {
|
|
_canvas.style.width = width + 'px';
|
|
_canvas.style.height = height + 'px';
|
|
}
|
|
|
|
this.setViewport(0, 0, width, height);
|
|
};
|
|
|
|
this.getDrawingBufferSize = function (target) {
|
|
return target.set(_width * _pixelRatio, _height * _pixelRatio).floor();
|
|
};
|
|
|
|
this.setDrawingBufferSize = function (width, height, pixelRatio) {
|
|
_width = width;
|
|
_height = height;
|
|
_pixelRatio = pixelRatio;
|
|
_canvas.width = Math.floor(width * pixelRatio);
|
|
_canvas.height = Math.floor(height * pixelRatio);
|
|
this.setViewport(0, 0, width, height);
|
|
};
|
|
|
|
this.getCurrentViewport = function (target) {
|
|
return target.copy(_currentViewport);
|
|
};
|
|
|
|
this.getViewport = function (target) {
|
|
return target.copy(_viewport);
|
|
};
|
|
|
|
this.setViewport = function (x, y, width, height) {
|
|
if (x.isVector4) {
|
|
_viewport.set(x.x, x.y, x.z, x.w);
|
|
} else {
|
|
_viewport.set(x, y, width, height);
|
|
}
|
|
|
|
state.viewport(_currentViewport.copy(_viewport).multiplyScalar(_pixelRatio).floor());
|
|
};
|
|
|
|
this.getScissor = function (target) {
|
|
return target.copy(_scissor);
|
|
};
|
|
|
|
this.setScissor = function (x, y, width, height) {
|
|
if (x.isVector4) {
|
|
_scissor.set(x.x, x.y, x.z, x.w);
|
|
} else {
|
|
_scissor.set(x, y, width, height);
|
|
}
|
|
|
|
state.scissor(_currentScissor.copy(_scissor).multiplyScalar(_pixelRatio).floor());
|
|
};
|
|
|
|
this.getScissorTest = function () {
|
|
return _scissorTest;
|
|
};
|
|
|
|
this.setScissorTest = function (boolean) {
|
|
state.setScissorTest(_scissorTest = boolean);
|
|
};
|
|
|
|
this.setOpaqueSort = function (method) {
|
|
_opaqueSort = method;
|
|
};
|
|
|
|
this.setTransparentSort = function (method) {
|
|
_transparentSort = method;
|
|
}; // Clearing
|
|
|
|
|
|
this.getClearColor = function (target) {
|
|
return target.copy(background.getClearColor());
|
|
};
|
|
|
|
this.setClearColor = function () {
|
|
background.setClearColor.apply(background, arguments);
|
|
};
|
|
|
|
this.getClearAlpha = function () {
|
|
return background.getClearAlpha();
|
|
};
|
|
|
|
this.setClearAlpha = function () {
|
|
background.setClearAlpha.apply(background, arguments);
|
|
};
|
|
|
|
this.clear = function (color, depth, stencil) {
|
|
let bits = 0;
|
|
if (color === undefined || color) bits |= _gl.COLOR_BUFFER_BIT;
|
|
if (depth === undefined || depth) bits |= _gl.DEPTH_BUFFER_BIT;
|
|
if (stencil === undefined || stencil) bits |= _gl.STENCIL_BUFFER_BIT;
|
|
|
|
_gl.clear(bits);
|
|
};
|
|
|
|
this.clearColor = function () {
|
|
this.clear(true, false, false);
|
|
};
|
|
|
|
this.clearDepth = function () {
|
|
this.clear(false, true, false);
|
|
};
|
|
|
|
this.clearStencil = function () {
|
|
this.clear(false, false, true);
|
|
}; //
|
|
|
|
|
|
this.dispose = function () {
|
|
_canvas.removeEventListener('webglcontextlost', onContextLost, false);
|
|
|
|
_canvas.removeEventListener('webglcontextrestored', onContextRestore, false);
|
|
|
|
renderLists.dispose();
|
|
renderStates.dispose();
|
|
properties.dispose();
|
|
cubemaps.dispose();
|
|
cubeuvmaps.dispose();
|
|
objects.dispose();
|
|
bindingStates.dispose();
|
|
xr.dispose();
|
|
xr.removeEventListener('sessionstart', onXRSessionStart);
|
|
xr.removeEventListener('sessionend', onXRSessionEnd);
|
|
|
|
if (_transmissionRenderTarget) {
|
|
_transmissionRenderTarget.dispose();
|
|
|
|
_transmissionRenderTarget = null;
|
|
}
|
|
|
|
animation.stop();
|
|
}; // Events
|
|
|
|
|
|
function onContextLost(event) {
|
|
event.preventDefault();
|
|
console.log('THREE.WebGLRenderer: Context Lost.');
|
|
_isContextLost = true;
|
|
}
|
|
|
|
function onContextRestore() {
|
|
console.log('THREE.WebGLRenderer: Context Restored.');
|
|
_isContextLost = false;
|
|
const infoAutoReset = info.autoReset;
|
|
const shadowMapEnabled = shadowMap.enabled;
|
|
const shadowMapAutoUpdate = shadowMap.autoUpdate;
|
|
const shadowMapNeedsUpdate = shadowMap.needsUpdate;
|
|
const shadowMapType = shadowMap.type;
|
|
initGLContext();
|
|
info.autoReset = infoAutoReset;
|
|
shadowMap.enabled = shadowMapEnabled;
|
|
shadowMap.autoUpdate = shadowMapAutoUpdate;
|
|
shadowMap.needsUpdate = shadowMapNeedsUpdate;
|
|
shadowMap.type = shadowMapType;
|
|
}
|
|
|
|
function onMaterialDispose(event) {
|
|
const material = event.target;
|
|
material.removeEventListener('dispose', onMaterialDispose);
|
|
deallocateMaterial(material);
|
|
} // Buffer deallocation
|
|
|
|
|
|
function deallocateMaterial(material) {
|
|
releaseMaterialProgramReferences(material);
|
|
properties.remove(material);
|
|
}
|
|
|
|
function releaseMaterialProgramReferences(material) {
|
|
const programs = properties.get(material).programs;
|
|
|
|
if (programs !== undefined) {
|
|
programs.forEach(function (program) {
|
|
programCache.releaseProgram(program);
|
|
});
|
|
}
|
|
} // Buffer rendering
|
|
|
|
|
|
this.renderBufferDirect = function (camera, scene, geometry, material, object, group) {
|
|
if (scene === null) scene = _emptyScene; // renderBufferDirect second parameter used to be fog (could be null)
|
|
|
|
const frontFaceCW = object.isMesh && object.matrixWorld.determinant() < 0;
|
|
const program = setProgram(camera, scene, geometry, material, object);
|
|
state.setMaterial(material, frontFaceCW); //
|
|
|
|
let index = geometry.index;
|
|
const position = geometry.attributes.position; //
|
|
|
|
if (index === null) {
|
|
if (position === undefined || position.count === 0) return;
|
|
} else if (index.count === 0) {
|
|
return;
|
|
} //
|
|
|
|
|
|
let rangeFactor = 1;
|
|
|
|
if (material.wireframe === true) {
|
|
index = geometries.getWireframeAttribute(geometry);
|
|
rangeFactor = 2;
|
|
}
|
|
|
|
bindingStates.setup(object, material, program, geometry, index);
|
|
let attribute;
|
|
let renderer = bufferRenderer;
|
|
|
|
if (index !== null) {
|
|
attribute = attributes.get(index);
|
|
renderer = indexedBufferRenderer;
|
|
renderer.setIndex(attribute);
|
|
} //
|
|
|
|
|
|
const dataCount = index !== null ? index.count : position.count;
|
|
const rangeStart = geometry.drawRange.start * rangeFactor;
|
|
const rangeCount = geometry.drawRange.count * rangeFactor;
|
|
const groupStart = group !== null ? group.start * rangeFactor : 0;
|
|
const groupCount = group !== null ? group.count * rangeFactor : Infinity;
|
|
const drawStart = Math.max(rangeStart, groupStart);
|
|
const drawEnd = Math.min(dataCount, rangeStart + rangeCount, groupStart + groupCount) - 1;
|
|
const drawCount = Math.max(0, drawEnd - drawStart + 1);
|
|
if (drawCount === 0) return; //
|
|
|
|
if (object.isMesh) {
|
|
if (material.wireframe === true) {
|
|
state.setLineWidth(material.wireframeLinewidth * getTargetPixelRatio());
|
|
renderer.setMode(_gl.LINES);
|
|
} else {
|
|
renderer.setMode(_gl.TRIANGLES);
|
|
}
|
|
} else if (object.isLine) {
|
|
let lineWidth = material.linewidth;
|
|
if (lineWidth === undefined) lineWidth = 1; // Not using Line*Material
|
|
|
|
state.setLineWidth(lineWidth * getTargetPixelRatio());
|
|
|
|
if (object.isLineSegments) {
|
|
renderer.setMode(_gl.LINES);
|
|
} else if (object.isLineLoop) {
|
|
renderer.setMode(_gl.LINE_LOOP);
|
|
} else {
|
|
renderer.setMode(_gl.LINE_STRIP);
|
|
}
|
|
} else if (object.isPoints) {
|
|
renderer.setMode(_gl.POINTS);
|
|
} else if (object.isSprite) {
|
|
renderer.setMode(_gl.TRIANGLES);
|
|
}
|
|
|
|
if (object.isInstancedMesh) {
|
|
renderer.renderInstances(drawStart, drawCount, object.count);
|
|
} else if (geometry.isInstancedBufferGeometry) {
|
|
const instanceCount = Math.min(geometry.instanceCount, geometry._maxInstanceCount);
|
|
renderer.renderInstances(drawStart, drawCount, instanceCount);
|
|
} else {
|
|
renderer.render(drawStart, drawCount);
|
|
}
|
|
}; // Compile
|
|
|
|
|
|
this.compile = function (scene, camera) {
|
|
currentRenderState = renderStates.get(scene);
|
|
currentRenderState.init();
|
|
renderStateStack.push(currentRenderState);
|
|
scene.traverseVisible(function (object) {
|
|
if (object.isLight && object.layers.test(camera.layers)) {
|
|
currentRenderState.pushLight(object);
|
|
|
|
if (object.castShadow) {
|
|
currentRenderState.pushShadow(object);
|
|
}
|
|
}
|
|
});
|
|
currentRenderState.setupLights(_this.physicallyCorrectLights);
|
|
scene.traverse(function (object) {
|
|
const material = object.material;
|
|
|
|
if (material) {
|
|
if (Array.isArray(material)) {
|
|
for (let i = 0; i < material.length; i++) {
|
|
const material2 = material[i];
|
|
getProgram(material2, scene, object);
|
|
}
|
|
} else {
|
|
getProgram(material, scene, object);
|
|
}
|
|
}
|
|
});
|
|
renderStateStack.pop();
|
|
currentRenderState = null;
|
|
}; // Animation Loop
|
|
|
|
|
|
let onAnimationFrameCallback = null;
|
|
|
|
function onAnimationFrame(time) {
|
|
if (onAnimationFrameCallback) onAnimationFrameCallback(time);
|
|
}
|
|
|
|
function onXRSessionStart() {
|
|
animation.stop();
|
|
}
|
|
|
|
function onXRSessionEnd() {
|
|
animation.start();
|
|
}
|
|
|
|
const animation = new WebGLAnimation();
|
|
animation.setAnimationLoop(onAnimationFrame);
|
|
if (typeof window !== 'undefined') animation.setContext(window);
|
|
|
|
this.setAnimationLoop = function (callback) {
|
|
onAnimationFrameCallback = callback;
|
|
xr.setAnimationLoop(callback);
|
|
callback === null ? animation.stop() : animation.start();
|
|
};
|
|
|
|
xr.addEventListener('sessionstart', onXRSessionStart);
|
|
xr.addEventListener('sessionend', onXRSessionEnd); // Rendering
|
|
|
|
this.render = function (scene, camera) {
|
|
if (camera !== undefined && camera.isCamera !== true) {
|
|
console.error('THREE.WebGLRenderer.render: camera is not an instance of THREE.Camera.');
|
|
return;
|
|
}
|
|
|
|
if (_isContextLost === true) return; // update scene graph
|
|
|
|
if (scene.autoUpdate === true) scene.updateMatrixWorld(); // update camera matrices and frustum
|
|
|
|
if (camera.parent === null) camera.updateMatrixWorld();
|
|
|
|
if (xr.enabled === true && xr.isPresenting === true) {
|
|
if (xr.cameraAutoUpdate === true) xr.updateCamera(camera);
|
|
camera = xr.getCamera(); // use XR camera for rendering
|
|
} //
|
|
|
|
|
|
if (scene.isScene === true) scene.onBeforeRender(_this, scene, camera, _currentRenderTarget);
|
|
currentRenderState = renderStates.get(scene, renderStateStack.length);
|
|
currentRenderState.init();
|
|
renderStateStack.push(currentRenderState);
|
|
|
|
_projScreenMatrix.multiplyMatrices(camera.projectionMatrix, camera.matrixWorldInverse);
|
|
|
|
_frustum.setFromProjectionMatrix(_projScreenMatrix);
|
|
|
|
_localClippingEnabled = this.localClippingEnabled;
|
|
_clippingEnabled = clipping.init(this.clippingPlanes, _localClippingEnabled, camera);
|
|
currentRenderList = renderLists.get(scene, renderListStack.length);
|
|
currentRenderList.init();
|
|
renderListStack.push(currentRenderList);
|
|
projectObject(scene, camera, 0, _this.sortObjects);
|
|
currentRenderList.finish();
|
|
|
|
if (_this.sortObjects === true) {
|
|
currentRenderList.sort(_opaqueSort, _transparentSort);
|
|
} //
|
|
|
|
|
|
if (_clippingEnabled === true) clipping.beginShadows();
|
|
const shadowsArray = currentRenderState.state.shadowsArray;
|
|
shadowMap.render(shadowsArray, scene, camera);
|
|
if (_clippingEnabled === true) clipping.endShadows(); //
|
|
|
|
if (this.info.autoReset === true) this.info.reset(); //
|
|
|
|
background.render(currentRenderList, scene); // render scene
|
|
|
|
currentRenderState.setupLights(_this.physicallyCorrectLights);
|
|
|
|
if (camera.isArrayCamera) {
|
|
const cameras = camera.cameras;
|
|
|
|
for (let i = 0, l = cameras.length; i < l; i++) {
|
|
const camera2 = cameras[i];
|
|
renderScene(currentRenderList, scene, camera2, camera2.viewport);
|
|
}
|
|
} else {
|
|
renderScene(currentRenderList, scene, camera);
|
|
} //
|
|
|
|
|
|
if (_currentRenderTarget !== null) {
|
|
// resolve multisample renderbuffers to a single-sample texture if necessary
|
|
textures.updateMultisampleRenderTarget(_currentRenderTarget); // Generate mipmap if we're using any kind of mipmap filtering
|
|
|
|
textures.updateRenderTargetMipmap(_currentRenderTarget);
|
|
} //
|
|
|
|
|
|
if (scene.isScene === true) scene.onAfterRender(_this, scene, camera); // Ensure depth buffer writing is enabled so it can be cleared on next render
|
|
|
|
state.buffers.depth.setTest(true);
|
|
state.buffers.depth.setMask(true);
|
|
state.buffers.color.setMask(true);
|
|
state.setPolygonOffset(false); // _gl.finish();
|
|
|
|
bindingStates.resetDefaultState();
|
|
_currentMaterialId = -1;
|
|
_currentCamera = null;
|
|
renderStateStack.pop();
|
|
|
|
if (renderStateStack.length > 0) {
|
|
currentRenderState = renderStateStack[renderStateStack.length - 1];
|
|
} else {
|
|
currentRenderState = null;
|
|
}
|
|
|
|
renderListStack.pop();
|
|
|
|
if (renderListStack.length > 0) {
|
|
currentRenderList = renderListStack[renderListStack.length - 1];
|
|
} else {
|
|
currentRenderList = null;
|
|
}
|
|
};
|
|
|
|
function projectObject(object, camera, groupOrder, sortObjects) {
|
|
if (object.visible === false) return;
|
|
const visible = object.layers.test(camera.layers);
|
|
|
|
if (visible) {
|
|
if (object.isGroup) {
|
|
groupOrder = object.renderOrder;
|
|
} else if (object.isLOD) {
|
|
if (object.autoUpdate === true) object.update(camera);
|
|
} else if (object.isLight) {
|
|
currentRenderState.pushLight(object);
|
|
|
|
if (object.castShadow) {
|
|
currentRenderState.pushShadow(object);
|
|
}
|
|
} else if (object.isSprite) {
|
|
if (!object.frustumCulled || _frustum.intersectsSprite(object)) {
|
|
if (sortObjects) {
|
|
_vector3.setFromMatrixPosition(object.matrixWorld).applyMatrix4(_projScreenMatrix);
|
|
}
|
|
|
|
const geometry = objects.update(object);
|
|
const material = object.material;
|
|
|
|
if (material.visible) {
|
|
currentRenderList.push(object, geometry, material, groupOrder, _vector3.z, null);
|
|
}
|
|
}
|
|
} else if (object.isMesh || object.isLine || object.isPoints) {
|
|
if (object.isSkinnedMesh) {
|
|
// update skeleton only once in a frame
|
|
if (object.skeleton.frame !== info.render.frame) {
|
|
object.skeleton.update();
|
|
object.skeleton.frame = info.render.frame;
|
|
}
|
|
}
|
|
|
|
if (!object.frustumCulled || _frustum.intersectsObject(object)) {
|
|
if (sortObjects) {
|
|
_vector3.setFromMatrixPosition(object.matrixWorld).applyMatrix4(_projScreenMatrix);
|
|
}
|
|
|
|
const geometry = objects.update(object);
|
|
const material = object.material;
|
|
|
|
if (Array.isArray(material)) {
|
|
const groups = geometry.groups;
|
|
|
|
for (let i = 0, l = groups.length; i < l; i++) {
|
|
const group = groups[i];
|
|
const groupMaterial = material[group.materialIndex];
|
|
|
|
if (groupMaterial && groupMaterial.visible) {
|
|
currentRenderList.push(object, geometry, groupMaterial, groupOrder, _vector3.z, group);
|
|
}
|
|
}
|
|
} else if (material.visible) {
|
|
currentRenderList.push(object, geometry, material, groupOrder, _vector3.z, null);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
const children = object.children;
|
|
|
|
for (let i = 0, l = children.length; i < l; i++) {
|
|
projectObject(children[i], camera, groupOrder, sortObjects);
|
|
}
|
|
}
|
|
|
|
function renderScene(currentRenderList, scene, camera, viewport) {
|
|
const opaqueObjects = currentRenderList.opaque;
|
|
const transmissiveObjects = currentRenderList.transmissive;
|
|
const transparentObjects = currentRenderList.transparent;
|
|
currentRenderState.setupLightsView(camera);
|
|
if (transmissiveObjects.length > 0) renderTransmissionPass(opaqueObjects, scene, camera);
|
|
if (viewport) state.viewport(_currentViewport.copy(viewport));
|
|
if (opaqueObjects.length > 0) renderObjects(opaqueObjects, scene, camera);
|
|
if (transmissiveObjects.length > 0) renderObjects(transmissiveObjects, scene, camera);
|
|
if (transparentObjects.length > 0) renderObjects(transparentObjects, scene, camera);
|
|
}
|
|
|
|
function renderTransmissionPass(opaqueObjects, scene, camera) {
|
|
if (_transmissionRenderTarget === null) {
|
|
const needsAntialias = _antialias === true && capabilities.isWebGL2 === true;
|
|
const renderTargetType = needsAntialias ? WebGLMultisampleRenderTarget : WebGLRenderTarget;
|
|
_transmissionRenderTarget = new renderTargetType(1024, 1024, {
|
|
generateMipmaps: true,
|
|
type: utils.convert(HalfFloatType) !== null ? HalfFloatType : UnsignedByteType,
|
|
minFilter: LinearMipmapLinearFilter,
|
|
magFilter: NearestFilter,
|
|
wrapS: ClampToEdgeWrapping,
|
|
wrapT: ClampToEdgeWrapping
|
|
});
|
|
}
|
|
|
|
const currentRenderTarget = _this.getRenderTarget();
|
|
|
|
_this.setRenderTarget(_transmissionRenderTarget);
|
|
|
|
_this.clear(); // Turn off the features which can affect the frag color for opaque objects pass.
|
|
// Otherwise they are applied twice in opaque objects pass and transmission objects pass.
|
|
|
|
|
|
const currentToneMapping = _this.toneMapping;
|
|
_this.toneMapping = NoToneMapping;
|
|
renderObjects(opaqueObjects, scene, camera);
|
|
_this.toneMapping = currentToneMapping;
|
|
textures.updateMultisampleRenderTarget(_transmissionRenderTarget);
|
|
textures.updateRenderTargetMipmap(_transmissionRenderTarget);
|
|
|
|
_this.setRenderTarget(currentRenderTarget);
|
|
}
|
|
|
|
function renderObjects(renderList, scene, camera) {
|
|
const overrideMaterial = scene.isScene === true ? scene.overrideMaterial : null;
|
|
|
|
for (let i = 0, l = renderList.length; i < l; i++) {
|
|
const renderItem = renderList[i];
|
|
const object = renderItem.object;
|
|
const geometry = renderItem.geometry;
|
|
const material = overrideMaterial === null ? renderItem.material : overrideMaterial;
|
|
const group = renderItem.group;
|
|
|
|
if (object.layers.test(camera.layers)) {
|
|
renderObject(object, scene, camera, geometry, material, group);
|
|
}
|
|
}
|
|
}
|
|
|
|
function renderObject(object, scene, camera, geometry, material, group) {
|
|
object.onBeforeRender(_this, scene, camera, geometry, material, group);
|
|
object.modelViewMatrix.multiplyMatrices(camera.matrixWorldInverse, object.matrixWorld);
|
|
object.normalMatrix.getNormalMatrix(object.modelViewMatrix);
|
|
material.onBeforeRender(_this, scene, camera, geometry, object, group);
|
|
|
|
if (material.transparent === true && material.side === DoubleSide) {
|
|
material.side = BackSide;
|
|
material.needsUpdate = true;
|
|
|
|
_this.renderBufferDirect(camera, scene, geometry, material, object, group);
|
|
|
|
material.side = FrontSide;
|
|
material.needsUpdate = true;
|
|
|
|
_this.renderBufferDirect(camera, scene, geometry, material, object, group);
|
|
|
|
material.side = DoubleSide;
|
|
} else {
|
|
_this.renderBufferDirect(camera, scene, geometry, material, object, group);
|
|
}
|
|
|
|
object.onAfterRender(_this, scene, camera, geometry, material, group);
|
|
}
|
|
|
|
function getProgram(material, scene, object) {
|
|
if (scene.isScene !== true) scene = _emptyScene; // scene could be a Mesh, Line, Points, ...
|
|
|
|
const materialProperties = properties.get(material);
|
|
const lights = currentRenderState.state.lights;
|
|
const shadowsArray = currentRenderState.state.shadowsArray;
|
|
const lightsStateVersion = lights.state.version;
|
|
const parameters = programCache.getParameters(material, lights.state, shadowsArray, scene, object);
|
|
const programCacheKey = programCache.getProgramCacheKey(parameters);
|
|
let programs = materialProperties.programs; // always update environment and fog - changing these trigger an getProgram call, but it's possible that the program doesn't change
|
|
|
|
materialProperties.environment = material.isMeshStandardMaterial ? scene.environment : null;
|
|
materialProperties.fog = scene.fog;
|
|
materialProperties.envMap = (material.isMeshStandardMaterial ? cubeuvmaps : cubemaps).get(material.envMap || materialProperties.environment);
|
|
|
|
if (programs === undefined) {
|
|
// new material
|
|
material.addEventListener('dispose', onMaterialDispose);
|
|
programs = new Map();
|
|
materialProperties.programs = programs;
|
|
}
|
|
|
|
let program = programs.get(programCacheKey);
|
|
|
|
if (program !== undefined) {
|
|
// early out if program and light state is identical
|
|
if (materialProperties.currentProgram === program && materialProperties.lightsStateVersion === lightsStateVersion) {
|
|
updateCommonMaterialProperties(material, parameters);
|
|
return program;
|
|
}
|
|
} else {
|
|
parameters.uniforms = programCache.getUniforms(material);
|
|
material.onBuild(object, parameters, _this);
|
|
material.onBeforeCompile(parameters, _this);
|
|
program = programCache.acquireProgram(parameters, programCacheKey);
|
|
programs.set(programCacheKey, program);
|
|
materialProperties.uniforms = parameters.uniforms;
|
|
}
|
|
|
|
const uniforms = materialProperties.uniforms;
|
|
|
|
if (!material.isShaderMaterial && !material.isRawShaderMaterial || material.clipping === true) {
|
|
uniforms.clippingPlanes = clipping.uniform;
|
|
}
|
|
|
|
updateCommonMaterialProperties(material, parameters); // store the light setup it was created for
|
|
|
|
materialProperties.needsLights = materialNeedsLights(material);
|
|
materialProperties.lightsStateVersion = lightsStateVersion;
|
|
|
|
if (materialProperties.needsLights) {
|
|
// wire up the material to this renderer's lighting state
|
|
uniforms.ambientLightColor.value = lights.state.ambient;
|
|
uniforms.lightProbe.value = lights.state.probe;
|
|
uniforms.directionalLights.value = lights.state.directional;
|
|
uniforms.directionalLightShadows.value = lights.state.directionalShadow;
|
|
uniforms.spotLights.value = lights.state.spot;
|
|
uniforms.spotLightShadows.value = lights.state.spotShadow;
|
|
uniforms.rectAreaLights.value = lights.state.rectArea;
|
|
uniforms.ltc_1.value = lights.state.rectAreaLTC1;
|
|
uniforms.ltc_2.value = lights.state.rectAreaLTC2;
|
|
uniforms.pointLights.value = lights.state.point;
|
|
uniforms.pointLightShadows.value = lights.state.pointShadow;
|
|
uniforms.hemisphereLights.value = lights.state.hemi;
|
|
uniforms.directionalShadowMap.value = lights.state.directionalShadowMap;
|
|
uniforms.directionalShadowMatrix.value = lights.state.directionalShadowMatrix;
|
|
uniforms.spotShadowMap.value = lights.state.spotShadowMap;
|
|
uniforms.spotShadowMatrix.value = lights.state.spotShadowMatrix;
|
|
uniforms.pointShadowMap.value = lights.state.pointShadowMap;
|
|
uniforms.pointShadowMatrix.value = lights.state.pointShadowMatrix; // TODO (abelnation): add area lights shadow info to uniforms
|
|
}
|
|
|
|
const progUniforms = program.getUniforms();
|
|
const uniformsList = WebGLUniforms.seqWithValue(progUniforms.seq, uniforms);
|
|
materialProperties.currentProgram = program;
|
|
materialProperties.uniformsList = uniformsList;
|
|
return program;
|
|
}
|
|
|
|
function updateCommonMaterialProperties(material, parameters) {
|
|
const materialProperties = properties.get(material);
|
|
materialProperties.outputEncoding = parameters.outputEncoding;
|
|
materialProperties.instancing = parameters.instancing;
|
|
materialProperties.skinning = parameters.skinning;
|
|
materialProperties.morphTargets = parameters.morphTargets;
|
|
materialProperties.morphNormals = parameters.morphNormals;
|
|
materialProperties.morphTargetsCount = parameters.morphTargetsCount;
|
|
materialProperties.numClippingPlanes = parameters.numClippingPlanes;
|
|
materialProperties.numIntersection = parameters.numClipIntersection;
|
|
materialProperties.vertexAlphas = parameters.vertexAlphas;
|
|
materialProperties.vertexTangents = parameters.vertexTangents;
|
|
}
|
|
|
|
function setProgram(camera, scene, geometry, material, object) {
|
|
if (scene.isScene !== true) scene = _emptyScene; // scene could be a Mesh, Line, Points, ...
|
|
|
|
textures.resetTextureUnits();
|
|
const fog = scene.fog;
|
|
const environment = material.isMeshStandardMaterial ? scene.environment : null;
|
|
const encoding = _currentRenderTarget === null ? _this.outputEncoding : _currentRenderTarget.texture.encoding;
|
|
const envMap = (material.isMeshStandardMaterial ? cubeuvmaps : cubemaps).get(material.envMap || environment);
|
|
const vertexAlphas = material.vertexColors === true && !!geometry.attributes.color && geometry.attributes.color.itemSize === 4;
|
|
const vertexTangents = !!material.normalMap && !!geometry.attributes.tangent;
|
|
const morphTargets = !!geometry.morphAttributes.position;
|
|
const morphNormals = !!geometry.morphAttributes.normal;
|
|
const morphTargetsCount = !!geometry.morphAttributes.position ? geometry.morphAttributes.position.length : 0;
|
|
const materialProperties = properties.get(material);
|
|
const lights = currentRenderState.state.lights;
|
|
|
|
if (_clippingEnabled === true) {
|
|
if (_localClippingEnabled === true || camera !== _currentCamera) {
|
|
const useCache = camera === _currentCamera && material.id === _currentMaterialId; // we might want to call this function with some ClippingGroup
|
|
// object instead of the material, once it becomes feasible
|
|
// (#8465, #8379)
|
|
|
|
clipping.setState(material, camera, useCache);
|
|
}
|
|
} //
|
|
|
|
|
|
let needsProgramChange = false;
|
|
|
|
if (material.version === materialProperties.__version) {
|
|
if (materialProperties.needsLights && materialProperties.lightsStateVersion !== lights.state.version) {
|
|
needsProgramChange = true;
|
|
} else if (materialProperties.outputEncoding !== encoding) {
|
|
needsProgramChange = true;
|
|
} else if (object.isInstancedMesh && materialProperties.instancing === false) {
|
|
needsProgramChange = true;
|
|
} else if (!object.isInstancedMesh && materialProperties.instancing === true) {
|
|
needsProgramChange = true;
|
|
} else if (object.isSkinnedMesh && materialProperties.skinning === false) {
|
|
needsProgramChange = true;
|
|
} else if (!object.isSkinnedMesh && materialProperties.skinning === true) {
|
|
needsProgramChange = true;
|
|
} else if (materialProperties.envMap !== envMap) {
|
|
needsProgramChange = true;
|
|
} else if (material.fog && materialProperties.fog !== fog) {
|
|
needsProgramChange = true;
|
|
} else if (materialProperties.numClippingPlanes !== undefined && (materialProperties.numClippingPlanes !== clipping.numPlanes || materialProperties.numIntersection !== clipping.numIntersection)) {
|
|
needsProgramChange = true;
|
|
} else if (materialProperties.vertexAlphas !== vertexAlphas) {
|
|
needsProgramChange = true;
|
|
} else if (materialProperties.vertexTangents !== vertexTangents) {
|
|
needsProgramChange = true;
|
|
} else if (materialProperties.morphTargets !== morphTargets) {
|
|
needsProgramChange = true;
|
|
} else if (materialProperties.morphNormals !== morphNormals) {
|
|
needsProgramChange = true;
|
|
} else if (capabilities.isWebGL2 === true && materialProperties.morphTargetsCount !== morphTargetsCount) {
|
|
needsProgramChange = true;
|
|
}
|
|
} else {
|
|
needsProgramChange = true;
|
|
materialProperties.__version = material.version;
|
|
} //
|
|
|
|
|
|
let program = materialProperties.currentProgram;
|
|
|
|
if (needsProgramChange === true) {
|
|
program = getProgram(material, scene, object);
|
|
}
|
|
|
|
let refreshProgram = false;
|
|
let refreshMaterial = false;
|
|
let refreshLights = false;
|
|
const p_uniforms = program.getUniforms(),
|
|
m_uniforms = materialProperties.uniforms;
|
|
|
|
if (state.useProgram(program.program)) {
|
|
refreshProgram = true;
|
|
refreshMaterial = true;
|
|
refreshLights = true;
|
|
}
|
|
|
|
if (material.id !== _currentMaterialId) {
|
|
_currentMaterialId = material.id;
|
|
refreshMaterial = true;
|
|
}
|
|
|
|
if (refreshProgram || _currentCamera !== camera) {
|
|
p_uniforms.setValue(_gl, 'projectionMatrix', camera.projectionMatrix);
|
|
|
|
if (capabilities.logarithmicDepthBuffer) {
|
|
p_uniforms.setValue(_gl, 'logDepthBufFC', 2.0 / (Math.log(camera.far + 1.0) / Math.LN2));
|
|
}
|
|
|
|
if (_currentCamera !== camera) {
|
|
_currentCamera = camera; // lighting uniforms depend on the camera so enforce an update
|
|
// now, in case this material supports lights - or later, when
|
|
// the next material that does gets activated:
|
|
|
|
refreshMaterial = true; // set to true on material change
|
|
|
|
refreshLights = true; // remains set until update done
|
|
} // load material specific uniforms
|
|
// (shader material also gets them for the sake of genericity)
|
|
|
|
|
|
if (material.isShaderMaterial || material.isMeshPhongMaterial || material.isMeshToonMaterial || material.isMeshStandardMaterial || material.envMap) {
|
|
const uCamPos = p_uniforms.map.cameraPosition;
|
|
|
|
if (uCamPos !== undefined) {
|
|
uCamPos.setValue(_gl, _vector3.setFromMatrixPosition(camera.matrixWorld));
|
|
}
|
|
}
|
|
|
|
if (material.isMeshPhongMaterial || material.isMeshToonMaterial || material.isMeshLambertMaterial || material.isMeshBasicMaterial || material.isMeshStandardMaterial || material.isShaderMaterial) {
|
|
p_uniforms.setValue(_gl, 'isOrthographic', camera.isOrthographicCamera === true);
|
|
}
|
|
|
|
if (material.isMeshPhongMaterial || material.isMeshToonMaterial || material.isMeshLambertMaterial || material.isMeshBasicMaterial || material.isMeshStandardMaterial || material.isShaderMaterial || material.isShadowMaterial || object.isSkinnedMesh) {
|
|
p_uniforms.setValue(_gl, 'viewMatrix', camera.matrixWorldInverse);
|
|
}
|
|
} // skinning and morph target uniforms must be set even if material didn't change
|
|
// auto-setting of texture unit for bone and morph texture must go before other textures
|
|
// otherwise textures used for skinning and morphing can take over texture units reserved for other material textures
|
|
|
|
|
|
if (object.isSkinnedMesh) {
|
|
p_uniforms.setOptional(_gl, object, 'bindMatrix');
|
|
p_uniforms.setOptional(_gl, object, 'bindMatrixInverse');
|
|
const skeleton = object.skeleton;
|
|
|
|
if (skeleton) {
|
|
if (capabilities.floatVertexTextures) {
|
|
if (skeleton.boneTexture === null) skeleton.computeBoneTexture();
|
|
p_uniforms.setValue(_gl, 'boneTexture', skeleton.boneTexture, textures);
|
|
p_uniforms.setValue(_gl, 'boneTextureSize', skeleton.boneTextureSize);
|
|
} else {
|
|
p_uniforms.setOptional(_gl, skeleton, 'boneMatrices');
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!!geometry && (geometry.morphAttributes.position !== undefined || geometry.morphAttributes.normal !== undefined)) {
|
|
morphtargets.update(object, geometry, material, program);
|
|
}
|
|
|
|
if (refreshMaterial || materialProperties.receiveShadow !== object.receiveShadow) {
|
|
materialProperties.receiveShadow = object.receiveShadow;
|
|
p_uniforms.setValue(_gl, 'receiveShadow', object.receiveShadow);
|
|
}
|
|
|
|
if (refreshMaterial) {
|
|
p_uniforms.setValue(_gl, 'toneMappingExposure', _this.toneMappingExposure);
|
|
|
|
if (materialProperties.needsLights) {
|
|
// the current material requires lighting info
|
|
// note: all lighting uniforms are always set correctly
|
|
// they simply reference the renderer's state for their
|
|
// values
|
|
//
|
|
// use the current material's .needsUpdate flags to set
|
|
// the GL state when required
|
|
markUniformsLightsNeedsUpdate(m_uniforms, refreshLights);
|
|
} // refresh uniforms common to several materials
|
|
|
|
|
|
if (fog && material.fog) {
|
|
materials.refreshFogUniforms(m_uniforms, fog);
|
|
}
|
|
|
|
materials.refreshMaterialUniforms(m_uniforms, material, _pixelRatio, _height, _transmissionRenderTarget);
|
|
WebGLUniforms.upload(_gl, materialProperties.uniformsList, m_uniforms, textures);
|
|
}
|
|
|
|
if (material.isShaderMaterial && material.uniformsNeedUpdate === true) {
|
|
WebGLUniforms.upload(_gl, materialProperties.uniformsList, m_uniforms, textures);
|
|
material.uniformsNeedUpdate = false;
|
|
}
|
|
|
|
if (material.isSpriteMaterial) {
|
|
p_uniforms.setValue(_gl, 'center', object.center);
|
|
} // common matrices
|
|
|
|
|
|
p_uniforms.setValue(_gl, 'modelViewMatrix', object.modelViewMatrix);
|
|
p_uniforms.setValue(_gl, 'normalMatrix', object.normalMatrix);
|
|
p_uniforms.setValue(_gl, 'modelMatrix', object.matrixWorld);
|
|
return program;
|
|
} // If uniforms are marked as clean, they don't need to be loaded to the GPU.
|
|
|
|
|
|
function markUniformsLightsNeedsUpdate(uniforms, value) {
|
|
uniforms.ambientLightColor.needsUpdate = value;
|
|
uniforms.lightProbe.needsUpdate = value;
|
|
uniforms.directionalLights.needsUpdate = value;
|
|
uniforms.directionalLightShadows.needsUpdate = value;
|
|
uniforms.pointLights.needsUpdate = value;
|
|
uniforms.pointLightShadows.needsUpdate = value;
|
|
uniforms.spotLights.needsUpdate = value;
|
|
uniforms.spotLightShadows.needsUpdate = value;
|
|
uniforms.rectAreaLights.needsUpdate = value;
|
|
uniforms.hemisphereLights.needsUpdate = value;
|
|
}
|
|
|
|
function materialNeedsLights(material) {
|
|
return material.isMeshLambertMaterial || material.isMeshToonMaterial || material.isMeshPhongMaterial || material.isMeshStandardMaterial || material.isShadowMaterial || material.isShaderMaterial && material.lights === true;
|
|
}
|
|
|
|
this.getActiveCubeFace = function () {
|
|
return _currentActiveCubeFace;
|
|
};
|
|
|
|
this.getActiveMipmapLevel = function () {
|
|
return _currentActiveMipmapLevel;
|
|
};
|
|
|
|
this.getRenderTarget = function () {
|
|
return _currentRenderTarget;
|
|
};
|
|
|
|
this.setRenderTarget = function (renderTarget, activeCubeFace = 0, activeMipmapLevel = 0) {
|
|
_currentRenderTarget = renderTarget;
|
|
_currentActiveCubeFace = activeCubeFace;
|
|
_currentActiveMipmapLevel = activeMipmapLevel;
|
|
|
|
if (renderTarget && properties.get(renderTarget).__webglFramebuffer === undefined) {
|
|
textures.setupRenderTarget(renderTarget);
|
|
}
|
|
|
|
let framebuffer = null;
|
|
let isCube = false;
|
|
let isRenderTarget3D = false;
|
|
|
|
if (renderTarget) {
|
|
const texture = renderTarget.texture;
|
|
|
|
if (texture.isDataTexture3D || texture.isDataTexture2DArray) {
|
|
isRenderTarget3D = true;
|
|
}
|
|
|
|
const __webglFramebuffer = properties.get(renderTarget).__webglFramebuffer;
|
|
|
|
if (renderTarget.isWebGLCubeRenderTarget) {
|
|
framebuffer = __webglFramebuffer[activeCubeFace];
|
|
isCube = true;
|
|
} else if (renderTarget.isWebGLMultisampleRenderTarget) {
|
|
framebuffer = properties.get(renderTarget).__webglMultisampledFramebuffer;
|
|
} else {
|
|
framebuffer = __webglFramebuffer;
|
|
}
|
|
|
|
_currentViewport.copy(renderTarget.viewport);
|
|
|
|
_currentScissor.copy(renderTarget.scissor);
|
|
|
|
_currentScissorTest = renderTarget.scissorTest;
|
|
} else {
|
|
_currentViewport.copy(_viewport).multiplyScalar(_pixelRatio).floor();
|
|
|
|
_currentScissor.copy(_scissor).multiplyScalar(_pixelRatio).floor();
|
|
|
|
_currentScissorTest = _scissorTest;
|
|
}
|
|
|
|
const framebufferBound = state.bindFramebuffer(_gl.FRAMEBUFFER, framebuffer);
|
|
|
|
if (framebufferBound && capabilities.drawBuffers) {
|
|
let needsUpdate = false;
|
|
|
|
if (renderTarget) {
|
|
if (renderTarget.isWebGLMultipleRenderTargets) {
|
|
const textures = renderTarget.texture;
|
|
|
|
if (_currentDrawBuffers.length !== textures.length || _currentDrawBuffers[0] !== _gl.COLOR_ATTACHMENT0) {
|
|
for (let i = 0, il = textures.length; i < il; i++) {
|
|
_currentDrawBuffers[i] = _gl.COLOR_ATTACHMENT0 + i;
|
|
}
|
|
|
|
_currentDrawBuffers.length = textures.length;
|
|
needsUpdate = true;
|
|
}
|
|
} else {
|
|
if (_currentDrawBuffers.length !== 1 || _currentDrawBuffers[0] !== _gl.COLOR_ATTACHMENT0) {
|
|
_currentDrawBuffers[0] = _gl.COLOR_ATTACHMENT0;
|
|
_currentDrawBuffers.length = 1;
|
|
needsUpdate = true;
|
|
}
|
|
}
|
|
} else {
|
|
if (_currentDrawBuffers.length !== 1 || _currentDrawBuffers[0] !== _gl.BACK) {
|
|
_currentDrawBuffers[0] = _gl.BACK;
|
|
_currentDrawBuffers.length = 1;
|
|
needsUpdate = true;
|
|
}
|
|
}
|
|
|
|
if (needsUpdate) {
|
|
if (capabilities.isWebGL2) {
|
|
_gl.drawBuffers(_currentDrawBuffers);
|
|
} else {
|
|
extensions.get('WEBGL_draw_buffers').drawBuffersWEBGL(_currentDrawBuffers);
|
|
}
|
|
}
|
|
}
|
|
|
|
state.viewport(_currentViewport);
|
|
state.scissor(_currentScissor);
|
|
state.setScissorTest(_currentScissorTest);
|
|
|
|
if (isCube) {
|
|
const textureProperties = properties.get(renderTarget.texture);
|
|
|
|
_gl.framebufferTexture2D(_gl.FRAMEBUFFER, _gl.COLOR_ATTACHMENT0, _gl.TEXTURE_CUBE_MAP_POSITIVE_X + activeCubeFace, textureProperties.__webglTexture, activeMipmapLevel);
|
|
} else if (isRenderTarget3D) {
|
|
const textureProperties = properties.get(renderTarget.texture);
|
|
const layer = activeCubeFace || 0;
|
|
|
|
_gl.framebufferTextureLayer(_gl.FRAMEBUFFER, _gl.COLOR_ATTACHMENT0, textureProperties.__webglTexture, activeMipmapLevel || 0, layer);
|
|
}
|
|
|
|
_currentMaterialId = -1; // reset current material to ensure correct uniform bindings
|
|
};
|
|
|
|
this.readRenderTargetPixels = function (renderTarget, x, y, width, height, buffer, activeCubeFaceIndex) {
|
|
if (!(renderTarget && renderTarget.isWebGLRenderTarget)) {
|
|
console.error('THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not THREE.WebGLRenderTarget.');
|
|
return;
|
|
}
|
|
|
|
let framebuffer = properties.get(renderTarget).__webglFramebuffer;
|
|
|
|
if (renderTarget.isWebGLCubeRenderTarget && activeCubeFaceIndex !== undefined) {
|
|
framebuffer = framebuffer[activeCubeFaceIndex];
|
|
}
|
|
|
|
if (framebuffer) {
|
|
state.bindFramebuffer(_gl.FRAMEBUFFER, framebuffer);
|
|
|
|
try {
|
|
const texture = renderTarget.texture;
|
|
const textureFormat = texture.format;
|
|
const textureType = texture.type;
|
|
|
|
if (textureFormat !== RGBAFormat && utils.convert(textureFormat) !== _gl.getParameter(_gl.IMPLEMENTATION_COLOR_READ_FORMAT)) {
|
|
console.error('THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not in RGBA or implementation defined format.');
|
|
return;
|
|
}
|
|
|
|
const halfFloatSupportedByExt = textureType === HalfFloatType && (extensions.has('EXT_color_buffer_half_float') || capabilities.isWebGL2 && extensions.has('EXT_color_buffer_float'));
|
|
|
|
if (textureType !== UnsignedByteType && utils.convert(textureType) !== _gl.getParameter(_gl.IMPLEMENTATION_COLOR_READ_TYPE) && // Edge and Chrome Mac < 52 (#9513)
|
|
!(textureType === FloatType && (capabilities.isWebGL2 || extensions.has('OES_texture_float') || extensions.has('WEBGL_color_buffer_float'))) && // Chrome Mac >= 52 and Firefox
|
|
!halfFloatSupportedByExt) {
|
|
console.error('THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not in UnsignedByteType or implementation defined type.');
|
|
return;
|
|
}
|
|
|
|
if (_gl.checkFramebufferStatus(_gl.FRAMEBUFFER) === _gl.FRAMEBUFFER_COMPLETE) {
|
|
// the following if statement ensures valid read requests (no out-of-bounds pixels, see #8604)
|
|
if (x >= 0 && x <= renderTarget.width - width && y >= 0 && y <= renderTarget.height - height) {
|
|
_gl.readPixels(x, y, width, height, utils.convert(textureFormat), utils.convert(textureType), buffer);
|
|
}
|
|
} else {
|
|
console.error('THREE.WebGLRenderer.readRenderTargetPixels: readPixels from renderTarget failed. Framebuffer not complete.');
|
|
}
|
|
} finally {
|
|
// restore framebuffer of current render target if necessary
|
|
const framebuffer = _currentRenderTarget !== null ? properties.get(_currentRenderTarget).__webglFramebuffer : null;
|
|
state.bindFramebuffer(_gl.FRAMEBUFFER, framebuffer);
|
|
}
|
|
}
|
|
};
|
|
|
|
this.copyFramebufferToTexture = function (position, texture, level = 0) {
|
|
const levelScale = Math.pow(2, -level);
|
|
const width = Math.floor(texture.image.width * levelScale);
|
|
const height = Math.floor(texture.image.height * levelScale);
|
|
let glFormat = utils.convert(texture.format);
|
|
|
|
if (capabilities.isWebGL2) {
|
|
// Workaround for https://bugs.chromium.org/p/chromium/issues/detail?id=1120100
|
|
// Not needed in Chrome 93+
|
|
if (glFormat === _gl.RGB) glFormat = _gl.RGB8;
|
|
if (glFormat === _gl.RGBA) glFormat = _gl.RGBA8;
|
|
}
|
|
|
|
textures.setTexture2D(texture, 0);
|
|
|
|
_gl.copyTexImage2D(_gl.TEXTURE_2D, level, glFormat, position.x, position.y, width, height, 0);
|
|
|
|
state.unbindTexture();
|
|
};
|
|
|
|
this.copyTextureToTexture = function (position, srcTexture, dstTexture, level = 0) {
|
|
const width = srcTexture.image.width;
|
|
const height = srcTexture.image.height;
|
|
const glFormat = utils.convert(dstTexture.format);
|
|
const glType = utils.convert(dstTexture.type);
|
|
textures.setTexture2D(dstTexture, 0); // As another texture upload may have changed pixelStorei
|
|
// parameters, make sure they are correct for the dstTexture
|
|
|
|
_gl.pixelStorei(_gl.UNPACK_FLIP_Y_WEBGL, dstTexture.flipY);
|
|
|
|
_gl.pixelStorei(_gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL, dstTexture.premultiplyAlpha);
|
|
|
|
_gl.pixelStorei(_gl.UNPACK_ALIGNMENT, dstTexture.unpackAlignment);
|
|
|
|
if (srcTexture.isDataTexture) {
|
|
_gl.texSubImage2D(_gl.TEXTURE_2D, level, position.x, position.y, width, height, glFormat, glType, srcTexture.image.data);
|
|
} else {
|
|
if (srcTexture.isCompressedTexture) {
|
|
_gl.compressedTexSubImage2D(_gl.TEXTURE_2D, level, position.x, position.y, srcTexture.mipmaps[0].width, srcTexture.mipmaps[0].height, glFormat, srcTexture.mipmaps[0].data);
|
|
} else {
|
|
_gl.texSubImage2D(_gl.TEXTURE_2D, level, position.x, position.y, glFormat, glType, srcTexture.image);
|
|
}
|
|
} // Generate mipmaps only when copying level 0
|
|
|
|
|
|
if (level === 0 && dstTexture.generateMipmaps) _gl.generateMipmap(_gl.TEXTURE_2D);
|
|
state.unbindTexture();
|
|
};
|
|
|
|
this.copyTextureToTexture3D = function (sourceBox, position, srcTexture, dstTexture, level = 0) {
|
|
if (_this.isWebGL1Renderer) {
|
|
console.warn('THREE.WebGLRenderer.copyTextureToTexture3D: can only be used with WebGL2.');
|
|
return;
|
|
}
|
|
|
|
const width = sourceBox.max.x - sourceBox.min.x + 1;
|
|
const height = sourceBox.max.y - sourceBox.min.y + 1;
|
|
const depth = sourceBox.max.z - sourceBox.min.z + 1;
|
|
const glFormat = utils.convert(dstTexture.format);
|
|
const glType = utils.convert(dstTexture.type);
|
|
let glTarget;
|
|
|
|
if (dstTexture.isDataTexture3D) {
|
|
textures.setTexture3D(dstTexture, 0);
|
|
glTarget = _gl.TEXTURE_3D;
|
|
} else if (dstTexture.isDataTexture2DArray) {
|
|
textures.setTexture2DArray(dstTexture, 0);
|
|
glTarget = _gl.TEXTURE_2D_ARRAY;
|
|
} else {
|
|
console.warn('THREE.WebGLRenderer.copyTextureToTexture3D: only supports THREE.DataTexture3D and THREE.DataTexture2DArray.');
|
|
return;
|
|
}
|
|
|
|
_gl.pixelStorei(_gl.UNPACK_FLIP_Y_WEBGL, dstTexture.flipY);
|
|
|
|
_gl.pixelStorei(_gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL, dstTexture.premultiplyAlpha);
|
|
|
|
_gl.pixelStorei(_gl.UNPACK_ALIGNMENT, dstTexture.unpackAlignment);
|
|
|
|
const unpackRowLen = _gl.getParameter(_gl.UNPACK_ROW_LENGTH);
|
|
|
|
const unpackImageHeight = _gl.getParameter(_gl.UNPACK_IMAGE_HEIGHT);
|
|
|
|
const unpackSkipPixels = _gl.getParameter(_gl.UNPACK_SKIP_PIXELS);
|
|
|
|
const unpackSkipRows = _gl.getParameter(_gl.UNPACK_SKIP_ROWS);
|
|
|
|
const unpackSkipImages = _gl.getParameter(_gl.UNPACK_SKIP_IMAGES);
|
|
|
|
const image = srcTexture.isCompressedTexture ? srcTexture.mipmaps[0] : srcTexture.image;
|
|
|
|
_gl.pixelStorei(_gl.UNPACK_ROW_LENGTH, image.width);
|
|
|
|
_gl.pixelStorei(_gl.UNPACK_IMAGE_HEIGHT, image.height);
|
|
|
|
_gl.pixelStorei(_gl.UNPACK_SKIP_PIXELS, sourceBox.min.x);
|
|
|
|
_gl.pixelStorei(_gl.UNPACK_SKIP_ROWS, sourceBox.min.y);
|
|
|
|
_gl.pixelStorei(_gl.UNPACK_SKIP_IMAGES, sourceBox.min.z);
|
|
|
|
if (srcTexture.isDataTexture || srcTexture.isDataTexture3D) {
|
|
_gl.texSubImage3D(glTarget, level, position.x, position.y, position.z, width, height, depth, glFormat, glType, image.data);
|
|
} else {
|
|
if (srcTexture.isCompressedTexture) {
|
|
console.warn('THREE.WebGLRenderer.copyTextureToTexture3D: untested support for compressed srcTexture.');
|
|
|
|
_gl.compressedTexSubImage3D(glTarget, level, position.x, position.y, position.z, width, height, depth, glFormat, image.data);
|
|
} else {
|
|
_gl.texSubImage3D(glTarget, level, position.x, position.y, position.z, width, height, depth, glFormat, glType, image);
|
|
}
|
|
}
|
|
|
|
_gl.pixelStorei(_gl.UNPACK_ROW_LENGTH, unpackRowLen);
|
|
|
|
_gl.pixelStorei(_gl.UNPACK_IMAGE_HEIGHT, unpackImageHeight);
|
|
|
|
_gl.pixelStorei(_gl.UNPACK_SKIP_PIXELS, unpackSkipPixels);
|
|
|
|
_gl.pixelStorei(_gl.UNPACK_SKIP_ROWS, unpackSkipRows);
|
|
|
|
_gl.pixelStorei(_gl.UNPACK_SKIP_IMAGES, unpackSkipImages); // Generate mipmaps only when copying level 0
|
|
|
|
|
|
if (level === 0 && dstTexture.generateMipmaps) _gl.generateMipmap(glTarget);
|
|
state.unbindTexture();
|
|
};
|
|
|
|
this.initTexture = function (texture) {
|
|
textures.setTexture2D(texture, 0);
|
|
state.unbindTexture();
|
|
};
|
|
|
|
this.resetState = function () {
|
|
_currentActiveCubeFace = 0;
|
|
_currentActiveMipmapLevel = 0;
|
|
_currentRenderTarget = null;
|
|
state.reset();
|
|
bindingStates.reset();
|
|
};
|
|
|
|
if (typeof __THREE_DEVTOOLS__ !== 'undefined') {
|
|
__THREE_DEVTOOLS__.dispatchEvent(new CustomEvent('observe', {
|
|
detail: this
|
|
})); // eslint-disable-line no-undef
|
|
|
|
}
|
|
}
|
|
|
|
class WebGL1Renderer extends WebGLRenderer {}
|
|
|
|
WebGL1Renderer.prototype.isWebGL1Renderer = true;
|
|
|
|
class FogExp2 {
|
|
constructor(color, density = 0.00025) {
|
|
this.name = '';
|
|
this.color = new Color(color);
|
|
this.density = density;
|
|
}
|
|
|
|
clone() {
|
|
return new FogExp2(this.color, this.density);
|
|
}
|
|
|
|
toJSON() {
|
|
return {
|
|
type: 'FogExp2',
|
|
color: this.color.getHex(),
|
|
density: this.density
|
|
};
|
|
}
|
|
|
|
}
|
|
|
|
FogExp2.prototype.isFogExp2 = true;
|
|
|
|
class Fog {
|
|
constructor(color, near = 1, far = 1000) {
|
|
this.name = '';
|
|
this.color = new Color(color);
|
|
this.near = near;
|
|
this.far = far;
|
|
}
|
|
|
|
clone() {
|
|
return new Fog(this.color, this.near, this.far);
|
|
}
|
|
|
|
toJSON() {
|
|
return {
|
|
type: 'Fog',
|
|
color: this.color.getHex(),
|
|
near: this.near,
|
|
far: this.far
|
|
};
|
|
}
|
|
|
|
}
|
|
|
|
Fog.prototype.isFog = true;
|
|
|
|
class Scene extends Object3D {
|
|
constructor() {
|
|
super();
|
|
this.type = 'Scene';
|
|
this.background = null;
|
|
this.environment = null;
|
|
this.fog = null;
|
|
this.overrideMaterial = null;
|
|
this.autoUpdate = true; // checked by the renderer
|
|
|
|
if (typeof __THREE_DEVTOOLS__ !== 'undefined') {
|
|
__THREE_DEVTOOLS__.dispatchEvent(new CustomEvent('observe', {
|
|
detail: this
|
|
})); // eslint-disable-line no-undef
|
|
|
|
}
|
|
}
|
|
|
|
copy(source, recursive) {
|
|
super.copy(source, recursive);
|
|
if (source.background !== null) this.background = source.background.clone();
|
|
if (source.environment !== null) this.environment = source.environment.clone();
|
|
if (source.fog !== null) this.fog = source.fog.clone();
|
|
if (source.overrideMaterial !== null) this.overrideMaterial = source.overrideMaterial.clone();
|
|
this.autoUpdate = source.autoUpdate;
|
|
this.matrixAutoUpdate = source.matrixAutoUpdate;
|
|
return this;
|
|
}
|
|
|
|
toJSON(meta) {
|
|
const data = super.toJSON(meta);
|
|
if (this.fog !== null) data.object.fog = this.fog.toJSON();
|
|
return data;
|
|
}
|
|
|
|
}
|
|
|
|
Scene.prototype.isScene = true;
|
|
|
|
class InterleavedBuffer {
|
|
constructor(array, stride) {
|
|
this.array = array;
|
|
this.stride = stride;
|
|
this.count = array !== undefined ? array.length / stride : 0;
|
|
this.usage = StaticDrawUsage;
|
|
this.updateRange = {
|
|
offset: 0,
|
|
count: -1
|
|
};
|
|
this.version = 0;
|
|
this.uuid = generateUUID();
|
|
}
|
|
|
|
onUploadCallback() {}
|
|
|
|
set needsUpdate(value) {
|
|
if (value === true) this.version++;
|
|
}
|
|
|
|
setUsage(value) {
|
|
this.usage = value;
|
|
return this;
|
|
}
|
|
|
|
copy(source) {
|
|
this.array = new source.array.constructor(source.array);
|
|
this.count = source.count;
|
|
this.stride = source.stride;
|
|
this.usage = source.usage;
|
|
return this;
|
|
}
|
|
|
|
copyAt(index1, attribute, index2) {
|
|
index1 *= this.stride;
|
|
index2 *= attribute.stride;
|
|
|
|
for (let i = 0, l = this.stride; i < l; i++) {
|
|
this.array[index1 + i] = attribute.array[index2 + i];
|
|
}
|
|
|
|
return this;
|
|
}
|
|
|
|
set(value, offset = 0) {
|
|
this.array.set(value, offset);
|
|
return this;
|
|
}
|
|
|
|
clone(data) {
|
|
if (data.arrayBuffers === undefined) {
|
|
data.arrayBuffers = {};
|
|
}
|
|
|
|
if (this.array.buffer._uuid === undefined) {
|
|
this.array.buffer._uuid = generateUUID();
|
|
}
|
|
|
|
if (data.arrayBuffers[this.array.buffer._uuid] === undefined) {
|
|
data.arrayBuffers[this.array.buffer._uuid] = this.array.slice(0).buffer;
|
|
}
|
|
|
|
const array = new this.array.constructor(data.arrayBuffers[this.array.buffer._uuid]);
|
|
const ib = new this.constructor(array, this.stride);
|
|
ib.setUsage(this.usage);
|
|
return ib;
|
|
}
|
|
|
|
onUpload(callback) {
|
|
this.onUploadCallback = callback;
|
|
return this;
|
|
}
|
|
|
|
toJSON(data) {
|
|
if (data.arrayBuffers === undefined) {
|
|
data.arrayBuffers = {};
|
|
} // generate UUID for array buffer if necessary
|
|
|
|
|
|
if (this.array.buffer._uuid === undefined) {
|
|
this.array.buffer._uuid = generateUUID();
|
|
}
|
|
|
|
if (data.arrayBuffers[this.array.buffer._uuid] === undefined) {
|
|
data.arrayBuffers[this.array.buffer._uuid] = Array.prototype.slice.call(new Uint32Array(this.array.buffer));
|
|
} //
|
|
|
|
|
|
return {
|
|
uuid: this.uuid,
|
|
buffer: this.array.buffer._uuid,
|
|
type: this.array.constructor.name,
|
|
stride: this.stride
|
|
};
|
|
}
|
|
|
|
}
|
|
|
|
InterleavedBuffer.prototype.isInterleavedBuffer = true;
|
|
|
|
const _vector$6 = /*@__PURE__*/new Vector3();
|
|
|
|
class InterleavedBufferAttribute {
|
|
constructor(interleavedBuffer, itemSize, offset, normalized = false) {
|
|
this.name = '';
|
|
this.data = interleavedBuffer;
|
|
this.itemSize = itemSize;
|
|
this.offset = offset;
|
|
this.normalized = normalized === true;
|
|
}
|
|
|
|
get count() {
|
|
return this.data.count;
|
|
}
|
|
|
|
get array() {
|
|
return this.data.array;
|
|
}
|
|
|
|
set needsUpdate(value) {
|
|
this.data.needsUpdate = value;
|
|
}
|
|
|
|
applyMatrix4(m) {
|
|
for (let i = 0, l = this.data.count; i < l; i++) {
|
|
_vector$6.x = this.getX(i);
|
|
_vector$6.y = this.getY(i);
|
|
_vector$6.z = this.getZ(i);
|
|
|
|
_vector$6.applyMatrix4(m);
|
|
|
|
this.setXYZ(i, _vector$6.x, _vector$6.y, _vector$6.z);
|
|
}
|
|
|
|
return this;
|
|
}
|
|
|
|
applyNormalMatrix(m) {
|
|
for (let i = 0, l = this.count; i < l; i++) {
|
|
_vector$6.x = this.getX(i);
|
|
_vector$6.y = this.getY(i);
|
|
_vector$6.z = this.getZ(i);
|
|
|
|
_vector$6.applyNormalMatrix(m);
|
|
|
|
this.setXYZ(i, _vector$6.x, _vector$6.y, _vector$6.z);
|
|
}
|
|
|
|
return this;
|
|
}
|
|
|
|
transformDirection(m) {
|
|
for (let i = 0, l = this.count; i < l; i++) {
|
|
_vector$6.x = this.getX(i);
|
|
_vector$6.y = this.getY(i);
|
|
_vector$6.z = this.getZ(i);
|
|
|
|
_vector$6.transformDirection(m);
|
|
|
|
this.setXYZ(i, _vector$6.x, _vector$6.y, _vector$6.z);
|
|
}
|
|
|
|
return this;
|
|
}
|
|
|
|
setX(index, x) {
|
|
this.data.array[index * this.data.stride + this.offset] = x;
|
|
return this;
|
|
}
|
|
|
|
setY(index, y) {
|
|
this.data.array[index * this.data.stride + this.offset + 1] = y;
|
|
return this;
|
|
}
|
|
|
|
setZ(index, z) {
|
|
this.data.array[index * this.data.stride + this.offset + 2] = z;
|
|
return this;
|
|
}
|
|
|
|
setW(index, w) {
|
|
this.data.array[index * this.data.stride + this.offset + 3] = w;
|
|
return this;
|
|
}
|
|
|
|
getX(index) {
|
|
return this.data.array[index * this.data.stride + this.offset];
|
|
}
|
|
|
|
getY(index) {
|
|
return this.data.array[index * this.data.stride + this.offset + 1];
|
|
}
|
|
|
|
getZ(index) {
|
|
return this.data.array[index * this.data.stride + this.offset + 2];
|
|
}
|
|
|
|
getW(index) {
|
|
return this.data.array[index * this.data.stride + this.offset + 3];
|
|
}
|
|
|
|
setXY(index, x, y) {
|
|
index = index * this.data.stride + this.offset;
|
|
this.data.array[index + 0] = x;
|
|
this.data.array[index + 1] = y;
|
|
return this;
|
|
}
|
|
|
|
setXYZ(index, x, y, z) {
|
|
index = index * this.data.stride + this.offset;
|
|
this.data.array[index + 0] = x;
|
|
this.data.array[index + 1] = y;
|
|
this.data.array[index + 2] = z;
|
|
return this;
|
|
}
|
|
|
|
setXYZW(index, x, y, z, w) {
|
|
index = index * this.data.stride + this.offset;
|
|
this.data.array[index + 0] = x;
|
|
this.data.array[index + 1] = y;
|
|
this.data.array[index + 2] = z;
|
|
this.data.array[index + 3] = w;
|
|
return this;
|
|
}
|
|
|
|
clone(data) {
|
|
if (data === undefined) {
|
|
console.log('THREE.InterleavedBufferAttribute.clone(): Cloning an interlaved buffer attribute will deinterleave buffer data.');
|
|
const array = [];
|
|
|
|
for (let i = 0; i < this.count; i++) {
|
|
const index = i * this.data.stride + this.offset;
|
|
|
|
for (let j = 0; j < this.itemSize; j++) {
|
|
array.push(this.data.array[index + j]);
|
|
}
|
|
}
|
|
|
|
return new BufferAttribute(new this.array.constructor(array), this.itemSize, this.normalized);
|
|
} else {
|
|
if (data.interleavedBuffers === undefined) {
|
|
data.interleavedBuffers = {};
|
|
}
|
|
|
|
if (data.interleavedBuffers[this.data.uuid] === undefined) {
|
|
data.interleavedBuffers[this.data.uuid] = this.data.clone(data);
|
|
}
|
|
|
|
return new InterleavedBufferAttribute(data.interleavedBuffers[this.data.uuid], this.itemSize, this.offset, this.normalized);
|
|
}
|
|
}
|
|
|
|
toJSON(data) {
|
|
if (data === undefined) {
|
|
console.log('THREE.InterleavedBufferAttribute.toJSON(): Serializing an interlaved buffer attribute will deinterleave buffer data.');
|
|
const array = [];
|
|
|
|
for (let i = 0; i < this.count; i++) {
|
|
const index = i * this.data.stride + this.offset;
|
|
|
|
for (let j = 0; j < this.itemSize; j++) {
|
|
array.push(this.data.array[index + j]);
|
|
}
|
|
} // deinterleave data and save it as an ordinary buffer attribute for now
|
|
|
|
|
|
return {
|
|
itemSize: this.itemSize,
|
|
type: this.array.constructor.name,
|
|
array: array,
|
|
normalized: this.normalized
|
|
};
|
|
} else {
|
|
// save as true interlaved attribtue
|
|
if (data.interleavedBuffers === undefined) {
|
|
data.interleavedBuffers = {};
|
|
}
|
|
|
|
if (data.interleavedBuffers[this.data.uuid] === undefined) {
|
|
data.interleavedBuffers[this.data.uuid] = this.data.toJSON(data);
|
|
}
|
|
|
|
return {
|
|
isInterleavedBufferAttribute: true,
|
|
itemSize: this.itemSize,
|
|
data: this.data.uuid,
|
|
offset: this.offset,
|
|
normalized: this.normalized
|
|
};
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
InterleavedBufferAttribute.prototype.isInterleavedBufferAttribute = true;
|
|
|
|
/**
|
|
* parameters = {
|
|
* color: <hex>,
|
|
* map: new THREE.Texture( <Image> ),
|
|
* alphaMap: new THREE.Texture( <Image> ),
|
|
* rotation: <float>,
|
|
* sizeAttenuation: <bool>
|
|
* }
|
|
*/
|
|
|
|
class SpriteMaterial extends Material {
|
|
constructor(parameters) {
|
|
super();
|
|
this.type = 'SpriteMaterial';
|
|
this.color = new Color(0xffffff);
|
|
this.map = null;
|
|
this.alphaMap = null;
|
|
this.rotation = 0;
|
|
this.sizeAttenuation = true;
|
|
this.transparent = true;
|
|
this.setValues(parameters);
|
|
}
|
|
|
|
copy(source) {
|
|
super.copy(source);
|
|
this.color.copy(source.color);
|
|
this.map = source.map;
|
|
this.alphaMap = source.alphaMap;
|
|
this.rotation = source.rotation;
|
|
this.sizeAttenuation = source.sizeAttenuation;
|
|
return this;
|
|
}
|
|
|
|
}
|
|
|
|
SpriteMaterial.prototype.isSpriteMaterial = true;
|
|
|
|
let _geometry;
|
|
|
|
const _intersectPoint = /*@__PURE__*/new Vector3();
|
|
|
|
const _worldScale = /*@__PURE__*/new Vector3();
|
|
|
|
const _mvPosition = /*@__PURE__*/new Vector3();
|
|
|
|
const _alignedPosition = /*@__PURE__*/new Vector2();
|
|
|
|
const _rotatedPosition = /*@__PURE__*/new Vector2();
|
|
|
|
const _viewWorldMatrix = /*@__PURE__*/new Matrix4();
|
|
|
|
const _vA = /*@__PURE__*/new Vector3();
|
|
|
|
const _vB = /*@__PURE__*/new Vector3();
|
|
|
|
const _vC = /*@__PURE__*/new Vector3();
|
|
|
|
const _uvA = /*@__PURE__*/new Vector2();
|
|
|
|
const _uvB = /*@__PURE__*/new Vector2();
|
|
|
|
const _uvC = /*@__PURE__*/new Vector2();
|
|
|
|
class Sprite extends Object3D {
|
|
constructor(material) {
|
|
super();
|
|
this.type = 'Sprite';
|
|
|
|
if (_geometry === undefined) {
|
|
_geometry = new BufferGeometry();
|
|
const float32Array = new Float32Array([-0.5, -0.5, 0, 0, 0, 0.5, -0.5, 0, 1, 0, 0.5, 0.5, 0, 1, 1, -0.5, 0.5, 0, 0, 1]);
|
|
const interleavedBuffer = new InterleavedBuffer(float32Array, 5);
|
|
|
|
_geometry.setIndex([0, 1, 2, 0, 2, 3]);
|
|
|
|
_geometry.setAttribute('position', new InterleavedBufferAttribute(interleavedBuffer, 3, 0, false));
|
|
|
|
_geometry.setAttribute('uv', new InterleavedBufferAttribute(interleavedBuffer, 2, 3, false));
|
|
}
|
|
|
|
this.geometry = _geometry;
|
|
this.material = material !== undefined ? material : new SpriteMaterial();
|
|
this.center = new Vector2(0.5, 0.5);
|
|
}
|
|
|
|
raycast(raycaster, intersects) {
|
|
if (raycaster.camera === null) {
|
|
console.error('THREE.Sprite: "Raycaster.camera" needs to be set in order to raycast against sprites.');
|
|
}
|
|
|
|
_worldScale.setFromMatrixScale(this.matrixWorld);
|
|
|
|
_viewWorldMatrix.copy(raycaster.camera.matrixWorld);
|
|
|
|
this.modelViewMatrix.multiplyMatrices(raycaster.camera.matrixWorldInverse, this.matrixWorld);
|
|
|
|
_mvPosition.setFromMatrixPosition(this.modelViewMatrix);
|
|
|
|
if (raycaster.camera.isPerspectiveCamera && this.material.sizeAttenuation === false) {
|
|
_worldScale.multiplyScalar(-_mvPosition.z);
|
|
}
|
|
|
|
const rotation = this.material.rotation;
|
|
let sin, cos;
|
|
|
|
if (rotation !== 0) {
|
|
cos = Math.cos(rotation);
|
|
sin = Math.sin(rotation);
|
|
}
|
|
|
|
const center = this.center;
|
|
transformVertex(_vA.set(-0.5, -0.5, 0), _mvPosition, center, _worldScale, sin, cos);
|
|
transformVertex(_vB.set(0.5, -0.5, 0), _mvPosition, center, _worldScale, sin, cos);
|
|
transformVertex(_vC.set(0.5, 0.5, 0), _mvPosition, center, _worldScale, sin, cos);
|
|
|
|
_uvA.set(0, 0);
|
|
|
|
_uvB.set(1, 0);
|
|
|
|
_uvC.set(1, 1); // check first triangle
|
|
|
|
|
|
let intersect = raycaster.ray.intersectTriangle(_vA, _vB, _vC, false, _intersectPoint);
|
|
|
|
if (intersect === null) {
|
|
// check second triangle
|
|
transformVertex(_vB.set(-0.5, 0.5, 0), _mvPosition, center, _worldScale, sin, cos);
|
|
|
|
_uvB.set(0, 1);
|
|
|
|
intersect = raycaster.ray.intersectTriangle(_vA, _vC, _vB, false, _intersectPoint);
|
|
|
|
if (intersect === null) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
const distance = raycaster.ray.origin.distanceTo(_intersectPoint);
|
|
if (distance < raycaster.near || distance > raycaster.far) return;
|
|
intersects.push({
|
|
distance: distance,
|
|
point: _intersectPoint.clone(),
|
|
uv: Triangle.getUV(_intersectPoint, _vA, _vB, _vC, _uvA, _uvB, _uvC, new Vector2()),
|
|
face: null,
|
|
object: this
|
|
});
|
|
}
|
|
|
|
copy(source) {
|
|
super.copy(source);
|
|
if (source.center !== undefined) this.center.copy(source.center);
|
|
this.material = source.material;
|
|
return this;
|
|
}
|
|
|
|
}
|
|
|
|
Sprite.prototype.isSprite = true;
|
|
|
|
function transformVertex(vertexPosition, mvPosition, center, scale, sin, cos) {
|
|
// compute position in camera space
|
|
_alignedPosition.subVectors(vertexPosition, center).addScalar(0.5).multiply(scale); // to check if rotation is not zero
|
|
|
|
|
|
if (sin !== undefined) {
|
|
_rotatedPosition.x = cos * _alignedPosition.x - sin * _alignedPosition.y;
|
|
_rotatedPosition.y = sin * _alignedPosition.x + cos * _alignedPosition.y;
|
|
} else {
|
|
_rotatedPosition.copy(_alignedPosition);
|
|
}
|
|
|
|
vertexPosition.copy(mvPosition);
|
|
vertexPosition.x += _rotatedPosition.x;
|
|
vertexPosition.y += _rotatedPosition.y; // transform to world space
|
|
|
|
vertexPosition.applyMatrix4(_viewWorldMatrix);
|
|
}
|
|
|
|
const _v1$2 = /*@__PURE__*/new Vector3();
|
|
|
|
const _v2$1 = /*@__PURE__*/new Vector3();
|
|
|
|
class LOD extends Object3D {
|
|
constructor() {
|
|
super();
|
|
this._currentLevel = 0;
|
|
this.type = 'LOD';
|
|
Object.defineProperties(this, {
|
|
levels: {
|
|
enumerable: true,
|
|
value: []
|
|
},
|
|
isLOD: {
|
|
value: true
|
|
}
|
|
});
|
|
this.autoUpdate = true;
|
|
}
|
|
|
|
copy(source) {
|
|
super.copy(source, false);
|
|
const levels = source.levels;
|
|
|
|
for (let i = 0, l = levels.length; i < l; i++) {
|
|
const level = levels[i];
|
|
this.addLevel(level.object.clone(), level.distance);
|
|
}
|
|
|
|
this.autoUpdate = source.autoUpdate;
|
|
return this;
|
|
}
|
|
|
|
addLevel(object, distance = 0) {
|
|
distance = Math.abs(distance);
|
|
const levels = this.levels;
|
|
let l;
|
|
|
|
for (l = 0; l < levels.length; l++) {
|
|
if (distance < levels[l].distance) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
levels.splice(l, 0, {
|
|
distance: distance,
|
|
object: object
|
|
});
|
|
this.add(object);
|
|
return this;
|
|
}
|
|
|
|
getCurrentLevel() {
|
|
return this._currentLevel;
|
|
}
|
|
|
|
getObjectForDistance(distance) {
|
|
const levels = this.levels;
|
|
|
|
if (levels.length > 0) {
|
|
let i, l;
|
|
|
|
for (i = 1, l = levels.length; i < l; i++) {
|
|
if (distance < levels[i].distance) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
return levels[i - 1].object;
|
|
}
|
|
|
|
return null;
|
|
}
|
|
|
|
raycast(raycaster, intersects) {
|
|
const levels = this.levels;
|
|
|
|
if (levels.length > 0) {
|
|
_v1$2.setFromMatrixPosition(this.matrixWorld);
|
|
|
|
const distance = raycaster.ray.origin.distanceTo(_v1$2);
|
|
this.getObjectForDistance(distance).raycast(raycaster, intersects);
|
|
}
|
|
}
|
|
|
|
update(camera) {
|
|
const levels = this.levels;
|
|
|
|
if (levels.length > 1) {
|
|
_v1$2.setFromMatrixPosition(camera.matrixWorld);
|
|
|
|
_v2$1.setFromMatrixPosition(this.matrixWorld);
|
|
|
|
const distance = _v1$2.distanceTo(_v2$1) / camera.zoom;
|
|
levels[0].object.visible = true;
|
|
let i, l;
|
|
|
|
for (i = 1, l = levels.length; i < l; i++) {
|
|
if (distance >= levels[i].distance) {
|
|
levels[i - 1].object.visible = false;
|
|
levels[i].object.visible = true;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
this._currentLevel = i - 1;
|
|
|
|
for (; i < l; i++) {
|
|
levels[i].object.visible = false;
|
|
}
|
|
}
|
|
}
|
|
|
|
toJSON(meta) {
|
|
const data = super.toJSON(meta);
|
|
if (this.autoUpdate === false) data.object.autoUpdate = false;
|
|
data.object.levels = [];
|
|
const levels = this.levels;
|
|
|
|
for (let i = 0, l = levels.length; i < l; i++) {
|
|
const level = levels[i];
|
|
data.object.levels.push({
|
|
object: level.object.uuid,
|
|
distance: level.distance
|
|
});
|
|
}
|
|
|
|
return data;
|
|
}
|
|
|
|
}
|
|
|
|
const _basePosition = /*@__PURE__*/new Vector3();
|
|
|
|
const _skinIndex = /*@__PURE__*/new Vector4();
|
|
|
|
const _skinWeight = /*@__PURE__*/new Vector4();
|
|
|
|
const _vector$5 = /*@__PURE__*/new Vector3();
|
|
|
|
const _matrix = /*@__PURE__*/new Matrix4();
|
|
|
|
class SkinnedMesh extends Mesh {
|
|
constructor(geometry, material) {
|
|
super(geometry, material);
|
|
this.type = 'SkinnedMesh';
|
|
this.bindMode = 'attached';
|
|
this.bindMatrix = new Matrix4();
|
|
this.bindMatrixInverse = new Matrix4();
|
|
}
|
|
|
|
copy(source) {
|
|
super.copy(source);
|
|
this.bindMode = source.bindMode;
|
|
this.bindMatrix.copy(source.bindMatrix);
|
|
this.bindMatrixInverse.copy(source.bindMatrixInverse);
|
|
this.skeleton = source.skeleton;
|
|
return this;
|
|
}
|
|
|
|
bind(skeleton, bindMatrix) {
|
|
this.skeleton = skeleton;
|
|
|
|
if (bindMatrix === undefined) {
|
|
this.updateMatrixWorld(true);
|
|
this.skeleton.calculateInverses();
|
|
bindMatrix = this.matrixWorld;
|
|
}
|
|
|
|
this.bindMatrix.copy(bindMatrix);
|
|
this.bindMatrixInverse.copy(bindMatrix).invert();
|
|
}
|
|
|
|
pose() {
|
|
this.skeleton.pose();
|
|
}
|
|
|
|
normalizeSkinWeights() {
|
|
const vector = new Vector4();
|
|
const skinWeight = this.geometry.attributes.skinWeight;
|
|
|
|
for (let i = 0, l = skinWeight.count; i < l; i++) {
|
|
vector.x = skinWeight.getX(i);
|
|
vector.y = skinWeight.getY(i);
|
|
vector.z = skinWeight.getZ(i);
|
|
vector.w = skinWeight.getW(i);
|
|
const scale = 1.0 / vector.manhattanLength();
|
|
|
|
if (scale !== Infinity) {
|
|
vector.multiplyScalar(scale);
|
|
} else {
|
|
vector.set(1, 0, 0, 0); // do something reasonable
|
|
}
|
|
|
|
skinWeight.setXYZW(i, vector.x, vector.y, vector.z, vector.w);
|
|
}
|
|
}
|
|
|
|
updateMatrixWorld(force) {
|
|
super.updateMatrixWorld(force);
|
|
|
|
if (this.bindMode === 'attached') {
|
|
this.bindMatrixInverse.copy(this.matrixWorld).invert();
|
|
} else if (this.bindMode === 'detached') {
|
|
this.bindMatrixInverse.copy(this.bindMatrix).invert();
|
|
} else {
|
|
console.warn('THREE.SkinnedMesh: Unrecognized bindMode: ' + this.bindMode);
|
|
}
|
|
}
|
|
|
|
boneTransform(index, target) {
|
|
const skeleton = this.skeleton;
|
|
const geometry = this.geometry;
|
|
|
|
_skinIndex.fromBufferAttribute(geometry.attributes.skinIndex, index);
|
|
|
|
_skinWeight.fromBufferAttribute(geometry.attributes.skinWeight, index);
|
|
|
|
_basePosition.copy(target).applyMatrix4(this.bindMatrix);
|
|
|
|
target.set(0, 0, 0);
|
|
|
|
for (let i = 0; i < 4; i++) {
|
|
const weight = _skinWeight.getComponent(i);
|
|
|
|
if (weight !== 0) {
|
|
const boneIndex = _skinIndex.getComponent(i);
|
|
|
|
_matrix.multiplyMatrices(skeleton.bones[boneIndex].matrixWorld, skeleton.boneInverses[boneIndex]);
|
|
|
|
target.addScaledVector(_vector$5.copy(_basePosition).applyMatrix4(_matrix), weight);
|
|
}
|
|
}
|
|
|
|
return target.applyMatrix4(this.bindMatrixInverse);
|
|
}
|
|
|
|
}
|
|
|
|
SkinnedMesh.prototype.isSkinnedMesh = true;
|
|
|
|
class Bone extends Object3D {
|
|
constructor() {
|
|
super();
|
|
this.type = 'Bone';
|
|
}
|
|
|
|
}
|
|
|
|
Bone.prototype.isBone = true;
|
|
|
|
class DataTexture extends Texture {
|
|
constructor(data = null, width = 1, height = 1, format, type, mapping, wrapS, wrapT, magFilter = NearestFilter, minFilter = NearestFilter, anisotropy, encoding) {
|
|
super(null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding);
|
|
this.image = {
|
|
data: data,
|
|
width: width,
|
|
height: height
|
|
};
|
|
this.magFilter = magFilter;
|
|
this.minFilter = minFilter;
|
|
this.generateMipmaps = false;
|
|
this.flipY = false;
|
|
this.unpackAlignment = 1;
|
|
this.needsUpdate = true;
|
|
}
|
|
|
|
}
|
|
|
|
DataTexture.prototype.isDataTexture = true;
|
|
|
|
const _offsetMatrix = /*@__PURE__*/new Matrix4();
|
|
|
|
const _identityMatrix = /*@__PURE__*/new Matrix4();
|
|
|
|
class Skeleton {
|
|
constructor(bones = [], boneInverses = []) {
|
|
this.uuid = generateUUID();
|
|
this.bones = bones.slice(0);
|
|
this.boneInverses = boneInverses;
|
|
this.boneMatrices = null;
|
|
this.boneTexture = null;
|
|
this.boneTextureSize = 0;
|
|
this.frame = -1;
|
|
this.init();
|
|
}
|
|
|
|
init() {
|
|
const bones = this.bones;
|
|
const boneInverses = this.boneInverses;
|
|
this.boneMatrices = new Float32Array(bones.length * 16); // calculate inverse bone matrices if necessary
|
|
|
|
if (boneInverses.length === 0) {
|
|
this.calculateInverses();
|
|
} else {
|
|
// handle special case
|
|
if (bones.length !== boneInverses.length) {
|
|
console.warn('THREE.Skeleton: Number of inverse bone matrices does not match amount of bones.');
|
|
this.boneInverses = [];
|
|
|
|
for (let i = 0, il = this.bones.length; i < il; i++) {
|
|
this.boneInverses.push(new Matrix4());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
calculateInverses() {
|
|
this.boneInverses.length = 0;
|
|
|
|
for (let i = 0, il = this.bones.length; i < il; i++) {
|
|
const inverse = new Matrix4();
|
|
|
|
if (this.bones[i]) {
|
|
inverse.copy(this.bones[i].matrixWorld).invert();
|
|
}
|
|
|
|
this.boneInverses.push(inverse);
|
|
}
|
|
}
|
|
|
|
pose() {
|
|
// recover the bind-time world matrices
|
|
for (let i = 0, il = this.bones.length; i < il; i++) {
|
|
const bone = this.bones[i];
|
|
|
|
if (bone) {
|
|
bone.matrixWorld.copy(this.boneInverses[i]).invert();
|
|
}
|
|
} // compute the local matrices, positions, rotations and scales
|
|
|
|
|
|
for (let i = 0, il = this.bones.length; i < il; i++) {
|
|
const bone = this.bones[i];
|
|
|
|
if (bone) {
|
|
if (bone.parent && bone.parent.isBone) {
|
|
bone.matrix.copy(bone.parent.matrixWorld).invert();
|
|
bone.matrix.multiply(bone.matrixWorld);
|
|
} else {
|
|
bone.matrix.copy(bone.matrixWorld);
|
|
}
|
|
|
|
bone.matrix.decompose(bone.position, bone.quaternion, bone.scale);
|
|
}
|
|
}
|
|
}
|
|
|
|
update() {
|
|
const bones = this.bones;
|
|
const boneInverses = this.boneInverses;
|
|
const boneMatrices = this.boneMatrices;
|
|
const boneTexture = this.boneTexture; // flatten bone matrices to array
|
|
|
|
for (let i = 0, il = bones.length; i < il; i++) {
|
|
// compute the offset between the current and the original transform
|
|
const matrix = bones[i] ? bones[i].matrixWorld : _identityMatrix;
|
|
|
|
_offsetMatrix.multiplyMatrices(matrix, boneInverses[i]);
|
|
|
|
_offsetMatrix.toArray(boneMatrices, i * 16);
|
|
}
|
|
|
|
if (boneTexture !== null) {
|
|
boneTexture.needsUpdate = true;
|
|
}
|
|
}
|
|
|
|
clone() {
|
|
return new Skeleton(this.bones, this.boneInverses);
|
|
}
|
|
|
|
computeBoneTexture() {
|
|
// layout (1 matrix = 4 pixels)
|
|
// RGBA RGBA RGBA RGBA (=> column1, column2, column3, column4)
|
|
// with 8x8 pixel texture max 16 bones * 4 pixels = (8 * 8)
|
|
// 16x16 pixel texture max 64 bones * 4 pixels = (16 * 16)
|
|
// 32x32 pixel texture max 256 bones * 4 pixels = (32 * 32)
|
|
// 64x64 pixel texture max 1024 bones * 4 pixels = (64 * 64)
|
|
let size = Math.sqrt(this.bones.length * 4); // 4 pixels needed for 1 matrix
|
|
|
|
size = ceilPowerOfTwo(size);
|
|
size = Math.max(size, 4);
|
|
const boneMatrices = new Float32Array(size * size * 4); // 4 floats per RGBA pixel
|
|
|
|
boneMatrices.set(this.boneMatrices); // copy current values
|
|
|
|
const boneTexture = new DataTexture(boneMatrices, size, size, RGBAFormat, FloatType);
|
|
this.boneMatrices = boneMatrices;
|
|
this.boneTexture = boneTexture;
|
|
this.boneTextureSize = size;
|
|
return this;
|
|
}
|
|
|
|
getBoneByName(name) {
|
|
for (let i = 0, il = this.bones.length; i < il; i++) {
|
|
const bone = this.bones[i];
|
|
|
|
if (bone.name === name) {
|
|
return bone;
|
|
}
|
|
}
|
|
|
|
return undefined;
|
|
}
|
|
|
|
dispose() {
|
|
if (this.boneTexture !== null) {
|
|
this.boneTexture.dispose();
|
|
this.boneTexture = null;
|
|
}
|
|
}
|
|
|
|
fromJSON(json, bones) {
|
|
this.uuid = json.uuid;
|
|
|
|
for (let i = 0, l = json.bones.length; i < l; i++) {
|
|
const uuid = json.bones[i];
|
|
let bone = bones[uuid];
|
|
|
|
if (bone === undefined) {
|
|
console.warn('THREE.Skeleton: No bone found with UUID:', uuid);
|
|
bone = new Bone();
|
|
}
|
|
|
|
this.bones.push(bone);
|
|
this.boneInverses.push(new Matrix4().fromArray(json.boneInverses[i]));
|
|
}
|
|
|
|
this.init();
|
|
return this;
|
|
}
|
|
|
|
toJSON() {
|
|
const data = {
|
|
metadata: {
|
|
version: 4.5,
|
|
type: 'Skeleton',
|
|
generator: 'Skeleton.toJSON'
|
|
},
|
|
bones: [],
|
|
boneInverses: []
|
|
};
|
|
data.uuid = this.uuid;
|
|
const bones = this.bones;
|
|
const boneInverses = this.boneInverses;
|
|
|
|
for (let i = 0, l = bones.length; i < l; i++) {
|
|
const bone = bones[i];
|
|
data.bones.push(bone.uuid);
|
|
const boneInverse = boneInverses[i];
|
|
data.boneInverses.push(boneInverse.toArray());
|
|
}
|
|
|
|
return data;
|
|
}
|
|
|
|
}
|
|
|
|
class InstancedBufferAttribute extends BufferAttribute {
|
|
constructor(array, itemSize, normalized, meshPerAttribute = 1) {
|
|
if (typeof normalized === 'number') {
|
|
meshPerAttribute = normalized;
|
|
normalized = false;
|
|
console.error('THREE.InstancedBufferAttribute: The constructor now expects normalized as the third argument.');
|
|
}
|
|
|
|
super(array, itemSize, normalized);
|
|
this.meshPerAttribute = meshPerAttribute;
|
|
}
|
|
|
|
copy(source) {
|
|
super.copy(source);
|
|
this.meshPerAttribute = source.meshPerAttribute;
|
|
return this;
|
|
}
|
|
|
|
toJSON() {
|
|
const data = super.toJSON();
|
|
data.meshPerAttribute = this.meshPerAttribute;
|
|
data.isInstancedBufferAttribute = true;
|
|
return data;
|
|
}
|
|
|
|
}
|
|
|
|
InstancedBufferAttribute.prototype.isInstancedBufferAttribute = true;
|
|
|
|
const _instanceLocalMatrix = /*@__PURE__*/new Matrix4();
|
|
|
|
const _instanceWorldMatrix = /*@__PURE__*/new Matrix4();
|
|
|
|
const _instanceIntersects = [];
|
|
|
|
const _mesh = /*@__PURE__*/new Mesh();
|
|
|
|
class InstancedMesh extends Mesh {
|
|
constructor(geometry, material, count) {
|
|
super(geometry, material);
|
|
this.instanceMatrix = new InstancedBufferAttribute(new Float32Array(count * 16), 16);
|
|
this.instanceColor = null;
|
|
this.count = count;
|
|
this.frustumCulled = false;
|
|
}
|
|
|
|
copy(source) {
|
|
super.copy(source);
|
|
this.instanceMatrix.copy(source.instanceMatrix);
|
|
if (source.instanceColor !== null) this.instanceColor = source.instanceColor.clone();
|
|
this.count = source.count;
|
|
return this;
|
|
}
|
|
|
|
getColorAt(index, color) {
|
|
color.fromArray(this.instanceColor.array, index * 3);
|
|
}
|
|
|
|
getMatrixAt(index, matrix) {
|
|
matrix.fromArray(this.instanceMatrix.array, index * 16);
|
|
}
|
|
|
|
raycast(raycaster, intersects) {
|
|
const matrixWorld = this.matrixWorld;
|
|
const raycastTimes = this.count;
|
|
_mesh.geometry = this.geometry;
|
|
_mesh.material = this.material;
|
|
if (_mesh.material === undefined) return;
|
|
|
|
for (let instanceId = 0; instanceId < raycastTimes; instanceId++) {
|
|
// calculate the world matrix for each instance
|
|
this.getMatrixAt(instanceId, _instanceLocalMatrix);
|
|
|
|
_instanceWorldMatrix.multiplyMatrices(matrixWorld, _instanceLocalMatrix); // the mesh represents this single instance
|
|
|
|
|
|
_mesh.matrixWorld = _instanceWorldMatrix;
|
|
|
|
_mesh.raycast(raycaster, _instanceIntersects); // process the result of raycast
|
|
|
|
|
|
for (let i = 0, l = _instanceIntersects.length; i < l; i++) {
|
|
const intersect = _instanceIntersects[i];
|
|
intersect.instanceId = instanceId;
|
|
intersect.object = this;
|
|
intersects.push(intersect);
|
|
}
|
|
|
|
_instanceIntersects.length = 0;
|
|
}
|
|
}
|
|
|
|
setColorAt(index, color) {
|
|
if (this.instanceColor === null) {
|
|
this.instanceColor = new InstancedBufferAttribute(new Float32Array(this.instanceMatrix.count * 3), 3);
|
|
}
|
|
|
|
color.toArray(this.instanceColor.array, index * 3);
|
|
}
|
|
|
|
setMatrixAt(index, matrix) {
|
|
matrix.toArray(this.instanceMatrix.array, index * 16);
|
|
}
|
|
|
|
updateMorphTargets() {}
|
|
|
|
dispose() {
|
|
this.dispatchEvent({
|
|
type: 'dispose'
|
|
});
|
|
}
|
|
|
|
}
|
|
|
|
InstancedMesh.prototype.isInstancedMesh = true;
|
|
|
|
/**
|
|
* parameters = {
|
|
* color: <hex>,
|
|
* opacity: <float>,
|
|
*
|
|
* linewidth: <float>,
|
|
* linecap: "round",
|
|
* linejoin: "round"
|
|
* }
|
|
*/
|
|
|
|
class LineBasicMaterial extends Material {
|
|
constructor(parameters) {
|
|
super();
|
|
this.type = 'LineBasicMaterial';
|
|
this.color = new Color(0xffffff);
|
|
this.linewidth = 1;
|
|
this.linecap = 'round';
|
|
this.linejoin = 'round';
|
|
this.setValues(parameters);
|
|
}
|
|
|
|
copy(source) {
|
|
super.copy(source);
|
|
this.color.copy(source.color);
|
|
this.linewidth = source.linewidth;
|
|
this.linecap = source.linecap;
|
|
this.linejoin = source.linejoin;
|
|
return this;
|
|
}
|
|
|
|
}
|
|
|
|
LineBasicMaterial.prototype.isLineBasicMaterial = true;
|
|
|
|
const _start$1 = /*@__PURE__*/new Vector3();
|
|
|
|
const _end$1 = /*@__PURE__*/new Vector3();
|
|
|
|
const _inverseMatrix$1 = /*@__PURE__*/new Matrix4();
|
|
|
|
const _ray$1 = /*@__PURE__*/new Ray();
|
|
|
|
const _sphere$1 = /*@__PURE__*/new Sphere();
|
|
|
|
class Line extends Object3D {
|
|
constructor(geometry = new BufferGeometry(), material = new LineBasicMaterial()) {
|
|
super();
|
|
this.type = 'Line';
|
|
this.geometry = geometry;
|
|
this.material = material;
|
|
this.updateMorphTargets();
|
|
}
|
|
|
|
copy(source) {
|
|
super.copy(source);
|
|
this.material = source.material;
|
|
this.geometry = source.geometry;
|
|
return this;
|
|
}
|
|
|
|
computeLineDistances() {
|
|
const geometry = this.geometry;
|
|
|
|
if (geometry.isBufferGeometry) {
|
|
// we assume non-indexed geometry
|
|
if (geometry.index === null) {
|
|
const positionAttribute = geometry.attributes.position;
|
|
const lineDistances = [0];
|
|
|
|
for (let i = 1, l = positionAttribute.count; i < l; i++) {
|
|
_start$1.fromBufferAttribute(positionAttribute, i - 1);
|
|
|
|
_end$1.fromBufferAttribute(positionAttribute, i);
|
|
|
|
lineDistances[i] = lineDistances[i - 1];
|
|
lineDistances[i] += _start$1.distanceTo(_end$1);
|
|
}
|
|
|
|
geometry.setAttribute('lineDistance', new Float32BufferAttribute(lineDistances, 1));
|
|
} else {
|
|
console.warn('THREE.Line.computeLineDistances(): Computation only possible with non-indexed BufferGeometry.');
|
|
}
|
|
} else if (geometry.isGeometry) {
|
|
console.error('THREE.Line.computeLineDistances() no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.');
|
|
}
|
|
|
|
return this;
|
|
}
|
|
|
|
raycast(raycaster, intersects) {
|
|
const geometry = this.geometry;
|
|
const matrixWorld = this.matrixWorld;
|
|
const threshold = raycaster.params.Line.threshold;
|
|
const drawRange = geometry.drawRange; // Checking boundingSphere distance to ray
|
|
|
|
if (geometry.boundingSphere === null) geometry.computeBoundingSphere();
|
|
|
|
_sphere$1.copy(geometry.boundingSphere);
|
|
|
|
_sphere$1.applyMatrix4(matrixWorld);
|
|
|
|
_sphere$1.radius += threshold;
|
|
if (raycaster.ray.intersectsSphere(_sphere$1) === false) return; //
|
|
|
|
_inverseMatrix$1.copy(matrixWorld).invert();
|
|
|
|
_ray$1.copy(raycaster.ray).applyMatrix4(_inverseMatrix$1);
|
|
|
|
const localThreshold = threshold / ((this.scale.x + this.scale.y + this.scale.z) / 3);
|
|
const localThresholdSq = localThreshold * localThreshold;
|
|
const vStart = new Vector3();
|
|
const vEnd = new Vector3();
|
|
const interSegment = new Vector3();
|
|
const interRay = new Vector3();
|
|
const step = this.isLineSegments ? 2 : 1;
|
|
|
|
if (geometry.isBufferGeometry) {
|
|
const index = geometry.index;
|
|
const attributes = geometry.attributes;
|
|
const positionAttribute = attributes.position;
|
|
|
|
if (index !== null) {
|
|
const start = Math.max(0, drawRange.start);
|
|
const end = Math.min(index.count, drawRange.start + drawRange.count);
|
|
|
|
for (let i = start, l = end - 1; i < l; i += step) {
|
|
const a = index.getX(i);
|
|
const b = index.getX(i + 1);
|
|
vStart.fromBufferAttribute(positionAttribute, a);
|
|
vEnd.fromBufferAttribute(positionAttribute, b);
|
|
|
|
const distSq = _ray$1.distanceSqToSegment(vStart, vEnd, interRay, interSegment);
|
|
|
|
if (distSq > localThresholdSq) continue;
|
|
interRay.applyMatrix4(this.matrixWorld); //Move back to world space for distance calculation
|
|
|
|
const distance = raycaster.ray.origin.distanceTo(interRay);
|
|
if (distance < raycaster.near || distance > raycaster.far) continue;
|
|
intersects.push({
|
|
distance: distance,
|
|
// What do we want? intersection point on the ray or on the segment??
|
|
// point: raycaster.ray.at( distance ),
|
|
point: interSegment.clone().applyMatrix4(this.matrixWorld),
|
|
index: i,
|
|
face: null,
|
|
faceIndex: null,
|
|
object: this
|
|
});
|
|
}
|
|
} else {
|
|
const start = Math.max(0, drawRange.start);
|
|
const end = Math.min(positionAttribute.count, drawRange.start + drawRange.count);
|
|
|
|
for (let i = start, l = end - 1; i < l; i += step) {
|
|
vStart.fromBufferAttribute(positionAttribute, i);
|
|
vEnd.fromBufferAttribute(positionAttribute, i + 1);
|
|
|
|
const distSq = _ray$1.distanceSqToSegment(vStart, vEnd, interRay, interSegment);
|
|
|
|
if (distSq > localThresholdSq) continue;
|
|
interRay.applyMatrix4(this.matrixWorld); //Move back to world space for distance calculation
|
|
|
|
const distance = raycaster.ray.origin.distanceTo(interRay);
|
|
if (distance < raycaster.near || distance > raycaster.far) continue;
|
|
intersects.push({
|
|
distance: distance,
|
|
// What do we want? intersection point on the ray or on the segment??
|
|
// point: raycaster.ray.at( distance ),
|
|
point: interSegment.clone().applyMatrix4(this.matrixWorld),
|
|
index: i,
|
|
face: null,
|
|
faceIndex: null,
|
|
object: this
|
|
});
|
|
}
|
|
}
|
|
} else if (geometry.isGeometry) {
|
|
console.error('THREE.Line.raycast() no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.');
|
|
}
|
|
}
|
|
|
|
updateMorphTargets() {
|
|
const geometry = this.geometry;
|
|
|
|
if (geometry.isBufferGeometry) {
|
|
const morphAttributes = geometry.morphAttributes;
|
|
const keys = Object.keys(morphAttributes);
|
|
|
|
if (keys.length > 0) {
|
|
const morphAttribute = morphAttributes[keys[0]];
|
|
|
|
if (morphAttribute !== undefined) {
|
|
this.morphTargetInfluences = [];
|
|
this.morphTargetDictionary = {};
|
|
|
|
for (let m = 0, ml = morphAttribute.length; m < ml; m++) {
|
|
const name = morphAttribute[m].name || String(m);
|
|
this.morphTargetInfluences.push(0);
|
|
this.morphTargetDictionary[name] = m;
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
const morphTargets = geometry.morphTargets;
|
|
|
|
if (morphTargets !== undefined && morphTargets.length > 0) {
|
|
console.error('THREE.Line.updateMorphTargets() does not support THREE.Geometry. Use THREE.BufferGeometry instead.');
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
Line.prototype.isLine = true;
|
|
|
|
const _start = /*@__PURE__*/new Vector3();
|
|
|
|
const _end = /*@__PURE__*/new Vector3();
|
|
|
|
class LineSegments extends Line {
|
|
constructor(geometry, material) {
|
|
super(geometry, material);
|
|
this.type = 'LineSegments';
|
|
}
|
|
|
|
computeLineDistances() {
|
|
const geometry = this.geometry;
|
|
|
|
if (geometry.isBufferGeometry) {
|
|
// we assume non-indexed geometry
|
|
if (geometry.index === null) {
|
|
const positionAttribute = geometry.attributes.position;
|
|
const lineDistances = [];
|
|
|
|
for (let i = 0, l = positionAttribute.count; i < l; i += 2) {
|
|
_start.fromBufferAttribute(positionAttribute, i);
|
|
|
|
_end.fromBufferAttribute(positionAttribute, i + 1);
|
|
|
|
lineDistances[i] = i === 0 ? 0 : lineDistances[i - 1];
|
|
lineDistances[i + 1] = lineDistances[i] + _start.distanceTo(_end);
|
|
}
|
|
|
|
geometry.setAttribute('lineDistance', new Float32BufferAttribute(lineDistances, 1));
|
|
} else {
|
|
console.warn('THREE.LineSegments.computeLineDistances(): Computation only possible with non-indexed BufferGeometry.');
|
|
}
|
|
} else if (geometry.isGeometry) {
|
|
console.error('THREE.LineSegments.computeLineDistances() no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.');
|
|
}
|
|
|
|
return this;
|
|
}
|
|
|
|
}
|
|
|
|
LineSegments.prototype.isLineSegments = true;
|
|
|
|
class LineLoop extends Line {
|
|
constructor(geometry, material) {
|
|
super(geometry, material);
|
|
this.type = 'LineLoop';
|
|
}
|
|
|
|
}
|
|
|
|
LineLoop.prototype.isLineLoop = true;
|
|
|
|
/**
|
|
* parameters = {
|
|
* color: <hex>,
|
|
* opacity: <float>,
|
|
* map: new THREE.Texture( <Image> ),
|
|
* alphaMap: new THREE.Texture( <Image> ),
|
|
*
|
|
* size: <float>,
|
|
* sizeAttenuation: <bool>
|
|
*
|
|
* }
|
|
*/
|
|
|
|
class PointsMaterial extends Material {
|
|
constructor(parameters) {
|
|
super();
|
|
this.type = 'PointsMaterial';
|
|
this.color = new Color(0xffffff);
|
|
this.map = null;
|
|
this.alphaMap = null;
|
|
this.size = 1;
|
|
this.sizeAttenuation = true;
|
|
this.setValues(parameters);
|
|
}
|
|
|
|
copy(source) {
|
|
super.copy(source);
|
|
this.color.copy(source.color);
|
|
this.map = source.map;
|
|
this.alphaMap = source.alphaMap;
|
|
this.size = source.size;
|
|
this.sizeAttenuation = source.sizeAttenuation;
|
|
return this;
|
|
}
|
|
|
|
}
|
|
|
|
PointsMaterial.prototype.isPointsMaterial = true;
|
|
|
|
const _inverseMatrix = /*@__PURE__*/new Matrix4();
|
|
|
|
const _ray = /*@__PURE__*/new Ray();
|
|
|
|
const _sphere = /*@__PURE__*/new Sphere();
|
|
|
|
const _position$2 = /*@__PURE__*/new Vector3();
|
|
|
|
class Points extends Object3D {
|
|
constructor(geometry = new BufferGeometry(), material = new PointsMaterial()) {
|
|
super();
|
|
this.type = 'Points';
|
|
this.geometry = geometry;
|
|
this.material = material;
|
|
this.updateMorphTargets();
|
|
}
|
|
|
|
copy(source) {
|
|
super.copy(source);
|
|
this.material = source.material;
|
|
this.geometry = source.geometry;
|
|
return this;
|
|
}
|
|
|
|
raycast(raycaster, intersects) {
|
|
const geometry = this.geometry;
|
|
const matrixWorld = this.matrixWorld;
|
|
const threshold = raycaster.params.Points.threshold;
|
|
const drawRange = geometry.drawRange; // Checking boundingSphere distance to ray
|
|
|
|
if (geometry.boundingSphere === null) geometry.computeBoundingSphere();
|
|
|
|
_sphere.copy(geometry.boundingSphere);
|
|
|
|
_sphere.applyMatrix4(matrixWorld);
|
|
|
|
_sphere.radius += threshold;
|
|
if (raycaster.ray.intersectsSphere(_sphere) === false) return; //
|
|
|
|
_inverseMatrix.copy(matrixWorld).invert();
|
|
|
|
_ray.copy(raycaster.ray).applyMatrix4(_inverseMatrix);
|
|
|
|
const localThreshold = threshold / ((this.scale.x + this.scale.y + this.scale.z) / 3);
|
|
const localThresholdSq = localThreshold * localThreshold;
|
|
|
|
if (geometry.isBufferGeometry) {
|
|
const index = geometry.index;
|
|
const attributes = geometry.attributes;
|
|
const positionAttribute = attributes.position;
|
|
|
|
if (index !== null) {
|
|
const start = Math.max(0, drawRange.start);
|
|
const end = Math.min(index.count, drawRange.start + drawRange.count);
|
|
|
|
for (let i = start, il = end; i < il; i++) {
|
|
const a = index.getX(i);
|
|
|
|
_position$2.fromBufferAttribute(positionAttribute, a);
|
|
|
|
testPoint(_position$2, a, localThresholdSq, matrixWorld, raycaster, intersects, this);
|
|
}
|
|
} else {
|
|
const start = Math.max(0, drawRange.start);
|
|
const end = Math.min(positionAttribute.count, drawRange.start + drawRange.count);
|
|
|
|
for (let i = start, l = end; i < l; i++) {
|
|
_position$2.fromBufferAttribute(positionAttribute, i);
|
|
|
|
testPoint(_position$2, i, localThresholdSq, matrixWorld, raycaster, intersects, this);
|
|
}
|
|
}
|
|
} else {
|
|
console.error('THREE.Points.raycast() no longer supports THREE.Geometry. Use THREE.BufferGeometry instead.');
|
|
}
|
|
}
|
|
|
|
updateMorphTargets() {
|
|
const geometry = this.geometry;
|
|
|
|
if (geometry.isBufferGeometry) {
|
|
const morphAttributes = geometry.morphAttributes;
|
|
const keys = Object.keys(morphAttributes);
|
|
|
|
if (keys.length > 0) {
|
|
const morphAttribute = morphAttributes[keys[0]];
|
|
|
|
if (morphAttribute !== undefined) {
|
|
this.morphTargetInfluences = [];
|
|
this.morphTargetDictionary = {};
|
|
|
|
for (let m = 0, ml = morphAttribute.length; m < ml; m++) {
|
|
const name = morphAttribute[m].name || String(m);
|
|
this.morphTargetInfluences.push(0);
|
|
this.morphTargetDictionary[name] = m;
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
const morphTargets = geometry.morphTargets;
|
|
|
|
if (morphTargets !== undefined && morphTargets.length > 0) {
|
|
console.error('THREE.Points.updateMorphTargets() does not support THREE.Geometry. Use THREE.BufferGeometry instead.');
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
Points.prototype.isPoints = true;
|
|
|
|
function testPoint(point, index, localThresholdSq, matrixWorld, raycaster, intersects, object) {
|
|
const rayPointDistanceSq = _ray.distanceSqToPoint(point);
|
|
|
|
if (rayPointDistanceSq < localThresholdSq) {
|
|
const intersectPoint = new Vector3();
|
|
|
|
_ray.closestPointToPoint(point, intersectPoint);
|
|
|
|
intersectPoint.applyMatrix4(matrixWorld);
|
|
const distance = raycaster.ray.origin.distanceTo(intersectPoint);
|
|
if (distance < raycaster.near || distance > raycaster.far) return;
|
|
intersects.push({
|
|
distance: distance,
|
|
distanceToRay: Math.sqrt(rayPointDistanceSq),
|
|
point: intersectPoint,
|
|
index: index,
|
|
face: null,
|
|
object: object
|
|
});
|
|
}
|
|
}
|
|
|
|
class VideoTexture extends Texture {
|
|
constructor(video, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy) {
|
|
super(video, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy);
|
|
this.format = format !== undefined ? format : RGBFormat;
|
|
this.minFilter = minFilter !== undefined ? minFilter : LinearFilter;
|
|
this.magFilter = magFilter !== undefined ? magFilter : LinearFilter;
|
|
this.generateMipmaps = false;
|
|
const scope = this;
|
|
|
|
function updateVideo() {
|
|
scope.needsUpdate = true;
|
|
video.requestVideoFrameCallback(updateVideo);
|
|
}
|
|
|
|
if ('requestVideoFrameCallback' in video) {
|
|
video.requestVideoFrameCallback(updateVideo);
|
|
}
|
|
}
|
|
|
|
clone() {
|
|
return new this.constructor(this.image).copy(this);
|
|
}
|
|
|
|
update() {
|
|
const video = this.image;
|
|
const hasVideoFrameCallback = ('requestVideoFrameCallback' in video);
|
|
|
|
if (hasVideoFrameCallback === false && video.readyState >= video.HAVE_CURRENT_DATA) {
|
|
this.needsUpdate = true;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
VideoTexture.prototype.isVideoTexture = true;
|
|
|
|
class CompressedTexture extends Texture {
|
|
constructor(mipmaps, width, height, format, type, mapping, wrapS, wrapT, magFilter, minFilter, anisotropy, encoding) {
|
|
super(null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding);
|
|
this.image = {
|
|
width: width,
|
|
height: height
|
|
};
|
|
this.mipmaps = mipmaps; // no flipping for cube textures
|
|
// (also flipping doesn't work for compressed textures )
|
|
|
|
this.flipY = false; // can't generate mipmaps for compressed textures
|
|
// mips must be embedded in DDS files
|
|
|
|
this.generateMipmaps = false;
|
|
}
|
|
|
|
}
|
|
|
|
CompressedTexture.prototype.isCompressedTexture = true;
|
|
|
|
class CanvasTexture extends Texture {
|
|
constructor(canvas, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy) {
|
|
super(canvas, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy);
|
|
this.needsUpdate = true;
|
|
}
|
|
|
|
}
|
|
|
|
CanvasTexture.prototype.isCanvasTexture = true;
|
|
|
|
class DepthTexture extends Texture {
|
|
constructor(width, height, type, mapping, wrapS, wrapT, magFilter, minFilter, anisotropy, format) {
|
|
format = format !== undefined ? format : DepthFormat;
|
|
|
|
if (format !== DepthFormat && format !== DepthStencilFormat) {
|
|
throw new Error('DepthTexture format must be either THREE.DepthFormat or THREE.DepthStencilFormat');
|
|
}
|
|
|
|
if (type === undefined && format === DepthFormat) type = UnsignedShortType;
|
|
if (type === undefined && format === DepthStencilFormat) type = UnsignedInt248Type;
|
|
super(null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy);
|
|
this.image = {
|
|
width: width,
|
|
height: height
|
|
};
|
|
this.magFilter = magFilter !== undefined ? magFilter : NearestFilter;
|
|
this.minFilter = minFilter !== undefined ? minFilter : NearestFilter;
|
|
this.flipY = false;
|
|
this.generateMipmaps = false;
|
|
}
|
|
|
|
}
|
|
|
|
DepthTexture.prototype.isDepthTexture = true;
|
|
|
|
class CircleGeometry extends BufferGeometry {
|
|
constructor(radius = 1, segments = 8, thetaStart = 0, thetaLength = Math.PI * 2) {
|
|
super();
|
|
this.type = 'CircleGeometry';
|
|
this.parameters = {
|
|
radius: radius,
|
|
segments: segments,
|
|
thetaStart: thetaStart,
|
|
thetaLength: thetaLength
|
|
};
|
|
segments = Math.max(3, segments); // buffers
|
|
|
|
const indices = [];
|
|
const vertices = [];
|
|
const normals = [];
|
|
const uvs = []; // helper variables
|
|
|
|
const vertex = new Vector3();
|
|
const uv = new Vector2(); // center point
|
|
|
|
vertices.push(0, 0, 0);
|
|
normals.push(0, 0, 1);
|
|
uvs.push(0.5, 0.5);
|
|
|
|
for (let s = 0, i = 3; s <= segments; s++, i += 3) {
|
|
const segment = thetaStart + s / segments * thetaLength; // vertex
|
|
|
|
vertex.x = radius * Math.cos(segment);
|
|
vertex.y = radius * Math.sin(segment);
|
|
vertices.push(vertex.x, vertex.y, vertex.z); // normal
|
|
|
|
normals.push(0, 0, 1); // uvs
|
|
|
|
uv.x = (vertices[i] / radius + 1) / 2;
|
|
uv.y = (vertices[i + 1] / radius + 1) / 2;
|
|
uvs.push(uv.x, uv.y);
|
|
} // indices
|
|
|
|
|
|
for (let i = 1; i <= segments; i++) {
|
|
indices.push(i, i + 1, 0);
|
|
} // build geometry
|
|
|
|
|
|
this.setIndex(indices);
|
|
this.setAttribute('position', new Float32BufferAttribute(vertices, 3));
|
|
this.setAttribute('normal', new Float32BufferAttribute(normals, 3));
|
|
this.setAttribute('uv', new Float32BufferAttribute(uvs, 2));
|
|
}
|
|
|
|
static fromJSON(data) {
|
|
return new CircleGeometry(data.radius, data.segments, data.thetaStart, data.thetaLength);
|
|
}
|
|
|
|
}
|
|
|
|
class CylinderGeometry extends BufferGeometry {
|
|
constructor(radiusTop = 1, radiusBottom = 1, height = 1, radialSegments = 8, heightSegments = 1, openEnded = false, thetaStart = 0, thetaLength = Math.PI * 2) {
|
|
super();
|
|
this.type = 'CylinderGeometry';
|
|
this.parameters = {
|
|
radiusTop: radiusTop,
|
|
radiusBottom: radiusBottom,
|
|
height: height,
|
|
radialSegments: radialSegments,
|
|
heightSegments: heightSegments,
|
|
openEnded: openEnded,
|
|
thetaStart: thetaStart,
|
|
thetaLength: thetaLength
|
|
};
|
|
const scope = this;
|
|
radialSegments = Math.floor(radialSegments);
|
|
heightSegments = Math.floor(heightSegments); // buffers
|
|
|
|
const indices = [];
|
|
const vertices = [];
|
|
const normals = [];
|
|
const uvs = []; // helper variables
|
|
|
|
let index = 0;
|
|
const indexArray = [];
|
|
const halfHeight = height / 2;
|
|
let groupStart = 0; // generate geometry
|
|
|
|
generateTorso();
|
|
|
|
if (openEnded === false) {
|
|
if (radiusTop > 0) generateCap(true);
|
|
if (radiusBottom > 0) generateCap(false);
|
|
} // build geometry
|
|
|
|
|
|
this.setIndex(indices);
|
|
this.setAttribute('position', new Float32BufferAttribute(vertices, 3));
|
|
this.setAttribute('normal', new Float32BufferAttribute(normals, 3));
|
|
this.setAttribute('uv', new Float32BufferAttribute(uvs, 2));
|
|
|
|
function generateTorso() {
|
|
const normal = new Vector3();
|
|
const vertex = new Vector3();
|
|
let groupCount = 0; // this will be used to calculate the normal
|
|
|
|
const slope = (radiusBottom - radiusTop) / height; // generate vertices, normals and uvs
|
|
|
|
for (let y = 0; y <= heightSegments; y++) {
|
|
const indexRow = [];
|
|
const v = y / heightSegments; // calculate the radius of the current row
|
|
|
|
const radius = v * (radiusBottom - radiusTop) + radiusTop;
|
|
|
|
for (let x = 0; x <= radialSegments; x++) {
|
|
const u = x / radialSegments;
|
|
const theta = u * thetaLength + thetaStart;
|
|
const sinTheta = Math.sin(theta);
|
|
const cosTheta = Math.cos(theta); // vertex
|
|
|
|
vertex.x = radius * sinTheta;
|
|
vertex.y = -v * height + halfHeight;
|
|
vertex.z = radius * cosTheta;
|
|
vertices.push(vertex.x, vertex.y, vertex.z); // normal
|
|
|
|
normal.set(sinTheta, slope, cosTheta).normalize();
|
|
normals.push(normal.x, normal.y, normal.z); // uv
|
|
|
|
uvs.push(u, 1 - v); // save index of vertex in respective row
|
|
|
|
indexRow.push(index++);
|
|
} // now save vertices of the row in our index array
|
|
|
|
|
|
indexArray.push(indexRow);
|
|
} // generate indices
|
|
|
|
|
|
for (let x = 0; x < radialSegments; x++) {
|
|
for (let y = 0; y < heightSegments; y++) {
|
|
// we use the index array to access the correct indices
|
|
const a = indexArray[y][x];
|
|
const b = indexArray[y + 1][x];
|
|
const c = indexArray[y + 1][x + 1];
|
|
const d = indexArray[y][x + 1]; // faces
|
|
|
|
indices.push(a, b, d);
|
|
indices.push(b, c, d); // update group counter
|
|
|
|
groupCount += 6;
|
|
}
|
|
} // add a group to the geometry. this will ensure multi material support
|
|
|
|
|
|
scope.addGroup(groupStart, groupCount, 0); // calculate new start value for groups
|
|
|
|
groupStart += groupCount;
|
|
}
|
|
|
|
function generateCap(top) {
|
|
// save the index of the first center vertex
|
|
const centerIndexStart = index;
|
|
const uv = new Vector2();
|
|
const vertex = new Vector3();
|
|
let groupCount = 0;
|
|
const radius = top === true ? radiusTop : radiusBottom;
|
|
const sign = top === true ? 1 : -1; // first we generate the center vertex data of the cap.
|
|
// because the geometry needs one set of uvs per face,
|
|
// we must generate a center vertex per face/segment
|
|
|
|
for (let x = 1; x <= radialSegments; x++) {
|
|
// vertex
|
|
vertices.push(0, halfHeight * sign, 0); // normal
|
|
|
|
normals.push(0, sign, 0); // uv
|
|
|
|
uvs.push(0.5, 0.5); // increase index
|
|
|
|
index++;
|
|
} // save the index of the last center vertex
|
|
|
|
|
|
const centerIndexEnd = index; // now we generate the surrounding vertices, normals and uvs
|
|
|
|
for (let x = 0; x <= radialSegments; x++) {
|
|
const u = x / radialSegments;
|
|
const theta = u * thetaLength + thetaStart;
|
|
const cosTheta = Math.cos(theta);
|
|
const sinTheta = Math.sin(theta); // vertex
|
|
|
|
vertex.x = radius * sinTheta;
|
|
vertex.y = halfHeight * sign;
|
|
vertex.z = radius * cosTheta;
|
|
vertices.push(vertex.x, vertex.y, vertex.z); // normal
|
|
|
|
normals.push(0, sign, 0); // uv
|
|
|
|
uv.x = cosTheta * 0.5 + 0.5;
|
|
uv.y = sinTheta * 0.5 * sign + 0.5;
|
|
uvs.push(uv.x, uv.y); // increase index
|
|
|
|
index++;
|
|
} // generate indices
|
|
|
|
|
|
for (let x = 0; x < radialSegments; x++) {
|
|
const c = centerIndexStart + x;
|
|
const i = centerIndexEnd + x;
|
|
|
|
if (top === true) {
|
|
// face top
|
|
indices.push(i, i + 1, c);
|
|
} else {
|
|
// face bottom
|
|
indices.push(i + 1, i, c);
|
|
}
|
|
|
|
groupCount += 3;
|
|
} // add a group to the geometry. this will ensure multi material support
|
|
|
|
|
|
scope.addGroup(groupStart, groupCount, top === true ? 1 : 2); // calculate new start value for groups
|
|
|
|
groupStart += groupCount;
|
|
}
|
|
}
|
|
|
|
static fromJSON(data) {
|
|
return new CylinderGeometry(data.radiusTop, data.radiusBottom, data.height, data.radialSegments, data.heightSegments, data.openEnded, data.thetaStart, data.thetaLength);
|
|
}
|
|
|
|
}
|
|
|
|
class ConeGeometry extends CylinderGeometry {
|
|
constructor(radius = 1, height = 1, radialSegments = 8, heightSegments = 1, openEnded = false, thetaStart = 0, thetaLength = Math.PI * 2) {
|
|
super(0, radius, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength);
|
|
this.type = 'ConeGeometry';
|
|
this.parameters = {
|
|
radius: radius,
|
|
height: height,
|
|
radialSegments: radialSegments,
|
|
heightSegments: heightSegments,
|
|
openEnded: openEnded,
|
|
thetaStart: thetaStart,
|
|
thetaLength: thetaLength
|
|
};
|
|
}
|
|
|
|
static fromJSON(data) {
|
|
return new ConeGeometry(data.radius, data.height, data.radialSegments, data.heightSegments, data.openEnded, data.thetaStart, data.thetaLength);
|
|
}
|
|
|
|
}
|
|
|
|
class PolyhedronGeometry extends BufferGeometry {
|
|
constructor(vertices = [], indices = [], radius = 1, detail = 0) {
|
|
super();
|
|
this.type = 'PolyhedronGeometry';
|
|
this.parameters = {
|
|
vertices: vertices,
|
|
indices: indices,
|
|
radius: radius,
|
|
detail: detail
|
|
}; // default buffer data
|
|
|
|
const vertexBuffer = [];
|
|
const uvBuffer = []; // the subdivision creates the vertex buffer data
|
|
|
|
subdivide(detail); // all vertices should lie on a conceptual sphere with a given radius
|
|
|
|
applyRadius(radius); // finally, create the uv data
|
|
|
|
generateUVs(); // build non-indexed geometry
|
|
|
|
this.setAttribute('position', new Float32BufferAttribute(vertexBuffer, 3));
|
|
this.setAttribute('normal', new Float32BufferAttribute(vertexBuffer.slice(), 3));
|
|
this.setAttribute('uv', new Float32BufferAttribute(uvBuffer, 2));
|
|
|
|
if (detail === 0) {
|
|
this.computeVertexNormals(); // flat normals
|
|
} else {
|
|
this.normalizeNormals(); // smooth normals
|
|
} // helper functions
|
|
|
|
|
|
function subdivide(detail) {
|
|
const a = new Vector3();
|
|
const b = new Vector3();
|
|
const c = new Vector3(); // iterate over all faces and apply a subdivison with the given detail value
|
|
|
|
for (let i = 0; i < indices.length; i += 3) {
|
|
// get the vertices of the face
|
|
getVertexByIndex(indices[i + 0], a);
|
|
getVertexByIndex(indices[i + 1], b);
|
|
getVertexByIndex(indices[i + 2], c); // perform subdivision
|
|
|
|
subdivideFace(a, b, c, detail);
|
|
}
|
|
}
|
|
|
|
function subdivideFace(a, b, c, detail) {
|
|
const cols = detail + 1; // we use this multidimensional array as a data structure for creating the subdivision
|
|
|
|
const v = []; // construct all of the vertices for this subdivision
|
|
|
|
for (let i = 0; i <= cols; i++) {
|
|
v[i] = [];
|
|
const aj = a.clone().lerp(c, i / cols);
|
|
const bj = b.clone().lerp(c, i / cols);
|
|
const rows = cols - i;
|
|
|
|
for (let j = 0; j <= rows; j++) {
|
|
if (j === 0 && i === cols) {
|
|
v[i][j] = aj;
|
|
} else {
|
|
v[i][j] = aj.clone().lerp(bj, j / rows);
|
|
}
|
|
}
|
|
} // construct all of the faces
|
|
|
|
|
|
for (let i = 0; i < cols; i++) {
|
|
for (let j = 0; j < 2 * (cols - i) - 1; j++) {
|
|
const k = Math.floor(j / 2);
|
|
|
|
if (j % 2 === 0) {
|
|
pushVertex(v[i][k + 1]);
|
|
pushVertex(v[i + 1][k]);
|
|
pushVertex(v[i][k]);
|
|
} else {
|
|
pushVertex(v[i][k + 1]);
|
|
pushVertex(v[i + 1][k + 1]);
|
|
pushVertex(v[i + 1][k]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
function applyRadius(radius) {
|
|
const vertex = new Vector3(); // iterate over the entire buffer and apply the radius to each vertex
|
|
|
|
for (let i = 0; i < vertexBuffer.length; i += 3) {
|
|
vertex.x = vertexBuffer[i + 0];
|
|
vertex.y = vertexBuffer[i + 1];
|
|
vertex.z = vertexBuffer[i + 2];
|
|
vertex.normalize().multiplyScalar(radius);
|
|
vertexBuffer[i + 0] = vertex.x;
|
|
vertexBuffer[i + 1] = vertex.y;
|
|
vertexBuffer[i + 2] = vertex.z;
|
|
}
|
|
}
|
|
|
|
function generateUVs() {
|
|
const vertex = new Vector3();
|
|
|
|
for (let i = 0; i < vertexBuffer.length; i += 3) {
|
|
vertex.x = vertexBuffer[i + 0];
|
|
vertex.y = vertexBuffer[i + 1];
|
|
vertex.z = vertexBuffer[i + 2];
|
|
const u = azimuth(vertex) / 2 / Math.PI + 0.5;
|
|
const v = inclination(vertex) / Math.PI + 0.5;
|
|
uvBuffer.push(u, 1 - v);
|
|
}
|
|
|
|
correctUVs();
|
|
correctSeam();
|
|
}
|
|
|
|
function correctSeam() {
|
|
// handle case when face straddles the seam, see #3269
|
|
for (let i = 0; i < uvBuffer.length; i += 6) {
|
|
// uv data of a single face
|
|
const x0 = uvBuffer[i + 0];
|
|
const x1 = uvBuffer[i + 2];
|
|
const x2 = uvBuffer[i + 4];
|
|
const max = Math.max(x0, x1, x2);
|
|
const min = Math.min(x0, x1, x2); // 0.9 is somewhat arbitrary
|
|
|
|
if (max > 0.9 && min < 0.1) {
|
|
if (x0 < 0.2) uvBuffer[i + 0] += 1;
|
|
if (x1 < 0.2) uvBuffer[i + 2] += 1;
|
|
if (x2 < 0.2) uvBuffer[i + 4] += 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
function pushVertex(vertex) {
|
|
vertexBuffer.push(vertex.x, vertex.y, vertex.z);
|
|
}
|
|
|
|
function getVertexByIndex(index, vertex) {
|
|
const stride = index * 3;
|
|
vertex.x = vertices[stride + 0];
|
|
vertex.y = vertices[stride + 1];
|
|
vertex.z = vertices[stride + 2];
|
|
}
|
|
|
|
function correctUVs() {
|
|
const a = new Vector3();
|
|
const b = new Vector3();
|
|
const c = new Vector3();
|
|
const centroid = new Vector3();
|
|
const uvA = new Vector2();
|
|
const uvB = new Vector2();
|
|
const uvC = new Vector2();
|
|
|
|
for (let i = 0, j = 0; i < vertexBuffer.length; i += 9, j += 6) {
|
|
a.set(vertexBuffer[i + 0], vertexBuffer[i + 1], vertexBuffer[i + 2]);
|
|
b.set(vertexBuffer[i + 3], vertexBuffer[i + 4], vertexBuffer[i + 5]);
|
|
c.set(vertexBuffer[i + 6], vertexBuffer[i + 7], vertexBuffer[i + 8]);
|
|
uvA.set(uvBuffer[j + 0], uvBuffer[j + 1]);
|
|
uvB.set(uvBuffer[j + 2], uvBuffer[j + 3]);
|
|
uvC.set(uvBuffer[j + 4], uvBuffer[j + 5]);
|
|
centroid.copy(a).add(b).add(c).divideScalar(3);
|
|
const azi = azimuth(centroid);
|
|
correctUV(uvA, j + 0, a, azi);
|
|
correctUV(uvB, j + 2, b, azi);
|
|
correctUV(uvC, j + 4, c, azi);
|
|
}
|
|
}
|
|
|
|
function correctUV(uv, stride, vector, azimuth) {
|
|
if (azimuth < 0 && uv.x === 1) {
|
|
uvBuffer[stride] = uv.x - 1;
|
|
}
|
|
|
|
if (vector.x === 0 && vector.z === 0) {
|
|
uvBuffer[stride] = azimuth / 2 / Math.PI + 0.5;
|
|
}
|
|
} // Angle around the Y axis, counter-clockwise when looking from above.
|
|
|
|
|
|
function azimuth(vector) {
|
|
return Math.atan2(vector.z, -vector.x);
|
|
} // Angle above the XZ plane.
|
|
|
|
|
|
function inclination(vector) {
|
|
return Math.atan2(-vector.y, Math.sqrt(vector.x * vector.x + vector.z * vector.z));
|
|
}
|
|
}
|
|
|
|
static fromJSON(data) {
|
|
return new PolyhedronGeometry(data.vertices, data.indices, data.radius, data.details);
|
|
}
|
|
|
|
}
|
|
|
|
class DodecahedronGeometry extends PolyhedronGeometry {
|
|
constructor(radius = 1, detail = 0) {
|
|
const t = (1 + Math.sqrt(5)) / 2;
|
|
const r = 1 / t;
|
|
const vertices = [// (±1, ±1, ±1)
|
|
-1, -1, -1, -1, -1, 1, -1, 1, -1, -1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, -1, 1, 1, 1, // (0, ±1/φ, ±φ)
|
|
0, -r, -t, 0, -r, t, 0, r, -t, 0, r, t, // (±1/φ, ±φ, 0)
|
|
-r, -t, 0, -r, t, 0, r, -t, 0, r, t, 0, // (±φ, 0, ±1/φ)
|
|
-t, 0, -r, t, 0, -r, -t, 0, r, t, 0, r];
|
|
const indices = [3, 11, 7, 3, 7, 15, 3, 15, 13, 7, 19, 17, 7, 17, 6, 7, 6, 15, 17, 4, 8, 17, 8, 10, 17, 10, 6, 8, 0, 16, 8, 16, 2, 8, 2, 10, 0, 12, 1, 0, 1, 18, 0, 18, 16, 6, 10, 2, 6, 2, 13, 6, 13, 15, 2, 16, 18, 2, 18, 3, 2, 3, 13, 18, 1, 9, 18, 9, 11, 18, 11, 3, 4, 14, 12, 4, 12, 0, 4, 0, 8, 11, 9, 5, 11, 5, 19, 11, 19, 7, 19, 5, 14, 19, 14, 4, 19, 4, 17, 1, 12, 14, 1, 14, 5, 1, 5, 9];
|
|
super(vertices, indices, radius, detail);
|
|
this.type = 'DodecahedronGeometry';
|
|
this.parameters = {
|
|
radius: radius,
|
|
detail: detail
|
|
};
|
|
}
|
|
|
|
static fromJSON(data) {
|
|
return new DodecahedronGeometry(data.radius, data.detail);
|
|
}
|
|
|
|
}
|
|
|
|
const _v0 = new Vector3();
|
|
|
|
const _v1$1 = new Vector3();
|
|
|
|
const _normal = new Vector3();
|
|
|
|
const _triangle = new Triangle();
|
|
|
|
class EdgesGeometry extends BufferGeometry {
|
|
constructor(geometry = null, thresholdAngle = 1) {
|
|
super();
|
|
this.type = 'EdgesGeometry';
|
|
this.parameters = {
|
|
geometry: geometry,
|
|
thresholdAngle: thresholdAngle
|
|
};
|
|
|
|
if (geometry !== null) {
|
|
const precisionPoints = 4;
|
|
const precision = Math.pow(10, precisionPoints);
|
|
const thresholdDot = Math.cos(DEG2RAD * thresholdAngle);
|
|
const indexAttr = geometry.getIndex();
|
|
const positionAttr = geometry.getAttribute('position');
|
|
const indexCount = indexAttr ? indexAttr.count : positionAttr.count;
|
|
const indexArr = [0, 0, 0];
|
|
const vertKeys = ['a', 'b', 'c'];
|
|
const hashes = new Array(3);
|
|
const edgeData = {};
|
|
const vertices = [];
|
|
|
|
for (let i = 0; i < indexCount; i += 3) {
|
|
if (indexAttr) {
|
|
indexArr[0] = indexAttr.getX(i);
|
|
indexArr[1] = indexAttr.getX(i + 1);
|
|
indexArr[2] = indexAttr.getX(i + 2);
|
|
} else {
|
|
indexArr[0] = i;
|
|
indexArr[1] = i + 1;
|
|
indexArr[2] = i + 2;
|
|
}
|
|
|
|
const {
|
|
a,
|
|
b,
|
|
c
|
|
} = _triangle;
|
|
a.fromBufferAttribute(positionAttr, indexArr[0]);
|
|
b.fromBufferAttribute(positionAttr, indexArr[1]);
|
|
c.fromBufferAttribute(positionAttr, indexArr[2]);
|
|
|
|
_triangle.getNormal(_normal); // create hashes for the edge from the vertices
|
|
|
|
|
|
hashes[0] = `${Math.round(a.x * precision)},${Math.round(a.y * precision)},${Math.round(a.z * precision)}`;
|
|
hashes[1] = `${Math.round(b.x * precision)},${Math.round(b.y * precision)},${Math.round(b.z * precision)}`;
|
|
hashes[2] = `${Math.round(c.x * precision)},${Math.round(c.y * precision)},${Math.round(c.z * precision)}`; // skip degenerate triangles
|
|
|
|
if (hashes[0] === hashes[1] || hashes[1] === hashes[2] || hashes[2] === hashes[0]) {
|
|
continue;
|
|
} // iterate over every edge
|
|
|
|
|
|
for (let j = 0; j < 3; j++) {
|
|
// get the first and next vertex making up the edge
|
|
const jNext = (j + 1) % 3;
|
|
const vecHash0 = hashes[j];
|
|
const vecHash1 = hashes[jNext];
|
|
const v0 = _triangle[vertKeys[j]];
|
|
const v1 = _triangle[vertKeys[jNext]];
|
|
const hash = `${vecHash0}_${vecHash1}`;
|
|
const reverseHash = `${vecHash1}_${vecHash0}`;
|
|
|
|
if (reverseHash in edgeData && edgeData[reverseHash]) {
|
|
// if we found a sibling edge add it into the vertex array if
|
|
// it meets the angle threshold and delete the edge from the map.
|
|
if (_normal.dot(edgeData[reverseHash].normal) <= thresholdDot) {
|
|
vertices.push(v0.x, v0.y, v0.z);
|
|
vertices.push(v1.x, v1.y, v1.z);
|
|
}
|
|
|
|
edgeData[reverseHash] = null;
|
|
} else if (!(hash in edgeData)) {
|
|
// if we've already got an edge here then skip adding a new one
|
|
edgeData[hash] = {
|
|
index0: indexArr[j],
|
|
index1: indexArr[jNext],
|
|
normal: _normal.clone()
|
|
};
|
|
}
|
|
}
|
|
} // iterate over all remaining, unmatched edges and add them to the vertex array
|
|
|
|
|
|
for (const key in edgeData) {
|
|
if (edgeData[key]) {
|
|
const {
|
|
index0,
|
|
index1
|
|
} = edgeData[key];
|
|
|
|
_v0.fromBufferAttribute(positionAttr, index0);
|
|
|
|
_v1$1.fromBufferAttribute(positionAttr, index1);
|
|
|
|
vertices.push(_v0.x, _v0.y, _v0.z);
|
|
vertices.push(_v1$1.x, _v1$1.y, _v1$1.z);
|
|
}
|
|
}
|
|
|
|
this.setAttribute('position', new Float32BufferAttribute(vertices, 3));
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
/**
|
|
* Extensible curve object.
|
|
*
|
|
* Some common of curve methods:
|
|
* .getPoint( t, optionalTarget ), .getTangent( t, optionalTarget )
|
|
* .getPointAt( u, optionalTarget ), .getTangentAt( u, optionalTarget )
|
|
* .getPoints(), .getSpacedPoints()
|
|
* .getLength()
|
|
* .updateArcLengths()
|
|
*
|
|
* This following curves inherit from THREE.Curve:
|
|
*
|
|
* -- 2D curves --
|
|
* THREE.ArcCurve
|
|
* THREE.CubicBezierCurve
|
|
* THREE.EllipseCurve
|
|
* THREE.LineCurve
|
|
* THREE.QuadraticBezierCurve
|
|
* THREE.SplineCurve
|
|
*
|
|
* -- 3D curves --
|
|
* THREE.CatmullRomCurve3
|
|
* THREE.CubicBezierCurve3
|
|
* THREE.LineCurve3
|
|
* THREE.QuadraticBezierCurve3
|
|
*
|
|
* A series of curves can be represented as a THREE.CurvePath.
|
|
*
|
|
**/
|
|
|
|
class Curve {
|
|
constructor() {
|
|
this.type = 'Curve';
|
|
this.arcLengthDivisions = 200;
|
|
} // Virtual base class method to overwrite and implement in subclasses
|
|
// - t [0 .. 1]
|
|
|
|
|
|
getPoint() {
|
|
console.warn('THREE.Curve: .getPoint() not implemented.');
|
|
return null;
|
|
} // Get point at relative position in curve according to arc length
|
|
// - u [0 .. 1]
|
|
|
|
|
|
getPointAt(u, optionalTarget) {
|
|
const t = this.getUtoTmapping(u);
|
|
return this.getPoint(t, optionalTarget);
|
|
} // Get sequence of points using getPoint( t )
|
|
|
|
|
|
getPoints(divisions = 5) {
|
|
const points = [];
|
|
|
|
for (let d = 0; d <= divisions; d++) {
|
|
points.push(this.getPoint(d / divisions));
|
|
}
|
|
|
|
return points;
|
|
} // Get sequence of points using getPointAt( u )
|
|
|
|
|
|
getSpacedPoints(divisions = 5) {
|
|
const points = [];
|
|
|
|
for (let d = 0; d <= divisions; d++) {
|
|
points.push(this.getPointAt(d / divisions));
|
|
}
|
|
|
|
return points;
|
|
} // Get total curve arc length
|
|
|
|
|
|
getLength() {
|
|
const lengths = this.getLengths();
|
|
return lengths[lengths.length - 1];
|
|
} // Get list of cumulative segment lengths
|
|
|
|
|
|
getLengths(divisions = this.arcLengthDivisions) {
|
|
if (this.cacheArcLengths && this.cacheArcLengths.length === divisions + 1 && !this.needsUpdate) {
|
|
return this.cacheArcLengths;
|
|
}
|
|
|
|
this.needsUpdate = false;
|
|
const cache = [];
|
|
let current,
|
|
last = this.getPoint(0);
|
|
let sum = 0;
|
|
cache.push(0);
|
|
|
|
for (let p = 1; p <= divisions; p++) {
|
|
current = this.getPoint(p / divisions);
|
|
sum += current.distanceTo(last);
|
|
cache.push(sum);
|
|
last = current;
|
|
}
|
|
|
|
this.cacheArcLengths = cache;
|
|
return cache; // { sums: cache, sum: sum }; Sum is in the last element.
|
|
}
|
|
|
|
updateArcLengths() {
|
|
this.needsUpdate = true;
|
|
this.getLengths();
|
|
} // Given u ( 0 .. 1 ), get a t to find p. This gives you points which are equidistant
|
|
|
|
|
|
getUtoTmapping(u, distance) {
|
|
const arcLengths = this.getLengths();
|
|
let i = 0;
|
|
const il = arcLengths.length;
|
|
let targetArcLength; // The targeted u distance value to get
|
|
|
|
if (distance) {
|
|
targetArcLength = distance;
|
|
} else {
|
|
targetArcLength = u * arcLengths[il - 1];
|
|
} // binary search for the index with largest value smaller than target u distance
|
|
|
|
|
|
let low = 0,
|
|
high = il - 1,
|
|
comparison;
|
|
|
|
while (low <= high) {
|
|
i = Math.floor(low + (high - low) / 2); // less likely to overflow, though probably not issue here, JS doesn't really have integers, all numbers are floats
|
|
|
|
comparison = arcLengths[i] - targetArcLength;
|
|
|
|
if (comparison < 0) {
|
|
low = i + 1;
|
|
} else if (comparison > 0) {
|
|
high = i - 1;
|
|
} else {
|
|
high = i;
|
|
break; // DONE
|
|
}
|
|
}
|
|
|
|
i = high;
|
|
|
|
if (arcLengths[i] === targetArcLength) {
|
|
return i / (il - 1);
|
|
} // we could get finer grain at lengths, or use simple interpolation between two points
|
|
|
|
|
|
const lengthBefore = arcLengths[i];
|
|
const lengthAfter = arcLengths[i + 1];
|
|
const segmentLength = lengthAfter - lengthBefore; // determine where we are between the 'before' and 'after' points
|
|
|
|
const segmentFraction = (targetArcLength - lengthBefore) / segmentLength; // add that fractional amount to t
|
|
|
|
const t = (i + segmentFraction) / (il - 1);
|
|
return t;
|
|
} // Returns a unit vector tangent at t
|
|
// In case any sub curve does not implement its tangent derivation,
|
|
// 2 points a small delta apart will be used to find its gradient
|
|
// which seems to give a reasonable approximation
|
|
|
|
|
|
getTangent(t, optionalTarget) {
|
|
const delta = 0.0001;
|
|
let t1 = t - delta;
|
|
let t2 = t + delta; // Capping in case of danger
|
|
|
|
if (t1 < 0) t1 = 0;
|
|
if (t2 > 1) t2 = 1;
|
|
const pt1 = this.getPoint(t1);
|
|
const pt2 = this.getPoint(t2);
|
|
const tangent = optionalTarget || (pt1.isVector2 ? new Vector2() : new Vector3());
|
|
tangent.copy(pt2).sub(pt1).normalize();
|
|
return tangent;
|
|
}
|
|
|
|
getTangentAt(u, optionalTarget) {
|
|
const t = this.getUtoTmapping(u);
|
|
return this.getTangent(t, optionalTarget);
|
|
}
|
|
|
|
computeFrenetFrames(segments, closed) {
|
|
// see http://www.cs.indiana.edu/pub/techreports/TR425.pdf
|
|
const normal = new Vector3();
|
|
const tangents = [];
|
|
const normals = [];
|
|
const binormals = [];
|
|
const vec = new Vector3();
|
|
const mat = new Matrix4(); // compute the tangent vectors for each segment on the curve
|
|
|
|
for (let i = 0; i <= segments; i++) {
|
|
const u = i / segments;
|
|
tangents[i] = this.getTangentAt(u, new Vector3());
|
|
} // select an initial normal vector perpendicular to the first tangent vector,
|
|
// and in the direction of the minimum tangent xyz component
|
|
|
|
|
|
normals[0] = new Vector3();
|
|
binormals[0] = new Vector3();
|
|
let min = Number.MAX_VALUE;
|
|
const tx = Math.abs(tangents[0].x);
|
|
const ty = Math.abs(tangents[0].y);
|
|
const tz = Math.abs(tangents[0].z);
|
|
|
|
if (tx <= min) {
|
|
min = tx;
|
|
normal.set(1, 0, 0);
|
|
}
|
|
|
|
if (ty <= min) {
|
|
min = ty;
|
|
normal.set(0, 1, 0);
|
|
}
|
|
|
|
if (tz <= min) {
|
|
normal.set(0, 0, 1);
|
|
}
|
|
|
|
vec.crossVectors(tangents[0], normal).normalize();
|
|
normals[0].crossVectors(tangents[0], vec);
|
|
binormals[0].crossVectors(tangents[0], normals[0]); // compute the slowly-varying normal and binormal vectors for each segment on the curve
|
|
|
|
for (let i = 1; i <= segments; i++) {
|
|
normals[i] = normals[i - 1].clone();
|
|
binormals[i] = binormals[i - 1].clone();
|
|
vec.crossVectors(tangents[i - 1], tangents[i]);
|
|
|
|
if (vec.length() > Number.EPSILON) {
|
|
vec.normalize();
|
|
const theta = Math.acos(clamp(tangents[i - 1].dot(tangents[i]), -1, 1)); // clamp for floating pt errors
|
|
|
|
normals[i].applyMatrix4(mat.makeRotationAxis(vec, theta));
|
|
}
|
|
|
|
binormals[i].crossVectors(tangents[i], normals[i]);
|
|
} // if the curve is closed, postprocess the vectors so the first and last normal vectors are the same
|
|
|
|
|
|
if (closed === true) {
|
|
let theta = Math.acos(clamp(normals[0].dot(normals[segments]), -1, 1));
|
|
theta /= segments;
|
|
|
|
if (tangents[0].dot(vec.crossVectors(normals[0], normals[segments])) > 0) {
|
|
theta = -theta;
|
|
}
|
|
|
|
for (let i = 1; i <= segments; i++) {
|
|
// twist a little...
|
|
normals[i].applyMatrix4(mat.makeRotationAxis(tangents[i], theta * i));
|
|
binormals[i].crossVectors(tangents[i], normals[i]);
|
|
}
|
|
}
|
|
|
|
return {
|
|
tangents: tangents,
|
|
normals: normals,
|
|
binormals: binormals
|
|
};
|
|
}
|
|
|
|
clone() {
|
|
return new this.constructor().copy(this);
|
|
}
|
|
|
|
copy(source) {
|
|
this.arcLengthDivisions = source.arcLengthDivisions;
|
|
return this;
|
|
}
|
|
|
|
toJSON() {
|
|
const data = {
|
|
metadata: {
|
|
version: 4.5,
|
|
type: 'Curve',
|
|
generator: 'Curve.toJSON'
|
|
}
|
|
};
|
|
data.arcLengthDivisions = this.arcLengthDivisions;
|
|
data.type = this.type;
|
|
return data;
|
|
}
|
|
|
|
fromJSON(json) {
|
|
this.arcLengthDivisions = json.arcLengthDivisions;
|
|
return this;
|
|
}
|
|
|
|
}
|
|
|
|
class EllipseCurve extends Curve {
|
|
constructor(aX = 0, aY = 0, xRadius = 1, yRadius = 1, aStartAngle = 0, aEndAngle = Math.PI * 2, aClockwise = false, aRotation = 0) {
|
|
super();
|
|
this.type = 'EllipseCurve';
|
|
this.aX = aX;
|
|
this.aY = aY;
|
|
this.xRadius = xRadius;
|
|
this.yRadius = yRadius;
|
|
this.aStartAngle = aStartAngle;
|
|
this.aEndAngle = aEndAngle;
|
|
this.aClockwise = aClockwise;
|
|
this.aRotation = aRotation;
|
|
}
|
|
|
|
getPoint(t, optionalTarget) {
|
|
const point = optionalTarget || new Vector2();
|
|
const twoPi = Math.PI * 2;
|
|
let deltaAngle = this.aEndAngle - this.aStartAngle;
|
|
const samePoints = Math.abs(deltaAngle) < Number.EPSILON; // ensures that deltaAngle is 0 .. 2 PI
|
|
|
|
while (deltaAngle < 0) deltaAngle += twoPi;
|
|
|
|
while (deltaAngle > twoPi) deltaAngle -= twoPi;
|
|
|
|
if (deltaAngle < Number.EPSILON) {
|
|
if (samePoints) {
|
|
deltaAngle = 0;
|
|
} else {
|
|
deltaAngle = twoPi;
|
|
}
|
|
}
|
|
|
|
if (this.aClockwise === true && !samePoints) {
|
|
if (deltaAngle === twoPi) {
|
|
deltaAngle = -twoPi;
|
|
} else {
|
|
deltaAngle = deltaAngle - twoPi;
|
|
}
|
|
}
|
|
|
|
const angle = this.aStartAngle + t * deltaAngle;
|
|
let x = this.aX + this.xRadius * Math.cos(angle);
|
|
let y = this.aY + this.yRadius * Math.sin(angle);
|
|
|
|
if (this.aRotation !== 0) {
|
|
const cos = Math.cos(this.aRotation);
|
|
const sin = Math.sin(this.aRotation);
|
|
const tx = x - this.aX;
|
|
const ty = y - this.aY; // Rotate the point about the center of the ellipse.
|
|
|
|
x = tx * cos - ty * sin + this.aX;
|
|
y = tx * sin + ty * cos + this.aY;
|
|
}
|
|
|
|
return point.set(x, y);
|
|
}
|
|
|
|
copy(source) {
|
|
super.copy(source);
|
|
this.aX = source.aX;
|
|
this.aY = source.aY;
|
|
this.xRadius = source.xRadius;
|
|
this.yRadius = source.yRadius;
|
|
this.aStartAngle = source.aStartAngle;
|
|
this.aEndAngle = source.aEndAngle;
|
|
this.aClockwise = source.aClockwise;
|
|
this.aRotation = source.aRotation;
|
|
return this;
|
|
}
|
|
|
|
toJSON() {
|
|
const data = super.toJSON();
|
|
data.aX = this.aX;
|
|
data.aY = this.aY;
|
|
data.xRadius = this.xRadius;
|
|
data.yRadius = this.yRadius;
|
|
data.aStartAngle = this.aStartAngle;
|
|
data.aEndAngle = this.aEndAngle;
|
|
data.aClockwise = this.aClockwise;
|
|
data.aRotation = this.aRotation;
|
|
return data;
|
|
}
|
|
|
|
fromJSON(json) {
|
|
super.fromJSON(json);
|
|
this.aX = json.aX;
|
|
this.aY = json.aY;
|
|
this.xRadius = json.xRadius;
|
|
this.yRadius = json.yRadius;
|
|
this.aStartAngle = json.aStartAngle;
|
|
this.aEndAngle = json.aEndAngle;
|
|
this.aClockwise = json.aClockwise;
|
|
this.aRotation = json.aRotation;
|
|
return this;
|
|
}
|
|
|
|
}
|
|
|
|
EllipseCurve.prototype.isEllipseCurve = true;
|
|
|
|
class ArcCurve extends EllipseCurve {
|
|
constructor(aX, aY, aRadius, aStartAngle, aEndAngle, aClockwise) {
|
|
super(aX, aY, aRadius, aRadius, aStartAngle, aEndAngle, aClockwise);
|
|
this.type = 'ArcCurve';
|
|
}
|
|
|
|
}
|
|
|
|
ArcCurve.prototype.isArcCurve = true;
|
|
|
|
/**
|
|
* Centripetal CatmullRom Curve - which is useful for avoiding
|
|
* cusps and self-intersections in non-uniform catmull rom curves.
|
|
* http://www.cemyuksel.com/research/catmullrom_param/catmullrom.pdf
|
|
*
|
|
* curve.type accepts centripetal(default), chordal and catmullrom
|
|
* curve.tension is used for catmullrom which defaults to 0.5
|
|
*/
|
|
|
|
/*
|
|
Based on an optimized c++ solution in
|
|
- http://stackoverflow.com/questions/9489736/catmull-rom-curve-with-no-cusps-and-no-self-intersections/
|
|
- http://ideone.com/NoEbVM
|
|
|
|
This CubicPoly class could be used for reusing some variables and calculations,
|
|
but for three.js curve use, it could be possible inlined and flatten into a single function call
|
|
which can be placed in CurveUtils.
|
|
*/
|
|
|
|
function CubicPoly() {
|
|
let c0 = 0,
|
|
c1 = 0,
|
|
c2 = 0,
|
|
c3 = 0;
|
|
/*
|
|
* Compute coefficients for a cubic polynomial
|
|
* p(s) = c0 + c1*s + c2*s^2 + c3*s^3
|
|
* such that
|
|
* p(0) = x0, p(1) = x1
|
|
* and
|
|
* p'(0) = t0, p'(1) = t1.
|
|
*/
|
|
|
|
function init(x0, x1, t0, t1) {
|
|
c0 = x0;
|
|
c1 = t0;
|
|
c2 = -3 * x0 + 3 * x1 - 2 * t0 - t1;
|
|
c3 = 2 * x0 - 2 * x1 + t0 + t1;
|
|
}
|
|
|
|
return {
|
|
initCatmullRom: function (x0, x1, x2, x3, tension) {
|
|
init(x1, x2, tension * (x2 - x0), tension * (x3 - x1));
|
|
},
|
|
initNonuniformCatmullRom: function (x0, x1, x2, x3, dt0, dt1, dt2) {
|
|
// compute tangents when parameterized in [t1,t2]
|
|
let t1 = (x1 - x0) / dt0 - (x2 - x0) / (dt0 + dt1) + (x2 - x1) / dt1;
|
|
let t2 = (x2 - x1) / dt1 - (x3 - x1) / (dt1 + dt2) + (x3 - x2) / dt2; // rescale tangents for parametrization in [0,1]
|
|
|
|
t1 *= dt1;
|
|
t2 *= dt1;
|
|
init(x1, x2, t1, t2);
|
|
},
|
|
calc: function (t) {
|
|
const t2 = t * t;
|
|
const t3 = t2 * t;
|
|
return c0 + c1 * t + c2 * t2 + c3 * t3;
|
|
}
|
|
};
|
|
} //
|
|
|
|
|
|
const tmp = new Vector3();
|
|
const px = new CubicPoly(),
|
|
py = new CubicPoly(),
|
|
pz = new CubicPoly();
|
|
|
|
class CatmullRomCurve3 extends Curve {
|
|
constructor(points = [], closed = false, curveType = 'centripetal', tension = 0.5) {
|
|
super();
|
|
this.type = 'CatmullRomCurve3';
|
|
this.points = points;
|
|
this.closed = closed;
|
|
this.curveType = curveType;
|
|
this.tension = tension;
|
|
}
|
|
|
|
getPoint(t, optionalTarget = new Vector3()) {
|
|
const point = optionalTarget;
|
|
const points = this.points;
|
|
const l = points.length;
|
|
const p = (l - (this.closed ? 0 : 1)) * t;
|
|
let intPoint = Math.floor(p);
|
|
let weight = p - intPoint;
|
|
|
|
if (this.closed) {
|
|
intPoint += intPoint > 0 ? 0 : (Math.floor(Math.abs(intPoint) / l) + 1) * l;
|
|
} else if (weight === 0 && intPoint === l - 1) {
|
|
intPoint = l - 2;
|
|
weight = 1;
|
|
}
|
|
|
|
let p0, p3; // 4 points (p1 & p2 defined below)
|
|
|
|
if (this.closed || intPoint > 0) {
|
|
p0 = points[(intPoint - 1) % l];
|
|
} else {
|
|
// extrapolate first point
|
|
tmp.subVectors(points[0], points[1]).add(points[0]);
|
|
p0 = tmp;
|
|
}
|
|
|
|
const p1 = points[intPoint % l];
|
|
const p2 = points[(intPoint + 1) % l];
|
|
|
|
if (this.closed || intPoint + 2 < l) {
|
|
p3 = points[(intPoint + 2) % l];
|
|
} else {
|
|
// extrapolate last point
|
|
tmp.subVectors(points[l - 1], points[l - 2]).add(points[l - 1]);
|
|
p3 = tmp;
|
|
}
|
|
|
|
if (this.curveType === 'centripetal' || this.curveType === 'chordal') {
|
|
// init Centripetal / Chordal Catmull-Rom
|
|
const pow = this.curveType === 'chordal' ? 0.5 : 0.25;
|
|
let dt0 = Math.pow(p0.distanceToSquared(p1), pow);
|
|
let dt1 = Math.pow(p1.distanceToSquared(p2), pow);
|
|
let dt2 = Math.pow(p2.distanceToSquared(p3), pow); // safety check for repeated points
|
|
|
|
if (dt1 < 1e-4) dt1 = 1.0;
|
|
if (dt0 < 1e-4) dt0 = dt1;
|
|
if (dt2 < 1e-4) dt2 = dt1;
|
|
px.initNonuniformCatmullRom(p0.x, p1.x, p2.x, p3.x, dt0, dt1, dt2);
|
|
py.initNonuniformCatmullRom(p0.y, p1.y, p2.y, p3.y, dt0, dt1, dt2);
|
|
pz.initNonuniformCatmullRom(p0.z, p1.z, p2.z, p3.z, dt0, dt1, dt2);
|
|
} else if (this.curveType === 'catmullrom') {
|
|
px.initCatmullRom(p0.x, p1.x, p2.x, p3.x, this.tension);
|
|
py.initCatmullRom(p0.y, p1.y, p2.y, p3.y, this.tension);
|
|
pz.initCatmullRom(p0.z, p1.z, p2.z, p3.z, this.tension);
|
|
}
|
|
|
|
point.set(px.calc(weight), py.calc(weight), pz.calc(weight));
|
|
return point;
|
|
}
|
|
|
|
copy(source) {
|
|
super.copy(source);
|
|
this.points = [];
|
|
|
|
for (let i = 0, l = source.points.length; i < l; i++) {
|
|
const point = source.points[i];
|
|
this.points.push(point.clone());
|
|
}
|
|
|
|
this.closed = source.closed;
|
|
this.curveType = source.curveType;
|
|
this.tension = source.tension;
|
|
return this;
|
|
}
|
|
|
|
toJSON() {
|
|
const data = super.toJSON();
|
|
data.points = [];
|
|
|
|
for (let i = 0, l = this.points.length; i < l; i++) {
|
|
const point = this.points[i];
|
|
data.points.push(point.toArray());
|
|
}
|
|
|
|
data.closed = this.closed;
|
|
data.curveType = this.curveType;
|
|
data.tension = this.tension;
|
|
return data;
|
|
}
|
|
|
|
fromJSON(json) {
|
|
super.fromJSON(json);
|
|
this.points = [];
|
|
|
|
for (let i = 0, l = json.points.length; i < l; i++) {
|
|
const point = json.points[i];
|
|
this.points.push(new Vector3().fromArray(point));
|
|
}
|
|
|
|
this.closed = json.closed;
|
|
this.curveType = json.curveType;
|
|
this.tension = json.tension;
|
|
return this;
|
|
}
|
|
|
|
}
|
|
|
|
CatmullRomCurve3.prototype.isCatmullRomCurve3 = true;
|
|
|
|
/**
|
|
* Bezier Curves formulas obtained from
|
|
* http://en.wikipedia.org/wiki/Bézier_curve
|
|
*/
|
|
function CatmullRom(t, p0, p1, p2, p3) {
|
|
const v0 = (p2 - p0) * 0.5;
|
|
const v1 = (p3 - p1) * 0.5;
|
|
const t2 = t * t;
|
|
const t3 = t * t2;
|
|
return (2 * p1 - 2 * p2 + v0 + v1) * t3 + (-3 * p1 + 3 * p2 - 2 * v0 - v1) * t2 + v0 * t + p1;
|
|
} //
|
|
|
|
|
|
function QuadraticBezierP0(t, p) {
|
|
const k = 1 - t;
|
|
return k * k * p;
|
|
}
|
|
|
|
function QuadraticBezierP1(t, p) {
|
|
return 2 * (1 - t) * t * p;
|
|
}
|
|
|
|
function QuadraticBezierP2(t, p) {
|
|
return t * t * p;
|
|
}
|
|
|
|
function QuadraticBezier(t, p0, p1, p2) {
|
|
return QuadraticBezierP0(t, p0) + QuadraticBezierP1(t, p1) + QuadraticBezierP2(t, p2);
|
|
} //
|
|
|
|
|
|
function CubicBezierP0(t, p) {
|
|
const k = 1 - t;
|
|
return k * k * k * p;
|
|
}
|
|
|
|
function CubicBezierP1(t, p) {
|
|
const k = 1 - t;
|
|
return 3 * k * k * t * p;
|
|
}
|
|
|
|
function CubicBezierP2(t, p) {
|
|
return 3 * (1 - t) * t * t * p;
|
|
}
|
|
|
|
function CubicBezierP3(t, p) {
|
|
return t * t * t * p;
|
|
}
|
|
|
|
function CubicBezier(t, p0, p1, p2, p3) {
|
|
return CubicBezierP0(t, p0) + CubicBezierP1(t, p1) + CubicBezierP2(t, p2) + CubicBezierP3(t, p3);
|
|
}
|
|
|
|
class CubicBezierCurve extends Curve {
|
|
constructor(v0 = new Vector2(), v1 = new Vector2(), v2 = new Vector2(), v3 = new Vector2()) {
|
|
super();
|
|
this.type = 'CubicBezierCurve';
|
|
this.v0 = v0;
|
|
this.v1 = v1;
|
|
this.v2 = v2;
|
|
this.v3 = v3;
|
|
}
|
|
|
|
getPoint(t, optionalTarget = new Vector2()) {
|
|
const point = optionalTarget;
|
|
const v0 = this.v0,
|
|
v1 = this.v1,
|
|
v2 = this.v2,
|
|
v3 = this.v3;
|
|
point.set(CubicBezier(t, v0.x, v1.x, v2.x, v3.x), CubicBezier(t, v0.y, v1.y, v2.y, v3.y));
|
|
return point;
|
|
}
|
|
|
|
copy(source) {
|
|
super.copy(source);
|
|
this.v0.copy(source.v0);
|
|
this.v1.copy(source.v1);
|
|
this.v2.copy(source.v2);
|
|
this.v3.copy(source.v3);
|
|
return this;
|
|
}
|
|
|
|
toJSON() {
|
|
const data = super.toJSON();
|
|
data.v0 = this.v0.toArray();
|
|
data.v1 = this.v1.toArray();
|
|
data.v2 = this.v2.toArray();
|
|
data.v3 = this.v3.toArray();
|
|
return data;
|
|
}
|
|
|
|
fromJSON(json) {
|
|
super.fromJSON(json);
|
|
this.v0.fromArray(json.v0);
|
|
this.v1.fromArray(json.v1);
|
|
this.v2.fromArray(json.v2);
|
|
this.v3.fromArray(json.v3);
|
|
return this;
|
|
}
|
|
|
|
}
|
|
|
|
CubicBezierCurve.prototype.isCubicBezierCurve = true;
|
|
|
|
class CubicBezierCurve3 extends Curve {
|
|
constructor(v0 = new Vector3(), v1 = new Vector3(), v2 = new Vector3(), v3 = new Vector3()) {
|
|
super();
|
|
this.type = 'CubicBezierCurve3';
|
|
this.v0 = v0;
|
|
this.v1 = v1;
|
|
this.v2 = v2;
|
|
this.v3 = v3;
|
|
}
|
|
|
|
getPoint(t, optionalTarget = new Vector3()) {
|
|
const point = optionalTarget;
|
|
const v0 = this.v0,
|
|
v1 = this.v1,
|
|
v2 = this.v2,
|
|
v3 = this.v3;
|
|
point.set(CubicBezier(t, v0.x, v1.x, v2.x, v3.x), CubicBezier(t, v0.y, v1.y, v2.y, v3.y), CubicBezier(t, v0.z, v1.z, v2.z, v3.z));
|
|
return point;
|
|
}
|
|
|
|
copy(source) {
|
|
super.copy(source);
|
|
this.v0.copy(source.v0);
|
|
this.v1.copy(source.v1);
|
|
this.v2.copy(source.v2);
|
|
this.v3.copy(source.v3);
|
|
return this;
|
|
}
|
|
|
|
toJSON() {
|
|
const data = super.toJSON();
|
|
data.v0 = this.v0.toArray();
|
|
data.v1 = this.v1.toArray();
|
|
data.v2 = this.v2.toArray();
|
|
data.v3 = this.v3.toArray();
|
|
return data;
|
|
}
|
|
|
|
fromJSON(json) {
|
|
super.fromJSON(json);
|
|
this.v0.fromArray(json.v0);
|
|
this.v1.fromArray(json.v1);
|
|
this.v2.fromArray(json.v2);
|
|
this.v3.fromArray(json.v3);
|
|
return this;
|
|
}
|
|
|
|
}
|
|
|
|
CubicBezierCurve3.prototype.isCubicBezierCurve3 = true;
|
|
|
|
class LineCurve extends Curve {
|
|
constructor(v1 = new Vector2(), v2 = new Vector2()) {
|
|
super();
|
|
this.type = 'LineCurve';
|
|
this.v1 = v1;
|
|
this.v2 = v2;
|
|
}
|
|
|
|
getPoint(t, optionalTarget = new Vector2()) {
|
|
const point = optionalTarget;
|
|
|
|
if (t === 1) {
|
|
point.copy(this.v2);
|
|
} else {
|
|
point.copy(this.v2).sub(this.v1);
|
|
point.multiplyScalar(t).add(this.v1);
|
|
}
|
|
|
|
return point;
|
|
} // Line curve is linear, so we can overwrite default getPointAt
|
|
|
|
|
|
getPointAt(u, optionalTarget) {
|
|
return this.getPoint(u, optionalTarget);
|
|
}
|
|
|
|
getTangent(t, optionalTarget) {
|
|
const tangent = optionalTarget || new Vector2();
|
|
tangent.copy(this.v2).sub(this.v1).normalize();
|
|
return tangent;
|
|
}
|
|
|
|
copy(source) {
|
|
super.copy(source);
|
|
this.v1.copy(source.v1);
|
|
this.v2.copy(source.v2);
|
|
return this;
|
|
}
|
|
|
|
toJSON() {
|
|
const data = super.toJSON();
|
|
data.v1 = this.v1.toArray();
|
|
data.v2 = this.v2.toArray();
|
|
return data;
|
|
}
|
|
|
|
fromJSON(json) {
|
|
super.fromJSON(json);
|
|
this.v1.fromArray(json.v1);
|
|
this.v2.fromArray(json.v2);
|
|
return this;
|
|
}
|
|
|
|
}
|
|
|
|
LineCurve.prototype.isLineCurve = true;
|
|
|
|
class LineCurve3 extends Curve {
|
|
constructor(v1 = new Vector3(), v2 = new Vector3()) {
|
|
super();
|
|
this.type = 'LineCurve3';
|
|
this.isLineCurve3 = true;
|
|
this.v1 = v1;
|
|
this.v2 = v2;
|
|
}
|
|
|
|
getPoint(t, optionalTarget = new Vector3()) {
|
|
const point = optionalTarget;
|
|
|
|
if (t === 1) {
|
|
point.copy(this.v2);
|
|
} else {
|
|
point.copy(this.v2).sub(this.v1);
|
|
point.multiplyScalar(t).add(this.v1);
|
|
}
|
|
|
|
return point;
|
|
} // Line curve is linear, so we can overwrite default getPointAt
|
|
|
|
|
|
getPointAt(u, optionalTarget) {
|
|
return this.getPoint(u, optionalTarget);
|
|
}
|
|
|
|
copy(source) {
|
|
super.copy(source);
|
|
this.v1.copy(source.v1);
|
|
this.v2.copy(source.v2);
|
|
return this;
|
|
}
|
|
|
|
toJSON() {
|
|
const data = super.toJSON();
|
|
data.v1 = this.v1.toArray();
|
|
data.v2 = this.v2.toArray();
|
|
return data;
|
|
}
|
|
|
|
fromJSON(json) {
|
|
super.fromJSON(json);
|
|
this.v1.fromArray(json.v1);
|
|
this.v2.fromArray(json.v2);
|
|
return this;
|
|
}
|
|
|
|
}
|
|
|
|
class QuadraticBezierCurve extends Curve {
|
|
constructor(v0 = new Vector2(), v1 = new Vector2(), v2 = new Vector2()) {
|
|
super();
|
|
this.type = 'QuadraticBezierCurve';
|
|
this.v0 = v0;
|
|
this.v1 = v1;
|
|
this.v2 = v2;
|
|
}
|
|
|
|
getPoint(t, optionalTarget = new Vector2()) {
|
|
const point = optionalTarget;
|
|
const v0 = this.v0,
|
|
v1 = this.v1,
|
|
v2 = this.v2;
|
|
point.set(QuadraticBezier(t, v0.x, v1.x, v2.x), QuadraticBezier(t, v0.y, v1.y, v2.y));
|
|
return point;
|
|
}
|
|
|
|
copy(source) {
|
|
super.copy(source);
|
|
this.v0.copy(source.v0);
|
|
this.v1.copy(source.v1);
|
|
this.v2.copy(source.v2);
|
|
return this;
|
|
}
|
|
|
|
toJSON() {
|
|
const data = super.toJSON();
|
|
data.v0 = this.v0.toArray();
|
|
data.v1 = this.v1.toArray();
|
|
data.v2 = this.v2.toArray();
|
|
return data;
|
|
}
|
|
|
|
fromJSON(json) {
|
|
super.fromJSON(json);
|
|
this.v0.fromArray(json.v0);
|
|
this.v1.fromArray(json.v1);
|
|
this.v2.fromArray(json.v2);
|
|
return this;
|
|
}
|
|
|
|
}
|
|
|
|
QuadraticBezierCurve.prototype.isQuadraticBezierCurve = true;
|
|
|
|
class QuadraticBezierCurve3 extends Curve {
|
|
constructor(v0 = new Vector3(), v1 = new Vector3(), v2 = new Vector3()) {
|
|
super();
|
|
this.type = 'QuadraticBezierCurve3';
|
|
this.v0 = v0;
|
|
this.v1 = v1;
|
|
this.v2 = v2;
|
|
}
|
|
|
|
getPoint(t, optionalTarget = new Vector3()) {
|
|
const point = optionalTarget;
|
|
const v0 = this.v0,
|
|
v1 = this.v1,
|
|
v2 = this.v2;
|
|
point.set(QuadraticBezier(t, v0.x, v1.x, v2.x), QuadraticBezier(t, v0.y, v1.y, v2.y), QuadraticBezier(t, v0.z, v1.z, v2.z));
|
|
return point;
|
|
}
|
|
|
|
copy(source) {
|
|
super.copy(source);
|
|
this.v0.copy(source.v0);
|
|
this.v1.copy(source.v1);
|
|
this.v2.copy(source.v2);
|
|
return this;
|
|
}
|
|
|
|
toJSON() {
|
|
const data = super.toJSON();
|
|
data.v0 = this.v0.toArray();
|
|
data.v1 = this.v1.toArray();
|
|
data.v2 = this.v2.toArray();
|
|
return data;
|
|
}
|
|
|
|
fromJSON(json) {
|
|
super.fromJSON(json);
|
|
this.v0.fromArray(json.v0);
|
|
this.v1.fromArray(json.v1);
|
|
this.v2.fromArray(json.v2);
|
|
return this;
|
|
}
|
|
|
|
}
|
|
|
|
QuadraticBezierCurve3.prototype.isQuadraticBezierCurve3 = true;
|
|
|
|
class SplineCurve extends Curve {
|
|
constructor(points = []) {
|
|
super();
|
|
this.type = 'SplineCurve';
|
|
this.points = points;
|
|
}
|
|
|
|
getPoint(t, optionalTarget = new Vector2()) {
|
|
const point = optionalTarget;
|
|
const points = this.points;
|
|
const p = (points.length - 1) * t;
|
|
const intPoint = Math.floor(p);
|
|
const weight = p - intPoint;
|
|
const p0 = points[intPoint === 0 ? intPoint : intPoint - 1];
|
|
const p1 = points[intPoint];
|
|
const p2 = points[intPoint > points.length - 2 ? points.length - 1 : intPoint + 1];
|
|
const p3 = points[intPoint > points.length - 3 ? points.length - 1 : intPoint + 2];
|
|
point.set(CatmullRom(weight, p0.x, p1.x, p2.x, p3.x), CatmullRom(weight, p0.y, p1.y, p2.y, p3.y));
|
|
return point;
|
|
}
|
|
|
|
copy(source) {
|
|
super.copy(source);
|
|
this.points = [];
|
|
|
|
for (let i = 0, l = source.points.length; i < l; i++) {
|
|
const point = source.points[i];
|
|
this.points.push(point.clone());
|
|
}
|
|
|
|
return this;
|
|
}
|
|
|
|
toJSON() {
|
|
const data = super.toJSON();
|
|
data.points = [];
|
|
|
|
for (let i = 0, l = this.points.length; i < l; i++) {
|
|
const point = this.points[i];
|
|
data.points.push(point.toArray());
|
|
}
|
|
|
|
return data;
|
|
}
|
|
|
|
fromJSON(json) {
|
|
super.fromJSON(json);
|
|
this.points = [];
|
|
|
|
for (let i = 0, l = json.points.length; i < l; i++) {
|
|
const point = json.points[i];
|
|
this.points.push(new Vector2().fromArray(point));
|
|
}
|
|
|
|
return this;
|
|
}
|
|
|
|
}
|
|
|
|
SplineCurve.prototype.isSplineCurve = true;
|
|
|
|
var Curves = /*#__PURE__*/Object.freeze({
|
|
__proto__: null,
|
|
ArcCurve: ArcCurve,
|
|
CatmullRomCurve3: CatmullRomCurve3,
|
|
CubicBezierCurve: CubicBezierCurve,
|
|
CubicBezierCurve3: CubicBezierCurve3,
|
|
EllipseCurve: EllipseCurve,
|
|
LineCurve: LineCurve,
|
|
LineCurve3: LineCurve3,
|
|
QuadraticBezierCurve: QuadraticBezierCurve,
|
|
QuadraticBezierCurve3: QuadraticBezierCurve3,
|
|
SplineCurve: SplineCurve
|
|
});
|
|
|
|
/**************************************************************
|
|
* Curved Path - a curve path is simply a array of connected
|
|
* curves, but retains the api of a curve
|
|
**************************************************************/
|
|
|
|
class CurvePath extends Curve {
|
|
constructor() {
|
|
super();
|
|
this.type = 'CurvePath';
|
|
this.curves = [];
|
|
this.autoClose = false; // Automatically closes the path
|
|
}
|
|
|
|
add(curve) {
|
|
this.curves.push(curve);
|
|
}
|
|
|
|
closePath() {
|
|
// Add a line curve if start and end of lines are not connected
|
|
const startPoint = this.curves[0].getPoint(0);
|
|
const endPoint = this.curves[this.curves.length - 1].getPoint(1);
|
|
|
|
if (!startPoint.equals(endPoint)) {
|
|
this.curves.push(new LineCurve(endPoint, startPoint));
|
|
}
|
|
} // To get accurate point with reference to
|
|
// entire path distance at time t,
|
|
// following has to be done:
|
|
// 1. Length of each sub path have to be known
|
|
// 2. Locate and identify type of curve
|
|
// 3. Get t for the curve
|
|
// 4. Return curve.getPointAt(t')
|
|
|
|
|
|
getPoint(t, optionalTarget) {
|
|
const d = t * this.getLength();
|
|
const curveLengths = this.getCurveLengths();
|
|
let i = 0; // To think about boundaries points.
|
|
|
|
while (i < curveLengths.length) {
|
|
if (curveLengths[i] >= d) {
|
|
const diff = curveLengths[i] - d;
|
|
const curve = this.curves[i];
|
|
const segmentLength = curve.getLength();
|
|
const u = segmentLength === 0 ? 0 : 1 - diff / segmentLength;
|
|
return curve.getPointAt(u, optionalTarget);
|
|
}
|
|
|
|
i++;
|
|
}
|
|
|
|
return null; // loop where sum != 0, sum > d , sum+1 <d
|
|
} // We cannot use the default THREE.Curve getPoint() with getLength() because in
|
|
// THREE.Curve, getLength() depends on getPoint() but in THREE.CurvePath
|
|
// getPoint() depends on getLength
|
|
|
|
|
|
getLength() {
|
|
const lens = this.getCurveLengths();
|
|
return lens[lens.length - 1];
|
|
} // cacheLengths must be recalculated.
|
|
|
|
|
|
updateArcLengths() {
|
|
this.needsUpdate = true;
|
|
this.cacheLengths = null;
|
|
this.getCurveLengths();
|
|
} // Compute lengths and cache them
|
|
// We cannot overwrite getLengths() because UtoT mapping uses it.
|
|
|
|
|
|
getCurveLengths() {
|
|
// We use cache values if curves and cache array are same length
|
|
if (this.cacheLengths && this.cacheLengths.length === this.curves.length) {
|
|
return this.cacheLengths;
|
|
} // Get length of sub-curve
|
|
// Push sums into cached array
|
|
|
|
|
|
const lengths = [];
|
|
let sums = 0;
|
|
|
|
for (let i = 0, l = this.curves.length; i < l; i++) {
|
|
sums += this.curves[i].getLength();
|
|
lengths.push(sums);
|
|
}
|
|
|
|
this.cacheLengths = lengths;
|
|
return lengths;
|
|
}
|
|
|
|
getSpacedPoints(divisions = 40) {
|
|
const points = [];
|
|
|
|
for (let i = 0; i <= divisions; i++) {
|
|
points.push(this.getPoint(i / divisions));
|
|
}
|
|
|
|
if (this.autoClose) {
|
|
points.push(points[0]);
|
|
}
|
|
|
|
return points;
|
|
}
|
|
|
|
getPoints(divisions = 12) {
|
|
const points = [];
|
|
let last;
|
|
|
|
for (let i = 0, curves = this.curves; i < curves.length; i++) {
|
|
const curve = curves[i];
|
|
const resolution = curve && curve.isEllipseCurve ? divisions * 2 : curve && (curve.isLineCurve || curve.isLineCurve3) ? 1 : curve && curve.isSplineCurve ? divisions * curve.points.length : divisions;
|
|
const pts = curve.getPoints(resolution);
|
|
|
|
for (let j = 0; j < pts.length; j++) {
|
|
const point = pts[j];
|
|
if (last && last.equals(point)) continue; // ensures no consecutive points are duplicates
|
|
|
|
points.push(point);
|
|
last = point;
|
|
}
|
|
}
|
|
|
|
if (this.autoClose && points.length > 1 && !points[points.length - 1].equals(points[0])) {
|
|
points.push(points[0]);
|
|
}
|
|
|
|
return points;
|
|
}
|
|
|
|
copy(source) {
|
|
super.copy(source);
|
|
this.curves = [];
|
|
|
|
for (let i = 0, l = source.curves.length; i < l; i++) {
|
|
const curve = source.curves[i];
|
|
this.curves.push(curve.clone());
|
|
}
|
|
|
|
this.autoClose = source.autoClose;
|
|
return this;
|
|
}
|
|
|
|
toJSON() {
|
|
const data = super.toJSON();
|
|
data.autoClose = this.autoClose;
|
|
data.curves = [];
|
|
|
|
for (let i = 0, l = this.curves.length; i < l; i++) {
|
|
const curve = this.curves[i];
|
|
data.curves.push(curve.toJSON());
|
|
}
|
|
|
|
return data;
|
|
}
|
|
|
|
fromJSON(json) {
|
|
super.fromJSON(json);
|
|
this.autoClose = json.autoClose;
|
|
this.curves = [];
|
|
|
|
for (let i = 0, l = json.curves.length; i < l; i++) {
|
|
const curve = json.curves[i];
|
|
this.curves.push(new Curves[curve.type]().fromJSON(curve));
|
|
}
|
|
|
|
return this;
|
|
}
|
|
|
|
}
|
|
|
|
class Path extends CurvePath {
|
|
constructor(points) {
|
|
super();
|
|
this.type = 'Path';
|
|
this.currentPoint = new Vector2();
|
|
|
|
if (points) {
|
|
this.setFromPoints(points);
|
|
}
|
|
}
|
|
|
|
setFromPoints(points) {
|
|
this.moveTo(points[0].x, points[0].y);
|
|
|
|
for (let i = 1, l = points.length; i < l; i++) {
|
|
this.lineTo(points[i].x, points[i].y);
|
|
}
|
|
|
|
return this;
|
|
}
|
|
|
|
moveTo(x, y) {
|
|
this.currentPoint.set(x, y); // TODO consider referencing vectors instead of copying?
|
|
|
|
return this;
|
|
}
|
|
|
|
lineTo(x, y) {
|
|
const curve = new LineCurve(this.currentPoint.clone(), new Vector2(x, y));
|
|
this.curves.push(curve);
|
|
this.currentPoint.set(x, y);
|
|
return this;
|
|
}
|
|
|
|
quadraticCurveTo(aCPx, aCPy, aX, aY) {
|
|
const curve = new QuadraticBezierCurve(this.currentPoint.clone(), new Vector2(aCPx, aCPy), new Vector2(aX, aY));
|
|
this.curves.push(curve);
|
|
this.currentPoint.set(aX, aY);
|
|
return this;
|
|
}
|
|
|
|
bezierCurveTo(aCP1x, aCP1y, aCP2x, aCP2y, aX, aY) {
|
|
const curve = new CubicBezierCurve(this.currentPoint.clone(), new Vector2(aCP1x, aCP1y), new Vector2(aCP2x, aCP2y), new Vector2(aX, aY));
|
|
this.curves.push(curve);
|
|
this.currentPoint.set(aX, aY);
|
|
return this;
|
|
}
|
|
|
|
splineThru(pts
|
|
/*Array of Vector*/
|
|
) {
|
|
const npts = [this.currentPoint.clone()].concat(pts);
|
|
const curve = new SplineCurve(npts);
|
|
this.curves.push(curve);
|
|
this.currentPoint.copy(pts[pts.length - 1]);
|
|
return this;
|
|
}
|
|
|
|
arc(aX, aY, aRadius, aStartAngle, aEndAngle, aClockwise) {
|
|
const x0 = this.currentPoint.x;
|
|
const y0 = this.currentPoint.y;
|
|
this.absarc(aX + x0, aY + y0, aRadius, aStartAngle, aEndAngle, aClockwise);
|
|
return this;
|
|
}
|
|
|
|
absarc(aX, aY, aRadius, aStartAngle, aEndAngle, aClockwise) {
|
|
this.absellipse(aX, aY, aRadius, aRadius, aStartAngle, aEndAngle, aClockwise);
|
|
return this;
|
|
}
|
|
|
|
ellipse(aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation) {
|
|
const x0 = this.currentPoint.x;
|
|
const y0 = this.currentPoint.y;
|
|
this.absellipse(aX + x0, aY + y0, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation);
|
|
return this;
|
|
}
|
|
|
|
absellipse(aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation) {
|
|
const curve = new EllipseCurve(aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation);
|
|
|
|
if (this.curves.length > 0) {
|
|
// if a previous curve is present, attempt to join
|
|
const firstPoint = curve.getPoint(0);
|
|
|
|
if (!firstPoint.equals(this.currentPoint)) {
|
|
this.lineTo(firstPoint.x, firstPoint.y);
|
|
}
|
|
}
|
|
|
|
this.curves.push(curve);
|
|
const lastPoint = curve.getPoint(1);
|
|
this.currentPoint.copy(lastPoint);
|
|
return this;
|
|
}
|
|
|
|
copy(source) {
|
|
super.copy(source);
|
|
this.currentPoint.copy(source.currentPoint);
|
|
return this;
|
|
}
|
|
|
|
toJSON() {
|
|
const data = super.toJSON();
|
|
data.currentPoint = this.currentPoint.toArray();
|
|
return data;
|
|
}
|
|
|
|
fromJSON(json) {
|
|
super.fromJSON(json);
|
|
this.currentPoint.fromArray(json.currentPoint);
|
|
return this;
|
|
}
|
|
|
|
}
|
|
|
|
class Shape extends Path {
|
|
constructor(points) {
|
|
super(points);
|
|
this.uuid = generateUUID();
|
|
this.type = 'Shape';
|
|
this.holes = [];
|
|
}
|
|
|
|
getPointsHoles(divisions) {
|
|
const holesPts = [];
|
|
|
|
for (let i = 0, l = this.holes.length; i < l; i++) {
|
|
holesPts[i] = this.holes[i].getPoints(divisions);
|
|
}
|
|
|
|
return holesPts;
|
|
} // get points of shape and holes (keypoints based on segments parameter)
|
|
|
|
|
|
extractPoints(divisions) {
|
|
return {
|
|
shape: this.getPoints(divisions),
|
|
holes: this.getPointsHoles(divisions)
|
|
};
|
|
}
|
|
|
|
copy(source) {
|
|
super.copy(source);
|
|
this.holes = [];
|
|
|
|
for (let i = 0, l = source.holes.length; i < l; i++) {
|
|
const hole = source.holes[i];
|
|
this.holes.push(hole.clone());
|
|
}
|
|
|
|
return this;
|
|
}
|
|
|
|
toJSON() {
|
|
const data = super.toJSON();
|
|
data.uuid = this.uuid;
|
|
data.holes = [];
|
|
|
|
for (let i = 0, l = this.holes.length; i < l; i++) {
|
|
const hole = this.holes[i];
|
|
data.holes.push(hole.toJSON());
|
|
}
|
|
|
|
return data;
|
|
}
|
|
|
|
fromJSON(json) {
|
|
super.fromJSON(json);
|
|
this.uuid = json.uuid;
|
|
this.holes = [];
|
|
|
|
for (let i = 0, l = json.holes.length; i < l; i++) {
|
|
const hole = json.holes[i];
|
|
this.holes.push(new Path().fromJSON(hole));
|
|
}
|
|
|
|
return this;
|
|
}
|
|
|
|
}
|
|
|
|
/**
|
|
* Port from https://github.com/mapbox/earcut (v2.2.2)
|
|
*/
|
|
const Earcut = {
|
|
triangulate: function (data, holeIndices, dim = 2) {
|
|
const hasHoles = holeIndices && holeIndices.length;
|
|
const outerLen = hasHoles ? holeIndices[0] * dim : data.length;
|
|
let outerNode = linkedList(data, 0, outerLen, dim, true);
|
|
const triangles = [];
|
|
if (!outerNode || outerNode.next === outerNode.prev) return triangles;
|
|
let minX, minY, maxX, maxY, x, y, invSize;
|
|
if (hasHoles) outerNode = eliminateHoles(data, holeIndices, outerNode, dim); // if the shape is not too simple, we'll use z-order curve hash later; calculate polygon bbox
|
|
|
|
if (data.length > 80 * dim) {
|
|
minX = maxX = data[0];
|
|
minY = maxY = data[1];
|
|
|
|
for (let i = dim; i < outerLen; i += dim) {
|
|
x = data[i];
|
|
y = data[i + 1];
|
|
if (x < minX) minX = x;
|
|
if (y < minY) minY = y;
|
|
if (x > maxX) maxX = x;
|
|
if (y > maxY) maxY = y;
|
|
} // minX, minY and invSize are later used to transform coords into integers for z-order calculation
|
|
|
|
|
|
invSize = Math.max(maxX - minX, maxY - minY);
|
|
invSize = invSize !== 0 ? 1 / invSize : 0;
|
|
}
|
|
|
|
earcutLinked(outerNode, triangles, dim, minX, minY, invSize);
|
|
return triangles;
|
|
}
|
|
}; // create a circular doubly linked list from polygon points in the specified winding order
|
|
|
|
function linkedList(data, start, end, dim, clockwise) {
|
|
let i, last;
|
|
|
|
if (clockwise === signedArea(data, start, end, dim) > 0) {
|
|
for (i = start; i < end; i += dim) last = insertNode(i, data[i], data[i + 1], last);
|
|
} else {
|
|
for (i = end - dim; i >= start; i -= dim) last = insertNode(i, data[i], data[i + 1], last);
|
|
}
|
|
|
|
if (last && equals(last, last.next)) {
|
|
removeNode(last);
|
|
last = last.next;
|
|
}
|
|
|
|
return last;
|
|
} // eliminate colinear or duplicate points
|
|
|
|
|
|
function filterPoints(start, end) {
|
|
if (!start) return start;
|
|
if (!end) end = start;
|
|
let p = start,
|
|
again;
|
|
|
|
do {
|
|
again = false;
|
|
|
|
if (!p.steiner && (equals(p, p.next) || area(p.prev, p, p.next) === 0)) {
|
|
removeNode(p);
|
|
p = end = p.prev;
|
|
if (p === p.next) break;
|
|
again = true;
|
|
} else {
|
|
p = p.next;
|
|
}
|
|
} while (again || p !== end);
|
|
|
|
return end;
|
|
} // main ear slicing loop which triangulates a polygon (given as a linked list)
|
|
|
|
|
|
function earcutLinked(ear, triangles, dim, minX, minY, invSize, pass) {
|
|
if (!ear) return; // interlink polygon nodes in z-order
|
|
|
|
if (!pass && invSize) indexCurve(ear, minX, minY, invSize);
|
|
let stop = ear,
|
|
prev,
|
|
next; // iterate through ears, slicing them one by one
|
|
|
|
while (ear.prev !== ear.next) {
|
|
prev = ear.prev;
|
|
next = ear.next;
|
|
|
|
if (invSize ? isEarHashed(ear, minX, minY, invSize) : isEar(ear)) {
|
|
// cut off the triangle
|
|
triangles.push(prev.i / dim);
|
|
triangles.push(ear.i / dim);
|
|
triangles.push(next.i / dim);
|
|
removeNode(ear); // skipping the next vertex leads to less sliver triangles
|
|
|
|
ear = next.next;
|
|
stop = next.next;
|
|
continue;
|
|
}
|
|
|
|
ear = next; // if we looped through the whole remaining polygon and can't find any more ears
|
|
|
|
if (ear === stop) {
|
|
// try filtering points and slicing again
|
|
if (!pass) {
|
|
earcutLinked(filterPoints(ear), triangles, dim, minX, minY, invSize, 1); // if this didn't work, try curing all small self-intersections locally
|
|
} else if (pass === 1) {
|
|
ear = cureLocalIntersections(filterPoints(ear), triangles, dim);
|
|
earcutLinked(ear, triangles, dim, minX, minY, invSize, 2); // as a last resort, try splitting the remaining polygon into two
|
|
} else if (pass === 2) {
|
|
splitEarcut(ear, triangles, dim, minX, minY, invSize);
|
|
}
|
|
|
|
break;
|
|
}
|
|
}
|
|
} // check whether a polygon node forms a valid ear with adjacent nodes
|
|
|
|
|
|
function isEar(ear) {
|
|
const a = ear.prev,
|
|
b = ear,
|
|
c = ear.next;
|
|
if (area(a, b, c) >= 0) return false; // reflex, can't be an ear
|
|
// now make sure we don't have other points inside the potential ear
|
|
|
|
let p = ear.next.next;
|
|
|
|
while (p !== ear.prev) {
|
|
if (pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y) && area(p.prev, p, p.next) >= 0) return false;
|
|
p = p.next;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
function isEarHashed(ear, minX, minY, invSize) {
|
|
const a = ear.prev,
|
|
b = ear,
|
|
c = ear.next;
|
|
if (area(a, b, c) >= 0) return false; // reflex, can't be an ear
|
|
// triangle bbox; min & max are calculated like this for speed
|
|
|
|
const minTX = a.x < b.x ? a.x < c.x ? a.x : c.x : b.x < c.x ? b.x : c.x,
|
|
minTY = a.y < b.y ? a.y < c.y ? a.y : c.y : b.y < c.y ? b.y : c.y,
|
|
maxTX = a.x > b.x ? a.x > c.x ? a.x : c.x : b.x > c.x ? b.x : c.x,
|
|
maxTY = a.y > b.y ? a.y > c.y ? a.y : c.y : b.y > c.y ? b.y : c.y; // z-order range for the current triangle bbox;
|
|
|
|
const minZ = zOrder(minTX, minTY, minX, minY, invSize),
|
|
maxZ = zOrder(maxTX, maxTY, minX, minY, invSize);
|
|
let p = ear.prevZ,
|
|
n = ear.nextZ; // look for points inside the triangle in both directions
|
|
|
|
while (p && p.z >= minZ && n && n.z <= maxZ) {
|
|
if (p !== ear.prev && p !== ear.next && pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y) && area(p.prev, p, p.next) >= 0) return false;
|
|
p = p.prevZ;
|
|
if (n !== ear.prev && n !== ear.next && pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, n.x, n.y) && area(n.prev, n, n.next) >= 0) return false;
|
|
n = n.nextZ;
|
|
} // look for remaining points in decreasing z-order
|
|
|
|
|
|
while (p && p.z >= minZ) {
|
|
if (p !== ear.prev && p !== ear.next && pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y) && area(p.prev, p, p.next) >= 0) return false;
|
|
p = p.prevZ;
|
|
} // look for remaining points in increasing z-order
|
|
|
|
|
|
while (n && n.z <= maxZ) {
|
|
if (n !== ear.prev && n !== ear.next && pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, n.x, n.y) && area(n.prev, n, n.next) >= 0) return false;
|
|
n = n.nextZ;
|
|
}
|
|
|
|
return true;
|
|
} // go through all polygon nodes and cure small local self-intersections
|
|
|
|
|
|
function cureLocalIntersections(start, triangles, dim) {
|
|
let p = start;
|
|
|
|
do {
|
|
const a = p.prev,
|
|
b = p.next.next;
|
|
|
|
if (!equals(a, b) && intersects(a, p, p.next, b) && locallyInside(a, b) && locallyInside(b, a)) {
|
|
triangles.push(a.i / dim);
|
|
triangles.push(p.i / dim);
|
|
triangles.push(b.i / dim); // remove two nodes involved
|
|
|
|
removeNode(p);
|
|
removeNode(p.next);
|
|
p = start = b;
|
|
}
|
|
|
|
p = p.next;
|
|
} while (p !== start);
|
|
|
|
return filterPoints(p);
|
|
} // try splitting polygon into two and triangulate them independently
|
|
|
|
|
|
function splitEarcut(start, triangles, dim, minX, minY, invSize) {
|
|
// look for a valid diagonal that divides the polygon into two
|
|
let a = start;
|
|
|
|
do {
|
|
let b = a.next.next;
|
|
|
|
while (b !== a.prev) {
|
|
if (a.i !== b.i && isValidDiagonal(a, b)) {
|
|
// split the polygon in two by the diagonal
|
|
let c = splitPolygon(a, b); // filter colinear points around the cuts
|
|
|
|
a = filterPoints(a, a.next);
|
|
c = filterPoints(c, c.next); // run earcut on each half
|
|
|
|
earcutLinked(a, triangles, dim, minX, minY, invSize);
|
|
earcutLinked(c, triangles, dim, minX, minY, invSize);
|
|
return;
|
|
}
|
|
|
|
b = b.next;
|
|
}
|
|
|
|
a = a.next;
|
|
} while (a !== start);
|
|
} // link every hole into the outer loop, producing a single-ring polygon without holes
|
|
|
|
|
|
function eliminateHoles(data, holeIndices, outerNode, dim) {
|
|
const queue = [];
|
|
let i, len, start, end, list;
|
|
|
|
for (i = 0, len = holeIndices.length; i < len; i++) {
|
|
start = holeIndices[i] * dim;
|
|
end = i < len - 1 ? holeIndices[i + 1] * dim : data.length;
|
|
list = linkedList(data, start, end, dim, false);
|
|
if (list === list.next) list.steiner = true;
|
|
queue.push(getLeftmost(list));
|
|
}
|
|
|
|
queue.sort(compareX); // process holes from left to right
|
|
|
|
for (i = 0; i < queue.length; i++) {
|
|
eliminateHole(queue[i], outerNode);
|
|
outerNode = filterPoints(outerNode, outerNode.next);
|
|
}
|
|
|
|
return outerNode;
|
|
}
|
|
|
|
function compareX(a, b) {
|
|
return a.x - b.x;
|
|
} // find a bridge between vertices that connects hole with an outer ring and and link it
|
|
|
|
|
|
function eliminateHole(hole, outerNode) {
|
|
outerNode = findHoleBridge(hole, outerNode);
|
|
|
|
if (outerNode) {
|
|
const b = splitPolygon(outerNode, hole); // filter collinear points around the cuts
|
|
|
|
filterPoints(outerNode, outerNode.next);
|
|
filterPoints(b, b.next);
|
|
}
|
|
} // David Eberly's algorithm for finding a bridge between hole and outer polygon
|
|
|
|
|
|
function findHoleBridge(hole, outerNode) {
|
|
let p = outerNode;
|
|
const hx = hole.x;
|
|
const hy = hole.y;
|
|
let qx = -Infinity,
|
|
m; // find a segment intersected by a ray from the hole's leftmost point to the left;
|
|
// segment's endpoint with lesser x will be potential connection point
|
|
|
|
do {
|
|
if (hy <= p.y && hy >= p.next.y && p.next.y !== p.y) {
|
|
const x = p.x + (hy - p.y) * (p.next.x - p.x) / (p.next.y - p.y);
|
|
|
|
if (x <= hx && x > qx) {
|
|
qx = x;
|
|
|
|
if (x === hx) {
|
|
if (hy === p.y) return p;
|
|
if (hy === p.next.y) return p.next;
|
|
}
|
|
|
|
m = p.x < p.next.x ? p : p.next;
|
|
}
|
|
}
|
|
|
|
p = p.next;
|
|
} while (p !== outerNode);
|
|
|
|
if (!m) return null;
|
|
if (hx === qx) return m; // hole touches outer segment; pick leftmost endpoint
|
|
// look for points inside the triangle of hole point, segment intersection and endpoint;
|
|
// if there are no points found, we have a valid connection;
|
|
// otherwise choose the point of the minimum angle with the ray as connection point
|
|
|
|
const stop = m,
|
|
mx = m.x,
|
|
my = m.y;
|
|
let tanMin = Infinity,
|
|
tan;
|
|
p = m;
|
|
|
|
do {
|
|
if (hx >= p.x && p.x >= mx && hx !== p.x && pointInTriangle(hy < my ? hx : qx, hy, mx, my, hy < my ? qx : hx, hy, p.x, p.y)) {
|
|
tan = Math.abs(hy - p.y) / (hx - p.x); // tangential
|
|
|
|
if (locallyInside(p, hole) && (tan < tanMin || tan === tanMin && (p.x > m.x || p.x === m.x && sectorContainsSector(m, p)))) {
|
|
m = p;
|
|
tanMin = tan;
|
|
}
|
|
}
|
|
|
|
p = p.next;
|
|
} while (p !== stop);
|
|
|
|
return m;
|
|
} // whether sector in vertex m contains sector in vertex p in the same coordinates
|
|
|
|
|
|
function sectorContainsSector(m, p) {
|
|
return area(m.prev, m, p.prev) < 0 && area(p.next, m, m.next) < 0;
|
|
} // interlink polygon nodes in z-order
|
|
|
|
|
|
function indexCurve(start, minX, minY, invSize) {
|
|
let p = start;
|
|
|
|
do {
|
|
if (p.z === null) p.z = zOrder(p.x, p.y, minX, minY, invSize);
|
|
p.prevZ = p.prev;
|
|
p.nextZ = p.next;
|
|
p = p.next;
|
|
} while (p !== start);
|
|
|
|
p.prevZ.nextZ = null;
|
|
p.prevZ = null;
|
|
sortLinked(p);
|
|
} // Simon Tatham's linked list merge sort algorithm
|
|
// http://www.chiark.greenend.org.uk/~sgtatham/algorithms/listsort.html
|
|
|
|
|
|
function sortLinked(list) {
|
|
let i,
|
|
p,
|
|
q,
|
|
e,
|
|
tail,
|
|
numMerges,
|
|
pSize,
|
|
qSize,
|
|
inSize = 1;
|
|
|
|
do {
|
|
p = list;
|
|
list = null;
|
|
tail = null;
|
|
numMerges = 0;
|
|
|
|
while (p) {
|
|
numMerges++;
|
|
q = p;
|
|
pSize = 0;
|
|
|
|
for (i = 0; i < inSize; i++) {
|
|
pSize++;
|
|
q = q.nextZ;
|
|
if (!q) break;
|
|
}
|
|
|
|
qSize = inSize;
|
|
|
|
while (pSize > 0 || qSize > 0 && q) {
|
|
if (pSize !== 0 && (qSize === 0 || !q || p.z <= q.z)) {
|
|
e = p;
|
|
p = p.nextZ;
|
|
pSize--;
|
|
} else {
|
|
e = q;
|
|
q = q.nextZ;
|
|
qSize--;
|
|
}
|
|
|
|
if (tail) tail.nextZ = e;else list = e;
|
|
e.prevZ = tail;
|
|
tail = e;
|
|
}
|
|
|
|
p = q;
|
|
}
|
|
|
|
tail.nextZ = null;
|
|
inSize *= 2;
|
|
} while (numMerges > 1);
|
|
|
|
return list;
|
|
} // z-order of a point given coords and inverse of the longer side of data bbox
|
|
|
|
|
|
function zOrder(x, y, minX, minY, invSize) {
|
|
// coords are transformed into non-negative 15-bit integer range
|
|
x = 32767 * (x - minX) * invSize;
|
|
y = 32767 * (y - minY) * invSize;
|
|
x = (x | x << 8) & 0x00FF00FF;
|
|
x = (x | x << 4) & 0x0F0F0F0F;
|
|
x = (x | x << 2) & 0x33333333;
|
|
x = (x | x << 1) & 0x55555555;
|
|
y = (y | y << 8) & 0x00FF00FF;
|
|
y = (y | y << 4) & 0x0F0F0F0F;
|
|
y = (y | y << 2) & 0x33333333;
|
|
y = (y | y << 1) & 0x55555555;
|
|
return x | y << 1;
|
|
} // find the leftmost node of a polygon ring
|
|
|
|
|
|
function getLeftmost(start) {
|
|
let p = start,
|
|
leftmost = start;
|
|
|
|
do {
|
|
if (p.x < leftmost.x || p.x === leftmost.x && p.y < leftmost.y) leftmost = p;
|
|
p = p.next;
|
|
} while (p !== start);
|
|
|
|
return leftmost;
|
|
} // check if a point lies within a convex triangle
|
|
|
|
|
|
function pointInTriangle(ax, ay, bx, by, cx, cy, px, py) {
|
|
return (cx - px) * (ay - py) - (ax - px) * (cy - py) >= 0 && (ax - px) * (by - py) - (bx - px) * (ay - py) >= 0 && (bx - px) * (cy - py) - (cx - px) * (by - py) >= 0;
|
|
} // check if a diagonal between two polygon nodes is valid (lies in polygon interior)
|
|
|
|
|
|
function isValidDiagonal(a, b) {
|
|
return a.next.i !== b.i && a.prev.i !== b.i && !intersectsPolygon(a, b) && (locallyInside(a, b) && locallyInside(b, a) && middleInside(a, b) && (area(a.prev, a, b.prev) || area(a, b.prev, b)) || // does not create opposite-facing sectors
|
|
equals(a, b) && area(a.prev, a, a.next) > 0 && area(b.prev, b, b.next) > 0); // special zero-length case
|
|
} // signed area of a triangle
|
|
|
|
|
|
function area(p, q, r) {
|
|
return (q.y - p.y) * (r.x - q.x) - (q.x - p.x) * (r.y - q.y);
|
|
} // check if two points are equal
|
|
|
|
|
|
function equals(p1, p2) {
|
|
return p1.x === p2.x && p1.y === p2.y;
|
|
} // check if two segments intersect
|
|
|
|
|
|
function intersects(p1, q1, p2, q2) {
|
|
const o1 = sign(area(p1, q1, p2));
|
|
const o2 = sign(area(p1, q1, q2));
|
|
const o3 = sign(area(p2, q2, p1));
|
|
const o4 = sign(area(p2, q2, q1));
|
|
if (o1 !== o2 && o3 !== o4) return true; // general case
|
|
|
|
if (o1 === 0 && onSegment(p1, p2, q1)) return true; // p1, q1 and p2 are collinear and p2 lies on p1q1
|
|
|
|
if (o2 === 0 && onSegment(p1, q2, q1)) return true; // p1, q1 and q2 are collinear and q2 lies on p1q1
|
|
|
|
if (o3 === 0 && onSegment(p2, p1, q2)) return true; // p2, q2 and p1 are collinear and p1 lies on p2q2
|
|
|
|
if (o4 === 0 && onSegment(p2, q1, q2)) return true; // p2, q2 and q1 are collinear and q1 lies on p2q2
|
|
|
|
return false;
|
|
} // for collinear points p, q, r, check if point q lies on segment pr
|
|
|
|
|
|
function onSegment(p, q, r) {
|
|
return q.x <= Math.max(p.x, r.x) && q.x >= Math.min(p.x, r.x) && q.y <= Math.max(p.y, r.y) && q.y >= Math.min(p.y, r.y);
|
|
}
|
|
|
|
function sign(num) {
|
|
return num > 0 ? 1 : num < 0 ? -1 : 0;
|
|
} // check if a polygon diagonal intersects any polygon segments
|
|
|
|
|
|
function intersectsPolygon(a, b) {
|
|
let p = a;
|
|
|
|
do {
|
|
if (p.i !== a.i && p.next.i !== a.i && p.i !== b.i && p.next.i !== b.i && intersects(p, p.next, a, b)) return true;
|
|
p = p.next;
|
|
} while (p !== a);
|
|
|
|
return false;
|
|
} // check if a polygon diagonal is locally inside the polygon
|
|
|
|
|
|
function locallyInside(a, b) {
|
|
return area(a.prev, a, a.next) < 0 ? area(a, b, a.next) >= 0 && area(a, a.prev, b) >= 0 : area(a, b, a.prev) < 0 || area(a, a.next, b) < 0;
|
|
} // check if the middle point of a polygon diagonal is inside the polygon
|
|
|
|
|
|
function middleInside(a, b) {
|
|
let p = a,
|
|
inside = false;
|
|
const px = (a.x + b.x) / 2,
|
|
py = (a.y + b.y) / 2;
|
|
|
|
do {
|
|
if (p.y > py !== p.next.y > py && p.next.y !== p.y && px < (p.next.x - p.x) * (py - p.y) / (p.next.y - p.y) + p.x) inside = !inside;
|
|
p = p.next;
|
|
} while (p !== a);
|
|
|
|
return inside;
|
|
} // link two polygon vertices with a bridge; if the vertices belong to the same ring, it splits polygon into two;
|
|
// if one belongs to the outer ring and another to a hole, it merges it into a single ring
|
|
|
|
|
|
function splitPolygon(a, b) {
|
|
const a2 = new Node(a.i, a.x, a.y),
|
|
b2 = new Node(b.i, b.x, b.y),
|
|
an = a.next,
|
|
bp = b.prev;
|
|
a.next = b;
|
|
b.prev = a;
|
|
a2.next = an;
|
|
an.prev = a2;
|
|
b2.next = a2;
|
|
a2.prev = b2;
|
|
bp.next = b2;
|
|
b2.prev = bp;
|
|
return b2;
|
|
} // create a node and optionally link it with previous one (in a circular doubly linked list)
|
|
|
|
|
|
function insertNode(i, x, y, last) {
|
|
const p = new Node(i, x, y);
|
|
|
|
if (!last) {
|
|
p.prev = p;
|
|
p.next = p;
|
|
} else {
|
|
p.next = last.next;
|
|
p.prev = last;
|
|
last.next.prev = p;
|
|
last.next = p;
|
|
}
|
|
|
|
return p;
|
|
}
|
|
|
|
function removeNode(p) {
|
|
p.next.prev = p.prev;
|
|
p.prev.next = p.next;
|
|
if (p.prevZ) p.prevZ.nextZ = p.nextZ;
|
|
if (p.nextZ) p.nextZ.prevZ = p.prevZ;
|
|
}
|
|
|
|
function Node(i, x, y) {
|
|
// vertex index in coordinates array
|
|
this.i = i; // vertex coordinates
|
|
|
|
this.x = x;
|
|
this.y = y; // previous and next vertex nodes in a polygon ring
|
|
|
|
this.prev = null;
|
|
this.next = null; // z-order curve value
|
|
|
|
this.z = null; // previous and next nodes in z-order
|
|
|
|
this.prevZ = null;
|
|
this.nextZ = null; // indicates whether this is a steiner point
|
|
|
|
this.steiner = false;
|
|
}
|
|
|
|
function signedArea(data, start, end, dim) {
|
|
let sum = 0;
|
|
|
|
for (let i = start, j = end - dim; i < end; i += dim) {
|
|
sum += (data[j] - data[i]) * (data[i + 1] + data[j + 1]);
|
|
j = i;
|
|
}
|
|
|
|
return sum;
|
|
}
|
|
|
|
class ShapeUtils {
|
|
// calculate area of the contour polygon
|
|
static area(contour) {
|
|
const n = contour.length;
|
|
let a = 0.0;
|
|
|
|
for (let p = n - 1, q = 0; q < n; p = q++) {
|
|
a += contour[p].x * contour[q].y - contour[q].x * contour[p].y;
|
|
}
|
|
|
|
return a * 0.5;
|
|
}
|
|
|
|
static isClockWise(pts) {
|
|
return ShapeUtils.area(pts) < 0;
|
|
}
|
|
|
|
static triangulateShape(contour, holes) {
|
|
const vertices = []; // flat array of vertices like [ x0,y0, x1,y1, x2,y2, ... ]
|
|
|
|
const holeIndices = []; // array of hole indices
|
|
|
|
const faces = []; // final array of vertex indices like [ [ a,b,d ], [ b,c,d ] ]
|
|
|
|
removeDupEndPts(contour);
|
|
addContour(vertices, contour); //
|
|
|
|
let holeIndex = contour.length;
|
|
holes.forEach(removeDupEndPts);
|
|
|
|
for (let i = 0; i < holes.length; i++) {
|
|
holeIndices.push(holeIndex);
|
|
holeIndex += holes[i].length;
|
|
addContour(vertices, holes[i]);
|
|
} //
|
|
|
|
|
|
const triangles = Earcut.triangulate(vertices, holeIndices); //
|
|
|
|
for (let i = 0; i < triangles.length; i += 3) {
|
|
faces.push(triangles.slice(i, i + 3));
|
|
}
|
|
|
|
return faces;
|
|
}
|
|
|
|
}
|
|
|
|
function removeDupEndPts(points) {
|
|
const l = points.length;
|
|
|
|
if (l > 2 && points[l - 1].equals(points[0])) {
|
|
points.pop();
|
|
}
|
|
}
|
|
|
|
function addContour(vertices, contour) {
|
|
for (let i = 0; i < contour.length; i++) {
|
|
vertices.push(contour[i].x);
|
|
vertices.push(contour[i].y);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Creates extruded geometry from a path shape.
|
|
*
|
|
* parameters = {
|
|
*
|
|
* curveSegments: <int>, // number of points on the curves
|
|
* steps: <int>, // number of points for z-side extrusions / used for subdividing segments of extrude spline too
|
|
* depth: <float>, // Depth to extrude the shape
|
|
*
|
|
* bevelEnabled: <bool>, // turn on bevel
|
|
* bevelThickness: <float>, // how deep into the original shape bevel goes
|
|
* bevelSize: <float>, // how far from shape outline (including bevelOffset) is bevel
|
|
* bevelOffset: <float>, // how far from shape outline does bevel start
|
|
* bevelSegments: <int>, // number of bevel layers
|
|
*
|
|
* extrudePath: <THREE.Curve> // curve to extrude shape along
|
|
*
|
|
* UVGenerator: <Object> // object that provides UV generator functions
|
|
*
|
|
* }
|
|
*/
|
|
|
|
class ExtrudeGeometry extends BufferGeometry {
|
|
constructor(shapes = new Shape([new Vector2(0.5, 0.5), new Vector2(-0.5, 0.5), new Vector2(-0.5, -0.5), new Vector2(0.5, -0.5)]), options = {}) {
|
|
super();
|
|
this.type = 'ExtrudeGeometry';
|
|
this.parameters = {
|
|
shapes: shapes,
|
|
options: options
|
|
};
|
|
shapes = Array.isArray(shapes) ? shapes : [shapes];
|
|
const scope = this;
|
|
const verticesArray = [];
|
|
const uvArray = [];
|
|
|
|
for (let i = 0, l = shapes.length; i < l; i++) {
|
|
const shape = shapes[i];
|
|
addShape(shape);
|
|
} // build geometry
|
|
|
|
|
|
this.setAttribute('position', new Float32BufferAttribute(verticesArray, 3));
|
|
this.setAttribute('uv', new Float32BufferAttribute(uvArray, 2));
|
|
this.computeVertexNormals(); // functions
|
|
|
|
function addShape(shape) {
|
|
const placeholder = []; // options
|
|
|
|
const curveSegments = options.curveSegments !== undefined ? options.curveSegments : 12;
|
|
const steps = options.steps !== undefined ? options.steps : 1;
|
|
let depth = options.depth !== undefined ? options.depth : 1;
|
|
let bevelEnabled = options.bevelEnabled !== undefined ? options.bevelEnabled : true;
|
|
let bevelThickness = options.bevelThickness !== undefined ? options.bevelThickness : 0.2;
|
|
let bevelSize = options.bevelSize !== undefined ? options.bevelSize : bevelThickness - 0.1;
|
|
let bevelOffset = options.bevelOffset !== undefined ? options.bevelOffset : 0;
|
|
let bevelSegments = options.bevelSegments !== undefined ? options.bevelSegments : 3;
|
|
const extrudePath = options.extrudePath;
|
|
const uvgen = options.UVGenerator !== undefined ? options.UVGenerator : WorldUVGenerator; // deprecated options
|
|
|
|
if (options.amount !== undefined) {
|
|
console.warn('THREE.ExtrudeBufferGeometry: amount has been renamed to depth.');
|
|
depth = options.amount;
|
|
} //
|
|
|
|
|
|
let extrudePts,
|
|
extrudeByPath = false;
|
|
let splineTube, binormal, normal, position2;
|
|
|
|
if (extrudePath) {
|
|
extrudePts = extrudePath.getSpacedPoints(steps);
|
|
extrudeByPath = true;
|
|
bevelEnabled = false; // bevels not supported for path extrusion
|
|
// SETUP TNB variables
|
|
// TODO1 - have a .isClosed in spline?
|
|
|
|
splineTube = extrudePath.computeFrenetFrames(steps, false); // console.log(splineTube, 'splineTube', splineTube.normals.length, 'steps', steps, 'extrudePts', extrudePts.length);
|
|
|
|
binormal = new Vector3();
|
|
normal = new Vector3();
|
|
position2 = new Vector3();
|
|
} // Safeguards if bevels are not enabled
|
|
|
|
|
|
if (!bevelEnabled) {
|
|
bevelSegments = 0;
|
|
bevelThickness = 0;
|
|
bevelSize = 0;
|
|
bevelOffset = 0;
|
|
} // Variables initialization
|
|
|
|
|
|
const shapePoints = shape.extractPoints(curveSegments);
|
|
let vertices = shapePoints.shape;
|
|
const holes = shapePoints.holes;
|
|
const reverse = !ShapeUtils.isClockWise(vertices);
|
|
|
|
if (reverse) {
|
|
vertices = vertices.reverse(); // Maybe we should also check if holes are in the opposite direction, just to be safe ...
|
|
|
|
for (let h = 0, hl = holes.length; h < hl; h++) {
|
|
const ahole = holes[h];
|
|
|
|
if (ShapeUtils.isClockWise(ahole)) {
|
|
holes[h] = ahole.reverse();
|
|
}
|
|
}
|
|
}
|
|
|
|
const faces = ShapeUtils.triangulateShape(vertices, holes);
|
|
/* Vertices */
|
|
|
|
const contour = vertices; // vertices has all points but contour has only points of circumference
|
|
|
|
for (let h = 0, hl = holes.length; h < hl; h++) {
|
|
const ahole = holes[h];
|
|
vertices = vertices.concat(ahole);
|
|
}
|
|
|
|
function scalePt2(pt, vec, size) {
|
|
if (!vec) console.error('THREE.ExtrudeGeometry: vec does not exist');
|
|
return vec.clone().multiplyScalar(size).add(pt);
|
|
}
|
|
|
|
const vlen = vertices.length,
|
|
flen = faces.length; // Find directions for point movement
|
|
|
|
function getBevelVec(inPt, inPrev, inNext) {
|
|
// computes for inPt the corresponding point inPt' on a new contour
|
|
// shifted by 1 unit (length of normalized vector) to the left
|
|
// if we walk along contour clockwise, this new contour is outside the old one
|
|
//
|
|
// inPt' is the intersection of the two lines parallel to the two
|
|
// adjacent edges of inPt at a distance of 1 unit on the left side.
|
|
let v_trans_x, v_trans_y, shrink_by; // resulting translation vector for inPt
|
|
// good reading for geometry algorithms (here: line-line intersection)
|
|
// http://geomalgorithms.com/a05-_intersect-1.html
|
|
|
|
const v_prev_x = inPt.x - inPrev.x,
|
|
v_prev_y = inPt.y - inPrev.y;
|
|
const v_next_x = inNext.x - inPt.x,
|
|
v_next_y = inNext.y - inPt.y;
|
|
const v_prev_lensq = v_prev_x * v_prev_x + v_prev_y * v_prev_y; // check for collinear edges
|
|
|
|
const collinear0 = v_prev_x * v_next_y - v_prev_y * v_next_x;
|
|
|
|
if (Math.abs(collinear0) > Number.EPSILON) {
|
|
// not collinear
|
|
// length of vectors for normalizing
|
|
const v_prev_len = Math.sqrt(v_prev_lensq);
|
|
const v_next_len = Math.sqrt(v_next_x * v_next_x + v_next_y * v_next_y); // shift adjacent points by unit vectors to the left
|
|
|
|
const ptPrevShift_x = inPrev.x - v_prev_y / v_prev_len;
|
|
const ptPrevShift_y = inPrev.y + v_prev_x / v_prev_len;
|
|
const ptNextShift_x = inNext.x - v_next_y / v_next_len;
|
|
const ptNextShift_y = inNext.y + v_next_x / v_next_len; // scaling factor for v_prev to intersection point
|
|
|
|
const sf = ((ptNextShift_x - ptPrevShift_x) * v_next_y - (ptNextShift_y - ptPrevShift_y) * v_next_x) / (v_prev_x * v_next_y - v_prev_y * v_next_x); // vector from inPt to intersection point
|
|
|
|
v_trans_x = ptPrevShift_x + v_prev_x * sf - inPt.x;
|
|
v_trans_y = ptPrevShift_y + v_prev_y * sf - inPt.y; // Don't normalize!, otherwise sharp corners become ugly
|
|
// but prevent crazy spikes
|
|
|
|
const v_trans_lensq = v_trans_x * v_trans_x + v_trans_y * v_trans_y;
|
|
|
|
if (v_trans_lensq <= 2) {
|
|
return new Vector2(v_trans_x, v_trans_y);
|
|
} else {
|
|
shrink_by = Math.sqrt(v_trans_lensq / 2);
|
|
}
|
|
} else {
|
|
// handle special case of collinear edges
|
|
let direction_eq = false; // assumes: opposite
|
|
|
|
if (v_prev_x > Number.EPSILON) {
|
|
if (v_next_x > Number.EPSILON) {
|
|
direction_eq = true;
|
|
}
|
|
} else {
|
|
if (v_prev_x < -Number.EPSILON) {
|
|
if (v_next_x < -Number.EPSILON) {
|
|
direction_eq = true;
|
|
}
|
|
} else {
|
|
if (Math.sign(v_prev_y) === Math.sign(v_next_y)) {
|
|
direction_eq = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (direction_eq) {
|
|
// console.log("Warning: lines are a straight sequence");
|
|
v_trans_x = -v_prev_y;
|
|
v_trans_y = v_prev_x;
|
|
shrink_by = Math.sqrt(v_prev_lensq);
|
|
} else {
|
|
// console.log("Warning: lines are a straight spike");
|
|
v_trans_x = v_prev_x;
|
|
v_trans_y = v_prev_y;
|
|
shrink_by = Math.sqrt(v_prev_lensq / 2);
|
|
}
|
|
}
|
|
|
|
return new Vector2(v_trans_x / shrink_by, v_trans_y / shrink_by);
|
|
}
|
|
|
|
const contourMovements = [];
|
|
|
|
for (let i = 0, il = contour.length, j = il - 1, k = i + 1; i < il; i++, j++, k++) {
|
|
if (j === il) j = 0;
|
|
if (k === il) k = 0; // (j)---(i)---(k)
|
|
// console.log('i,j,k', i, j , k)
|
|
|
|
contourMovements[i] = getBevelVec(contour[i], contour[j], contour[k]);
|
|
}
|
|
|
|
const holesMovements = [];
|
|
let oneHoleMovements,
|
|
verticesMovements = contourMovements.concat();
|
|
|
|
for (let h = 0, hl = holes.length; h < hl; h++) {
|
|
const ahole = holes[h];
|
|
oneHoleMovements = [];
|
|
|
|
for (let i = 0, il = ahole.length, j = il - 1, k = i + 1; i < il; i++, j++, k++) {
|
|
if (j === il) j = 0;
|
|
if (k === il) k = 0; // (j)---(i)---(k)
|
|
|
|
oneHoleMovements[i] = getBevelVec(ahole[i], ahole[j], ahole[k]);
|
|
}
|
|
|
|
holesMovements.push(oneHoleMovements);
|
|
verticesMovements = verticesMovements.concat(oneHoleMovements);
|
|
} // Loop bevelSegments, 1 for the front, 1 for the back
|
|
|
|
|
|
for (let b = 0; b < bevelSegments; b++) {
|
|
//for ( b = bevelSegments; b > 0; b -- ) {
|
|
const t = b / bevelSegments;
|
|
const z = bevelThickness * Math.cos(t * Math.PI / 2);
|
|
const bs = bevelSize * Math.sin(t * Math.PI / 2) + bevelOffset; // contract shape
|
|
|
|
for (let i = 0, il = contour.length; i < il; i++) {
|
|
const vert = scalePt2(contour[i], contourMovements[i], bs);
|
|
v(vert.x, vert.y, -z);
|
|
} // expand holes
|
|
|
|
|
|
for (let h = 0, hl = holes.length; h < hl; h++) {
|
|
const ahole = holes[h];
|
|
oneHoleMovements = holesMovements[h];
|
|
|
|
for (let i = 0, il = ahole.length; i < il; i++) {
|
|
const vert = scalePt2(ahole[i], oneHoleMovements[i], bs);
|
|
v(vert.x, vert.y, -z);
|
|
}
|
|
}
|
|
}
|
|
|
|
const bs = bevelSize + bevelOffset; // Back facing vertices
|
|
|
|
for (let i = 0; i < vlen; i++) {
|
|
const vert = bevelEnabled ? scalePt2(vertices[i], verticesMovements[i], bs) : vertices[i];
|
|
|
|
if (!extrudeByPath) {
|
|
v(vert.x, vert.y, 0);
|
|
} else {
|
|
// v( vert.x, vert.y + extrudePts[ 0 ].y, extrudePts[ 0 ].x );
|
|
normal.copy(splineTube.normals[0]).multiplyScalar(vert.x);
|
|
binormal.copy(splineTube.binormals[0]).multiplyScalar(vert.y);
|
|
position2.copy(extrudePts[0]).add(normal).add(binormal);
|
|
v(position2.x, position2.y, position2.z);
|
|
}
|
|
} // Add stepped vertices...
|
|
// Including front facing vertices
|
|
|
|
|
|
for (let s = 1; s <= steps; s++) {
|
|
for (let i = 0; i < vlen; i++) {
|
|
const vert = bevelEnabled ? scalePt2(vertices[i], verticesMovements[i], bs) : vertices[i];
|
|
|
|
if (!extrudeByPath) {
|
|
v(vert.x, vert.y, depth / steps * s);
|
|
} else {
|
|
// v( vert.x, vert.y + extrudePts[ s - 1 ].y, extrudePts[ s - 1 ].x );
|
|
normal.copy(splineTube.normals[s]).multiplyScalar(vert.x);
|
|
binormal.copy(splineTube.binormals[s]).multiplyScalar(vert.y);
|
|
position2.copy(extrudePts[s]).add(normal).add(binormal);
|
|
v(position2.x, position2.y, position2.z);
|
|
}
|
|
}
|
|
} // Add bevel segments planes
|
|
//for ( b = 1; b <= bevelSegments; b ++ ) {
|
|
|
|
|
|
for (let b = bevelSegments - 1; b >= 0; b--) {
|
|
const t = b / bevelSegments;
|
|
const z = bevelThickness * Math.cos(t * Math.PI / 2);
|
|
const bs = bevelSize * Math.sin(t * Math.PI / 2) + bevelOffset; // contract shape
|
|
|
|
for (let i = 0, il = contour.length; i < il; i++) {
|
|
const vert = scalePt2(contour[i], contourMovements[i], bs);
|
|
v(vert.x, vert.y, depth + z);
|
|
} // expand holes
|
|
|
|
|
|
for (let h = 0, hl = holes.length; h < hl; h++) {
|
|
const ahole = holes[h];
|
|
oneHoleMovements = holesMovements[h];
|
|
|
|
for (let i = 0, il = ahole.length; i < il; i++) {
|
|
const vert = scalePt2(ahole[i], oneHoleMovements[i], bs);
|
|
|
|
if (!extrudeByPath) {
|
|
v(vert.x, vert.y, depth + z);
|
|
} else {
|
|
v(vert.x, vert.y + extrudePts[steps - 1].y, extrudePts[steps - 1].x + z);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
/* Faces */
|
|
// Top and bottom faces
|
|
|
|
|
|
buildLidFaces(); // Sides faces
|
|
|
|
buildSideFaces(); ///// Internal functions
|
|
|
|
function buildLidFaces() {
|
|
const start = verticesArray.length / 3;
|
|
|
|
if (bevelEnabled) {
|
|
let layer = 0; // steps + 1
|
|
|
|
let offset = vlen * layer; // Bottom faces
|
|
|
|
for (let i = 0; i < flen; i++) {
|
|
const face = faces[i];
|
|
f3(face[2] + offset, face[1] + offset, face[0] + offset);
|
|
}
|
|
|
|
layer = steps + bevelSegments * 2;
|
|
offset = vlen * layer; // Top faces
|
|
|
|
for (let i = 0; i < flen; i++) {
|
|
const face = faces[i];
|
|
f3(face[0] + offset, face[1] + offset, face[2] + offset);
|
|
}
|
|
} else {
|
|
// Bottom faces
|
|
for (let i = 0; i < flen; i++) {
|
|
const face = faces[i];
|
|
f3(face[2], face[1], face[0]);
|
|
} // Top faces
|
|
|
|
|
|
for (let i = 0; i < flen; i++) {
|
|
const face = faces[i];
|
|
f3(face[0] + vlen * steps, face[1] + vlen * steps, face[2] + vlen * steps);
|
|
}
|
|
}
|
|
|
|
scope.addGroup(start, verticesArray.length / 3 - start, 0);
|
|
} // Create faces for the z-sides of the shape
|
|
|
|
|
|
function buildSideFaces() {
|
|
const start = verticesArray.length / 3;
|
|
let layeroffset = 0;
|
|
sidewalls(contour, layeroffset);
|
|
layeroffset += contour.length;
|
|
|
|
for (let h = 0, hl = holes.length; h < hl; h++) {
|
|
const ahole = holes[h];
|
|
sidewalls(ahole, layeroffset); //, true
|
|
|
|
layeroffset += ahole.length;
|
|
}
|
|
|
|
scope.addGroup(start, verticesArray.length / 3 - start, 1);
|
|
}
|
|
|
|
function sidewalls(contour, layeroffset) {
|
|
let i = contour.length;
|
|
|
|
while (--i >= 0) {
|
|
const j = i;
|
|
let k = i - 1;
|
|
if (k < 0) k = contour.length - 1; //console.log('b', i,j, i-1, k,vertices.length);
|
|
|
|
for (let s = 0, sl = steps + bevelSegments * 2; s < sl; s++) {
|
|
const slen1 = vlen * s;
|
|
const slen2 = vlen * (s + 1);
|
|
const a = layeroffset + j + slen1,
|
|
b = layeroffset + k + slen1,
|
|
c = layeroffset + k + slen2,
|
|
d = layeroffset + j + slen2;
|
|
f4(a, b, c, d);
|
|
}
|
|
}
|
|
}
|
|
|
|
function v(x, y, z) {
|
|
placeholder.push(x);
|
|
placeholder.push(y);
|
|
placeholder.push(z);
|
|
}
|
|
|
|
function f3(a, b, c) {
|
|
addVertex(a);
|
|
addVertex(b);
|
|
addVertex(c);
|
|
const nextIndex = verticesArray.length / 3;
|
|
const uvs = uvgen.generateTopUV(scope, verticesArray, nextIndex - 3, nextIndex - 2, nextIndex - 1);
|
|
addUV(uvs[0]);
|
|
addUV(uvs[1]);
|
|
addUV(uvs[2]);
|
|
}
|
|
|
|
function f4(a, b, c, d) {
|
|
addVertex(a);
|
|
addVertex(b);
|
|
addVertex(d);
|
|
addVertex(b);
|
|
addVertex(c);
|
|
addVertex(d);
|
|
const nextIndex = verticesArray.length / 3;
|
|
const uvs = uvgen.generateSideWallUV(scope, verticesArray, nextIndex - 6, nextIndex - 3, nextIndex - 2, nextIndex - 1);
|
|
addUV(uvs[0]);
|
|
addUV(uvs[1]);
|
|
addUV(uvs[3]);
|
|
addUV(uvs[1]);
|
|
addUV(uvs[2]);
|
|
addUV(uvs[3]);
|
|
}
|
|
|
|
function addVertex(index) {
|
|
verticesArray.push(placeholder[index * 3 + 0]);
|
|
verticesArray.push(placeholder[index * 3 + 1]);
|
|
verticesArray.push(placeholder[index * 3 + 2]);
|
|
}
|
|
|
|
function addUV(vector2) {
|
|
uvArray.push(vector2.x);
|
|
uvArray.push(vector2.y);
|
|
}
|
|
}
|
|
}
|
|
|
|
toJSON() {
|
|
const data = super.toJSON();
|
|
const shapes = this.parameters.shapes;
|
|
const options = this.parameters.options;
|
|
return toJSON$1(shapes, options, data);
|
|
}
|
|
|
|
static fromJSON(data, shapes) {
|
|
const geometryShapes = [];
|
|
|
|
for (let j = 0, jl = data.shapes.length; j < jl; j++) {
|
|
const shape = shapes[data.shapes[j]];
|
|
geometryShapes.push(shape);
|
|
}
|
|
|
|
const extrudePath = data.options.extrudePath;
|
|
|
|
if (extrudePath !== undefined) {
|
|
data.options.extrudePath = new Curves[extrudePath.type]().fromJSON(extrudePath);
|
|
}
|
|
|
|
return new ExtrudeGeometry(geometryShapes, data.options);
|
|
}
|
|
|
|
}
|
|
|
|
const WorldUVGenerator = {
|
|
generateTopUV: function (geometry, vertices, indexA, indexB, indexC) {
|
|
const a_x = vertices[indexA * 3];
|
|
const a_y = vertices[indexA * 3 + 1];
|
|
const b_x = vertices[indexB * 3];
|
|
const b_y = vertices[indexB * 3 + 1];
|
|
const c_x = vertices[indexC * 3];
|
|
const c_y = vertices[indexC * 3 + 1];
|
|
return [new Vector2(a_x, a_y), new Vector2(b_x, b_y), new Vector2(c_x, c_y)];
|
|
},
|
|
generateSideWallUV: function (geometry, vertices, indexA, indexB, indexC, indexD) {
|
|
const a_x = vertices[indexA * 3];
|
|
const a_y = vertices[indexA * 3 + 1];
|
|
const a_z = vertices[indexA * 3 + 2];
|
|
const b_x = vertices[indexB * 3];
|
|
const b_y = vertices[indexB * 3 + 1];
|
|
const b_z = vertices[indexB * 3 + 2];
|
|
const c_x = vertices[indexC * 3];
|
|
const c_y = vertices[indexC * 3 + 1];
|
|
const c_z = vertices[indexC * 3 + 2];
|
|
const d_x = vertices[indexD * 3];
|
|
const d_y = vertices[indexD * 3 + 1];
|
|
const d_z = vertices[indexD * 3 + 2];
|
|
|
|
if (Math.abs(a_y - b_y) < Math.abs(a_x - b_x)) {
|
|
return [new Vector2(a_x, 1 - a_z), new Vector2(b_x, 1 - b_z), new Vector2(c_x, 1 - c_z), new Vector2(d_x, 1 - d_z)];
|
|
} else {
|
|
return [new Vector2(a_y, 1 - a_z), new Vector2(b_y, 1 - b_z), new Vector2(c_y, 1 - c_z), new Vector2(d_y, 1 - d_z)];
|
|
}
|
|
}
|
|
};
|
|
|
|
function toJSON$1(shapes, options, data) {
|
|
data.shapes = [];
|
|
|
|
if (Array.isArray(shapes)) {
|
|
for (let i = 0, l = shapes.length; i < l; i++) {
|
|
const shape = shapes[i];
|
|
data.shapes.push(shape.uuid);
|
|
}
|
|
} else {
|
|
data.shapes.push(shapes.uuid);
|
|
}
|
|
|
|
if (options.extrudePath !== undefined) data.options.extrudePath = options.extrudePath.toJSON();
|
|
return data;
|
|
}
|
|
|
|
class IcosahedronGeometry extends PolyhedronGeometry {
|
|
constructor(radius = 1, detail = 0) {
|
|
const t = (1 + Math.sqrt(5)) / 2;
|
|
const vertices = [-1, t, 0, 1, t, 0, -1, -t, 0, 1, -t, 0, 0, -1, t, 0, 1, t, 0, -1, -t, 0, 1, -t, t, 0, -1, t, 0, 1, -t, 0, -1, -t, 0, 1];
|
|
const indices = [0, 11, 5, 0, 5, 1, 0, 1, 7, 0, 7, 10, 0, 10, 11, 1, 5, 9, 5, 11, 4, 11, 10, 2, 10, 7, 6, 7, 1, 8, 3, 9, 4, 3, 4, 2, 3, 2, 6, 3, 6, 8, 3, 8, 9, 4, 9, 5, 2, 4, 11, 6, 2, 10, 8, 6, 7, 9, 8, 1];
|
|
super(vertices, indices, radius, detail);
|
|
this.type = 'IcosahedronGeometry';
|
|
this.parameters = {
|
|
radius: radius,
|
|
detail: detail
|
|
};
|
|
}
|
|
|
|
static fromJSON(data) {
|
|
return new IcosahedronGeometry(data.radius, data.detail);
|
|
}
|
|
|
|
}
|
|
|
|
class LatheGeometry extends BufferGeometry {
|
|
constructor(points = [new Vector2(0, 0.5), new Vector2(0.5, 0), new Vector2(0, -0.5)], segments = 12, phiStart = 0, phiLength = Math.PI * 2) {
|
|
super();
|
|
this.type = 'LatheGeometry';
|
|
this.parameters = {
|
|
points: points,
|
|
segments: segments,
|
|
phiStart: phiStart,
|
|
phiLength: phiLength
|
|
};
|
|
segments = Math.floor(segments); // clamp phiLength so it's in range of [ 0, 2PI ]
|
|
|
|
phiLength = clamp(phiLength, 0, Math.PI * 2); // buffers
|
|
|
|
const indices = [];
|
|
const vertices = [];
|
|
const uvs = []; // helper variables
|
|
|
|
const inverseSegments = 1.0 / segments;
|
|
const vertex = new Vector3();
|
|
const uv = new Vector2(); // generate vertices and uvs
|
|
|
|
for (let i = 0; i <= segments; i++) {
|
|
const phi = phiStart + i * inverseSegments * phiLength;
|
|
const sin = Math.sin(phi);
|
|
const cos = Math.cos(phi);
|
|
|
|
for (let j = 0; j <= points.length - 1; j++) {
|
|
// vertex
|
|
vertex.x = points[j].x * sin;
|
|
vertex.y = points[j].y;
|
|
vertex.z = points[j].x * cos;
|
|
vertices.push(vertex.x, vertex.y, vertex.z); // uv
|
|
|
|
uv.x = i / segments;
|
|
uv.y = j / (points.length - 1);
|
|
uvs.push(uv.x, uv.y);
|
|
}
|
|
} // indices
|
|
|
|
|
|
for (let i = 0; i < segments; i++) {
|
|
for (let j = 0; j < points.length - 1; j++) {
|
|
const base = j + i * points.length;
|
|
const a = base;
|
|
const b = base + points.length;
|
|
const c = base + points.length + 1;
|
|
const d = base + 1; // faces
|
|
|
|
indices.push(a, b, d);
|
|
indices.push(b, c, d);
|
|
}
|
|
} // build geometry
|
|
|
|
|
|
this.setIndex(indices);
|
|
this.setAttribute('position', new Float32BufferAttribute(vertices, 3));
|
|
this.setAttribute('uv', new Float32BufferAttribute(uvs, 2)); // generate normals
|
|
|
|
this.computeVertexNormals(); // if the geometry is closed, we need to average the normals along the seam.
|
|
// because the corresponding vertices are identical (but still have different UVs).
|
|
|
|
if (phiLength === Math.PI * 2) {
|
|
const normals = this.attributes.normal.array;
|
|
const n1 = new Vector3();
|
|
const n2 = new Vector3();
|
|
const n = new Vector3(); // this is the buffer offset for the last line of vertices
|
|
|
|
const base = segments * points.length * 3;
|
|
|
|
for (let i = 0, j = 0; i < points.length; i++, j += 3) {
|
|
// select the normal of the vertex in the first line
|
|
n1.x = normals[j + 0];
|
|
n1.y = normals[j + 1];
|
|
n1.z = normals[j + 2]; // select the normal of the vertex in the last line
|
|
|
|
n2.x = normals[base + j + 0];
|
|
n2.y = normals[base + j + 1];
|
|
n2.z = normals[base + j + 2]; // average normals
|
|
|
|
n.addVectors(n1, n2).normalize(); // assign the new values to both normals
|
|
|
|
normals[j + 0] = normals[base + j + 0] = n.x;
|
|
normals[j + 1] = normals[base + j + 1] = n.y;
|
|
normals[j + 2] = normals[base + j + 2] = n.z;
|
|
}
|
|
}
|
|
}
|
|
|
|
static fromJSON(data) {
|
|
return new LatheGeometry(data.points, data.segments, data.phiStart, data.phiLength);
|
|
}
|
|
|
|
}
|
|
|
|
class OctahedronGeometry extends PolyhedronGeometry {
|
|
constructor(radius = 1, detail = 0) {
|
|
const vertices = [1, 0, 0, -1, 0, 0, 0, 1, 0, 0, -1, 0, 0, 0, 1, 0, 0, -1];
|
|
const indices = [0, 2, 4, 0, 4, 3, 0, 3, 5, 0, 5, 2, 1, 2, 5, 1, 5, 3, 1, 3, 4, 1, 4, 2];
|
|
super(vertices, indices, radius, detail);
|
|
this.type = 'OctahedronGeometry';
|
|
this.parameters = {
|
|
radius: radius,
|
|
detail: detail
|
|
};
|
|
}
|
|
|
|
static fromJSON(data) {
|
|
return new OctahedronGeometry(data.radius, data.detail);
|
|
}
|
|
|
|
}
|
|
|
|
class RingGeometry extends BufferGeometry {
|
|
constructor(innerRadius = 0.5, outerRadius = 1, thetaSegments = 8, phiSegments = 1, thetaStart = 0, thetaLength = Math.PI * 2) {
|
|
super();
|
|
this.type = 'RingGeometry';
|
|
this.parameters = {
|
|
innerRadius: innerRadius,
|
|
outerRadius: outerRadius,
|
|
thetaSegments: thetaSegments,
|
|
phiSegments: phiSegments,
|
|
thetaStart: thetaStart,
|
|
thetaLength: thetaLength
|
|
};
|
|
thetaSegments = Math.max(3, thetaSegments);
|
|
phiSegments = Math.max(1, phiSegments); // buffers
|
|
|
|
const indices = [];
|
|
const vertices = [];
|
|
const normals = [];
|
|
const uvs = []; // some helper variables
|
|
|
|
let radius = innerRadius;
|
|
const radiusStep = (outerRadius - innerRadius) / phiSegments;
|
|
const vertex = new Vector3();
|
|
const uv = new Vector2(); // generate vertices, normals and uvs
|
|
|
|
for (let j = 0; j <= phiSegments; j++) {
|
|
for (let i = 0; i <= thetaSegments; i++) {
|
|
// values are generate from the inside of the ring to the outside
|
|
const segment = thetaStart + i / thetaSegments * thetaLength; // vertex
|
|
|
|
vertex.x = radius * Math.cos(segment);
|
|
vertex.y = radius * Math.sin(segment);
|
|
vertices.push(vertex.x, vertex.y, vertex.z); // normal
|
|
|
|
normals.push(0, 0, 1); // uv
|
|
|
|
uv.x = (vertex.x / outerRadius + 1) / 2;
|
|
uv.y = (vertex.y / outerRadius + 1) / 2;
|
|
uvs.push(uv.x, uv.y);
|
|
} // increase the radius for next row of vertices
|
|
|
|
|
|
radius += radiusStep;
|
|
} // indices
|
|
|
|
|
|
for (let j = 0; j < phiSegments; j++) {
|
|
const thetaSegmentLevel = j * (thetaSegments + 1);
|
|
|
|
for (let i = 0; i < thetaSegments; i++) {
|
|
const segment = i + thetaSegmentLevel;
|
|
const a = segment;
|
|
const b = segment + thetaSegments + 1;
|
|
const c = segment + thetaSegments + 2;
|
|
const d = segment + 1; // faces
|
|
|
|
indices.push(a, b, d);
|
|
indices.push(b, c, d);
|
|
}
|
|
} // build geometry
|
|
|
|
|
|
this.setIndex(indices);
|
|
this.setAttribute('position', new Float32BufferAttribute(vertices, 3));
|
|
this.setAttribute('normal', new Float32BufferAttribute(normals, 3));
|
|
this.setAttribute('uv', new Float32BufferAttribute(uvs, 2));
|
|
}
|
|
|
|
static fromJSON(data) {
|
|
return new RingGeometry(data.innerRadius, data.outerRadius, data.thetaSegments, data.phiSegments, data.thetaStart, data.thetaLength);
|
|
}
|
|
|
|
}
|
|
|
|
class ShapeGeometry extends BufferGeometry {
|
|
constructor(shapes = new Shape([new Vector2(0, 0.5), new Vector2(-0.5, -0.5), new Vector2(0.5, -0.5)]), curveSegments = 12) {
|
|
super();
|
|
this.type = 'ShapeGeometry';
|
|
this.parameters = {
|
|
shapes: shapes,
|
|
curveSegments: curveSegments
|
|
}; // buffers
|
|
|
|
const indices = [];
|
|
const vertices = [];
|
|
const normals = [];
|
|
const uvs = []; // helper variables
|
|
|
|
let groupStart = 0;
|
|
let groupCount = 0; // allow single and array values for "shapes" parameter
|
|
|
|
if (Array.isArray(shapes) === false) {
|
|
addShape(shapes);
|
|
} else {
|
|
for (let i = 0; i < shapes.length; i++) {
|
|
addShape(shapes[i]);
|
|
this.addGroup(groupStart, groupCount, i); // enables MultiMaterial support
|
|
|
|
groupStart += groupCount;
|
|
groupCount = 0;
|
|
}
|
|
} // build geometry
|
|
|
|
|
|
this.setIndex(indices);
|
|
this.setAttribute('position', new Float32BufferAttribute(vertices, 3));
|
|
this.setAttribute('normal', new Float32BufferAttribute(normals, 3));
|
|
this.setAttribute('uv', new Float32BufferAttribute(uvs, 2)); // helper functions
|
|
|
|
function addShape(shape) {
|
|
const indexOffset = vertices.length / 3;
|
|
const points = shape.extractPoints(curveSegments);
|
|
let shapeVertices = points.shape;
|
|
const shapeHoles = points.holes; // check direction of vertices
|
|
|
|
if (ShapeUtils.isClockWise(shapeVertices) === false) {
|
|
shapeVertices = shapeVertices.reverse();
|
|
}
|
|
|
|
for (let i = 0, l = shapeHoles.length; i < l; i++) {
|
|
const shapeHole = shapeHoles[i];
|
|
|
|
if (ShapeUtils.isClockWise(shapeHole) === true) {
|
|
shapeHoles[i] = shapeHole.reverse();
|
|
}
|
|
}
|
|
|
|
const faces = ShapeUtils.triangulateShape(shapeVertices, shapeHoles); // join vertices of inner and outer paths to a single array
|
|
|
|
for (let i = 0, l = shapeHoles.length; i < l; i++) {
|
|
const shapeHole = shapeHoles[i];
|
|
shapeVertices = shapeVertices.concat(shapeHole);
|
|
} // vertices, normals, uvs
|
|
|
|
|
|
for (let i = 0, l = shapeVertices.length; i < l; i++) {
|
|
const vertex = shapeVertices[i];
|
|
vertices.push(vertex.x, vertex.y, 0);
|
|
normals.push(0, 0, 1);
|
|
uvs.push(vertex.x, vertex.y); // world uvs
|
|
} // incides
|
|
|
|
|
|
for (let i = 0, l = faces.length; i < l; i++) {
|
|
const face = faces[i];
|
|
const a = face[0] + indexOffset;
|
|
const b = face[1] + indexOffset;
|
|
const c = face[2] + indexOffset;
|
|
indices.push(a, b, c);
|
|
groupCount += 3;
|
|
}
|
|
}
|
|
}
|
|
|
|
toJSON() {
|
|
const data = super.toJSON();
|
|
const shapes = this.parameters.shapes;
|
|
return toJSON(shapes, data);
|
|
}
|
|
|
|
static fromJSON(data, shapes) {
|
|
const geometryShapes = [];
|
|
|
|
for (let j = 0, jl = data.shapes.length; j < jl; j++) {
|
|
const shape = shapes[data.shapes[j]];
|
|
geometryShapes.push(shape);
|
|
}
|
|
|
|
return new ShapeGeometry(geometryShapes, data.curveSegments);
|
|
}
|
|
|
|
}
|
|
|
|
function toJSON(shapes, data) {
|
|
data.shapes = [];
|
|
|
|
if (Array.isArray(shapes)) {
|
|
for (let i = 0, l = shapes.length; i < l; i++) {
|
|
const shape = shapes[i];
|
|
data.shapes.push(shape.uuid);
|
|
}
|
|
} else {
|
|
data.shapes.push(shapes.uuid);
|
|
}
|
|
|
|
return data;
|
|
}
|
|
|
|
class SphereGeometry extends BufferGeometry {
|
|
constructor(radius = 1, widthSegments = 32, heightSegments = 16, phiStart = 0, phiLength = Math.PI * 2, thetaStart = 0, thetaLength = Math.PI) {
|
|
super();
|
|
this.type = 'SphereGeometry';
|
|
this.parameters = {
|
|
radius: radius,
|
|
widthSegments: widthSegments,
|
|
heightSegments: heightSegments,
|
|
phiStart: phiStart,
|
|
phiLength: phiLength,
|
|
thetaStart: thetaStart,
|
|
thetaLength: thetaLength
|
|
};
|
|
widthSegments = Math.max(3, Math.floor(widthSegments));
|
|
heightSegments = Math.max(2, Math.floor(heightSegments));
|
|
const thetaEnd = Math.min(thetaStart + thetaLength, Math.PI);
|
|
let index = 0;
|
|
const grid = [];
|
|
const vertex = new Vector3();
|
|
const normal = new Vector3(); // buffers
|
|
|
|
const indices = [];
|
|
const vertices = [];
|
|
const normals = [];
|
|
const uvs = []; // generate vertices, normals and uvs
|
|
|
|
for (let iy = 0; iy <= heightSegments; iy++) {
|
|
const verticesRow = [];
|
|
const v = iy / heightSegments; // special case for the poles
|
|
|
|
let uOffset = 0;
|
|
|
|
if (iy == 0 && thetaStart == 0) {
|
|
uOffset = 0.5 / widthSegments;
|
|
} else if (iy == heightSegments && thetaEnd == Math.PI) {
|
|
uOffset = -0.5 / widthSegments;
|
|
}
|
|
|
|
for (let ix = 0; ix <= widthSegments; ix++) {
|
|
const u = ix / widthSegments; // vertex
|
|
|
|
vertex.x = -radius * Math.cos(phiStart + u * phiLength) * Math.sin(thetaStart + v * thetaLength);
|
|
vertex.y = radius * Math.cos(thetaStart + v * thetaLength);
|
|
vertex.z = radius * Math.sin(phiStart + u * phiLength) * Math.sin(thetaStart + v * thetaLength);
|
|
vertices.push(vertex.x, vertex.y, vertex.z); // normal
|
|
|
|
normal.copy(vertex).normalize();
|
|
normals.push(normal.x, normal.y, normal.z); // uv
|
|
|
|
uvs.push(u + uOffset, 1 - v);
|
|
verticesRow.push(index++);
|
|
}
|
|
|
|
grid.push(verticesRow);
|
|
} // indices
|
|
|
|
|
|
for (let iy = 0; iy < heightSegments; iy++) {
|
|
for (let ix = 0; ix < widthSegments; ix++) {
|
|
const a = grid[iy][ix + 1];
|
|
const b = grid[iy][ix];
|
|
const c = grid[iy + 1][ix];
|
|
const d = grid[iy + 1][ix + 1];
|
|
if (iy !== 0 || thetaStart > 0) indices.push(a, b, d);
|
|
if (iy !== heightSegments - 1 || thetaEnd < Math.PI) indices.push(b, c, d);
|
|
}
|
|
} // build geometry
|
|
|
|
|
|
this.setIndex(indices);
|
|
this.setAttribute('position', new Float32BufferAttribute(vertices, 3));
|
|
this.setAttribute('normal', new Float32BufferAttribute(normals, 3));
|
|
this.setAttribute('uv', new Float32BufferAttribute(uvs, 2));
|
|
}
|
|
|
|
static fromJSON(data) {
|
|
return new SphereGeometry(data.radius, data.widthSegments, data.heightSegments, data.phiStart, data.phiLength, data.thetaStart, data.thetaLength);
|
|
}
|
|
|
|
}
|
|
|
|
class TetrahedronGeometry extends PolyhedronGeometry {
|
|
constructor(radius = 1, detail = 0) {
|
|
const vertices = [1, 1, 1, -1, -1, 1, -1, 1, -1, 1, -1, -1];
|
|
const indices = [2, 1, 0, 0, 3, 2, 1, 3, 0, 2, 3, 1];
|
|
super(vertices, indices, radius, detail);
|
|
this.type = 'TetrahedronGeometry';
|
|
this.parameters = {
|
|
radius: radius,
|
|
detail: detail
|
|
};
|
|
}
|
|
|
|
static fromJSON(data) {
|
|
return new TetrahedronGeometry(data.radius, data.detail);
|
|
}
|
|
|
|
}
|
|
|
|
class TorusGeometry extends BufferGeometry {
|
|
constructor(radius = 1, tube = 0.4, radialSegments = 8, tubularSegments = 6, arc = Math.PI * 2) {
|
|
super();
|
|
this.type = 'TorusGeometry';
|
|
this.parameters = {
|
|
radius: radius,
|
|
tube: tube,
|
|
radialSegments: radialSegments,
|
|
tubularSegments: tubularSegments,
|
|
arc: arc
|
|
};
|
|
radialSegments = Math.floor(radialSegments);
|
|
tubularSegments = Math.floor(tubularSegments); // buffers
|
|
|
|
const indices = [];
|
|
const vertices = [];
|
|
const normals = [];
|
|
const uvs = []; // helper variables
|
|
|
|
const center = new Vector3();
|
|
const vertex = new Vector3();
|
|
const normal = new Vector3(); // generate vertices, normals and uvs
|
|
|
|
for (let j = 0; j <= radialSegments; j++) {
|
|
for (let i = 0; i <= tubularSegments; i++) {
|
|
const u = i / tubularSegments * arc;
|
|
const v = j / radialSegments * Math.PI * 2; // vertex
|
|
|
|
vertex.x = (radius + tube * Math.cos(v)) * Math.cos(u);
|
|
vertex.y = (radius + tube * Math.cos(v)) * Math.sin(u);
|
|
vertex.z = tube * Math.sin(v);
|
|
vertices.push(vertex.x, vertex.y, vertex.z); // normal
|
|
|
|
center.x = radius * Math.cos(u);
|
|
center.y = radius * Math.sin(u);
|
|
normal.subVectors(vertex, center).normalize();
|
|
normals.push(normal.x, normal.y, normal.z); // uv
|
|
|
|
uvs.push(i / tubularSegments);
|
|
uvs.push(j / radialSegments);
|
|
}
|
|
} // generate indices
|
|
|
|
|
|
for (let j = 1; j <= radialSegments; j++) {
|
|
for (let i = 1; i <= tubularSegments; i++) {
|
|
// indices
|
|
const a = (tubularSegments + 1) * j + i - 1;
|
|
const b = (tubularSegments + 1) * (j - 1) + i - 1;
|
|
const c = (tubularSegments + 1) * (j - 1) + i;
|
|
const d = (tubularSegments + 1) * j + i; // faces
|
|
|
|
indices.push(a, b, d);
|
|
indices.push(b, c, d);
|
|
}
|
|
} // build geometry
|
|
|
|
|
|
this.setIndex(indices);
|
|
this.setAttribute('position', new Float32BufferAttribute(vertices, 3));
|
|
this.setAttribute('normal', new Float32BufferAttribute(normals, 3));
|
|
this.setAttribute('uv', new Float32BufferAttribute(uvs, 2));
|
|
}
|
|
|
|
static fromJSON(data) {
|
|
return new TorusGeometry(data.radius, data.tube, data.radialSegments, data.tubularSegments, data.arc);
|
|
}
|
|
|
|
}
|
|
|
|
class TorusKnotGeometry extends BufferGeometry {
|
|
constructor(radius = 1, tube = 0.4, tubularSegments = 64, radialSegments = 8, p = 2, q = 3) {
|
|
super();
|
|
this.type = 'TorusKnotGeometry';
|
|
this.parameters = {
|
|
radius: radius,
|
|
tube: tube,
|
|
tubularSegments: tubularSegments,
|
|
radialSegments: radialSegments,
|
|
p: p,
|
|
q: q
|
|
};
|
|
tubularSegments = Math.floor(tubularSegments);
|
|
radialSegments = Math.floor(radialSegments); // buffers
|
|
|
|
const indices = [];
|
|
const vertices = [];
|
|
const normals = [];
|
|
const uvs = []; // helper variables
|
|
|
|
const vertex = new Vector3();
|
|
const normal = new Vector3();
|
|
const P1 = new Vector3();
|
|
const P2 = new Vector3();
|
|
const B = new Vector3();
|
|
const T = new Vector3();
|
|
const N = new Vector3(); // generate vertices, normals and uvs
|
|
|
|
for (let i = 0; i <= tubularSegments; ++i) {
|
|
// the radian "u" is used to calculate the position on the torus curve of the current tubular segement
|
|
const u = i / tubularSegments * p * Math.PI * 2; // now we calculate two points. P1 is our current position on the curve, P2 is a little farther ahead.
|
|
// these points are used to create a special "coordinate space", which is necessary to calculate the correct vertex positions
|
|
|
|
calculatePositionOnCurve(u, p, q, radius, P1);
|
|
calculatePositionOnCurve(u + 0.01, p, q, radius, P2); // calculate orthonormal basis
|
|
|
|
T.subVectors(P2, P1);
|
|
N.addVectors(P2, P1);
|
|
B.crossVectors(T, N);
|
|
N.crossVectors(B, T); // normalize B, N. T can be ignored, we don't use it
|
|
|
|
B.normalize();
|
|
N.normalize();
|
|
|
|
for (let j = 0; j <= radialSegments; ++j) {
|
|
// now calculate the vertices. they are nothing more than an extrusion of the torus curve.
|
|
// because we extrude a shape in the xy-plane, there is no need to calculate a z-value.
|
|
const v = j / radialSegments * Math.PI * 2;
|
|
const cx = -tube * Math.cos(v);
|
|
const cy = tube * Math.sin(v); // now calculate the final vertex position.
|
|
// first we orient the extrusion with our basis vectos, then we add it to the current position on the curve
|
|
|
|
vertex.x = P1.x + (cx * N.x + cy * B.x);
|
|
vertex.y = P1.y + (cx * N.y + cy * B.y);
|
|
vertex.z = P1.z + (cx * N.z + cy * B.z);
|
|
vertices.push(vertex.x, vertex.y, vertex.z); // normal (P1 is always the center/origin of the extrusion, thus we can use it to calculate the normal)
|
|
|
|
normal.subVectors(vertex, P1).normalize();
|
|
normals.push(normal.x, normal.y, normal.z); // uv
|
|
|
|
uvs.push(i / tubularSegments);
|
|
uvs.push(j / radialSegments);
|
|
}
|
|
} // generate indices
|
|
|
|
|
|
for (let j = 1; j <= tubularSegments; j++) {
|
|
for (let i = 1; i <= radialSegments; i++) {
|
|
// indices
|
|
const a = (radialSegments + 1) * (j - 1) + (i - 1);
|
|
const b = (radialSegments + 1) * j + (i - 1);
|
|
const c = (radialSegments + 1) * j + i;
|
|
const d = (radialSegments + 1) * (j - 1) + i; // faces
|
|
|
|
indices.push(a, b, d);
|
|
indices.push(b, c, d);
|
|
}
|
|
} // build geometry
|
|
|
|
|
|
this.setIndex(indices);
|
|
this.setAttribute('position', new Float32BufferAttribute(vertices, 3));
|
|
this.setAttribute('normal', new Float32BufferAttribute(normals, 3));
|
|
this.setAttribute('uv', new Float32BufferAttribute(uvs, 2)); // this function calculates the current position on the torus curve
|
|
|
|
function calculatePositionOnCurve(u, p, q, radius, position) {
|
|
const cu = Math.cos(u);
|
|
const su = Math.sin(u);
|
|
const quOverP = q / p * u;
|
|
const cs = Math.cos(quOverP);
|
|
position.x = radius * (2 + cs) * 0.5 * cu;
|
|
position.y = radius * (2 + cs) * su * 0.5;
|
|
position.z = radius * Math.sin(quOverP) * 0.5;
|
|
}
|
|
}
|
|
|
|
static fromJSON(data) {
|
|
return new TorusKnotGeometry(data.radius, data.tube, data.tubularSegments, data.radialSegments, data.p, data.q);
|
|
}
|
|
|
|
}
|
|
|
|
class TubeGeometry extends BufferGeometry {
|
|
constructor(path = new QuadraticBezierCurve3(new Vector3(-1, -1, 0), new Vector3(-1, 1, 0), new Vector3(1, 1, 0)), tubularSegments = 64, radius = 1, radialSegments = 8, closed = false) {
|
|
super();
|
|
this.type = 'TubeGeometry';
|
|
this.parameters = {
|
|
path: path,
|
|
tubularSegments: tubularSegments,
|
|
radius: radius,
|
|
radialSegments: radialSegments,
|
|
closed: closed
|
|
};
|
|
const frames = path.computeFrenetFrames(tubularSegments, closed); // expose internals
|
|
|
|
this.tangents = frames.tangents;
|
|
this.normals = frames.normals;
|
|
this.binormals = frames.binormals; // helper variables
|
|
|
|
const vertex = new Vector3();
|
|
const normal = new Vector3();
|
|
const uv = new Vector2();
|
|
let P = new Vector3(); // buffer
|
|
|
|
const vertices = [];
|
|
const normals = [];
|
|
const uvs = [];
|
|
const indices = []; // create buffer data
|
|
|
|
generateBufferData(); // build geometry
|
|
|
|
this.setIndex(indices);
|
|
this.setAttribute('position', new Float32BufferAttribute(vertices, 3));
|
|
this.setAttribute('normal', new Float32BufferAttribute(normals, 3));
|
|
this.setAttribute('uv', new Float32BufferAttribute(uvs, 2)); // functions
|
|
|
|
function generateBufferData() {
|
|
for (let i = 0; i < tubularSegments; i++) {
|
|
generateSegment(i);
|
|
} // if the geometry is not closed, generate the last row of vertices and normals
|
|
// at the regular position on the given path
|
|
//
|
|
// if the geometry is closed, duplicate the first row of vertices and normals (uvs will differ)
|
|
|
|
|
|
generateSegment(closed === false ? tubularSegments : 0); // uvs are generated in a separate function.
|
|
// this makes it easy compute correct values for closed geometries
|
|
|
|
generateUVs(); // finally create faces
|
|
|
|
generateIndices();
|
|
}
|
|
|
|
function generateSegment(i) {
|
|
// we use getPointAt to sample evenly distributed points from the given path
|
|
P = path.getPointAt(i / tubularSegments, P); // retrieve corresponding normal and binormal
|
|
|
|
const N = frames.normals[i];
|
|
const B = frames.binormals[i]; // generate normals and vertices for the current segment
|
|
|
|
for (let j = 0; j <= radialSegments; j++) {
|
|
const v = j / radialSegments * Math.PI * 2;
|
|
const sin = Math.sin(v);
|
|
const cos = -Math.cos(v); // normal
|
|
|
|
normal.x = cos * N.x + sin * B.x;
|
|
normal.y = cos * N.y + sin * B.y;
|
|
normal.z = cos * N.z + sin * B.z;
|
|
normal.normalize();
|
|
normals.push(normal.x, normal.y, normal.z); // vertex
|
|
|
|
vertex.x = P.x + radius * normal.x;
|
|
vertex.y = P.y + radius * normal.y;
|
|
vertex.z = P.z + radius * normal.z;
|
|
vertices.push(vertex.x, vertex.y, vertex.z);
|
|
}
|
|
}
|
|
|
|
function generateIndices() {
|
|
for (let j = 1; j <= tubularSegments; j++) {
|
|
for (let i = 1; i <= radialSegments; i++) {
|
|
const a = (radialSegments + 1) * (j - 1) + (i - 1);
|
|
const b = (radialSegments + 1) * j + (i - 1);
|
|
const c = (radialSegments + 1) * j + i;
|
|
const d = (radialSegments + 1) * (j - 1) + i; // faces
|
|
|
|
indices.push(a, b, d);
|
|
indices.push(b, c, d);
|
|
}
|
|
}
|
|
}
|
|
|
|
function generateUVs() {
|
|
for (let i = 0; i <= tubularSegments; i++) {
|
|
for (let j = 0; j <= radialSegments; j++) {
|
|
uv.x = i / tubularSegments;
|
|
uv.y = j / radialSegments;
|
|
uvs.push(uv.x, uv.y);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
toJSON() {
|
|
const data = super.toJSON();
|
|
data.path = this.parameters.path.toJSON();
|
|
return data;
|
|
}
|
|
|
|
static fromJSON(data) {
|
|
// This only works for built-in curves (e.g. CatmullRomCurve3).
|
|
// User defined curves or instances of CurvePath will not be deserialized.
|
|
return new TubeGeometry(new Curves[data.path.type]().fromJSON(data.path), data.tubularSegments, data.radius, data.radialSegments, data.closed);
|
|
}
|
|
|
|
}
|
|
|
|
class WireframeGeometry extends BufferGeometry {
|
|
constructor(geometry = null) {
|
|
super();
|
|
this.type = 'WireframeGeometry';
|
|
this.parameters = {
|
|
geometry: geometry
|
|
};
|
|
|
|
if (geometry !== null) {
|
|
// buffer
|
|
const vertices = [];
|
|
const edges = new Set(); // helper variables
|
|
|
|
const start = new Vector3();
|
|
const end = new Vector3();
|
|
|
|
if (geometry.index !== null) {
|
|
// indexed BufferGeometry
|
|
const position = geometry.attributes.position;
|
|
const indices = geometry.index;
|
|
let groups = geometry.groups;
|
|
|
|
if (groups.length === 0) {
|
|
groups = [{
|
|
start: 0,
|
|
count: indices.count,
|
|
materialIndex: 0
|
|
}];
|
|
} // create a data structure that contains all eges without duplicates
|
|
|
|
|
|
for (let o = 0, ol = groups.length; o < ol; ++o) {
|
|
const group = groups[o];
|
|
const groupStart = group.start;
|
|
const groupCount = group.count;
|
|
|
|
for (let i = groupStart, l = groupStart + groupCount; i < l; i += 3) {
|
|
for (let j = 0; j < 3; j++) {
|
|
const index1 = indices.getX(i + j);
|
|
const index2 = indices.getX(i + (j + 1) % 3);
|
|
start.fromBufferAttribute(position, index1);
|
|
end.fromBufferAttribute(position, index2);
|
|
|
|
if (isUniqueEdge(start, end, edges) === true) {
|
|
vertices.push(start.x, start.y, start.z);
|
|
vertices.push(end.x, end.y, end.z);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
// non-indexed BufferGeometry
|
|
const position = geometry.attributes.position;
|
|
|
|
for (let i = 0, l = position.count / 3; i < l; i++) {
|
|
for (let j = 0; j < 3; j++) {
|
|
// three edges per triangle, an edge is represented as (index1, index2)
|
|
// e.g. the first triangle has the following edges: (0,1),(1,2),(2,0)
|
|
const index1 = 3 * i + j;
|
|
const index2 = 3 * i + (j + 1) % 3;
|
|
start.fromBufferAttribute(position, index1);
|
|
end.fromBufferAttribute(position, index2);
|
|
|
|
if (isUniqueEdge(start, end, edges) === true) {
|
|
vertices.push(start.x, start.y, start.z);
|
|
vertices.push(end.x, end.y, end.z);
|
|
}
|
|
}
|
|
}
|
|
} // build geometry
|
|
|
|
|
|
this.setAttribute('position', new Float32BufferAttribute(vertices, 3));
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
function isUniqueEdge(start, end, edges) {
|
|
const hash1 = `${start.x},${start.y},${start.z}-${end.x},${end.y},${end.z}`;
|
|
const hash2 = `${end.x},${end.y},${end.z}-${start.x},${start.y},${start.z}`; // coincident edge
|
|
|
|
if (edges.has(hash1) === true || edges.has(hash2) === true) {
|
|
return false;
|
|
} else {
|
|
edges.add(hash1, hash2);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
var Geometries = /*#__PURE__*/Object.freeze({
|
|
__proto__: null,
|
|
BoxGeometry: BoxGeometry,
|
|
BoxBufferGeometry: BoxGeometry,
|
|
CircleGeometry: CircleGeometry,
|
|
CircleBufferGeometry: CircleGeometry,
|
|
ConeGeometry: ConeGeometry,
|
|
ConeBufferGeometry: ConeGeometry,
|
|
CylinderGeometry: CylinderGeometry,
|
|
CylinderBufferGeometry: CylinderGeometry,
|
|
DodecahedronGeometry: DodecahedronGeometry,
|
|
DodecahedronBufferGeometry: DodecahedronGeometry,
|
|
EdgesGeometry: EdgesGeometry,
|
|
ExtrudeGeometry: ExtrudeGeometry,
|
|
ExtrudeBufferGeometry: ExtrudeGeometry,
|
|
IcosahedronGeometry: IcosahedronGeometry,
|
|
IcosahedronBufferGeometry: IcosahedronGeometry,
|
|
LatheGeometry: LatheGeometry,
|
|
LatheBufferGeometry: LatheGeometry,
|
|
OctahedronGeometry: OctahedronGeometry,
|
|
OctahedronBufferGeometry: OctahedronGeometry,
|
|
PlaneGeometry: PlaneGeometry,
|
|
PlaneBufferGeometry: PlaneGeometry,
|
|
PolyhedronGeometry: PolyhedronGeometry,
|
|
PolyhedronBufferGeometry: PolyhedronGeometry,
|
|
RingGeometry: RingGeometry,
|
|
RingBufferGeometry: RingGeometry,
|
|
ShapeGeometry: ShapeGeometry,
|
|
ShapeBufferGeometry: ShapeGeometry,
|
|
SphereGeometry: SphereGeometry,
|
|
SphereBufferGeometry: SphereGeometry,
|
|
TetrahedronGeometry: TetrahedronGeometry,
|
|
TetrahedronBufferGeometry: TetrahedronGeometry,
|
|
TorusGeometry: TorusGeometry,
|
|
TorusBufferGeometry: TorusGeometry,
|
|
TorusKnotGeometry: TorusKnotGeometry,
|
|
TorusKnotBufferGeometry: TorusKnotGeometry,
|
|
TubeGeometry: TubeGeometry,
|
|
TubeBufferGeometry: TubeGeometry,
|
|
WireframeGeometry: WireframeGeometry
|
|
});
|
|
|
|
/**
|
|
* parameters = {
|
|
* color: <THREE.Color>
|
|
* }
|
|
*/
|
|
|
|
class ShadowMaterial extends Material {
|
|
constructor(parameters) {
|
|
super();
|
|
this.type = 'ShadowMaterial';
|
|
this.color = new Color(0x000000);
|
|
this.transparent = true;
|
|
this.setValues(parameters);
|
|
}
|
|
|
|
copy(source) {
|
|
super.copy(source);
|
|
this.color.copy(source.color);
|
|
return this;
|
|
}
|
|
|
|
}
|
|
|
|
ShadowMaterial.prototype.isShadowMaterial = true;
|
|
|
|
/**
|
|
* parameters = {
|
|
* color: <hex>,
|
|
* roughness: <float>,
|
|
* metalness: <float>,
|
|
* opacity: <float>,
|
|
*
|
|
* map: new THREE.Texture( <Image> ),
|
|
*
|
|
* lightMap: new THREE.Texture( <Image> ),
|
|
* lightMapIntensity: <float>
|
|
*
|
|
* aoMap: new THREE.Texture( <Image> ),
|
|
* aoMapIntensity: <float>
|
|
*
|
|
* emissive: <hex>,
|
|
* emissiveIntensity: <float>
|
|
* emissiveMap: new THREE.Texture( <Image> ),
|
|
*
|
|
* bumpMap: new THREE.Texture( <Image> ),
|
|
* bumpScale: <float>,
|
|
*
|
|
* normalMap: new THREE.Texture( <Image> ),
|
|
* normalMapType: THREE.TangentSpaceNormalMap,
|
|
* normalScale: <Vector2>,
|
|
*
|
|
* displacementMap: new THREE.Texture( <Image> ),
|
|
* displacementScale: <float>,
|
|
* displacementBias: <float>,
|
|
*
|
|
* roughnessMap: new THREE.Texture( <Image> ),
|
|
*
|
|
* metalnessMap: new THREE.Texture( <Image> ),
|
|
*
|
|
* alphaMap: new THREE.Texture( <Image> ),
|
|
*
|
|
* envMap: new THREE.CubeTexture( [posx, negx, posy, negy, posz, negz] ),
|
|
* envMapIntensity: <float>
|
|
*
|
|
* refractionRatio: <float>,
|
|
*
|
|
* wireframe: <boolean>,
|
|
* wireframeLinewidth: <float>,
|
|
*
|
|
* flatShading: <bool>
|
|
* }
|
|
*/
|
|
|
|
class MeshStandardMaterial extends Material {
|
|
constructor(parameters) {
|
|
super();
|
|
this.defines = {
|
|
'STANDARD': ''
|
|
};
|
|
this.type = 'MeshStandardMaterial';
|
|
this.color = new Color(0xffffff); // diffuse
|
|
|
|
this.roughness = 1.0;
|
|
this.metalness = 0.0;
|
|
this.map = null;
|
|
this.lightMap = null;
|
|
this.lightMapIntensity = 1.0;
|
|
this.aoMap = null;
|
|
this.aoMapIntensity = 1.0;
|
|
this.emissive = new Color(0x000000);
|
|
this.emissiveIntensity = 1.0;
|
|
this.emissiveMap = null;
|
|
this.bumpMap = null;
|
|
this.bumpScale = 1;
|
|
this.normalMap = null;
|
|
this.normalMapType = TangentSpaceNormalMap;
|
|
this.normalScale = new Vector2(1, 1);
|
|
this.displacementMap = null;
|
|
this.displacementScale = 1;
|
|
this.displacementBias = 0;
|
|
this.roughnessMap = null;
|
|
this.metalnessMap = null;
|
|
this.alphaMap = null;
|
|
this.envMap = null;
|
|
this.envMapIntensity = 1.0;
|
|
this.refractionRatio = 0.98;
|
|
this.wireframe = false;
|
|
this.wireframeLinewidth = 1;
|
|
this.wireframeLinecap = 'round';
|
|
this.wireframeLinejoin = 'round';
|
|
this.flatShading = false;
|
|
this.setValues(parameters);
|
|
}
|
|
|
|
copy(source) {
|
|
super.copy(source);
|
|
this.defines = {
|
|
'STANDARD': ''
|
|
};
|
|
this.color.copy(source.color);
|
|
this.roughness = source.roughness;
|
|
this.metalness = source.metalness;
|
|
this.map = source.map;
|
|
this.lightMap = source.lightMap;
|
|
this.lightMapIntensity = source.lightMapIntensity;
|
|
this.aoMap = source.aoMap;
|
|
this.aoMapIntensity = source.aoMapIntensity;
|
|
this.emissive.copy(source.emissive);
|
|
this.emissiveMap = source.emissiveMap;
|
|
this.emissiveIntensity = source.emissiveIntensity;
|
|
this.bumpMap = source.bumpMap;
|
|
this.bumpScale = source.bumpScale;
|
|
this.normalMap = source.normalMap;
|
|
this.normalMapType = source.normalMapType;
|
|
this.normalScale.copy(source.normalScale);
|
|
this.displacementMap = source.displacementMap;
|
|
this.displacementScale = source.displacementScale;
|
|
this.displacementBias = source.displacementBias;
|
|
this.roughnessMap = source.roughnessMap;
|
|
this.metalnessMap = source.metalnessMap;
|
|
this.alphaMap = source.alphaMap;
|
|
this.envMap = source.envMap;
|
|
this.envMapIntensity = source.envMapIntensity;
|
|
this.refractionRatio = source.refractionRatio;
|
|
this.wireframe = source.wireframe;
|
|
this.wireframeLinewidth = source.wireframeLinewidth;
|
|
this.wireframeLinecap = source.wireframeLinecap;
|
|
this.wireframeLinejoin = source.wireframeLinejoin;
|
|
this.flatShading = source.flatShading;
|
|
return this;
|
|
}
|
|
|
|
}
|
|
|
|
MeshStandardMaterial.prototype.isMeshStandardMaterial = true;
|
|
|
|
/**
|
|
* parameters = {
|
|
* clearcoat: <float>,
|
|
* clearcoatMap: new THREE.Texture( <Image> ),
|
|
* clearcoatRoughness: <float>,
|
|
* clearcoatRoughnessMap: new THREE.Texture( <Image> ),
|
|
* clearcoatNormalScale: <Vector2>,
|
|
* clearcoatNormalMap: new THREE.Texture( <Image> ),
|
|
*
|
|
* ior: <float>,
|
|
* reflectivity: <float>,
|
|
*
|
|
* sheen: <float>,
|
|
* sheenTint: <Color>,
|
|
* sheenRoughness: <float>,
|
|
*
|
|
* transmission: <float>,
|
|
* transmissionMap: new THREE.Texture( <Image> ),
|
|
*
|
|
* thickness: <float>,
|
|
* thicknessMap: new THREE.Texture( <Image> ),
|
|
* attenuationDistance: <float>,
|
|
* attenuationTint: <Color>,
|
|
*
|
|
* specularIntensity: <float>,
|
|
* specularIntensityhMap: new THREE.Texture( <Image> ),
|
|
* specularTint: <Color>,
|
|
* specularTintMap: new THREE.Texture( <Image> )
|
|
* }
|
|
*/
|
|
|
|
class MeshPhysicalMaterial extends MeshStandardMaterial {
|
|
constructor(parameters) {
|
|
super();
|
|
this.defines = {
|
|
'STANDARD': '',
|
|
'PHYSICAL': ''
|
|
};
|
|
this.type = 'MeshPhysicalMaterial';
|
|
this.clearcoatMap = null;
|
|
this.clearcoatRoughness = 0.0;
|
|
this.clearcoatRoughnessMap = null;
|
|
this.clearcoatNormalScale = new Vector2(1, 1);
|
|
this.clearcoatNormalMap = null;
|
|
this.ior = 1.5;
|
|
Object.defineProperty(this, 'reflectivity', {
|
|
get: function () {
|
|
return clamp(2.5 * (this.ior - 1) / (this.ior + 1), 0, 1);
|
|
},
|
|
set: function (reflectivity) {
|
|
this.ior = (1 + 0.4 * reflectivity) / (1 - 0.4 * reflectivity);
|
|
}
|
|
});
|
|
this.sheenTint = new Color(0x000000);
|
|
this.sheenRoughness = 1.0;
|
|
this.transmissionMap = null;
|
|
this.thickness = 0.01;
|
|
this.thicknessMap = null;
|
|
this.attenuationDistance = 0.0;
|
|
this.attenuationTint = new Color(1, 1, 1);
|
|
this.specularIntensity = 1.0;
|
|
this.specularIntensityMap = null;
|
|
this.specularTint = new Color(1, 1, 1);
|
|
this.specularTintMap = null;
|
|
this._sheen = 0.0;
|
|
this._clearcoat = 0;
|
|
this._transmission = 0;
|
|
this.setValues(parameters);
|
|
}
|
|
|
|
get sheen() {
|
|
return this._sheen;
|
|
}
|
|
|
|
set sheen(value) {
|
|
if (this._sheen > 0 !== value > 0) {
|
|
this.version++;
|
|
}
|
|
|
|
this._sheen = value;
|
|
}
|
|
|
|
get clearcoat() {
|
|
return this._clearcoat;
|
|
}
|
|
|
|
set clearcoat(value) {
|
|
if (this._clearcoat > 0 !== value > 0) {
|
|
this.version++;
|
|
}
|
|
|
|
this._clearcoat = value;
|
|
}
|
|
|
|
get transmission() {
|
|
return this._transmission;
|
|
}
|
|
|
|
set transmission(value) {
|
|
if (this._transmission > 0 !== value > 0) {
|
|
this.version++;
|
|
}
|
|
|
|
this._transmission = value;
|
|
}
|
|
|
|
copy(source) {
|
|
super.copy(source);
|
|
this.defines = {
|
|
'STANDARD': '',
|
|
'PHYSICAL': ''
|
|
};
|
|
this.clearcoat = source.clearcoat;
|
|
this.clearcoatMap = source.clearcoatMap;
|
|
this.clearcoatRoughness = source.clearcoatRoughness;
|
|
this.clearcoatRoughnessMap = source.clearcoatRoughnessMap;
|
|
this.clearcoatNormalMap = source.clearcoatNormalMap;
|
|
this.clearcoatNormalScale.copy(source.clearcoatNormalScale);
|
|
this.ior = source.ior;
|
|
this.sheen = source.sheen;
|
|
this.sheenTint.copy(source.sheenTint);
|
|
this.sheenRoughness = source.sheenRoughness;
|
|
this.transmission = source.transmission;
|
|
this.transmissionMap = source.transmissionMap;
|
|
this.thickness = source.thickness;
|
|
this.thicknessMap = source.thicknessMap;
|
|
this.attenuationDistance = source.attenuationDistance;
|
|
this.attenuationTint.copy(source.attenuationTint);
|
|
this.specularIntensity = source.specularIntensity;
|
|
this.specularIntensityMap = source.specularIntensityMap;
|
|
this.specularTint.copy(source.specularTint);
|
|
this.specularTintMap = source.specularTintMap;
|
|
return this;
|
|
}
|
|
|
|
}
|
|
|
|
MeshPhysicalMaterial.prototype.isMeshPhysicalMaterial = true;
|
|
|
|
/**
|
|
* parameters = {
|
|
* color: <hex>,
|
|
* specular: <hex>,
|
|
* shininess: <float>,
|
|
* opacity: <float>,
|
|
*
|
|
* map: new THREE.Texture( <Image> ),
|
|
*
|
|
* lightMap: new THREE.Texture( <Image> ),
|
|
* lightMapIntensity: <float>
|
|
*
|
|
* aoMap: new THREE.Texture( <Image> ),
|
|
* aoMapIntensity: <float>
|
|
*
|
|
* emissive: <hex>,
|
|
* emissiveIntensity: <float>
|
|
* emissiveMap: new THREE.Texture( <Image> ),
|
|
*
|
|
* bumpMap: new THREE.Texture( <Image> ),
|
|
* bumpScale: <float>,
|
|
*
|
|
* normalMap: new THREE.Texture( <Image> ),
|
|
* normalMapType: THREE.TangentSpaceNormalMap,
|
|
* normalScale: <Vector2>,
|
|
*
|
|
* displacementMap: new THREE.Texture( <Image> ),
|
|
* displacementScale: <float>,
|
|
* displacementBias: <float>,
|
|
*
|
|
* specularMap: new THREE.Texture( <Image> ),
|
|
*
|
|
* alphaMap: new THREE.Texture( <Image> ),
|
|
*
|
|
* envMap: new THREE.CubeTexture( [posx, negx, posy, negy, posz, negz] ),
|
|
* combine: THREE.MultiplyOperation,
|
|
* reflectivity: <float>,
|
|
* refractionRatio: <float>,
|
|
*
|
|
* wireframe: <boolean>,
|
|
* wireframeLinewidth: <float>,
|
|
*
|
|
* flatShading: <bool>
|
|
* }
|
|
*/
|
|
|
|
class MeshPhongMaterial extends Material {
|
|
constructor(parameters) {
|
|
super();
|
|
this.type = 'MeshPhongMaterial';
|
|
this.color = new Color(0xffffff); // diffuse
|
|
|
|
this.specular = new Color(0x111111);
|
|
this.shininess = 30;
|
|
this.map = null;
|
|
this.lightMap = null;
|
|
this.lightMapIntensity = 1.0;
|
|
this.aoMap = null;
|
|
this.aoMapIntensity = 1.0;
|
|
this.emissive = new Color(0x000000);
|
|
this.emissiveIntensity = 1.0;
|
|
this.emissiveMap = null;
|
|
this.bumpMap = null;
|
|
this.bumpScale = 1;
|
|
this.normalMap = null;
|
|
this.normalMapType = TangentSpaceNormalMap;
|
|
this.normalScale = new Vector2(1, 1);
|
|
this.displacementMap = null;
|
|
this.displacementScale = 1;
|
|
this.displacementBias = 0;
|
|
this.specularMap = null;
|
|
this.alphaMap = null;
|
|
this.envMap = null;
|
|
this.combine = MultiplyOperation;
|
|
this.reflectivity = 1;
|
|
this.refractionRatio = 0.98;
|
|
this.wireframe = false;
|
|
this.wireframeLinewidth = 1;
|
|
this.wireframeLinecap = 'round';
|
|
this.wireframeLinejoin = 'round';
|
|
this.flatShading = false;
|
|
this.setValues(parameters);
|
|
}
|
|
|
|
copy(source) {
|
|
super.copy(source);
|
|
this.color.copy(source.color);
|
|
this.specular.copy(source.specular);
|
|
this.shininess = source.shininess;
|
|
this.map = source.map;
|
|
this.lightMap = source.lightMap;
|
|
this.lightMapIntensity = source.lightMapIntensity;
|
|
this.aoMap = source.aoMap;
|
|
this.aoMapIntensity = source.aoMapIntensity;
|
|
this.emissive.copy(source.emissive);
|
|
this.emissiveMap = source.emissiveMap;
|
|
this.emissiveIntensity = source.emissiveIntensity;
|
|
this.bumpMap = source.bumpMap;
|
|
this.bumpScale = source.bumpScale;
|
|
this.normalMap = source.normalMap;
|
|
this.normalMapType = source.normalMapType;
|
|
this.normalScale.copy(source.normalScale);
|
|
this.displacementMap = source.displacementMap;
|
|
this.displacementScale = source.displacementScale;
|
|
this.displacementBias = source.displacementBias;
|
|
this.specularMap = source.specularMap;
|
|
this.alphaMap = source.alphaMap;
|
|
this.envMap = source.envMap;
|
|
this.combine = source.combine;
|
|
this.reflectivity = source.reflectivity;
|
|
this.refractionRatio = source.refractionRatio;
|
|
this.wireframe = source.wireframe;
|
|
this.wireframeLinewidth = source.wireframeLinewidth;
|
|
this.wireframeLinecap = source.wireframeLinecap;
|
|
this.wireframeLinejoin = source.wireframeLinejoin;
|
|
this.flatShading = source.flatShading;
|
|
return this;
|
|
}
|
|
|
|
}
|
|
|
|
MeshPhongMaterial.prototype.isMeshPhongMaterial = true;
|
|
|
|
/**
|
|
* parameters = {
|
|
* color: <hex>,
|
|
*
|
|
* map: new THREE.Texture( <Image> ),
|
|
* gradientMap: new THREE.Texture( <Image> ),
|
|
*
|
|
* lightMap: new THREE.Texture( <Image> ),
|
|
* lightMapIntensity: <float>
|
|
*
|
|
* aoMap: new THREE.Texture( <Image> ),
|
|
* aoMapIntensity: <float>
|
|
*
|
|
* emissive: <hex>,
|
|
* emissiveIntensity: <float>
|
|
* emissiveMap: new THREE.Texture( <Image> ),
|
|
*
|
|
* bumpMap: new THREE.Texture( <Image> ),
|
|
* bumpScale: <float>,
|
|
*
|
|
* normalMap: new THREE.Texture( <Image> ),
|
|
* normalMapType: THREE.TangentSpaceNormalMap,
|
|
* normalScale: <Vector2>,
|
|
*
|
|
* displacementMap: new THREE.Texture( <Image> ),
|
|
* displacementScale: <float>,
|
|
* displacementBias: <float>,
|
|
*
|
|
* alphaMap: new THREE.Texture( <Image> ),
|
|
*
|
|
* wireframe: <boolean>,
|
|
* wireframeLinewidth: <float>,
|
|
*
|
|
* }
|
|
*/
|
|
|
|
class MeshToonMaterial extends Material {
|
|
constructor(parameters) {
|
|
super();
|
|
this.defines = {
|
|
'TOON': ''
|
|
};
|
|
this.type = 'MeshToonMaterial';
|
|
this.color = new Color(0xffffff);
|
|
this.map = null;
|
|
this.gradientMap = null;
|
|
this.lightMap = null;
|
|
this.lightMapIntensity = 1.0;
|
|
this.aoMap = null;
|
|
this.aoMapIntensity = 1.0;
|
|
this.emissive = new Color(0x000000);
|
|
this.emissiveIntensity = 1.0;
|
|
this.emissiveMap = null;
|
|
this.bumpMap = null;
|
|
this.bumpScale = 1;
|
|
this.normalMap = null;
|
|
this.normalMapType = TangentSpaceNormalMap;
|
|
this.normalScale = new Vector2(1, 1);
|
|
this.displacementMap = null;
|
|
this.displacementScale = 1;
|
|
this.displacementBias = 0;
|
|
this.alphaMap = null;
|
|
this.wireframe = false;
|
|
this.wireframeLinewidth = 1;
|
|
this.wireframeLinecap = 'round';
|
|
this.wireframeLinejoin = 'round';
|
|
this.setValues(parameters);
|
|
}
|
|
|
|
copy(source) {
|
|
super.copy(source);
|
|
this.color.copy(source.color);
|
|
this.map = source.map;
|
|
this.gradientMap = source.gradientMap;
|
|
this.lightMap = source.lightMap;
|
|
this.lightMapIntensity = source.lightMapIntensity;
|
|
this.aoMap = source.aoMap;
|
|
this.aoMapIntensity = source.aoMapIntensity;
|
|
this.emissive.copy(source.emissive);
|
|
this.emissiveMap = source.emissiveMap;
|
|
this.emissiveIntensity = source.emissiveIntensity;
|
|
this.bumpMap = source.bumpMap;
|
|
this.bumpScale = source.bumpScale;
|
|
this.normalMap = source.normalMap;
|
|
this.normalMapType = source.normalMapType;
|
|
this.normalScale.copy(source.normalScale);
|
|
this.displacementMap = source.displacementMap;
|
|
this.displacementScale = source.displacementScale;
|
|
this.displacementBias = source.displacementBias;
|
|
this.alphaMap = source.alphaMap;
|
|
this.wireframe = source.wireframe;
|
|
this.wireframeLinewidth = source.wireframeLinewidth;
|
|
this.wireframeLinecap = source.wireframeLinecap;
|
|
this.wireframeLinejoin = source.wireframeLinejoin;
|
|
return this;
|
|
}
|
|
|
|
}
|
|
|
|
MeshToonMaterial.prototype.isMeshToonMaterial = true;
|
|
|
|
/**
|
|
* parameters = {
|
|
* opacity: <float>,
|
|
*
|
|
* bumpMap: new THREE.Texture( <Image> ),
|
|
* bumpScale: <float>,
|
|
*
|
|
* normalMap: new THREE.Texture( <Image> ),
|
|
* normalMapType: THREE.TangentSpaceNormalMap,
|
|
* normalScale: <Vector2>,
|
|
*
|
|
* displacementMap: new THREE.Texture( <Image> ),
|
|
* displacementScale: <float>,
|
|
* displacementBias: <float>,
|
|
*
|
|
* wireframe: <boolean>,
|
|
* wireframeLinewidth: <float>
|
|
*
|
|
* flatShading: <bool>
|
|
* }
|
|
*/
|
|
|
|
class MeshNormalMaterial extends Material {
|
|
constructor(parameters) {
|
|
super();
|
|
this.type = 'MeshNormalMaterial';
|
|
this.bumpMap = null;
|
|
this.bumpScale = 1;
|
|
this.normalMap = null;
|
|
this.normalMapType = TangentSpaceNormalMap;
|
|
this.normalScale = new Vector2(1, 1);
|
|
this.displacementMap = null;
|
|
this.displacementScale = 1;
|
|
this.displacementBias = 0;
|
|
this.wireframe = false;
|
|
this.wireframeLinewidth = 1;
|
|
this.fog = false;
|
|
this.flatShading = false;
|
|
this.setValues(parameters);
|
|
}
|
|
|
|
copy(source) {
|
|
super.copy(source);
|
|
this.bumpMap = source.bumpMap;
|
|
this.bumpScale = source.bumpScale;
|
|
this.normalMap = source.normalMap;
|
|
this.normalMapType = source.normalMapType;
|
|
this.normalScale.copy(source.normalScale);
|
|
this.displacementMap = source.displacementMap;
|
|
this.displacementScale = source.displacementScale;
|
|
this.displacementBias = source.displacementBias;
|
|
this.wireframe = source.wireframe;
|
|
this.wireframeLinewidth = source.wireframeLinewidth;
|
|
this.flatShading = source.flatShading;
|
|
return this;
|
|
}
|
|
|
|
}
|
|
|
|
MeshNormalMaterial.prototype.isMeshNormalMaterial = true;
|
|
|
|
/**
|
|
* parameters = {
|
|
* color: <hex>,
|
|
* opacity: <float>,
|
|
*
|
|
* map: new THREE.Texture( <Image> ),
|
|
*
|
|
* lightMap: new THREE.Texture( <Image> ),
|
|
* lightMapIntensity: <float>
|
|
*
|
|
* aoMap: new THREE.Texture( <Image> ),
|
|
* aoMapIntensity: <float>
|
|
*
|
|
* emissive: <hex>,
|
|
* emissiveIntensity: <float>
|
|
* emissiveMap: new THREE.Texture( <Image> ),
|
|
*
|
|
* specularMap: new THREE.Texture( <Image> ),
|
|
*
|
|
* alphaMap: new THREE.Texture( <Image> ),
|
|
*
|
|
* envMap: new THREE.CubeTexture( [posx, negx, posy, negy, posz, negz] ),
|
|
* combine: THREE.Multiply,
|
|
* reflectivity: <float>,
|
|
* refractionRatio: <float>,
|
|
*
|
|
* wireframe: <boolean>,
|
|
* wireframeLinewidth: <float>,
|
|
*
|
|
* }
|
|
*/
|
|
|
|
class MeshLambertMaterial extends Material {
|
|
constructor(parameters) {
|
|
super();
|
|
this.type = 'MeshLambertMaterial';
|
|
this.color = new Color(0xffffff); // diffuse
|
|
|
|
this.map = null;
|
|
this.lightMap = null;
|
|
this.lightMapIntensity = 1.0;
|
|
this.aoMap = null;
|
|
this.aoMapIntensity = 1.0;
|
|
this.emissive = new Color(0x000000);
|
|
this.emissiveIntensity = 1.0;
|
|
this.emissiveMap = null;
|
|
this.specularMap = null;
|
|
this.alphaMap = null;
|
|
this.envMap = null;
|
|
this.combine = MultiplyOperation;
|
|
this.reflectivity = 1;
|
|
this.refractionRatio = 0.98;
|
|
this.wireframe = false;
|
|
this.wireframeLinewidth = 1;
|
|
this.wireframeLinecap = 'round';
|
|
this.wireframeLinejoin = 'round';
|
|
this.setValues(parameters);
|
|
}
|
|
|
|
copy(source) {
|
|
super.copy(source);
|
|
this.color.copy(source.color);
|
|
this.map = source.map;
|
|
this.lightMap = source.lightMap;
|
|
this.lightMapIntensity = source.lightMapIntensity;
|
|
this.aoMap = source.aoMap;
|
|
this.aoMapIntensity = source.aoMapIntensity;
|
|
this.emissive.copy(source.emissive);
|
|
this.emissiveMap = source.emissiveMap;
|
|
this.emissiveIntensity = source.emissiveIntensity;
|
|
this.specularMap = source.specularMap;
|
|
this.alphaMap = source.alphaMap;
|
|
this.envMap = source.envMap;
|
|
this.combine = source.combine;
|
|
this.reflectivity = source.reflectivity;
|
|
this.refractionRatio = source.refractionRatio;
|
|
this.wireframe = source.wireframe;
|
|
this.wireframeLinewidth = source.wireframeLinewidth;
|
|
this.wireframeLinecap = source.wireframeLinecap;
|
|
this.wireframeLinejoin = source.wireframeLinejoin;
|
|
return this;
|
|
}
|
|
|
|
}
|
|
|
|
MeshLambertMaterial.prototype.isMeshLambertMaterial = true;
|
|
|
|
/**
|
|
* parameters = {
|
|
* color: <hex>,
|
|
* opacity: <float>,
|
|
*
|
|
* matcap: new THREE.Texture( <Image> ),
|
|
*
|
|
* map: new THREE.Texture( <Image> ),
|
|
*
|
|
* bumpMap: new THREE.Texture( <Image> ),
|
|
* bumpScale: <float>,
|
|
*
|
|
* normalMap: new THREE.Texture( <Image> ),
|
|
* normalMapType: THREE.TangentSpaceNormalMap,
|
|
* normalScale: <Vector2>,
|
|
*
|
|
* displacementMap: new THREE.Texture( <Image> ),
|
|
* displacementScale: <float>,
|
|
* displacementBias: <float>,
|
|
*
|
|
* alphaMap: new THREE.Texture( <Image> ),
|
|
*
|
|
* flatShading: <bool>
|
|
* }
|
|
*/
|
|
|
|
class MeshMatcapMaterial extends Material {
|
|
constructor(parameters) {
|
|
super();
|
|
this.defines = {
|
|
'MATCAP': ''
|
|
};
|
|
this.type = 'MeshMatcapMaterial';
|
|
this.color = new Color(0xffffff); // diffuse
|
|
|
|
this.matcap = null;
|
|
this.map = null;
|
|
this.bumpMap = null;
|
|
this.bumpScale = 1;
|
|
this.normalMap = null;
|
|
this.normalMapType = TangentSpaceNormalMap;
|
|
this.normalScale = new Vector2(1, 1);
|
|
this.displacementMap = null;
|
|
this.displacementScale = 1;
|
|
this.displacementBias = 0;
|
|
this.alphaMap = null;
|
|
this.flatShading = false;
|
|
this.setValues(parameters);
|
|
}
|
|
|
|
copy(source) {
|
|
super.copy(source);
|
|
this.defines = {
|
|
'MATCAP': ''
|
|
};
|
|
this.color.copy(source.color);
|
|
this.matcap = source.matcap;
|
|
this.map = source.map;
|
|
this.bumpMap = source.bumpMap;
|
|
this.bumpScale = source.bumpScale;
|
|
this.normalMap = source.normalMap;
|
|
this.normalMapType = source.normalMapType;
|
|
this.normalScale.copy(source.normalScale);
|
|
this.displacementMap = source.displacementMap;
|
|
this.displacementScale = source.displacementScale;
|
|
this.displacementBias = source.displacementBias;
|
|
this.alphaMap = source.alphaMap;
|
|
this.flatShading = source.flatShading;
|
|
return this;
|
|
}
|
|
|
|
}
|
|
|
|
MeshMatcapMaterial.prototype.isMeshMatcapMaterial = true;
|
|
|
|
/**
|
|
* parameters = {
|
|
* color: <hex>,
|
|
* opacity: <float>,
|
|
*
|
|
* linewidth: <float>,
|
|
*
|
|
* scale: <float>,
|
|
* dashSize: <float>,
|
|
* gapSize: <float>
|
|
* }
|
|
*/
|
|
|
|
class LineDashedMaterial extends LineBasicMaterial {
|
|
constructor(parameters) {
|
|
super();
|
|
this.type = 'LineDashedMaterial';
|
|
this.scale = 1;
|
|
this.dashSize = 3;
|
|
this.gapSize = 1;
|
|
this.setValues(parameters);
|
|
}
|
|
|
|
copy(source) {
|
|
super.copy(source);
|
|
this.scale = source.scale;
|
|
this.dashSize = source.dashSize;
|
|
this.gapSize = source.gapSize;
|
|
return this;
|
|
}
|
|
|
|
}
|
|
|
|
LineDashedMaterial.prototype.isLineDashedMaterial = true;
|
|
|
|
var Materials = /*#__PURE__*/Object.freeze({
|
|
__proto__: null,
|
|
ShadowMaterial: ShadowMaterial,
|
|
SpriteMaterial: SpriteMaterial,
|
|
RawShaderMaterial: RawShaderMaterial,
|
|
ShaderMaterial: ShaderMaterial,
|
|
PointsMaterial: PointsMaterial,
|
|
MeshPhysicalMaterial: MeshPhysicalMaterial,
|
|
MeshStandardMaterial: MeshStandardMaterial,
|
|
MeshPhongMaterial: MeshPhongMaterial,
|
|
MeshToonMaterial: MeshToonMaterial,
|
|
MeshNormalMaterial: MeshNormalMaterial,
|
|
MeshLambertMaterial: MeshLambertMaterial,
|
|
MeshDepthMaterial: MeshDepthMaterial,
|
|
MeshDistanceMaterial: MeshDistanceMaterial,
|
|
MeshBasicMaterial: MeshBasicMaterial,
|
|
MeshMatcapMaterial: MeshMatcapMaterial,
|
|
LineDashedMaterial: LineDashedMaterial,
|
|
LineBasicMaterial: LineBasicMaterial,
|
|
Material: Material
|
|
});
|
|
|
|
const AnimationUtils = {
|
|
// same as Array.prototype.slice, but also works on typed arrays
|
|
arraySlice: function (array, from, to) {
|
|
if (AnimationUtils.isTypedArray(array)) {
|
|
// in ios9 array.subarray(from, undefined) will return empty array
|
|
// but array.subarray(from) or array.subarray(from, len) is correct
|
|
return new array.constructor(array.subarray(from, to !== undefined ? to : array.length));
|
|
}
|
|
|
|
return array.slice(from, to);
|
|
},
|
|
// converts an array to a specific type
|
|
convertArray: function (array, type, forceClone) {
|
|
if (!array || // let 'undefined' and 'null' pass
|
|
!forceClone && array.constructor === type) return array;
|
|
|
|
if (typeof type.BYTES_PER_ELEMENT === 'number') {
|
|
return new type(array); // create typed array
|
|
}
|
|
|
|
return Array.prototype.slice.call(array); // create Array
|
|
},
|
|
isTypedArray: function (object) {
|
|
return ArrayBuffer.isView(object) && !(object instanceof DataView);
|
|
},
|
|
// returns an array by which times and values can be sorted
|
|
getKeyframeOrder: function (times) {
|
|
function compareTime(i, j) {
|
|
return times[i] - times[j];
|
|
}
|
|
|
|
const n = times.length;
|
|
const result = new Array(n);
|
|
|
|
for (let i = 0; i !== n; ++i) result[i] = i;
|
|
|
|
result.sort(compareTime);
|
|
return result;
|
|
},
|
|
// uses the array previously returned by 'getKeyframeOrder' to sort data
|
|
sortedArray: function (values, stride, order) {
|
|
const nValues = values.length;
|
|
const result = new values.constructor(nValues);
|
|
|
|
for (let i = 0, dstOffset = 0; dstOffset !== nValues; ++i) {
|
|
const srcOffset = order[i] * stride;
|
|
|
|
for (let j = 0; j !== stride; ++j) {
|
|
result[dstOffset++] = values[srcOffset + j];
|
|
}
|
|
}
|
|
|
|
return result;
|
|
},
|
|
// function for parsing AOS keyframe formats
|
|
flattenJSON: function (jsonKeys, times, values, valuePropertyName) {
|
|
let i = 1,
|
|
key = jsonKeys[0];
|
|
|
|
while (key !== undefined && key[valuePropertyName] === undefined) {
|
|
key = jsonKeys[i++];
|
|
}
|
|
|
|
if (key === undefined) return; // no data
|
|
|
|
let value = key[valuePropertyName];
|
|
if (value === undefined) return; // no data
|
|
|
|
if (Array.isArray(value)) {
|
|
do {
|
|
value = key[valuePropertyName];
|
|
|
|
if (value !== undefined) {
|
|
times.push(key.time);
|
|
values.push.apply(values, value); // push all elements
|
|
}
|
|
|
|
key = jsonKeys[i++];
|
|
} while (key !== undefined);
|
|
} else if (value.toArray !== undefined) {
|
|
// ...assume THREE.Math-ish
|
|
do {
|
|
value = key[valuePropertyName];
|
|
|
|
if (value !== undefined) {
|
|
times.push(key.time);
|
|
value.toArray(values, values.length);
|
|
}
|
|
|
|
key = jsonKeys[i++];
|
|
} while (key !== undefined);
|
|
} else {
|
|
// otherwise push as-is
|
|
do {
|
|
value = key[valuePropertyName];
|
|
|
|
if (value !== undefined) {
|
|
times.push(key.time);
|
|
values.push(value);
|
|
}
|
|
|
|
key = jsonKeys[i++];
|
|
} while (key !== undefined);
|
|
}
|
|
},
|
|
subclip: function (sourceClip, name, startFrame, endFrame, fps = 30) {
|
|
const clip = sourceClip.clone();
|
|
clip.name = name;
|
|
const tracks = [];
|
|
|
|
for (let i = 0; i < clip.tracks.length; ++i) {
|
|
const track = clip.tracks[i];
|
|
const valueSize = track.getValueSize();
|
|
const times = [];
|
|
const values = [];
|
|
|
|
for (let j = 0; j < track.times.length; ++j) {
|
|
const frame = track.times[j] * fps;
|
|
if (frame < startFrame || frame >= endFrame) continue;
|
|
times.push(track.times[j]);
|
|
|
|
for (let k = 0; k < valueSize; ++k) {
|
|
values.push(track.values[j * valueSize + k]);
|
|
}
|
|
}
|
|
|
|
if (times.length === 0) continue;
|
|
track.times = AnimationUtils.convertArray(times, track.times.constructor);
|
|
track.values = AnimationUtils.convertArray(values, track.values.constructor);
|
|
tracks.push(track);
|
|
}
|
|
|
|
clip.tracks = tracks; // find minimum .times value across all tracks in the trimmed clip
|
|
|
|
let minStartTime = Infinity;
|
|
|
|
for (let i = 0; i < clip.tracks.length; ++i) {
|
|
if (minStartTime > clip.tracks[i].times[0]) {
|
|
minStartTime = clip.tracks[i].times[0];
|
|
}
|
|
} // shift all tracks such that clip begins at t=0
|
|
|
|
|
|
for (let i = 0; i < clip.tracks.length; ++i) {
|
|
clip.tracks[i].shift(-1 * minStartTime);
|
|
}
|
|
|
|
clip.resetDuration();
|
|
return clip;
|
|
},
|
|
makeClipAdditive: function (targetClip, referenceFrame = 0, referenceClip = targetClip, fps = 30) {
|
|
if (fps <= 0) fps = 30;
|
|
const numTracks = referenceClip.tracks.length;
|
|
const referenceTime = referenceFrame / fps; // Make each track's values relative to the values at the reference frame
|
|
|
|
for (let i = 0; i < numTracks; ++i) {
|
|
const referenceTrack = referenceClip.tracks[i];
|
|
const referenceTrackType = referenceTrack.ValueTypeName; // Skip this track if it's non-numeric
|
|
|
|
if (referenceTrackType === 'bool' || referenceTrackType === 'string') continue; // Find the track in the target clip whose name and type matches the reference track
|
|
|
|
const targetTrack = targetClip.tracks.find(function (track) {
|
|
return track.name === referenceTrack.name && track.ValueTypeName === referenceTrackType;
|
|
});
|
|
if (targetTrack === undefined) continue;
|
|
let referenceOffset = 0;
|
|
const referenceValueSize = referenceTrack.getValueSize();
|
|
|
|
if (referenceTrack.createInterpolant.isInterpolantFactoryMethodGLTFCubicSpline) {
|
|
referenceOffset = referenceValueSize / 3;
|
|
}
|
|
|
|
let targetOffset = 0;
|
|
const targetValueSize = targetTrack.getValueSize();
|
|
|
|
if (targetTrack.createInterpolant.isInterpolantFactoryMethodGLTFCubicSpline) {
|
|
targetOffset = targetValueSize / 3;
|
|
}
|
|
|
|
const lastIndex = referenceTrack.times.length - 1;
|
|
let referenceValue; // Find the value to subtract out of the track
|
|
|
|
if (referenceTime <= referenceTrack.times[0]) {
|
|
// Reference frame is earlier than the first keyframe, so just use the first keyframe
|
|
const startIndex = referenceOffset;
|
|
const endIndex = referenceValueSize - referenceOffset;
|
|
referenceValue = AnimationUtils.arraySlice(referenceTrack.values, startIndex, endIndex);
|
|
} else if (referenceTime >= referenceTrack.times[lastIndex]) {
|
|
// Reference frame is after the last keyframe, so just use the last keyframe
|
|
const startIndex = lastIndex * referenceValueSize + referenceOffset;
|
|
const endIndex = startIndex + referenceValueSize - referenceOffset;
|
|
referenceValue = AnimationUtils.arraySlice(referenceTrack.values, startIndex, endIndex);
|
|
} else {
|
|
// Interpolate to the reference value
|
|
const interpolant = referenceTrack.createInterpolant();
|
|
const startIndex = referenceOffset;
|
|
const endIndex = referenceValueSize - referenceOffset;
|
|
interpolant.evaluate(referenceTime);
|
|
referenceValue = AnimationUtils.arraySlice(interpolant.resultBuffer, startIndex, endIndex);
|
|
} // Conjugate the quaternion
|
|
|
|
|
|
if (referenceTrackType === 'quaternion') {
|
|
const referenceQuat = new Quaternion().fromArray(referenceValue).normalize().conjugate();
|
|
referenceQuat.toArray(referenceValue);
|
|
} // Subtract the reference value from all of the track values
|
|
|
|
|
|
const numTimes = targetTrack.times.length;
|
|
|
|
for (let j = 0; j < numTimes; ++j) {
|
|
const valueStart = j * targetValueSize + targetOffset;
|
|
|
|
if (referenceTrackType === 'quaternion') {
|
|
// Multiply the conjugate for quaternion track types
|
|
Quaternion.multiplyQuaternionsFlat(targetTrack.values, valueStart, referenceValue, 0, targetTrack.values, valueStart);
|
|
} else {
|
|
const valueEnd = targetValueSize - targetOffset * 2; // Subtract each value for all other numeric track types
|
|
|
|
for (let k = 0; k < valueEnd; ++k) {
|
|
targetTrack.values[valueStart + k] -= referenceValue[k];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
targetClip.blendMode = AdditiveAnimationBlendMode;
|
|
return targetClip;
|
|
}
|
|
};
|
|
|
|
/**
|
|
* Abstract base class of interpolants over parametric samples.
|
|
*
|
|
* The parameter domain is one dimensional, typically the time or a path
|
|
* along a curve defined by the data.
|
|
*
|
|
* The sample values can have any dimensionality and derived classes may
|
|
* apply special interpretations to the data.
|
|
*
|
|
* This class provides the interval seek in a Template Method, deferring
|
|
* the actual interpolation to derived classes.
|
|
*
|
|
* Time complexity is O(1) for linear access crossing at most two points
|
|
* and O(log N) for random access, where N is the number of positions.
|
|
*
|
|
* References:
|
|
*
|
|
* http://www.oodesign.com/template-method-pattern.html
|
|
*
|
|
*/
|
|
class Interpolant {
|
|
constructor(parameterPositions, sampleValues, sampleSize, resultBuffer) {
|
|
this.parameterPositions = parameterPositions;
|
|
this._cachedIndex = 0;
|
|
this.resultBuffer = resultBuffer !== undefined ? resultBuffer : new sampleValues.constructor(sampleSize);
|
|
this.sampleValues = sampleValues;
|
|
this.valueSize = sampleSize;
|
|
this.settings = null;
|
|
this.DefaultSettings_ = {};
|
|
}
|
|
|
|
evaluate(t) {
|
|
const pp = this.parameterPositions;
|
|
let i1 = this._cachedIndex,
|
|
t1 = pp[i1],
|
|
t0 = pp[i1 - 1];
|
|
|
|
validate_interval: {
|
|
seek: {
|
|
let right;
|
|
|
|
linear_scan: {
|
|
//- See http://jsperf.com/comparison-to-undefined/3
|
|
//- slower code:
|
|
//-
|
|
//- if ( t >= t1 || t1 === undefined ) {
|
|
forward_scan: if (!(t < t1)) {
|
|
for (let giveUpAt = i1 + 2;;) {
|
|
if (t1 === undefined) {
|
|
if (t < t0) break forward_scan; // after end
|
|
|
|
i1 = pp.length;
|
|
this._cachedIndex = i1;
|
|
return this.afterEnd_(i1 - 1, t, t0);
|
|
}
|
|
|
|
if (i1 === giveUpAt) break; // this loop
|
|
|
|
t0 = t1;
|
|
t1 = pp[++i1];
|
|
|
|
if (t < t1) {
|
|
// we have arrived at the sought interval
|
|
break seek;
|
|
}
|
|
} // prepare binary search on the right side of the index
|
|
|
|
|
|
right = pp.length;
|
|
break linear_scan;
|
|
} //- slower code:
|
|
//- if ( t < t0 || t0 === undefined ) {
|
|
|
|
|
|
if (!(t >= t0)) {
|
|
// looping?
|
|
const t1global = pp[1];
|
|
|
|
if (t < t1global) {
|
|
i1 = 2; // + 1, using the scan for the details
|
|
|
|
t0 = t1global;
|
|
} // linear reverse scan
|
|
|
|
|
|
for (let giveUpAt = i1 - 2;;) {
|
|
if (t0 === undefined) {
|
|
// before start
|
|
this._cachedIndex = 0;
|
|
return this.beforeStart_(0, t, t1);
|
|
}
|
|
|
|
if (i1 === giveUpAt) break; // this loop
|
|
|
|
t1 = t0;
|
|
t0 = pp[--i1 - 1];
|
|
|
|
if (t >= t0) {
|
|
// we have arrived at the sought interval
|
|
break seek;
|
|
}
|
|
} // prepare binary search on the left side of the index
|
|
|
|
|
|
right = i1;
|
|
i1 = 0;
|
|
break linear_scan;
|
|
} // the interval is valid
|
|
|
|
|
|
break validate_interval;
|
|
} // linear scan
|
|
// binary search
|
|
|
|
|
|
while (i1 < right) {
|
|
const mid = i1 + right >>> 1;
|
|
|
|
if (t < pp[mid]) {
|
|
right = mid;
|
|
} else {
|
|
i1 = mid + 1;
|
|
}
|
|
}
|
|
|
|
t1 = pp[i1];
|
|
t0 = pp[i1 - 1]; // check boundary cases, again
|
|
|
|
if (t0 === undefined) {
|
|
this._cachedIndex = 0;
|
|
return this.beforeStart_(0, t, t1);
|
|
}
|
|
|
|
if (t1 === undefined) {
|
|
i1 = pp.length;
|
|
this._cachedIndex = i1;
|
|
return this.afterEnd_(i1 - 1, t0, t);
|
|
}
|
|
} // seek
|
|
|
|
|
|
this._cachedIndex = i1;
|
|
this.intervalChanged_(i1, t0, t1);
|
|
} // validate_interval
|
|
|
|
|
|
return this.interpolate_(i1, t0, t, t1);
|
|
}
|
|
|
|
getSettings_() {
|
|
return this.settings || this.DefaultSettings_;
|
|
}
|
|
|
|
copySampleValue_(index) {
|
|
// copies a sample value to the result buffer
|
|
const result = this.resultBuffer,
|
|
values = this.sampleValues,
|
|
stride = this.valueSize,
|
|
offset = index * stride;
|
|
|
|
for (let i = 0; i !== stride; ++i) {
|
|
result[i] = values[offset + i];
|
|
}
|
|
|
|
return result;
|
|
} // Template methods for derived classes:
|
|
|
|
|
|
interpolate_() {
|
|
throw new Error('call to abstract method'); // implementations shall return this.resultBuffer
|
|
}
|
|
|
|
intervalChanged_() {// empty
|
|
}
|
|
|
|
} // ALIAS DEFINITIONS
|
|
|
|
|
|
Interpolant.prototype.beforeStart_ = Interpolant.prototype.copySampleValue_;
|
|
Interpolant.prototype.afterEnd_ = Interpolant.prototype.copySampleValue_;
|
|
|
|
/**
|
|
* Fast and simple cubic spline interpolant.
|
|
*
|
|
* It was derived from a Hermitian construction setting the first derivative
|
|
* at each sample position to the linear slope between neighboring positions
|
|
* over their parameter interval.
|
|
*/
|
|
|
|
class CubicInterpolant extends Interpolant {
|
|
constructor(parameterPositions, sampleValues, sampleSize, resultBuffer) {
|
|
super(parameterPositions, sampleValues, sampleSize, resultBuffer);
|
|
this._weightPrev = -0;
|
|
this._offsetPrev = -0;
|
|
this._weightNext = -0;
|
|
this._offsetNext = -0;
|
|
this.DefaultSettings_ = {
|
|
endingStart: ZeroCurvatureEnding,
|
|
endingEnd: ZeroCurvatureEnding
|
|
};
|
|
}
|
|
|
|
intervalChanged_(i1, t0, t1) {
|
|
const pp = this.parameterPositions;
|
|
let iPrev = i1 - 2,
|
|
iNext = i1 + 1,
|
|
tPrev = pp[iPrev],
|
|
tNext = pp[iNext];
|
|
|
|
if (tPrev === undefined) {
|
|
switch (this.getSettings_().endingStart) {
|
|
case ZeroSlopeEnding:
|
|
// f'(t0) = 0
|
|
iPrev = i1;
|
|
tPrev = 2 * t0 - t1;
|
|
break;
|
|
|
|
case WrapAroundEnding:
|
|
// use the other end of the curve
|
|
iPrev = pp.length - 2;
|
|
tPrev = t0 + pp[iPrev] - pp[iPrev + 1];
|
|
break;
|
|
|
|
default:
|
|
// ZeroCurvatureEnding
|
|
// f''(t0) = 0 a.k.a. Natural Spline
|
|
iPrev = i1;
|
|
tPrev = t1;
|
|
}
|
|
}
|
|
|
|
if (tNext === undefined) {
|
|
switch (this.getSettings_().endingEnd) {
|
|
case ZeroSlopeEnding:
|
|
// f'(tN) = 0
|
|
iNext = i1;
|
|
tNext = 2 * t1 - t0;
|
|
break;
|
|
|
|
case WrapAroundEnding:
|
|
// use the other end of the curve
|
|
iNext = 1;
|
|
tNext = t1 + pp[1] - pp[0];
|
|
break;
|
|
|
|
default:
|
|
// ZeroCurvatureEnding
|
|
// f''(tN) = 0, a.k.a. Natural Spline
|
|
iNext = i1 - 1;
|
|
tNext = t0;
|
|
}
|
|
}
|
|
|
|
const halfDt = (t1 - t0) * 0.5,
|
|
stride = this.valueSize;
|
|
this._weightPrev = halfDt / (t0 - tPrev);
|
|
this._weightNext = halfDt / (tNext - t1);
|
|
this._offsetPrev = iPrev * stride;
|
|
this._offsetNext = iNext * stride;
|
|
}
|
|
|
|
interpolate_(i1, t0, t, t1) {
|
|
const result = this.resultBuffer,
|
|
values = this.sampleValues,
|
|
stride = this.valueSize,
|
|
o1 = i1 * stride,
|
|
o0 = o1 - stride,
|
|
oP = this._offsetPrev,
|
|
oN = this._offsetNext,
|
|
wP = this._weightPrev,
|
|
wN = this._weightNext,
|
|
p = (t - t0) / (t1 - t0),
|
|
pp = p * p,
|
|
ppp = pp * p; // evaluate polynomials
|
|
|
|
const sP = -wP * ppp + 2 * wP * pp - wP * p;
|
|
const s0 = (1 + wP) * ppp + (-1.5 - 2 * wP) * pp + (-0.5 + wP) * p + 1;
|
|
const s1 = (-1 - wN) * ppp + (1.5 + wN) * pp + 0.5 * p;
|
|
const sN = wN * ppp - wN * pp; // combine data linearly
|
|
|
|
for (let i = 0; i !== stride; ++i) {
|
|
result[i] = sP * values[oP + i] + s0 * values[o0 + i] + s1 * values[o1 + i] + sN * values[oN + i];
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
}
|
|
|
|
class LinearInterpolant extends Interpolant {
|
|
constructor(parameterPositions, sampleValues, sampleSize, resultBuffer) {
|
|
super(parameterPositions, sampleValues, sampleSize, resultBuffer);
|
|
}
|
|
|
|
interpolate_(i1, t0, t, t1) {
|
|
const result = this.resultBuffer,
|
|
values = this.sampleValues,
|
|
stride = this.valueSize,
|
|
offset1 = i1 * stride,
|
|
offset0 = offset1 - stride,
|
|
weight1 = (t - t0) / (t1 - t0),
|
|
weight0 = 1 - weight1;
|
|
|
|
for (let i = 0; i !== stride; ++i) {
|
|
result[i] = values[offset0 + i] * weight0 + values[offset1 + i] * weight1;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
}
|
|
|
|
/**
|
|
*
|
|
* Interpolant that evaluates to the sample value at the position preceeding
|
|
* the parameter.
|
|
*/
|
|
|
|
class DiscreteInterpolant extends Interpolant {
|
|
constructor(parameterPositions, sampleValues, sampleSize, resultBuffer) {
|
|
super(parameterPositions, sampleValues, sampleSize, resultBuffer);
|
|
}
|
|
|
|
interpolate_(i1
|
|
/*, t0, t, t1 */
|
|
) {
|
|
return this.copySampleValue_(i1 - 1);
|
|
}
|
|
|
|
}
|
|
|
|
class KeyframeTrack {
|
|
constructor(name, times, values, interpolation) {
|
|
if (name === undefined) throw new Error('THREE.KeyframeTrack: track name is undefined');
|
|
if (times === undefined || times.length === 0) throw new Error('THREE.KeyframeTrack: no keyframes in track named ' + name);
|
|
this.name = name;
|
|
this.times = AnimationUtils.convertArray(times, this.TimeBufferType);
|
|
this.values = AnimationUtils.convertArray(values, this.ValueBufferType);
|
|
this.setInterpolation(interpolation || this.DefaultInterpolation);
|
|
} // Serialization (in static context, because of constructor invocation
|
|
// and automatic invocation of .toJSON):
|
|
|
|
|
|
static toJSON(track) {
|
|
const trackType = track.constructor;
|
|
let json; // derived classes can define a static toJSON method
|
|
|
|
if (trackType.toJSON !== this.toJSON) {
|
|
json = trackType.toJSON(track);
|
|
} else {
|
|
// by default, we assume the data can be serialized as-is
|
|
json = {
|
|
'name': track.name,
|
|
'times': AnimationUtils.convertArray(track.times, Array),
|
|
'values': AnimationUtils.convertArray(track.values, Array)
|
|
};
|
|
const interpolation = track.getInterpolation();
|
|
|
|
if (interpolation !== track.DefaultInterpolation) {
|
|
json.interpolation = interpolation;
|
|
}
|
|
}
|
|
|
|
json.type = track.ValueTypeName; // mandatory
|
|
|
|
return json;
|
|
}
|
|
|
|
InterpolantFactoryMethodDiscrete(result) {
|
|
return new DiscreteInterpolant(this.times, this.values, this.getValueSize(), result);
|
|
}
|
|
|
|
InterpolantFactoryMethodLinear(result) {
|
|
return new LinearInterpolant(this.times, this.values, this.getValueSize(), result);
|
|
}
|
|
|
|
InterpolantFactoryMethodSmooth(result) {
|
|
return new CubicInterpolant(this.times, this.values, this.getValueSize(), result);
|
|
}
|
|
|
|
setInterpolation(interpolation) {
|
|
let factoryMethod;
|
|
|
|
switch (interpolation) {
|
|
case InterpolateDiscrete:
|
|
factoryMethod = this.InterpolantFactoryMethodDiscrete;
|
|
break;
|
|
|
|
case InterpolateLinear:
|
|
factoryMethod = this.InterpolantFactoryMethodLinear;
|
|
break;
|
|
|
|
case InterpolateSmooth:
|
|
factoryMethod = this.InterpolantFactoryMethodSmooth;
|
|
break;
|
|
}
|
|
|
|
if (factoryMethod === undefined) {
|
|
const message = 'unsupported interpolation for ' + this.ValueTypeName + ' keyframe track named ' + this.name;
|
|
|
|
if (this.createInterpolant === undefined) {
|
|
// fall back to default, unless the default itself is messed up
|
|
if (interpolation !== this.DefaultInterpolation) {
|
|
this.setInterpolation(this.DefaultInterpolation);
|
|
} else {
|
|
throw new Error(message); // fatal, in this case
|
|
}
|
|
}
|
|
|
|
console.warn('THREE.KeyframeTrack:', message);
|
|
return this;
|
|
}
|
|
|
|
this.createInterpolant = factoryMethod;
|
|
return this;
|
|
}
|
|
|
|
getInterpolation() {
|
|
switch (this.createInterpolant) {
|
|
case this.InterpolantFactoryMethodDiscrete:
|
|
return InterpolateDiscrete;
|
|
|
|
case this.InterpolantFactoryMethodLinear:
|
|
return InterpolateLinear;
|
|
|
|
case this.InterpolantFactoryMethodSmooth:
|
|
return InterpolateSmooth;
|
|
}
|
|
}
|
|
|
|
getValueSize() {
|
|
return this.values.length / this.times.length;
|
|
} // move all keyframes either forwards or backwards in time
|
|
|
|
|
|
shift(timeOffset) {
|
|
if (timeOffset !== 0.0) {
|
|
const times = this.times;
|
|
|
|
for (let i = 0, n = times.length; i !== n; ++i) {
|
|
times[i] += timeOffset;
|
|
}
|
|
}
|
|
|
|
return this;
|
|
} // scale all keyframe times by a factor (useful for frame <-> seconds conversions)
|
|
|
|
|
|
scale(timeScale) {
|
|
if (timeScale !== 1.0) {
|
|
const times = this.times;
|
|
|
|
for (let i = 0, n = times.length; i !== n; ++i) {
|
|
times[i] *= timeScale;
|
|
}
|
|
}
|
|
|
|
return this;
|
|
} // removes keyframes before and after animation without changing any values within the range [startTime, endTime].
|
|
// IMPORTANT: We do not shift around keys to the start of the track time, because for interpolated keys this will change their values
|
|
|
|
|
|
trim(startTime, endTime) {
|
|
const times = this.times,
|
|
nKeys = times.length;
|
|
let from = 0,
|
|
to = nKeys - 1;
|
|
|
|
while (from !== nKeys && times[from] < startTime) {
|
|
++from;
|
|
}
|
|
|
|
while (to !== -1 && times[to] > endTime) {
|
|
--to;
|
|
}
|
|
|
|
++to; // inclusive -> exclusive bound
|
|
|
|
if (from !== 0 || to !== nKeys) {
|
|
// empty tracks are forbidden, so keep at least one keyframe
|
|
if (from >= to) {
|
|
to = Math.max(to, 1);
|
|
from = to - 1;
|
|
}
|
|
|
|
const stride = this.getValueSize();
|
|
this.times = AnimationUtils.arraySlice(times, from, to);
|
|
this.values = AnimationUtils.arraySlice(this.values, from * stride, to * stride);
|
|
}
|
|
|
|
return this;
|
|
} // ensure we do not get a GarbageInGarbageOut situation, make sure tracks are at least minimally viable
|
|
|
|
|
|
validate() {
|
|
let valid = true;
|
|
const valueSize = this.getValueSize();
|
|
|
|
if (valueSize - Math.floor(valueSize) !== 0) {
|
|
console.error('THREE.KeyframeTrack: Invalid value size in track.', this);
|
|
valid = false;
|
|
}
|
|
|
|
const times = this.times,
|
|
values = this.values,
|
|
nKeys = times.length;
|
|
|
|
if (nKeys === 0) {
|
|
console.error('THREE.KeyframeTrack: Track is empty.', this);
|
|
valid = false;
|
|
}
|
|
|
|
let prevTime = null;
|
|
|
|
for (let i = 0; i !== nKeys; i++) {
|
|
const currTime = times[i];
|
|
|
|
if (typeof currTime === 'number' && isNaN(currTime)) {
|
|
console.error('THREE.KeyframeTrack: Time is not a valid number.', this, i, currTime);
|
|
valid = false;
|
|
break;
|
|
}
|
|
|
|
if (prevTime !== null && prevTime > currTime) {
|
|
console.error('THREE.KeyframeTrack: Out of order keys.', this, i, currTime, prevTime);
|
|
valid = false;
|
|
break;
|
|
}
|
|
|
|
prevTime = currTime;
|
|
}
|
|
|
|
if (values !== undefined) {
|
|
if (AnimationUtils.isTypedArray(values)) {
|
|
for (let i = 0, n = values.length; i !== n; ++i) {
|
|
const value = values[i];
|
|
|
|
if (isNaN(value)) {
|
|
console.error('THREE.KeyframeTrack: Value is not a valid number.', this, i, value);
|
|
valid = false;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return valid;
|
|
} // removes equivalent sequential keys as common in morph target sequences
|
|
// (0,0,0,0,1,1,1,0,0,0,0,0,0,0) --> (0,0,1,1,0,0)
|
|
|
|
|
|
optimize() {
|
|
// times or values may be shared with other tracks, so overwriting is unsafe
|
|
const times = AnimationUtils.arraySlice(this.times),
|
|
values = AnimationUtils.arraySlice(this.values),
|
|
stride = this.getValueSize(),
|
|
smoothInterpolation = this.getInterpolation() === InterpolateSmooth,
|
|
lastIndex = times.length - 1;
|
|
let writeIndex = 1;
|
|
|
|
for (let i = 1; i < lastIndex; ++i) {
|
|
let keep = false;
|
|
const time = times[i];
|
|
const timeNext = times[i + 1]; // remove adjacent keyframes scheduled at the same time
|
|
|
|
if (time !== timeNext && (i !== 1 || time !== times[0])) {
|
|
if (!smoothInterpolation) {
|
|
// remove unnecessary keyframes same as their neighbors
|
|
const offset = i * stride,
|
|
offsetP = offset - stride,
|
|
offsetN = offset + stride;
|
|
|
|
for (let j = 0; j !== stride; ++j) {
|
|
const value = values[offset + j];
|
|
|
|
if (value !== values[offsetP + j] || value !== values[offsetN + j]) {
|
|
keep = true;
|
|
break;
|
|
}
|
|
}
|
|
} else {
|
|
keep = true;
|
|
}
|
|
} // in-place compaction
|
|
|
|
|
|
if (keep) {
|
|
if (i !== writeIndex) {
|
|
times[writeIndex] = times[i];
|
|
const readOffset = i * stride,
|
|
writeOffset = writeIndex * stride;
|
|
|
|
for (let j = 0; j !== stride; ++j) {
|
|
values[writeOffset + j] = values[readOffset + j];
|
|
}
|
|
}
|
|
|
|
++writeIndex;
|
|
}
|
|
} // flush last keyframe (compaction looks ahead)
|
|
|
|
|
|
if (lastIndex > 0) {
|
|
times[writeIndex] = times[lastIndex];
|
|
|
|
for (let readOffset = lastIndex * stride, writeOffset = writeIndex * stride, j = 0; j !== stride; ++j) {
|
|
values[writeOffset + j] = values[readOffset + j];
|
|
}
|
|
|
|
++writeIndex;
|
|
}
|
|
|
|
if (writeIndex !== times.length) {
|
|
this.times = AnimationUtils.arraySlice(times, 0, writeIndex);
|
|
this.values = AnimationUtils.arraySlice(values, 0, writeIndex * stride);
|
|
} else {
|
|
this.times = times;
|
|
this.values = values;
|
|
}
|
|
|
|
return this;
|
|
}
|
|
|
|
clone() {
|
|
const times = AnimationUtils.arraySlice(this.times, 0);
|
|
const values = AnimationUtils.arraySlice(this.values, 0);
|
|
const TypedKeyframeTrack = this.constructor;
|
|
const track = new TypedKeyframeTrack(this.name, times, values); // Interpolant argument to constructor is not saved, so copy the factory method directly.
|
|
|
|
track.createInterpolant = this.createInterpolant;
|
|
return track;
|
|
}
|
|
|
|
}
|
|
|
|
KeyframeTrack.prototype.TimeBufferType = Float32Array;
|
|
KeyframeTrack.prototype.ValueBufferType = Float32Array;
|
|
KeyframeTrack.prototype.DefaultInterpolation = InterpolateLinear;
|
|
|
|
/**
|
|
* A Track of Boolean keyframe values.
|
|
*/
|
|
|
|
class BooleanKeyframeTrack extends KeyframeTrack {}
|
|
|
|
BooleanKeyframeTrack.prototype.ValueTypeName = 'bool';
|
|
BooleanKeyframeTrack.prototype.ValueBufferType = Array;
|
|
BooleanKeyframeTrack.prototype.DefaultInterpolation = InterpolateDiscrete;
|
|
BooleanKeyframeTrack.prototype.InterpolantFactoryMethodLinear = undefined;
|
|
BooleanKeyframeTrack.prototype.InterpolantFactoryMethodSmooth = undefined; // Note: Actually this track could have a optimized / compressed
|
|
|
|
/**
|
|
* A Track of keyframe values that represent color.
|
|
*/
|
|
|
|
class ColorKeyframeTrack extends KeyframeTrack {}
|
|
|
|
ColorKeyframeTrack.prototype.ValueTypeName = 'color'; // ValueBufferType is inherited
|
|
|
|
/**
|
|
* A Track of numeric keyframe values.
|
|
*/
|
|
|
|
class NumberKeyframeTrack extends KeyframeTrack {}
|
|
|
|
NumberKeyframeTrack.prototype.ValueTypeName = 'number'; // ValueBufferType is inherited
|
|
|
|
/**
|
|
* Spherical linear unit quaternion interpolant.
|
|
*/
|
|
|
|
class QuaternionLinearInterpolant extends Interpolant {
|
|
constructor(parameterPositions, sampleValues, sampleSize, resultBuffer) {
|
|
super(parameterPositions, sampleValues, sampleSize, resultBuffer);
|
|
}
|
|
|
|
interpolate_(i1, t0, t, t1) {
|
|
const result = this.resultBuffer,
|
|
values = this.sampleValues,
|
|
stride = this.valueSize,
|
|
alpha = (t - t0) / (t1 - t0);
|
|
let offset = i1 * stride;
|
|
|
|
for (let end = offset + stride; offset !== end; offset += 4) {
|
|
Quaternion.slerpFlat(result, 0, values, offset - stride, values, offset, alpha);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
}
|
|
|
|
/**
|
|
* A Track of quaternion keyframe values.
|
|
*/
|
|
|
|
class QuaternionKeyframeTrack extends KeyframeTrack {
|
|
InterpolantFactoryMethodLinear(result) {
|
|
return new QuaternionLinearInterpolant(this.times, this.values, this.getValueSize(), result);
|
|
}
|
|
|
|
}
|
|
|
|
QuaternionKeyframeTrack.prototype.ValueTypeName = 'quaternion'; // ValueBufferType is inherited
|
|
|
|
QuaternionKeyframeTrack.prototype.DefaultInterpolation = InterpolateLinear;
|
|
QuaternionKeyframeTrack.prototype.InterpolantFactoryMethodSmooth = undefined;
|
|
|
|
/**
|
|
* A Track that interpolates Strings
|
|
*/
|
|
|
|
class StringKeyframeTrack extends KeyframeTrack {}
|
|
|
|
StringKeyframeTrack.prototype.ValueTypeName = 'string';
|
|
StringKeyframeTrack.prototype.ValueBufferType = Array;
|
|
StringKeyframeTrack.prototype.DefaultInterpolation = InterpolateDiscrete;
|
|
StringKeyframeTrack.prototype.InterpolantFactoryMethodLinear = undefined;
|
|
StringKeyframeTrack.prototype.InterpolantFactoryMethodSmooth = undefined;
|
|
|
|
/**
|
|
* A Track of vectored keyframe values.
|
|
*/
|
|
|
|
class VectorKeyframeTrack extends KeyframeTrack {}
|
|
|
|
VectorKeyframeTrack.prototype.ValueTypeName = 'vector'; // ValueBufferType is inherited
|
|
|
|
class AnimationClip {
|
|
constructor(name, duration = -1, tracks, blendMode = NormalAnimationBlendMode) {
|
|
this.name = name;
|
|
this.tracks = tracks;
|
|
this.duration = duration;
|
|
this.blendMode = blendMode;
|
|
this.uuid = generateUUID(); // this means it should figure out its duration by scanning the tracks
|
|
|
|
if (this.duration < 0) {
|
|
this.resetDuration();
|
|
}
|
|
}
|
|
|
|
static parse(json) {
|
|
const tracks = [],
|
|
jsonTracks = json.tracks,
|
|
frameTime = 1.0 / (json.fps || 1.0);
|
|
|
|
for (let i = 0, n = jsonTracks.length; i !== n; ++i) {
|
|
tracks.push(parseKeyframeTrack(jsonTracks[i]).scale(frameTime));
|
|
}
|
|
|
|
const clip = new this(json.name, json.duration, tracks, json.blendMode);
|
|
clip.uuid = json.uuid;
|
|
return clip;
|
|
}
|
|
|
|
static toJSON(clip) {
|
|
const tracks = [],
|
|
clipTracks = clip.tracks;
|
|
const json = {
|
|
'name': clip.name,
|
|
'duration': clip.duration,
|
|
'tracks': tracks,
|
|
'uuid': clip.uuid,
|
|
'blendMode': clip.blendMode
|
|
};
|
|
|
|
for (let i = 0, n = clipTracks.length; i !== n; ++i) {
|
|
tracks.push(KeyframeTrack.toJSON(clipTracks[i]));
|
|
}
|
|
|
|
return json;
|
|
}
|
|
|
|
static CreateFromMorphTargetSequence(name, morphTargetSequence, fps, noLoop) {
|
|
const numMorphTargets = morphTargetSequence.length;
|
|
const tracks = [];
|
|
|
|
for (let i = 0; i < numMorphTargets; i++) {
|
|
let times = [];
|
|
let values = [];
|
|
times.push((i + numMorphTargets - 1) % numMorphTargets, i, (i + 1) % numMorphTargets);
|
|
values.push(0, 1, 0);
|
|
const order = AnimationUtils.getKeyframeOrder(times);
|
|
times = AnimationUtils.sortedArray(times, 1, order);
|
|
values = AnimationUtils.sortedArray(values, 1, order); // if there is a key at the first frame, duplicate it as the
|
|
// last frame as well for perfect loop.
|
|
|
|
if (!noLoop && times[0] === 0) {
|
|
times.push(numMorphTargets);
|
|
values.push(values[0]);
|
|
}
|
|
|
|
tracks.push(new NumberKeyframeTrack('.morphTargetInfluences[' + morphTargetSequence[i].name + ']', times, values).scale(1.0 / fps));
|
|
}
|
|
|
|
return new this(name, -1, tracks);
|
|
}
|
|
|
|
static findByName(objectOrClipArray, name) {
|
|
let clipArray = objectOrClipArray;
|
|
|
|
if (!Array.isArray(objectOrClipArray)) {
|
|
const o = objectOrClipArray;
|
|
clipArray = o.geometry && o.geometry.animations || o.animations;
|
|
}
|
|
|
|
for (let i = 0; i < clipArray.length; i++) {
|
|
if (clipArray[i].name === name) {
|
|
return clipArray[i];
|
|
}
|
|
}
|
|
|
|
return null;
|
|
}
|
|
|
|
static CreateClipsFromMorphTargetSequences(morphTargets, fps, noLoop) {
|
|
const animationToMorphTargets = {}; // tested with https://regex101.com/ on trick sequences
|
|
// such flamingo_flyA_003, flamingo_run1_003, crdeath0059
|
|
|
|
const pattern = /^([\w-]*?)([\d]+)$/; // sort morph target names into animation groups based
|
|
// patterns like Walk_001, Walk_002, Run_001, Run_002
|
|
|
|
for (let i = 0, il = morphTargets.length; i < il; i++) {
|
|
const morphTarget = morphTargets[i];
|
|
const parts = morphTarget.name.match(pattern);
|
|
|
|
if (parts && parts.length > 1) {
|
|
const name = parts[1];
|
|
let animationMorphTargets = animationToMorphTargets[name];
|
|
|
|
if (!animationMorphTargets) {
|
|
animationToMorphTargets[name] = animationMorphTargets = [];
|
|
}
|
|
|
|
animationMorphTargets.push(morphTarget);
|
|
}
|
|
}
|
|
|
|
const clips = [];
|
|
|
|
for (const name in animationToMorphTargets) {
|
|
clips.push(this.CreateFromMorphTargetSequence(name, animationToMorphTargets[name], fps, noLoop));
|
|
}
|
|
|
|
return clips;
|
|
} // parse the animation.hierarchy format
|
|
|
|
|
|
static parseAnimation(animation, bones) {
|
|
if (!animation) {
|
|
console.error('THREE.AnimationClip: No animation in JSONLoader data.');
|
|
return null;
|
|
}
|
|
|
|
const addNonemptyTrack = function (trackType, trackName, animationKeys, propertyName, destTracks) {
|
|
// only return track if there are actually keys.
|
|
if (animationKeys.length !== 0) {
|
|
const times = [];
|
|
const values = [];
|
|
AnimationUtils.flattenJSON(animationKeys, times, values, propertyName); // empty keys are filtered out, so check again
|
|
|
|
if (times.length !== 0) {
|
|
destTracks.push(new trackType(trackName, times, values));
|
|
}
|
|
}
|
|
};
|
|
|
|
const tracks = [];
|
|
const clipName = animation.name || 'default';
|
|
const fps = animation.fps || 30;
|
|
const blendMode = animation.blendMode; // automatic length determination in AnimationClip.
|
|
|
|
let duration = animation.length || -1;
|
|
const hierarchyTracks = animation.hierarchy || [];
|
|
|
|
for (let h = 0; h < hierarchyTracks.length; h++) {
|
|
const animationKeys = hierarchyTracks[h].keys; // skip empty tracks
|
|
|
|
if (!animationKeys || animationKeys.length === 0) continue; // process morph targets
|
|
|
|
if (animationKeys[0].morphTargets) {
|
|
// figure out all morph targets used in this track
|
|
const morphTargetNames = {};
|
|
let k;
|
|
|
|
for (k = 0; k < animationKeys.length; k++) {
|
|
if (animationKeys[k].morphTargets) {
|
|
for (let m = 0; m < animationKeys[k].morphTargets.length; m++) {
|
|
morphTargetNames[animationKeys[k].morphTargets[m]] = -1;
|
|
}
|
|
}
|
|
} // create a track for each morph target with all zero
|
|
// morphTargetInfluences except for the keys in which
|
|
// the morphTarget is named.
|
|
|
|
|
|
for (const morphTargetName in morphTargetNames) {
|
|
const times = [];
|
|
const values = [];
|
|
|
|
for (let m = 0; m !== animationKeys[k].morphTargets.length; ++m) {
|
|
const animationKey = animationKeys[k];
|
|
times.push(animationKey.time);
|
|
values.push(animationKey.morphTarget === morphTargetName ? 1 : 0);
|
|
}
|
|
|
|
tracks.push(new NumberKeyframeTrack('.morphTargetInfluence[' + morphTargetName + ']', times, values));
|
|
}
|
|
|
|
duration = morphTargetNames.length * (fps || 1.0);
|
|
} else {
|
|
// ...assume skeletal animation
|
|
const boneName = '.bones[' + bones[h].name + ']';
|
|
addNonemptyTrack(VectorKeyframeTrack, boneName + '.position', animationKeys, 'pos', tracks);
|
|
addNonemptyTrack(QuaternionKeyframeTrack, boneName + '.quaternion', animationKeys, 'rot', tracks);
|
|
addNonemptyTrack(VectorKeyframeTrack, boneName + '.scale', animationKeys, 'scl', tracks);
|
|
}
|
|
}
|
|
|
|
if (tracks.length === 0) {
|
|
return null;
|
|
}
|
|
|
|
const clip = new this(clipName, duration, tracks, blendMode);
|
|
return clip;
|
|
}
|
|
|
|
resetDuration() {
|
|
const tracks = this.tracks;
|
|
let duration = 0;
|
|
|
|
for (let i = 0, n = tracks.length; i !== n; ++i) {
|
|
const track = this.tracks[i];
|
|
duration = Math.max(duration, track.times[track.times.length - 1]);
|
|
}
|
|
|
|
this.duration = duration;
|
|
return this;
|
|
}
|
|
|
|
trim() {
|
|
for (let i = 0; i < this.tracks.length; i++) {
|
|
this.tracks[i].trim(0, this.duration);
|
|
}
|
|
|
|
return this;
|
|
}
|
|
|
|
validate() {
|
|
let valid = true;
|
|
|
|
for (let i = 0; i < this.tracks.length; i++) {
|
|
valid = valid && this.tracks[i].validate();
|
|
}
|
|
|
|
return valid;
|
|
}
|
|
|
|
optimize() {
|
|
for (let i = 0; i < this.tracks.length; i++) {
|
|
this.tracks[i].optimize();
|
|
}
|
|
|
|
return this;
|
|
}
|
|
|
|
clone() {
|
|
const tracks = [];
|
|
|
|
for (let i = 0; i < this.tracks.length; i++) {
|
|
tracks.push(this.tracks[i].clone());
|
|
}
|
|
|
|
return new this.constructor(this.name, this.duration, tracks, this.blendMode);
|
|
}
|
|
|
|
toJSON() {
|
|
return this.constructor.toJSON(this);
|
|
}
|
|
|
|
}
|
|
|
|
function getTrackTypeForValueTypeName(typeName) {
|
|
switch (typeName.toLowerCase()) {
|
|
case 'scalar':
|
|
case 'double':
|
|
case 'float':
|
|
case 'number':
|
|
case 'integer':
|
|
return NumberKeyframeTrack;
|
|
|
|
case 'vector':
|
|
case 'vector2':
|
|
case 'vector3':
|
|
case 'vector4':
|
|
return VectorKeyframeTrack;
|
|
|
|
case 'color':
|
|
return ColorKeyframeTrack;
|
|
|
|
case 'quaternion':
|
|
return QuaternionKeyframeTrack;
|
|
|
|
case 'bool':
|
|
case 'boolean':
|
|
return BooleanKeyframeTrack;
|
|
|
|
case 'string':
|
|
return StringKeyframeTrack;
|
|
}
|
|
|
|
throw new Error('THREE.KeyframeTrack: Unsupported typeName: ' + typeName);
|
|
}
|
|
|
|
function parseKeyframeTrack(json) {
|
|
if (json.type === undefined) {
|
|
throw new Error('THREE.KeyframeTrack: track type undefined, can not parse');
|
|
}
|
|
|
|
const trackType = getTrackTypeForValueTypeName(json.type);
|
|
|
|
if (json.times === undefined) {
|
|
const times = [],
|
|
values = [];
|
|
AnimationUtils.flattenJSON(json.keys, times, values, 'value');
|
|
json.times = times;
|
|
json.values = values;
|
|
} // derived classes can define a static parse method
|
|
|
|
|
|
if (trackType.parse !== undefined) {
|
|
return trackType.parse(json);
|
|
} else {
|
|
// by default, we assume a constructor compatible with the base
|
|
return new trackType(json.name, json.times, json.values, json.interpolation);
|
|
}
|
|
}
|
|
|
|
const Cache = {
|
|
enabled: false,
|
|
files: {},
|
|
add: function (key, file) {
|
|
if (this.enabled === false) return; // console.log( 'THREE.Cache', 'Adding key:', key );
|
|
|
|
this.files[key] = file;
|
|
},
|
|
get: function (key) {
|
|
if (this.enabled === false) return; // console.log( 'THREE.Cache', 'Checking key:', key );
|
|
|
|
return this.files[key];
|
|
},
|
|
remove: function (key) {
|
|
delete this.files[key];
|
|
},
|
|
clear: function () {
|
|
this.files = {};
|
|
}
|
|
};
|
|
|
|
class LoadingManager {
|
|
constructor(onLoad, onProgress, onError) {
|
|
const scope = this;
|
|
let isLoading = false;
|
|
let itemsLoaded = 0;
|
|
let itemsTotal = 0;
|
|
let urlModifier = undefined;
|
|
const handlers = []; // Refer to #5689 for the reason why we don't set .onStart
|
|
// in the constructor
|
|
|
|
this.onStart = undefined;
|
|
this.onLoad = onLoad;
|
|
this.onProgress = onProgress;
|
|
this.onError = onError;
|
|
|
|
this.itemStart = function (url) {
|
|
itemsTotal++;
|
|
|
|
if (isLoading === false) {
|
|
if (scope.onStart !== undefined) {
|
|
scope.onStart(url, itemsLoaded, itemsTotal);
|
|
}
|
|
}
|
|
|
|
isLoading = true;
|
|
};
|
|
|
|
this.itemEnd = function (url) {
|
|
itemsLoaded++;
|
|
|
|
if (scope.onProgress !== undefined) {
|
|
scope.onProgress(url, itemsLoaded, itemsTotal);
|
|
}
|
|
|
|
if (itemsLoaded === itemsTotal) {
|
|
isLoading = false;
|
|
|
|
if (scope.onLoad !== undefined) {
|
|
scope.onLoad();
|
|
}
|
|
}
|
|
};
|
|
|
|
this.itemError = function (url) {
|
|
if (scope.onError !== undefined) {
|
|
scope.onError(url);
|
|
}
|
|
};
|
|
|
|
this.resolveURL = function (url) {
|
|
if (urlModifier) {
|
|
return urlModifier(url);
|
|
}
|
|
|
|
return url;
|
|
};
|
|
|
|
this.setURLModifier = function (transform) {
|
|
urlModifier = transform;
|
|
return this;
|
|
};
|
|
|
|
this.addHandler = function (regex, loader) {
|
|
handlers.push(regex, loader);
|
|
return this;
|
|
};
|
|
|
|
this.removeHandler = function (regex) {
|
|
const index = handlers.indexOf(regex);
|
|
|
|
if (index !== -1) {
|
|
handlers.splice(index, 2);
|
|
}
|
|
|
|
return this;
|
|
};
|
|
|
|
this.getHandler = function (file) {
|
|
for (let i = 0, l = handlers.length; i < l; i += 2) {
|
|
const regex = handlers[i];
|
|
const loader = handlers[i + 1];
|
|
if (regex.global) regex.lastIndex = 0; // see #17920
|
|
|
|
if (regex.test(file)) {
|
|
return loader;
|
|
}
|
|
}
|
|
|
|
return null;
|
|
};
|
|
}
|
|
|
|
}
|
|
|
|
const DefaultLoadingManager = new LoadingManager();
|
|
|
|
class Loader {
|
|
constructor(manager) {
|
|
this.manager = manager !== undefined ? manager : DefaultLoadingManager;
|
|
this.crossOrigin = 'anonymous';
|
|
this.withCredentials = false;
|
|
this.path = '';
|
|
this.resourcePath = '';
|
|
this.requestHeader = {};
|
|
}
|
|
|
|
load() {}
|
|
|
|
loadAsync(url, onProgress) {
|
|
const scope = this;
|
|
return new Promise(function (resolve, reject) {
|
|
scope.load(url, resolve, onProgress, reject);
|
|
});
|
|
}
|
|
|
|
parse() {}
|
|
|
|
setCrossOrigin(crossOrigin) {
|
|
this.crossOrigin = crossOrigin;
|
|
return this;
|
|
}
|
|
|
|
setWithCredentials(value) {
|
|
this.withCredentials = value;
|
|
return this;
|
|
}
|
|
|
|
setPath(path) {
|
|
this.path = path;
|
|
return this;
|
|
}
|
|
|
|
setResourcePath(resourcePath) {
|
|
this.resourcePath = resourcePath;
|
|
return this;
|
|
}
|
|
|
|
setRequestHeader(requestHeader) {
|
|
this.requestHeader = requestHeader;
|
|
return this;
|
|
}
|
|
|
|
}
|
|
|
|
const loading = {};
|
|
|
|
class FileLoader extends Loader {
|
|
constructor(manager) {
|
|
super(manager);
|
|
}
|
|
|
|
load(url, onLoad, onProgress, onError) {
|
|
if (url === undefined) url = '';
|
|
if (this.path !== undefined) url = this.path + url;
|
|
url = this.manager.resolveURL(url);
|
|
const cached = Cache.get(url);
|
|
|
|
if (cached !== undefined) {
|
|
this.manager.itemStart(url);
|
|
setTimeout(() => {
|
|
if (onLoad) onLoad(cached);
|
|
this.manager.itemEnd(url);
|
|
}, 0);
|
|
return cached;
|
|
} // Check if request is duplicate
|
|
|
|
|
|
if (loading[url] !== undefined) {
|
|
loading[url].push({
|
|
onLoad: onLoad,
|
|
onProgress: onProgress,
|
|
onError: onError
|
|
});
|
|
return;
|
|
} // Initialise array for duplicate requests
|
|
|
|
|
|
loading[url] = [];
|
|
loading[url].push({
|
|
onLoad: onLoad,
|
|
onProgress: onProgress,
|
|
onError: onError
|
|
}); // create request
|
|
|
|
const req = new Request(url, {
|
|
headers: new Headers(this.requestHeader),
|
|
credentials: this.withCredentials ? 'include' : 'same-origin' // An abort controller could be added within a future PR
|
|
|
|
}); // start the fetch
|
|
|
|
fetch(req).then(response => {
|
|
if (response.status === 200 || response.status === 0) {
|
|
// Some browsers return HTTP Status 0 when using non-http protocol
|
|
// e.g. 'file://' or 'data://'. Handle as success.
|
|
if (response.status === 0) {
|
|
console.warn('THREE.FileLoader: HTTP Status 0 received.');
|
|
}
|
|
|
|
const callbacks = loading[url];
|
|
const reader = response.body.getReader();
|
|
const contentLength = response.headers.get('Content-Length');
|
|
const total = contentLength ? parseInt(contentLength) : 0;
|
|
const lengthComputable = total !== 0;
|
|
let loaded = 0; // periodically read data into the new stream tracking while download progress
|
|
|
|
return new ReadableStream({
|
|
start(controller) {
|
|
readData();
|
|
|
|
function readData() {
|
|
reader.read().then(({
|
|
done,
|
|
value
|
|
}) => {
|
|
if (done) {
|
|
controller.close();
|
|
} else {
|
|
loaded += value.byteLength;
|
|
const event = new ProgressEvent('progress', {
|
|
lengthComputable,
|
|
loaded,
|
|
total
|
|
});
|
|
|
|
for (let i = 0, il = callbacks.length; i < il; i++) {
|
|
const callback = callbacks[i];
|
|
if (callback.onProgress) callback.onProgress(event);
|
|
}
|
|
|
|
controller.enqueue(value);
|
|
readData();
|
|
}
|
|
});
|
|
}
|
|
}
|
|
|
|
});
|
|
} else {
|
|
throw Error(`fetch for "${response.url}" responded with ${response.status}: ${response.statusText}`);
|
|
}
|
|
}).then(stream => {
|
|
const response = new Response(stream);
|
|
|
|
switch (this.responseType) {
|
|
case 'arraybuffer':
|
|
return response.arrayBuffer();
|
|
|
|
case 'blob':
|
|
return response.blob();
|
|
|
|
case 'document':
|
|
return response.text().then(text => {
|
|
const parser = new DOMParser();
|
|
return parser.parseFromString(text, this.mimeType);
|
|
});
|
|
|
|
case 'json':
|
|
return response.json();
|
|
|
|
default:
|
|
return response.text();
|
|
}
|
|
}).then(data => {
|
|
// Add to cache only on HTTP success, so that we do not cache
|
|
// error response bodies as proper responses to requests.
|
|
Cache.add(url, data);
|
|
const callbacks = loading[url];
|
|
delete loading[url];
|
|
|
|
for (let i = 0, il = callbacks.length; i < il; i++) {
|
|
const callback = callbacks[i];
|
|
if (callback.onLoad) callback.onLoad(data);
|
|
}
|
|
|
|
this.manager.itemEnd(url);
|
|
}).catch(err => {
|
|
// Abort errors and other errors are handled the same
|
|
const callbacks = loading[url];
|
|
delete loading[url];
|
|
|
|
for (let i = 0, il = callbacks.length; i < il; i++) {
|
|
const callback = callbacks[i];
|
|
if (callback.onError) callback.onError(err);
|
|
}
|
|
|
|
this.manager.itemError(url);
|
|
this.manager.itemEnd(url);
|
|
});
|
|
this.manager.itemStart(url);
|
|
}
|
|
|
|
setResponseType(value) {
|
|
this.responseType = value;
|
|
return this;
|
|
}
|
|
|
|
setMimeType(value) {
|
|
this.mimeType = value;
|
|
return this;
|
|
}
|
|
|
|
}
|
|
|
|
class AnimationLoader extends Loader {
|
|
constructor(manager) {
|
|
super(manager);
|
|
}
|
|
|
|
load(url, onLoad, onProgress, onError) {
|
|
const scope = this;
|
|
const loader = new FileLoader(this.manager);
|
|
loader.setPath(this.path);
|
|
loader.setRequestHeader(this.requestHeader);
|
|
loader.setWithCredentials(this.withCredentials);
|
|
loader.load(url, function (text) {
|
|
try {
|
|
onLoad(scope.parse(JSON.parse(text)));
|
|
} catch (e) {
|
|
if (onError) {
|
|
onError(e);
|
|
} else {
|
|
console.error(e);
|
|
}
|
|
|
|
scope.manager.itemError(url);
|
|
}
|
|
}, onProgress, onError);
|
|
}
|
|
|
|
parse(json) {
|
|
const animations = [];
|
|
|
|
for (let i = 0; i < json.length; i++) {
|
|
const clip = AnimationClip.parse(json[i]);
|
|
animations.push(clip);
|
|
}
|
|
|
|
return animations;
|
|
}
|
|
|
|
}
|
|
|
|
/**
|
|
* Abstract Base class to block based textures loader (dds, pvr, ...)
|
|
*
|
|
* Sub classes have to implement the parse() method which will be used in load().
|
|
*/
|
|
|
|
class CompressedTextureLoader extends Loader {
|
|
constructor(manager) {
|
|
super(manager);
|
|
}
|
|
|
|
load(url, onLoad, onProgress, onError) {
|
|
const scope = this;
|
|
const images = [];
|
|
const texture = new CompressedTexture();
|
|
const loader = new FileLoader(this.manager);
|
|
loader.setPath(this.path);
|
|
loader.setResponseType('arraybuffer');
|
|
loader.setRequestHeader(this.requestHeader);
|
|
loader.setWithCredentials(scope.withCredentials);
|
|
let loaded = 0;
|
|
|
|
function loadTexture(i) {
|
|
loader.load(url[i], function (buffer) {
|
|
const texDatas = scope.parse(buffer, true);
|
|
images[i] = {
|
|
width: texDatas.width,
|
|
height: texDatas.height,
|
|
format: texDatas.format,
|
|
mipmaps: texDatas.mipmaps
|
|
};
|
|
loaded += 1;
|
|
|
|
if (loaded === 6) {
|
|
if (texDatas.mipmapCount === 1) texture.minFilter = LinearFilter;
|
|
texture.image = images;
|
|
texture.format = texDatas.format;
|
|
texture.needsUpdate = true;
|
|
if (onLoad) onLoad(texture);
|
|
}
|
|
}, onProgress, onError);
|
|
}
|
|
|
|
if (Array.isArray(url)) {
|
|
for (let i = 0, il = url.length; i < il; ++i) {
|
|
loadTexture(i);
|
|
}
|
|
} else {
|
|
// compressed cubemap texture stored in a single DDS file
|
|
loader.load(url, function (buffer) {
|
|
const texDatas = scope.parse(buffer, true);
|
|
|
|
if (texDatas.isCubemap) {
|
|
const faces = texDatas.mipmaps.length / texDatas.mipmapCount;
|
|
|
|
for (let f = 0; f < faces; f++) {
|
|
images[f] = {
|
|
mipmaps: []
|
|
};
|
|
|
|
for (let i = 0; i < texDatas.mipmapCount; i++) {
|
|
images[f].mipmaps.push(texDatas.mipmaps[f * texDatas.mipmapCount + i]);
|
|
images[f].format = texDatas.format;
|
|
images[f].width = texDatas.width;
|
|
images[f].height = texDatas.height;
|
|
}
|
|
}
|
|
|
|
texture.image = images;
|
|
} else {
|
|
texture.image.width = texDatas.width;
|
|
texture.image.height = texDatas.height;
|
|
texture.mipmaps = texDatas.mipmaps;
|
|
}
|
|
|
|
if (texDatas.mipmapCount === 1) {
|
|
texture.minFilter = LinearFilter;
|
|
}
|
|
|
|
texture.format = texDatas.format;
|
|
texture.needsUpdate = true;
|
|
if (onLoad) onLoad(texture);
|
|
}, onProgress, onError);
|
|
}
|
|
|
|
return texture;
|
|
}
|
|
|
|
}
|
|
|
|
class ImageLoader extends Loader {
|
|
constructor(manager) {
|
|
super(manager);
|
|
}
|
|
|
|
load(url, onLoad, onProgress, onError) {
|
|
if (this.path !== undefined) url = this.path + url;
|
|
url = this.manager.resolveURL(url);
|
|
const scope = this;
|
|
const cached = Cache.get(url);
|
|
|
|
if (cached !== undefined) {
|
|
scope.manager.itemStart(url);
|
|
setTimeout(function () {
|
|
if (onLoad) onLoad(cached);
|
|
scope.manager.itemEnd(url);
|
|
}, 0);
|
|
return cached;
|
|
}
|
|
|
|
const image = createElementNS('img');
|
|
|
|
function onImageLoad() {
|
|
image.removeEventListener('load', onImageLoad, false);
|
|
image.removeEventListener('error', onImageError, false);
|
|
Cache.add(url, this);
|
|
if (onLoad) onLoad(this);
|
|
scope.manager.itemEnd(url);
|
|
}
|
|
|
|
function onImageError(event) {
|
|
image.removeEventListener('load', onImageLoad, false);
|
|
image.removeEventListener('error', onImageError, false);
|
|
if (onError) onError(event);
|
|
scope.manager.itemError(url);
|
|
scope.manager.itemEnd(url);
|
|
}
|
|
|
|
image.addEventListener('load', onImageLoad, false);
|
|
image.addEventListener('error', onImageError, false);
|
|
|
|
if (url.substr(0, 5) !== 'data:') {
|
|
if (this.crossOrigin !== undefined) image.crossOrigin = this.crossOrigin;
|
|
}
|
|
|
|
scope.manager.itemStart(url);
|
|
image.src = url;
|
|
return image;
|
|
}
|
|
|
|
}
|
|
|
|
class CubeTextureLoader extends Loader {
|
|
constructor(manager) {
|
|
super(manager);
|
|
}
|
|
|
|
load(urls, onLoad, onProgress, onError) {
|
|
const texture = new CubeTexture();
|
|
const loader = new ImageLoader(this.manager);
|
|
loader.setCrossOrigin(this.crossOrigin);
|
|
loader.setPath(this.path);
|
|
let loaded = 0;
|
|
|
|
function loadTexture(i) {
|
|
loader.load(urls[i], function (image) {
|
|
texture.images[i] = image;
|
|
loaded++;
|
|
|
|
if (loaded === 6) {
|
|
texture.needsUpdate = true;
|
|
if (onLoad) onLoad(texture);
|
|
}
|
|
}, undefined, onError);
|
|
}
|
|
|
|
for (let i = 0; i < urls.length; ++i) {
|
|
loadTexture(i);
|
|
}
|
|
|
|
return texture;
|
|
}
|
|
|
|
}
|
|
|
|
/**
|
|
* Abstract Base class to load generic binary textures formats (rgbe, hdr, ...)
|
|
*
|
|
* Sub classes have to implement the parse() method which will be used in load().
|
|
*/
|
|
|
|
class DataTextureLoader extends Loader {
|
|
constructor(manager) {
|
|
super(manager);
|
|
}
|
|
|
|
load(url, onLoad, onProgress, onError) {
|
|
const scope = this;
|
|
const texture = new DataTexture();
|
|
const loader = new FileLoader(this.manager);
|
|
loader.setResponseType('arraybuffer');
|
|
loader.setRequestHeader(this.requestHeader);
|
|
loader.setPath(this.path);
|
|
loader.setWithCredentials(scope.withCredentials);
|
|
loader.load(url, function (buffer) {
|
|
const texData = scope.parse(buffer);
|
|
if (!texData) return;
|
|
|
|
if (texData.image !== undefined) {
|
|
texture.image = texData.image;
|
|
} else if (texData.data !== undefined) {
|
|
texture.image.width = texData.width;
|
|
texture.image.height = texData.height;
|
|
texture.image.data = texData.data;
|
|
}
|
|
|
|
texture.wrapS = texData.wrapS !== undefined ? texData.wrapS : ClampToEdgeWrapping;
|
|
texture.wrapT = texData.wrapT !== undefined ? texData.wrapT : ClampToEdgeWrapping;
|
|
texture.magFilter = texData.magFilter !== undefined ? texData.magFilter : LinearFilter;
|
|
texture.minFilter = texData.minFilter !== undefined ? texData.minFilter : LinearFilter;
|
|
texture.anisotropy = texData.anisotropy !== undefined ? texData.anisotropy : 1;
|
|
|
|
if (texData.encoding !== undefined) {
|
|
texture.encoding = texData.encoding;
|
|
}
|
|
|
|
if (texData.flipY !== undefined) {
|
|
texture.flipY = texData.flipY;
|
|
}
|
|
|
|
if (texData.format !== undefined) {
|
|
texture.format = texData.format;
|
|
}
|
|
|
|
if (texData.type !== undefined) {
|
|
texture.type = texData.type;
|
|
}
|
|
|
|
if (texData.mipmaps !== undefined) {
|
|
texture.mipmaps = texData.mipmaps;
|
|
texture.minFilter = LinearMipmapLinearFilter; // presumably...
|
|
}
|
|
|
|
if (texData.mipmapCount === 1) {
|
|
texture.minFilter = LinearFilter;
|
|
}
|
|
|
|
if (texData.generateMipmaps !== undefined) {
|
|
texture.generateMipmaps = texData.generateMipmaps;
|
|
}
|
|
|
|
texture.needsUpdate = true;
|
|
if (onLoad) onLoad(texture, texData);
|
|
}, onProgress, onError);
|
|
return texture;
|
|
}
|
|
|
|
}
|
|
|
|
class TextureLoader extends Loader {
|
|
constructor(manager) {
|
|
super(manager);
|
|
}
|
|
|
|
load(url, onLoad, onProgress, onError) {
|
|
const texture = new Texture();
|
|
const loader = new ImageLoader(this.manager);
|
|
loader.setCrossOrigin(this.crossOrigin);
|
|
loader.setPath(this.path);
|
|
loader.load(url, function (image) {
|
|
texture.image = image;
|
|
texture.needsUpdate = true;
|
|
|
|
if (onLoad !== undefined) {
|
|
onLoad(texture);
|
|
}
|
|
}, onProgress, onError);
|
|
return texture;
|
|
}
|
|
|
|
}
|
|
|
|
class Light extends Object3D {
|
|
constructor(color, intensity = 1) {
|
|
super();
|
|
this.type = 'Light';
|
|
this.color = new Color(color);
|
|
this.intensity = intensity;
|
|
}
|
|
|
|
dispose() {// Empty here in base class; some subclasses override.
|
|
}
|
|
|
|
copy(source) {
|
|
super.copy(source);
|
|
this.color.copy(source.color);
|
|
this.intensity = source.intensity;
|
|
return this;
|
|
}
|
|
|
|
toJSON(meta) {
|
|
const data = super.toJSON(meta);
|
|
data.object.color = this.color.getHex();
|
|
data.object.intensity = this.intensity;
|
|
if (this.groundColor !== undefined) data.object.groundColor = this.groundColor.getHex();
|
|
if (this.distance !== undefined) data.object.distance = this.distance;
|
|
if (this.angle !== undefined) data.object.angle = this.angle;
|
|
if (this.decay !== undefined) data.object.decay = this.decay;
|
|
if (this.penumbra !== undefined) data.object.penumbra = this.penumbra;
|
|
if (this.shadow !== undefined) data.object.shadow = this.shadow.toJSON();
|
|
return data;
|
|
}
|
|
|
|
}
|
|
|
|
Light.prototype.isLight = true;
|
|
|
|
class HemisphereLight extends Light {
|
|
constructor(skyColor, groundColor, intensity) {
|
|
super(skyColor, intensity);
|
|
this.type = 'HemisphereLight';
|
|
this.position.copy(Object3D.DefaultUp);
|
|
this.updateMatrix();
|
|
this.groundColor = new Color(groundColor);
|
|
}
|
|
|
|
copy(source) {
|
|
Light.prototype.copy.call(this, source);
|
|
this.groundColor.copy(source.groundColor);
|
|
return this;
|
|
}
|
|
|
|
}
|
|
|
|
HemisphereLight.prototype.isHemisphereLight = true;
|
|
|
|
const _projScreenMatrix$1 = /*@__PURE__*/new Matrix4();
|
|
|
|
const _lightPositionWorld$1 = /*@__PURE__*/new Vector3();
|
|
|
|
const _lookTarget$1 = /*@__PURE__*/new Vector3();
|
|
|
|
class LightShadow {
|
|
constructor(camera) {
|
|
this.camera = camera;
|
|
this.bias = 0;
|
|
this.normalBias = 0;
|
|
this.radius = 1;
|
|
this.blurSamples = 8;
|
|
this.mapSize = new Vector2(512, 512);
|
|
this.map = null;
|
|
this.mapPass = null;
|
|
this.matrix = new Matrix4();
|
|
this.autoUpdate = true;
|
|
this.needsUpdate = false;
|
|
this._frustum = new Frustum();
|
|
this._frameExtents = new Vector2(1, 1);
|
|
this._viewportCount = 1;
|
|
this._viewports = [new Vector4(0, 0, 1, 1)];
|
|
}
|
|
|
|
getViewportCount() {
|
|
return this._viewportCount;
|
|
}
|
|
|
|
getFrustum() {
|
|
return this._frustum;
|
|
}
|
|
|
|
updateMatrices(light) {
|
|
const shadowCamera = this.camera;
|
|
const shadowMatrix = this.matrix;
|
|
|
|
_lightPositionWorld$1.setFromMatrixPosition(light.matrixWorld);
|
|
|
|
shadowCamera.position.copy(_lightPositionWorld$1);
|
|
|
|
_lookTarget$1.setFromMatrixPosition(light.target.matrixWorld);
|
|
|
|
shadowCamera.lookAt(_lookTarget$1);
|
|
shadowCamera.updateMatrixWorld();
|
|
|
|
_projScreenMatrix$1.multiplyMatrices(shadowCamera.projectionMatrix, shadowCamera.matrixWorldInverse);
|
|
|
|
this._frustum.setFromProjectionMatrix(_projScreenMatrix$1);
|
|
|
|
shadowMatrix.set(0.5, 0.0, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.0, 0.5, 0.5, 0.0, 0.0, 0.0, 1.0);
|
|
shadowMatrix.multiply(shadowCamera.projectionMatrix);
|
|
shadowMatrix.multiply(shadowCamera.matrixWorldInverse);
|
|
}
|
|
|
|
getViewport(viewportIndex) {
|
|
return this._viewports[viewportIndex];
|
|
}
|
|
|
|
getFrameExtents() {
|
|
return this._frameExtents;
|
|
}
|
|
|
|
dispose() {
|
|
if (this.map) {
|
|
this.map.dispose();
|
|
}
|
|
|
|
if (this.mapPass) {
|
|
this.mapPass.dispose();
|
|
}
|
|
}
|
|
|
|
copy(source) {
|
|
this.camera = source.camera.clone();
|
|
this.bias = source.bias;
|
|
this.radius = source.radius;
|
|
this.mapSize.copy(source.mapSize);
|
|
return this;
|
|
}
|
|
|
|
clone() {
|
|
return new this.constructor().copy(this);
|
|
}
|
|
|
|
toJSON() {
|
|
const object = {};
|
|
if (this.bias !== 0) object.bias = this.bias;
|
|
if (this.normalBias !== 0) object.normalBias = this.normalBias;
|
|
if (this.radius !== 1) object.radius = this.radius;
|
|
if (this.mapSize.x !== 512 || this.mapSize.y !== 512) object.mapSize = this.mapSize.toArray();
|
|
object.camera = this.camera.toJSON(false).object;
|
|
delete object.camera.matrix;
|
|
return object;
|
|
}
|
|
|
|
}
|
|
|
|
class SpotLightShadow extends LightShadow {
|
|
constructor() {
|
|
super(new PerspectiveCamera(50, 1, 0.5, 500));
|
|
this.focus = 1;
|
|
}
|
|
|
|
updateMatrices(light) {
|
|
const camera = this.camera;
|
|
const fov = RAD2DEG * 2 * light.angle * this.focus;
|
|
const aspect = this.mapSize.width / this.mapSize.height;
|
|
const far = light.distance || camera.far;
|
|
|
|
if (fov !== camera.fov || aspect !== camera.aspect || far !== camera.far) {
|
|
camera.fov = fov;
|
|
camera.aspect = aspect;
|
|
camera.far = far;
|
|
camera.updateProjectionMatrix();
|
|
}
|
|
|
|
super.updateMatrices(light);
|
|
}
|
|
|
|
copy(source) {
|
|
super.copy(source);
|
|
this.focus = source.focus;
|
|
return this;
|
|
}
|
|
|
|
}
|
|
|
|
SpotLightShadow.prototype.isSpotLightShadow = true;
|
|
|
|
class SpotLight extends Light {
|
|
constructor(color, intensity, distance = 0, angle = Math.PI / 3, penumbra = 0, decay = 1) {
|
|
super(color, intensity);
|
|
this.type = 'SpotLight';
|
|
this.position.copy(Object3D.DefaultUp);
|
|
this.updateMatrix();
|
|
this.target = new Object3D();
|
|
this.distance = distance;
|
|
this.angle = angle;
|
|
this.penumbra = penumbra;
|
|
this.decay = decay; // for physically correct lights, should be 2.
|
|
|
|
this.shadow = new SpotLightShadow();
|
|
}
|
|
|
|
get power() {
|
|
// compute the light's luminous power (in lumens) from its intensity (in candela)
|
|
// by convention for a spotlight, luminous power (lm) = π * luminous intensity (cd)
|
|
return this.intensity * Math.PI;
|
|
}
|
|
|
|
set power(power) {
|
|
// set the light's intensity (in candela) from the desired luminous power (in lumens)
|
|
this.intensity = power / Math.PI;
|
|
}
|
|
|
|
dispose() {
|
|
this.shadow.dispose();
|
|
}
|
|
|
|
copy(source) {
|
|
super.copy(source);
|
|
this.distance = source.distance;
|
|
this.angle = source.angle;
|
|
this.penumbra = source.penumbra;
|
|
this.decay = source.decay;
|
|
this.target = source.target.clone();
|
|
this.shadow = source.shadow.clone();
|
|
return this;
|
|
}
|
|
|
|
}
|
|
|
|
SpotLight.prototype.isSpotLight = true;
|
|
|
|
const _projScreenMatrix = /*@__PURE__*/new Matrix4();
|
|
|
|
const _lightPositionWorld = /*@__PURE__*/new Vector3();
|
|
|
|
const _lookTarget = /*@__PURE__*/new Vector3();
|
|
|
|
class PointLightShadow extends LightShadow {
|
|
constructor() {
|
|
super(new PerspectiveCamera(90, 1, 0.5, 500));
|
|
this._frameExtents = new Vector2(4, 2);
|
|
this._viewportCount = 6;
|
|
this._viewports = [// These viewports map a cube-map onto a 2D texture with the
|
|
// following orientation:
|
|
//
|
|
// xzXZ
|
|
// y Y
|
|
//
|
|
// X - Positive x direction
|
|
// x - Negative x direction
|
|
// Y - Positive y direction
|
|
// y - Negative y direction
|
|
// Z - Positive z direction
|
|
// z - Negative z direction
|
|
// positive X
|
|
new Vector4(2, 1, 1, 1), // negative X
|
|
new Vector4(0, 1, 1, 1), // positive Z
|
|
new Vector4(3, 1, 1, 1), // negative Z
|
|
new Vector4(1, 1, 1, 1), // positive Y
|
|
new Vector4(3, 0, 1, 1), // negative Y
|
|
new Vector4(1, 0, 1, 1)];
|
|
this._cubeDirections = [new Vector3(1, 0, 0), new Vector3(-1, 0, 0), new Vector3(0, 0, 1), new Vector3(0, 0, -1), new Vector3(0, 1, 0), new Vector3(0, -1, 0)];
|
|
this._cubeUps = [new Vector3(0, 1, 0), new Vector3(0, 1, 0), new Vector3(0, 1, 0), new Vector3(0, 1, 0), new Vector3(0, 0, 1), new Vector3(0, 0, -1)];
|
|
}
|
|
|
|
updateMatrices(light, viewportIndex = 0) {
|
|
const camera = this.camera;
|
|
const shadowMatrix = this.matrix;
|
|
const far = light.distance || camera.far;
|
|
|
|
if (far !== camera.far) {
|
|
camera.far = far;
|
|
camera.updateProjectionMatrix();
|
|
}
|
|
|
|
_lightPositionWorld.setFromMatrixPosition(light.matrixWorld);
|
|
|
|
camera.position.copy(_lightPositionWorld);
|
|
|
|
_lookTarget.copy(camera.position);
|
|
|
|
_lookTarget.add(this._cubeDirections[viewportIndex]);
|
|
|
|
camera.up.copy(this._cubeUps[viewportIndex]);
|
|
camera.lookAt(_lookTarget);
|
|
camera.updateMatrixWorld();
|
|
shadowMatrix.makeTranslation(-_lightPositionWorld.x, -_lightPositionWorld.y, -_lightPositionWorld.z);
|
|
|
|
_projScreenMatrix.multiplyMatrices(camera.projectionMatrix, camera.matrixWorldInverse);
|
|
|
|
this._frustum.setFromProjectionMatrix(_projScreenMatrix);
|
|
}
|
|
|
|
}
|
|
|
|
PointLightShadow.prototype.isPointLightShadow = true;
|
|
|
|
class PointLight extends Light {
|
|
constructor(color, intensity, distance = 0, decay = 1) {
|
|
super(color, intensity);
|
|
this.type = 'PointLight';
|
|
this.distance = distance;
|
|
this.decay = decay; // for physically correct lights, should be 2.
|
|
|
|
this.shadow = new PointLightShadow();
|
|
}
|
|
|
|
get power() {
|
|
// compute the light's luminous power (in lumens) from its intensity (in candela)
|
|
// for an isotropic light source, luminous power (lm) = 4 π luminous intensity (cd)
|
|
return this.intensity * 4 * Math.PI;
|
|
}
|
|
|
|
set power(power) {
|
|
// set the light's intensity (in candela) from the desired luminous power (in lumens)
|
|
this.intensity = power / (4 * Math.PI);
|
|
}
|
|
|
|
dispose() {
|
|
this.shadow.dispose();
|
|
}
|
|
|
|
copy(source) {
|
|
super.copy(source);
|
|
this.distance = source.distance;
|
|
this.decay = source.decay;
|
|
this.shadow = source.shadow.clone();
|
|
return this;
|
|
}
|
|
|
|
}
|
|
|
|
PointLight.prototype.isPointLight = true;
|
|
|
|
class DirectionalLightShadow extends LightShadow {
|
|
constructor() {
|
|
super(new OrthographicCamera(-5, 5, 5, -5, 0.5, 500));
|
|
}
|
|
|
|
}
|
|
|
|
DirectionalLightShadow.prototype.isDirectionalLightShadow = true;
|
|
|
|
class DirectionalLight extends Light {
|
|
constructor(color, intensity) {
|
|
super(color, intensity);
|
|
this.type = 'DirectionalLight';
|
|
this.position.copy(Object3D.DefaultUp);
|
|
this.updateMatrix();
|
|
this.target = new Object3D();
|
|
this.shadow = new DirectionalLightShadow();
|
|
}
|
|
|
|
dispose() {
|
|
this.shadow.dispose();
|
|
}
|
|
|
|
copy(source) {
|
|
super.copy(source);
|
|
this.target = source.target.clone();
|
|
this.shadow = source.shadow.clone();
|
|
return this;
|
|
}
|
|
|
|
}
|
|
|
|
DirectionalLight.prototype.isDirectionalLight = true;
|
|
|
|
class AmbientLight extends Light {
|
|
constructor(color, intensity) {
|
|
super(color, intensity);
|
|
this.type = 'AmbientLight';
|
|
}
|
|
|
|
}
|
|
|
|
AmbientLight.prototype.isAmbientLight = true;
|
|
|
|
class RectAreaLight extends Light {
|
|
constructor(color, intensity, width = 10, height = 10) {
|
|
super(color, intensity);
|
|
this.type = 'RectAreaLight';
|
|
this.width = width;
|
|
this.height = height;
|
|
}
|
|
|
|
get power() {
|
|
// compute the light's luminous power (in lumens) from its intensity (in nits)
|
|
return this.intensity * this.width * this.height * Math.PI;
|
|
}
|
|
|
|
set power(power) {
|
|
// set the light's intensity (in nits) from the desired luminous power (in lumens)
|
|
this.intensity = power / (this.width * this.height * Math.PI);
|
|
}
|
|
|
|
copy(source) {
|
|
super.copy(source);
|
|
this.width = source.width;
|
|
this.height = source.height;
|
|
return this;
|
|
}
|
|
|
|
toJSON(meta) {
|
|
const data = super.toJSON(meta);
|
|
data.object.width = this.width;
|
|
data.object.height = this.height;
|
|
return data;
|
|
}
|
|
|
|
}
|
|
|
|
RectAreaLight.prototype.isRectAreaLight = true;
|
|
|
|
/**
|
|
* Primary reference:
|
|
* https://graphics.stanford.edu/papers/envmap/envmap.pdf
|
|
*
|
|
* Secondary reference:
|
|
* https://www.ppsloan.org/publications/StupidSH36.pdf
|
|
*/
|
|
// 3-band SH defined by 9 coefficients
|
|
|
|
class SphericalHarmonics3 {
|
|
constructor() {
|
|
this.coefficients = [];
|
|
|
|
for (let i = 0; i < 9; i++) {
|
|
this.coefficients.push(new Vector3());
|
|
}
|
|
}
|
|
|
|
set(coefficients) {
|
|
for (let i = 0; i < 9; i++) {
|
|
this.coefficients[i].copy(coefficients[i]);
|
|
}
|
|
|
|
return this;
|
|
}
|
|
|
|
zero() {
|
|
for (let i = 0; i < 9; i++) {
|
|
this.coefficients[i].set(0, 0, 0);
|
|
}
|
|
|
|
return this;
|
|
} // get the radiance in the direction of the normal
|
|
// target is a Vector3
|
|
|
|
|
|
getAt(normal, target) {
|
|
// normal is assumed to be unit length
|
|
const x = normal.x,
|
|
y = normal.y,
|
|
z = normal.z;
|
|
const coeff = this.coefficients; // band 0
|
|
|
|
target.copy(coeff[0]).multiplyScalar(0.282095); // band 1
|
|
|
|
target.addScaledVector(coeff[1], 0.488603 * y);
|
|
target.addScaledVector(coeff[2], 0.488603 * z);
|
|
target.addScaledVector(coeff[3], 0.488603 * x); // band 2
|
|
|
|
target.addScaledVector(coeff[4], 1.092548 * (x * y));
|
|
target.addScaledVector(coeff[5], 1.092548 * (y * z));
|
|
target.addScaledVector(coeff[6], 0.315392 * (3.0 * z * z - 1.0));
|
|
target.addScaledVector(coeff[7], 1.092548 * (x * z));
|
|
target.addScaledVector(coeff[8], 0.546274 * (x * x - y * y));
|
|
return target;
|
|
} // get the irradiance (radiance convolved with cosine lobe) in the direction of the normal
|
|
// target is a Vector3
|
|
// https://graphics.stanford.edu/papers/envmap/envmap.pdf
|
|
|
|
|
|
getIrradianceAt(normal, target) {
|
|
// normal is assumed to be unit length
|
|
const x = normal.x,
|
|
y = normal.y,
|
|
z = normal.z;
|
|
const coeff = this.coefficients; // band 0
|
|
|
|
target.copy(coeff[0]).multiplyScalar(0.886227); // π * 0.282095
|
|
// band 1
|
|
|
|
target.addScaledVector(coeff[1], 2.0 * 0.511664 * y); // ( 2 * π / 3 ) * 0.488603
|
|
|
|
target.addScaledVector(coeff[2], 2.0 * 0.511664 * z);
|
|
target.addScaledVector(coeff[3], 2.0 * 0.511664 * x); // band 2
|
|
|
|
target.addScaledVector(coeff[4], 2.0 * 0.429043 * x * y); // ( π / 4 ) * 1.092548
|
|
|
|
target.addScaledVector(coeff[5], 2.0 * 0.429043 * y * z);
|
|
target.addScaledVector(coeff[6], 0.743125 * z * z - 0.247708); // ( π / 4 ) * 0.315392 * 3
|
|
|
|
target.addScaledVector(coeff[7], 2.0 * 0.429043 * x * z);
|
|
target.addScaledVector(coeff[8], 0.429043 * (x * x - y * y)); // ( π / 4 ) * 0.546274
|
|
|
|
return target;
|
|
}
|
|
|
|
add(sh) {
|
|
for (let i = 0; i < 9; i++) {
|
|
this.coefficients[i].add(sh.coefficients[i]);
|
|
}
|
|
|
|
return this;
|
|
}
|
|
|
|
addScaledSH(sh, s) {
|
|
for (let i = 0; i < 9; i++) {
|
|
this.coefficients[i].addScaledVector(sh.coefficients[i], s);
|
|
}
|
|
|
|
return this;
|
|
}
|
|
|
|
scale(s) {
|
|
for (let i = 0; i < 9; i++) {
|
|
this.coefficients[i].multiplyScalar(s);
|
|
}
|
|
|
|
return this;
|
|
}
|
|
|
|
lerp(sh, alpha) {
|
|
for (let i = 0; i < 9; i++) {
|
|
this.coefficients[i].lerp(sh.coefficients[i], alpha);
|
|
}
|
|
|
|
return this;
|
|
}
|
|
|
|
equals(sh) {
|
|
for (let i = 0; i < 9; i++) {
|
|
if (!this.coefficients[i].equals(sh.coefficients[i])) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
copy(sh) {
|
|
return this.set(sh.coefficients);
|
|
}
|
|
|
|
clone() {
|
|
return new this.constructor().copy(this);
|
|
}
|
|
|
|
fromArray(array, offset = 0) {
|
|
const coefficients = this.coefficients;
|
|
|
|
for (let i = 0; i < 9; i++) {
|
|
coefficients[i].fromArray(array, offset + i * 3);
|
|
}
|
|
|
|
return this;
|
|
}
|
|
|
|
toArray(array = [], offset = 0) {
|
|
const coefficients = this.coefficients;
|
|
|
|
for (let i = 0; i < 9; i++) {
|
|
coefficients[i].toArray(array, offset + i * 3);
|
|
}
|
|
|
|
return array;
|
|
} // evaluate the basis functions
|
|
// shBasis is an Array[ 9 ]
|
|
|
|
|
|
static getBasisAt(normal, shBasis) {
|
|
// normal is assumed to be unit length
|
|
const x = normal.x,
|
|
y = normal.y,
|
|
z = normal.z; // band 0
|
|
|
|
shBasis[0] = 0.282095; // band 1
|
|
|
|
shBasis[1] = 0.488603 * y;
|
|
shBasis[2] = 0.488603 * z;
|
|
shBasis[3] = 0.488603 * x; // band 2
|
|
|
|
shBasis[4] = 1.092548 * x * y;
|
|
shBasis[5] = 1.092548 * y * z;
|
|
shBasis[6] = 0.315392 * (3 * z * z - 1);
|
|
shBasis[7] = 1.092548 * x * z;
|
|
shBasis[8] = 0.546274 * (x * x - y * y);
|
|
}
|
|
|
|
}
|
|
|
|
SphericalHarmonics3.prototype.isSphericalHarmonics3 = true;
|
|
|
|
class LightProbe extends Light {
|
|
constructor(sh = new SphericalHarmonics3(), intensity = 1) {
|
|
super(undefined, intensity);
|
|
this.sh = sh;
|
|
}
|
|
|
|
copy(source) {
|
|
super.copy(source);
|
|
this.sh.copy(source.sh);
|
|
return this;
|
|
}
|
|
|
|
fromJSON(json) {
|
|
this.intensity = json.intensity; // TODO: Move this bit to Light.fromJSON();
|
|
|
|
this.sh.fromArray(json.sh);
|
|
return this;
|
|
}
|
|
|
|
toJSON(meta) {
|
|
const data = super.toJSON(meta);
|
|
data.object.sh = this.sh.toArray();
|
|
return data;
|
|
}
|
|
|
|
}
|
|
|
|
LightProbe.prototype.isLightProbe = true;
|
|
|
|
class MaterialLoader extends Loader {
|
|
constructor(manager) {
|
|
super(manager);
|
|
this.textures = {};
|
|
}
|
|
|
|
load(url, onLoad, onProgress, onError) {
|
|
const scope = this;
|
|
const loader = new FileLoader(scope.manager);
|
|
loader.setPath(scope.path);
|
|
loader.setRequestHeader(scope.requestHeader);
|
|
loader.setWithCredentials(scope.withCredentials);
|
|
loader.load(url, function (text) {
|
|
try {
|
|
onLoad(scope.parse(JSON.parse(text)));
|
|
} catch (e) {
|
|
if (onError) {
|
|
onError(e);
|
|
} else {
|
|
console.error(e);
|
|
}
|
|
|
|
scope.manager.itemError(url);
|
|
}
|
|
}, onProgress, onError);
|
|
}
|
|
|
|
parse(json) {
|
|
const textures = this.textures;
|
|
|
|
function getTexture(name) {
|
|
if (textures[name] === undefined) {
|
|
console.warn('THREE.MaterialLoader: Undefined texture', name);
|
|
}
|
|
|
|
return textures[name];
|
|
}
|
|
|
|
const material = new Materials[json.type]();
|
|
if (json.uuid !== undefined) material.uuid = json.uuid;
|
|
if (json.name !== undefined) material.name = json.name;
|
|
if (json.color !== undefined && material.color !== undefined) material.color.setHex(json.color);
|
|
if (json.roughness !== undefined) material.roughness = json.roughness;
|
|
if (json.metalness !== undefined) material.metalness = json.metalness;
|
|
if (json.sheen !== undefined) material.sheen = json.sheen;
|
|
if (json.sheenTint !== undefined) material.sheenTint = new Color().setHex(json.sheenTint);
|
|
if (json.sheenRoughness !== undefined) material.sheenRoughness = json.sheenRoughness;
|
|
if (json.emissive !== undefined && material.emissive !== undefined) material.emissive.setHex(json.emissive);
|
|
if (json.specular !== undefined && material.specular !== undefined) material.specular.setHex(json.specular);
|
|
if (json.specularIntensity !== undefined) material.specularIntensity = json.specularIntensity;
|
|
if (json.specularTint !== undefined && material.specularTint !== undefined) material.specularTint.setHex(json.specularTint);
|
|
if (json.shininess !== undefined) material.shininess = json.shininess;
|
|
if (json.clearcoat !== undefined) material.clearcoat = json.clearcoat;
|
|
if (json.clearcoatRoughness !== undefined) material.clearcoatRoughness = json.clearcoatRoughness;
|
|
if (json.transmission !== undefined) material.transmission = json.transmission;
|
|
if (json.thickness !== undefined) material.thickness = json.thickness;
|
|
if (json.attenuationDistance !== undefined) material.attenuationDistance = json.attenuationDistance;
|
|
if (json.attenuationTint !== undefined && material.attenuationTint !== undefined) material.attenuationTint.setHex(json.attenuationTint);
|
|
if (json.fog !== undefined) material.fog = json.fog;
|
|
if (json.flatShading !== undefined) material.flatShading = json.flatShading;
|
|
if (json.blending !== undefined) material.blending = json.blending;
|
|
if (json.combine !== undefined) material.combine = json.combine;
|
|
if (json.side !== undefined) material.side = json.side;
|
|
if (json.shadowSide !== undefined) material.shadowSide = json.shadowSide;
|
|
if (json.opacity !== undefined) material.opacity = json.opacity;
|
|
if (json.format !== undefined) material.format = json.format;
|
|
if (json.transparent !== undefined) material.transparent = json.transparent;
|
|
if (json.alphaTest !== undefined) material.alphaTest = json.alphaTest;
|
|
if (json.depthTest !== undefined) material.depthTest = json.depthTest;
|
|
if (json.depthWrite !== undefined) material.depthWrite = json.depthWrite;
|
|
if (json.colorWrite !== undefined) material.colorWrite = json.colorWrite;
|
|
if (json.stencilWrite !== undefined) material.stencilWrite = json.stencilWrite;
|
|
if (json.stencilWriteMask !== undefined) material.stencilWriteMask = json.stencilWriteMask;
|
|
if (json.stencilFunc !== undefined) material.stencilFunc = json.stencilFunc;
|
|
if (json.stencilRef !== undefined) material.stencilRef = json.stencilRef;
|
|
if (json.stencilFuncMask !== undefined) material.stencilFuncMask = json.stencilFuncMask;
|
|
if (json.stencilFail !== undefined) material.stencilFail = json.stencilFail;
|
|
if (json.stencilZFail !== undefined) material.stencilZFail = json.stencilZFail;
|
|
if (json.stencilZPass !== undefined) material.stencilZPass = json.stencilZPass;
|
|
if (json.wireframe !== undefined) material.wireframe = json.wireframe;
|
|
if (json.wireframeLinewidth !== undefined) material.wireframeLinewidth = json.wireframeLinewidth;
|
|
if (json.wireframeLinecap !== undefined) material.wireframeLinecap = json.wireframeLinecap;
|
|
if (json.wireframeLinejoin !== undefined) material.wireframeLinejoin = json.wireframeLinejoin;
|
|
if (json.rotation !== undefined) material.rotation = json.rotation;
|
|
if (json.linewidth !== 1) material.linewidth = json.linewidth;
|
|
if (json.dashSize !== undefined) material.dashSize = json.dashSize;
|
|
if (json.gapSize !== undefined) material.gapSize = json.gapSize;
|
|
if (json.scale !== undefined) material.scale = json.scale;
|
|
if (json.polygonOffset !== undefined) material.polygonOffset = json.polygonOffset;
|
|
if (json.polygonOffsetFactor !== undefined) material.polygonOffsetFactor = json.polygonOffsetFactor;
|
|
if (json.polygonOffsetUnits !== undefined) material.polygonOffsetUnits = json.polygonOffsetUnits;
|
|
if (json.dithering !== undefined) material.dithering = json.dithering;
|
|
if (json.alphaToCoverage !== undefined) material.alphaToCoverage = json.alphaToCoverage;
|
|
if (json.premultipliedAlpha !== undefined) material.premultipliedAlpha = json.premultipliedAlpha;
|
|
if (json.visible !== undefined) material.visible = json.visible;
|
|
if (json.toneMapped !== undefined) material.toneMapped = json.toneMapped;
|
|
if (json.userData !== undefined) material.userData = json.userData;
|
|
|
|
if (json.vertexColors !== undefined) {
|
|
if (typeof json.vertexColors === 'number') {
|
|
material.vertexColors = json.vertexColors > 0 ? true : false;
|
|
} else {
|
|
material.vertexColors = json.vertexColors;
|
|
}
|
|
} // Shader Material
|
|
|
|
|
|
if (json.uniforms !== undefined) {
|
|
for (const name in json.uniforms) {
|
|
const uniform = json.uniforms[name];
|
|
material.uniforms[name] = {};
|
|
|
|
switch (uniform.type) {
|
|
case 't':
|
|
material.uniforms[name].value = getTexture(uniform.value);
|
|
break;
|
|
|
|
case 'c':
|
|
material.uniforms[name].value = new Color().setHex(uniform.value);
|
|
break;
|
|
|
|
case 'v2':
|
|
material.uniforms[name].value = new Vector2().fromArray(uniform.value);
|
|
break;
|
|
|
|
case 'v3':
|
|
material.uniforms[name].value = new Vector3().fromArray(uniform.value);
|
|
break;
|
|
|
|
case 'v4':
|
|
material.uniforms[name].value = new Vector4().fromArray(uniform.value);
|
|
break;
|
|
|
|
case 'm3':
|
|
material.uniforms[name].value = new Matrix3().fromArray(uniform.value);
|
|
break;
|
|
|
|
case 'm4':
|
|
material.uniforms[name].value = new Matrix4().fromArray(uniform.value);
|
|
break;
|
|
|
|
default:
|
|
material.uniforms[name].value = uniform.value;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (json.defines !== undefined) material.defines = json.defines;
|
|
if (json.vertexShader !== undefined) material.vertexShader = json.vertexShader;
|
|
if (json.fragmentShader !== undefined) material.fragmentShader = json.fragmentShader;
|
|
|
|
if (json.extensions !== undefined) {
|
|
for (const key in json.extensions) {
|
|
material.extensions[key] = json.extensions[key];
|
|
}
|
|
} // Deprecated
|
|
|
|
|
|
if (json.shading !== undefined) material.flatShading = json.shading === 1; // THREE.FlatShading
|
|
// for PointsMaterial
|
|
|
|
if (json.size !== undefined) material.size = json.size;
|
|
if (json.sizeAttenuation !== undefined) material.sizeAttenuation = json.sizeAttenuation; // maps
|
|
|
|
if (json.map !== undefined) material.map = getTexture(json.map);
|
|
if (json.matcap !== undefined) material.matcap = getTexture(json.matcap);
|
|
if (json.alphaMap !== undefined) material.alphaMap = getTexture(json.alphaMap);
|
|
if (json.bumpMap !== undefined) material.bumpMap = getTexture(json.bumpMap);
|
|
if (json.bumpScale !== undefined) material.bumpScale = json.bumpScale;
|
|
if (json.normalMap !== undefined) material.normalMap = getTexture(json.normalMap);
|
|
if (json.normalMapType !== undefined) material.normalMapType = json.normalMapType;
|
|
|
|
if (json.normalScale !== undefined) {
|
|
let normalScale = json.normalScale;
|
|
|
|
if (Array.isArray(normalScale) === false) {
|
|
// Blender exporter used to export a scalar. See #7459
|
|
normalScale = [normalScale, normalScale];
|
|
}
|
|
|
|
material.normalScale = new Vector2().fromArray(normalScale);
|
|
}
|
|
|
|
if (json.displacementMap !== undefined) material.displacementMap = getTexture(json.displacementMap);
|
|
if (json.displacementScale !== undefined) material.displacementScale = json.displacementScale;
|
|
if (json.displacementBias !== undefined) material.displacementBias = json.displacementBias;
|
|
if (json.roughnessMap !== undefined) material.roughnessMap = getTexture(json.roughnessMap);
|
|
if (json.metalnessMap !== undefined) material.metalnessMap = getTexture(json.metalnessMap);
|
|
if (json.emissiveMap !== undefined) material.emissiveMap = getTexture(json.emissiveMap);
|
|
if (json.emissiveIntensity !== undefined) material.emissiveIntensity = json.emissiveIntensity;
|
|
if (json.specularMap !== undefined) material.specularMap = getTexture(json.specularMap);
|
|
if (json.specularIntensityMap !== undefined) material.specularIntensityMap = getTexture(json.specularIntensityMap);
|
|
if (json.specularTintMap !== undefined) material.specularTintMap = getTexture(json.specularTintMap);
|
|
if (json.envMap !== undefined) material.envMap = getTexture(json.envMap);
|
|
if (json.envMapIntensity !== undefined) material.envMapIntensity = json.envMapIntensity;
|
|
if (json.reflectivity !== undefined) material.reflectivity = json.reflectivity;
|
|
if (json.refractionRatio !== undefined) material.refractionRatio = json.refractionRatio;
|
|
if (json.lightMap !== undefined) material.lightMap = getTexture(json.lightMap);
|
|
if (json.lightMapIntensity !== undefined) material.lightMapIntensity = json.lightMapIntensity;
|
|
if (json.aoMap !== undefined) material.aoMap = getTexture(json.aoMap);
|
|
if (json.aoMapIntensity !== undefined) material.aoMapIntensity = json.aoMapIntensity;
|
|
if (json.gradientMap !== undefined) material.gradientMap = getTexture(json.gradientMap);
|
|
if (json.clearcoatMap !== undefined) material.clearcoatMap = getTexture(json.clearcoatMap);
|
|
if (json.clearcoatRoughnessMap !== undefined) material.clearcoatRoughnessMap = getTexture(json.clearcoatRoughnessMap);
|
|
if (json.clearcoatNormalMap !== undefined) material.clearcoatNormalMap = getTexture(json.clearcoatNormalMap);
|
|
if (json.clearcoatNormalScale !== undefined) material.clearcoatNormalScale = new Vector2().fromArray(json.clearcoatNormalScale);
|
|
if (json.transmissionMap !== undefined) material.transmissionMap = getTexture(json.transmissionMap);
|
|
if (json.thicknessMap !== undefined) material.thicknessMap = getTexture(json.thicknessMap);
|
|
return material;
|
|
}
|
|
|
|
setTextures(value) {
|
|
this.textures = value;
|
|
return this;
|
|
}
|
|
|
|
}
|
|
|
|
class LoaderUtils {
|
|
static decodeText(array) {
|
|
if (typeof TextDecoder !== 'undefined') {
|
|
return new TextDecoder().decode(array);
|
|
} // Avoid the String.fromCharCode.apply(null, array) shortcut, which
|
|
// throws a "maximum call stack size exceeded" error for large arrays.
|
|
|
|
|
|
let s = '';
|
|
|
|
for (let i = 0, il = array.length; i < il; i++) {
|
|
// Implicitly assumes little-endian.
|
|
s += String.fromCharCode(array[i]);
|
|
}
|
|
|
|
try {
|
|
// merges multi-byte utf-8 characters.
|
|
return decodeURIComponent(escape(s));
|
|
} catch (e) {
|
|
// see #16358
|
|
return s;
|
|
}
|
|
}
|
|
|
|
static extractUrlBase(url) {
|
|
const index = url.lastIndexOf('/');
|
|
if (index === -1) return './';
|
|
return url.substr(0, index + 1);
|
|
}
|
|
|
|
}
|
|
|
|
class InstancedBufferGeometry extends BufferGeometry {
|
|
constructor() {
|
|
super();
|
|
this.type = 'InstancedBufferGeometry';
|
|
this.instanceCount = Infinity;
|
|
}
|
|
|
|
copy(source) {
|
|
super.copy(source);
|
|
this.instanceCount = source.instanceCount;
|
|
return this;
|
|
}
|
|
|
|
clone() {
|
|
return new this.constructor().copy(this);
|
|
}
|
|
|
|
toJSON() {
|
|
const data = super.toJSON(this);
|
|
data.instanceCount = this.instanceCount;
|
|
data.isInstancedBufferGeometry = true;
|
|
return data;
|
|
}
|
|
|
|
}
|
|
|
|
InstancedBufferGeometry.prototype.isInstancedBufferGeometry = true;
|
|
|
|
class BufferGeometryLoader extends Loader {
|
|
constructor(manager) {
|
|
super(manager);
|
|
}
|
|
|
|
load(url, onLoad, onProgress, onError) {
|
|
const scope = this;
|
|
const loader = new FileLoader(scope.manager);
|
|
loader.setPath(scope.path);
|
|
loader.setRequestHeader(scope.requestHeader);
|
|
loader.setWithCredentials(scope.withCredentials);
|
|
loader.load(url, function (text) {
|
|
try {
|
|
onLoad(scope.parse(JSON.parse(text)));
|
|
} catch (e) {
|
|
if (onError) {
|
|
onError(e);
|
|
} else {
|
|
console.error(e);
|
|
}
|
|
|
|
scope.manager.itemError(url);
|
|
}
|
|
}, onProgress, onError);
|
|
}
|
|
|
|
parse(json) {
|
|
const interleavedBufferMap = {};
|
|
const arrayBufferMap = {};
|
|
|
|
function getInterleavedBuffer(json, uuid) {
|
|
if (interleavedBufferMap[uuid] !== undefined) return interleavedBufferMap[uuid];
|
|
const interleavedBuffers = json.interleavedBuffers;
|
|
const interleavedBuffer = interleavedBuffers[uuid];
|
|
const buffer = getArrayBuffer(json, interleavedBuffer.buffer);
|
|
const array = getTypedArray(interleavedBuffer.type, buffer);
|
|
const ib = new InterleavedBuffer(array, interleavedBuffer.stride);
|
|
ib.uuid = interleavedBuffer.uuid;
|
|
interleavedBufferMap[uuid] = ib;
|
|
return ib;
|
|
}
|
|
|
|
function getArrayBuffer(json, uuid) {
|
|
if (arrayBufferMap[uuid] !== undefined) return arrayBufferMap[uuid];
|
|
const arrayBuffers = json.arrayBuffers;
|
|
const arrayBuffer = arrayBuffers[uuid];
|
|
const ab = new Uint32Array(arrayBuffer).buffer;
|
|
arrayBufferMap[uuid] = ab;
|
|
return ab;
|
|
}
|
|
|
|
const geometry = json.isInstancedBufferGeometry ? new InstancedBufferGeometry() : new BufferGeometry();
|
|
const index = json.data.index;
|
|
|
|
if (index !== undefined) {
|
|
const typedArray = getTypedArray(index.type, index.array);
|
|
geometry.setIndex(new BufferAttribute(typedArray, 1));
|
|
}
|
|
|
|
const attributes = json.data.attributes;
|
|
|
|
for (const key in attributes) {
|
|
const attribute = attributes[key];
|
|
let bufferAttribute;
|
|
|
|
if (attribute.isInterleavedBufferAttribute) {
|
|
const interleavedBuffer = getInterleavedBuffer(json.data, attribute.data);
|
|
bufferAttribute = new InterleavedBufferAttribute(interleavedBuffer, attribute.itemSize, attribute.offset, attribute.normalized);
|
|
} else {
|
|
const typedArray = getTypedArray(attribute.type, attribute.array);
|
|
const bufferAttributeConstr = attribute.isInstancedBufferAttribute ? InstancedBufferAttribute : BufferAttribute;
|
|
bufferAttribute = new bufferAttributeConstr(typedArray, attribute.itemSize, attribute.normalized);
|
|
}
|
|
|
|
if (attribute.name !== undefined) bufferAttribute.name = attribute.name;
|
|
if (attribute.usage !== undefined) bufferAttribute.setUsage(attribute.usage);
|
|
|
|
if (attribute.updateRange !== undefined) {
|
|
bufferAttribute.updateRange.offset = attribute.updateRange.offset;
|
|
bufferAttribute.updateRange.count = attribute.updateRange.count;
|
|
}
|
|
|
|
geometry.setAttribute(key, bufferAttribute);
|
|
}
|
|
|
|
const morphAttributes = json.data.morphAttributes;
|
|
|
|
if (morphAttributes) {
|
|
for (const key in morphAttributes) {
|
|
const attributeArray = morphAttributes[key];
|
|
const array = [];
|
|
|
|
for (let i = 0, il = attributeArray.length; i < il; i++) {
|
|
const attribute = attributeArray[i];
|
|
let bufferAttribute;
|
|
|
|
if (attribute.isInterleavedBufferAttribute) {
|
|
const interleavedBuffer = getInterleavedBuffer(json.data, attribute.data);
|
|
bufferAttribute = new InterleavedBufferAttribute(interleavedBuffer, attribute.itemSize, attribute.offset, attribute.normalized);
|
|
} else {
|
|
const typedArray = getTypedArray(attribute.type, attribute.array);
|
|
bufferAttribute = new BufferAttribute(typedArray, attribute.itemSize, attribute.normalized);
|
|
}
|
|
|
|
if (attribute.name !== undefined) bufferAttribute.name = attribute.name;
|
|
array.push(bufferAttribute);
|
|
}
|
|
|
|
geometry.morphAttributes[key] = array;
|
|
}
|
|
}
|
|
|
|
const morphTargetsRelative = json.data.morphTargetsRelative;
|
|
|
|
if (morphTargetsRelative) {
|
|
geometry.morphTargetsRelative = true;
|
|
}
|
|
|
|
const groups = json.data.groups || json.data.drawcalls || json.data.offsets;
|
|
|
|
if (groups !== undefined) {
|
|
for (let i = 0, n = groups.length; i !== n; ++i) {
|
|
const group = groups[i];
|
|
geometry.addGroup(group.start, group.count, group.materialIndex);
|
|
}
|
|
}
|
|
|
|
const boundingSphere = json.data.boundingSphere;
|
|
|
|
if (boundingSphere !== undefined) {
|
|
const center = new Vector3();
|
|
|
|
if (boundingSphere.center !== undefined) {
|
|
center.fromArray(boundingSphere.center);
|
|
}
|
|
|
|
geometry.boundingSphere = new Sphere(center, boundingSphere.radius);
|
|
}
|
|
|
|
if (json.name) geometry.name = json.name;
|
|
if (json.userData) geometry.userData = json.userData;
|
|
return geometry;
|
|
}
|
|
|
|
}
|
|
|
|
class ObjectLoader extends Loader {
|
|
constructor(manager) {
|
|
super(manager);
|
|
}
|
|
|
|
load(url, onLoad, onProgress, onError) {
|
|
const scope = this;
|
|
const path = this.path === '' ? LoaderUtils.extractUrlBase(url) : this.path;
|
|
this.resourcePath = this.resourcePath || path;
|
|
const loader = new FileLoader(this.manager);
|
|
loader.setPath(this.path);
|
|
loader.setRequestHeader(this.requestHeader);
|
|
loader.setWithCredentials(this.withCredentials);
|
|
loader.load(url, function (text) {
|
|
let json = null;
|
|
|
|
try {
|
|
json = JSON.parse(text);
|
|
} catch (error) {
|
|
if (onError !== undefined) onError(error);
|
|
console.error('THREE:ObjectLoader: Can\'t parse ' + url + '.', error.message);
|
|
return;
|
|
}
|
|
|
|
const metadata = json.metadata;
|
|
|
|
if (metadata === undefined || metadata.type === undefined || metadata.type.toLowerCase() === 'geometry') {
|
|
console.error('THREE.ObjectLoader: Can\'t load ' + url);
|
|
return;
|
|
}
|
|
|
|
scope.parse(json, onLoad);
|
|
}, onProgress, onError);
|
|
}
|
|
|
|
async loadAsync(url, onProgress) {
|
|
const scope = this;
|
|
const path = this.path === '' ? LoaderUtils.extractUrlBase(url) : this.path;
|
|
this.resourcePath = this.resourcePath || path;
|
|
const loader = new FileLoader(this.manager);
|
|
loader.setPath(this.path);
|
|
loader.setRequestHeader(this.requestHeader);
|
|
loader.setWithCredentials(this.withCredentials);
|
|
const text = await loader.loadAsync(url, onProgress);
|
|
const json = JSON.parse(text);
|
|
const metadata = json.metadata;
|
|
|
|
if (metadata === undefined || metadata.type === undefined || metadata.type.toLowerCase() === 'geometry') {
|
|
throw new Error('THREE.ObjectLoader: Can\'t load ' + url);
|
|
}
|
|
|
|
return await scope.parseAsync(json);
|
|
}
|
|
|
|
parse(json, onLoad) {
|
|
const animations = this.parseAnimations(json.animations);
|
|
const shapes = this.parseShapes(json.shapes);
|
|
const geometries = this.parseGeometries(json.geometries, shapes);
|
|
const images = this.parseImages(json.images, function () {
|
|
if (onLoad !== undefined) onLoad(object);
|
|
});
|
|
const textures = this.parseTextures(json.textures, images);
|
|
const materials = this.parseMaterials(json.materials, textures);
|
|
const object = this.parseObject(json.object, geometries, materials, textures, animations);
|
|
const skeletons = this.parseSkeletons(json.skeletons, object);
|
|
this.bindSkeletons(object, skeletons); //
|
|
|
|
if (onLoad !== undefined) {
|
|
let hasImages = false;
|
|
|
|
for (const uuid in images) {
|
|
if (images[uuid] instanceof HTMLImageElement) {
|
|
hasImages = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (hasImages === false) onLoad(object);
|
|
}
|
|
|
|
return object;
|
|
}
|
|
|
|
async parseAsync(json) {
|
|
const animations = this.parseAnimations(json.animations);
|
|
const shapes = this.parseShapes(json.shapes);
|
|
const geometries = this.parseGeometries(json.geometries, shapes);
|
|
const images = await this.parseImagesAsync(json.images);
|
|
const textures = this.parseTextures(json.textures, images);
|
|
const materials = this.parseMaterials(json.materials, textures);
|
|
const object = this.parseObject(json.object, geometries, materials, textures, animations);
|
|
const skeletons = this.parseSkeletons(json.skeletons, object);
|
|
this.bindSkeletons(object, skeletons);
|
|
return object;
|
|
}
|
|
|
|
parseShapes(json) {
|
|
const shapes = {};
|
|
|
|
if (json !== undefined) {
|
|
for (let i = 0, l = json.length; i < l; i++) {
|
|
const shape = new Shape().fromJSON(json[i]);
|
|
shapes[shape.uuid] = shape;
|
|
}
|
|
}
|
|
|
|
return shapes;
|
|
}
|
|
|
|
parseSkeletons(json, object) {
|
|
const skeletons = {};
|
|
const bones = {}; // generate bone lookup table
|
|
|
|
object.traverse(function (child) {
|
|
if (child.isBone) bones[child.uuid] = child;
|
|
}); // create skeletons
|
|
|
|
if (json !== undefined) {
|
|
for (let i = 0, l = json.length; i < l; i++) {
|
|
const skeleton = new Skeleton().fromJSON(json[i], bones);
|
|
skeletons[skeleton.uuid] = skeleton;
|
|
}
|
|
}
|
|
|
|
return skeletons;
|
|
}
|
|
|
|
parseGeometries(json, shapes) {
|
|
const geometries = {};
|
|
|
|
if (json !== undefined) {
|
|
const bufferGeometryLoader = new BufferGeometryLoader();
|
|
|
|
for (let i = 0, l = json.length; i < l; i++) {
|
|
let geometry;
|
|
const data = json[i];
|
|
|
|
switch (data.type) {
|
|
case 'BufferGeometry':
|
|
case 'InstancedBufferGeometry':
|
|
geometry = bufferGeometryLoader.parse(data);
|
|
break;
|
|
|
|
case 'Geometry':
|
|
console.error('THREE.ObjectLoader: The legacy Geometry type is no longer supported.');
|
|
break;
|
|
|
|
default:
|
|
if (data.type in Geometries) {
|
|
geometry = Geometries[data.type].fromJSON(data, shapes);
|
|
} else {
|
|
console.warn(`THREE.ObjectLoader: Unsupported geometry type "${data.type}"`);
|
|
}
|
|
|
|
}
|
|
|
|
geometry.uuid = data.uuid;
|
|
if (data.name !== undefined) geometry.name = data.name;
|
|
if (geometry.isBufferGeometry === true && data.userData !== undefined) geometry.userData = data.userData;
|
|
geometries[data.uuid] = geometry;
|
|
}
|
|
}
|
|
|
|
return geometries;
|
|
}
|
|
|
|
parseMaterials(json, textures) {
|
|
const cache = {}; // MultiMaterial
|
|
|
|
const materials = {};
|
|
|
|
if (json !== undefined) {
|
|
const loader = new MaterialLoader();
|
|
loader.setTextures(textures);
|
|
|
|
for (let i = 0, l = json.length; i < l; i++) {
|
|
const data = json[i];
|
|
|
|
if (data.type === 'MultiMaterial') {
|
|
// Deprecated
|
|
const array = [];
|
|
|
|
for (let j = 0; j < data.materials.length; j++) {
|
|
const material = data.materials[j];
|
|
|
|
if (cache[material.uuid] === undefined) {
|
|
cache[material.uuid] = loader.parse(material);
|
|
}
|
|
|
|
array.push(cache[material.uuid]);
|
|
}
|
|
|
|
materials[data.uuid] = array;
|
|
} else {
|
|
if (cache[data.uuid] === undefined) {
|
|
cache[data.uuid] = loader.parse(data);
|
|
}
|
|
|
|
materials[data.uuid] = cache[data.uuid];
|
|
}
|
|
}
|
|
}
|
|
|
|
return materials;
|
|
}
|
|
|
|
parseAnimations(json) {
|
|
const animations = {};
|
|
|
|
if (json !== undefined) {
|
|
for (let i = 0; i < json.length; i++) {
|
|
const data = json[i];
|
|
const clip = AnimationClip.parse(data);
|
|
animations[clip.uuid] = clip;
|
|
}
|
|
}
|
|
|
|
return animations;
|
|
}
|
|
|
|
parseImages(json, onLoad) {
|
|
const scope = this;
|
|
const images = {};
|
|
let loader;
|
|
|
|
function loadImage(url) {
|
|
scope.manager.itemStart(url);
|
|
return loader.load(url, function () {
|
|
scope.manager.itemEnd(url);
|
|
}, undefined, function () {
|
|
scope.manager.itemError(url);
|
|
scope.manager.itemEnd(url);
|
|
});
|
|
}
|
|
|
|
function deserializeImage(image) {
|
|
if (typeof image === 'string') {
|
|
const url = image;
|
|
const path = /^(\/\/)|([a-z]+:(\/\/)?)/i.test(url) ? url : scope.resourcePath + url;
|
|
return loadImage(path);
|
|
} else {
|
|
if (image.data) {
|
|
return {
|
|
data: getTypedArray(image.type, image.data),
|
|
width: image.width,
|
|
height: image.height
|
|
};
|
|
} else {
|
|
return null;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (json !== undefined && json.length > 0) {
|
|
const manager = new LoadingManager(onLoad);
|
|
loader = new ImageLoader(manager);
|
|
loader.setCrossOrigin(this.crossOrigin);
|
|
|
|
for (let i = 0, il = json.length; i < il; i++) {
|
|
const image = json[i];
|
|
const url = image.url;
|
|
|
|
if (Array.isArray(url)) {
|
|
// load array of images e.g CubeTexture
|
|
images[image.uuid] = [];
|
|
|
|
for (let j = 0, jl = url.length; j < jl; j++) {
|
|
const currentUrl = url[j];
|
|
const deserializedImage = deserializeImage(currentUrl);
|
|
|
|
if (deserializedImage !== null) {
|
|
if (deserializedImage instanceof HTMLImageElement) {
|
|
images[image.uuid].push(deserializedImage);
|
|
} else {
|
|
// special case: handle array of data textures for cube textures
|
|
images[image.uuid].push(new DataTexture(deserializedImage.data, deserializedImage.width, deserializedImage.height));
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
// load single image
|
|
const deserializedImage = deserializeImage(image.url);
|
|
|
|
if (deserializedImage !== null) {
|
|
images[image.uuid] = deserializedImage;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return images;
|
|
}
|
|
|
|
async parseImagesAsync(json) {
|
|
const scope = this;
|
|
const images = {};
|
|
let loader;
|
|
|
|
async function deserializeImage(image) {
|
|
if (typeof image === 'string') {
|
|
const url = image;
|
|
const path = /^(\/\/)|([a-z]+:(\/\/)?)/i.test(url) ? url : scope.resourcePath + url;
|
|
return await loader.loadAsync(path);
|
|
} else {
|
|
if (image.data) {
|
|
return {
|
|
data: getTypedArray(image.type, image.data),
|
|
width: image.width,
|
|
height: image.height
|
|
};
|
|
} else {
|
|
return null;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (json !== undefined && json.length > 0) {
|
|
loader = new ImageLoader(this.manager);
|
|
loader.setCrossOrigin(this.crossOrigin);
|
|
|
|
for (let i = 0, il = json.length; i < il; i++) {
|
|
const image = json[i];
|
|
const url = image.url;
|
|
|
|
if (Array.isArray(url)) {
|
|
// load array of images e.g CubeTexture
|
|
images[image.uuid] = [];
|
|
|
|
for (let j = 0, jl = url.length; j < jl; j++) {
|
|
const currentUrl = url[j];
|
|
const deserializedImage = await deserializeImage(currentUrl);
|
|
|
|
if (deserializedImage !== null) {
|
|
if (deserializedImage instanceof HTMLImageElement) {
|
|
images[image.uuid].push(deserializedImage);
|
|
} else {
|
|
// special case: handle array of data textures for cube textures
|
|
images[image.uuid].push(new DataTexture(deserializedImage.data, deserializedImage.width, deserializedImage.height));
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
// load single image
|
|
const deserializedImage = await deserializeImage(image.url);
|
|
|
|
if (deserializedImage !== null) {
|
|
images[image.uuid] = deserializedImage;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return images;
|
|
}
|
|
|
|
parseTextures(json, images) {
|
|
function parseConstant(value, type) {
|
|
if (typeof value === 'number') return value;
|
|
console.warn('THREE.ObjectLoader.parseTexture: Constant should be in numeric form.', value);
|
|
return type[value];
|
|
}
|
|
|
|
const textures = {};
|
|
|
|
if (json !== undefined) {
|
|
for (let i = 0, l = json.length; i < l; i++) {
|
|
const data = json[i];
|
|
|
|
if (data.image === undefined) {
|
|
console.warn('THREE.ObjectLoader: No "image" specified for', data.uuid);
|
|
}
|
|
|
|
if (images[data.image] === undefined) {
|
|
console.warn('THREE.ObjectLoader: Undefined image', data.image);
|
|
}
|
|
|
|
let texture;
|
|
const image = images[data.image];
|
|
|
|
if (Array.isArray(image)) {
|
|
texture = new CubeTexture(image);
|
|
if (image.length === 6) texture.needsUpdate = true;
|
|
} else {
|
|
if (image && image.data) {
|
|
texture = new DataTexture(image.data, image.width, image.height);
|
|
} else {
|
|
texture = new Texture(image);
|
|
}
|
|
|
|
if (image) texture.needsUpdate = true; // textures can have undefined image data
|
|
}
|
|
|
|
texture.uuid = data.uuid;
|
|
if (data.name !== undefined) texture.name = data.name;
|
|
if (data.mapping !== undefined) texture.mapping = parseConstant(data.mapping, TEXTURE_MAPPING);
|
|
if (data.offset !== undefined) texture.offset.fromArray(data.offset);
|
|
if (data.repeat !== undefined) texture.repeat.fromArray(data.repeat);
|
|
if (data.center !== undefined) texture.center.fromArray(data.center);
|
|
if (data.rotation !== undefined) texture.rotation = data.rotation;
|
|
|
|
if (data.wrap !== undefined) {
|
|
texture.wrapS = parseConstant(data.wrap[0], TEXTURE_WRAPPING);
|
|
texture.wrapT = parseConstant(data.wrap[1], TEXTURE_WRAPPING);
|
|
}
|
|
|
|
if (data.format !== undefined) texture.format = data.format;
|
|
if (data.type !== undefined) texture.type = data.type;
|
|
if (data.encoding !== undefined) texture.encoding = data.encoding;
|
|
if (data.minFilter !== undefined) texture.minFilter = parseConstant(data.minFilter, TEXTURE_FILTER);
|
|
if (data.magFilter !== undefined) texture.magFilter = parseConstant(data.magFilter, TEXTURE_FILTER);
|
|
if (data.anisotropy !== undefined) texture.anisotropy = data.anisotropy;
|
|
if (data.flipY !== undefined) texture.flipY = data.flipY;
|
|
if (data.premultiplyAlpha !== undefined) texture.premultiplyAlpha = data.premultiplyAlpha;
|
|
if (data.unpackAlignment !== undefined) texture.unpackAlignment = data.unpackAlignment;
|
|
textures[data.uuid] = texture;
|
|
}
|
|
}
|
|
|
|
return textures;
|
|
}
|
|
|
|
parseObject(data, geometries, materials, textures, animations) {
|
|
let object;
|
|
|
|
function getGeometry(name) {
|
|
if (geometries[name] === undefined) {
|
|
console.warn('THREE.ObjectLoader: Undefined geometry', name);
|
|
}
|
|
|
|
return geometries[name];
|
|
}
|
|
|
|
function getMaterial(name) {
|
|
if (name === undefined) return undefined;
|
|
|
|
if (Array.isArray(name)) {
|
|
const array = [];
|
|
|
|
for (let i = 0, l = name.length; i < l; i++) {
|
|
const uuid = name[i];
|
|
|
|
if (materials[uuid] === undefined) {
|
|
console.warn('THREE.ObjectLoader: Undefined material', uuid);
|
|
}
|
|
|
|
array.push(materials[uuid]);
|
|
}
|
|
|
|
return array;
|
|
}
|
|
|
|
if (materials[name] === undefined) {
|
|
console.warn('THREE.ObjectLoader: Undefined material', name);
|
|
}
|
|
|
|
return materials[name];
|
|
}
|
|
|
|
function getTexture(uuid) {
|
|
if (textures[uuid] === undefined) {
|
|
console.warn('THREE.ObjectLoader: Undefined texture', uuid);
|
|
}
|
|
|
|
return textures[uuid];
|
|
}
|
|
|
|
let geometry, material;
|
|
|
|
switch (data.type) {
|
|
case 'Scene':
|
|
object = new Scene();
|
|
|
|
if (data.background !== undefined) {
|
|
if (Number.isInteger(data.background)) {
|
|
object.background = new Color(data.background);
|
|
} else {
|
|
object.background = getTexture(data.background);
|
|
}
|
|
}
|
|
|
|
if (data.environment !== undefined) {
|
|
object.environment = getTexture(data.environment);
|
|
}
|
|
|
|
if (data.fog !== undefined) {
|
|
if (data.fog.type === 'Fog') {
|
|
object.fog = new Fog(data.fog.color, data.fog.near, data.fog.far);
|
|
} else if (data.fog.type === 'FogExp2') {
|
|
object.fog = new FogExp2(data.fog.color, data.fog.density);
|
|
}
|
|
}
|
|
|
|
break;
|
|
|
|
case 'PerspectiveCamera':
|
|
object = new PerspectiveCamera(data.fov, data.aspect, data.near, data.far);
|
|
if (data.focus !== undefined) object.focus = data.focus;
|
|
if (data.zoom !== undefined) object.zoom = data.zoom;
|
|
if (data.filmGauge !== undefined) object.filmGauge = data.filmGauge;
|
|
if (data.filmOffset !== undefined) object.filmOffset = data.filmOffset;
|
|
if (data.view !== undefined) object.view = Object.assign({}, data.view);
|
|
break;
|
|
|
|
case 'OrthographicCamera':
|
|
object = new OrthographicCamera(data.left, data.right, data.top, data.bottom, data.near, data.far);
|
|
if (data.zoom !== undefined) object.zoom = data.zoom;
|
|
if (data.view !== undefined) object.view = Object.assign({}, data.view);
|
|
break;
|
|
|
|
case 'AmbientLight':
|
|
object = new AmbientLight(data.color, data.intensity);
|
|
break;
|
|
|
|
case 'DirectionalLight':
|
|
object = new DirectionalLight(data.color, data.intensity);
|
|
break;
|
|
|
|
case 'PointLight':
|
|
object = new PointLight(data.color, data.intensity, data.distance, data.decay);
|
|
break;
|
|
|
|
case 'RectAreaLight':
|
|
object = new RectAreaLight(data.color, data.intensity, data.width, data.height);
|
|
break;
|
|
|
|
case 'SpotLight':
|
|
object = new SpotLight(data.color, data.intensity, data.distance, data.angle, data.penumbra, data.decay);
|
|
break;
|
|
|
|
case 'HemisphereLight':
|
|
object = new HemisphereLight(data.color, data.groundColor, data.intensity);
|
|
break;
|
|
|
|
case 'LightProbe':
|
|
object = new LightProbe().fromJSON(data);
|
|
break;
|
|
|
|
case 'SkinnedMesh':
|
|
geometry = getGeometry(data.geometry);
|
|
material = getMaterial(data.material);
|
|
object = new SkinnedMesh(geometry, material);
|
|
if (data.bindMode !== undefined) object.bindMode = data.bindMode;
|
|
if (data.bindMatrix !== undefined) object.bindMatrix.fromArray(data.bindMatrix);
|
|
if (data.skeleton !== undefined) object.skeleton = data.skeleton;
|
|
break;
|
|
|
|
case 'Mesh':
|
|
geometry = getGeometry(data.geometry);
|
|
material = getMaterial(data.material);
|
|
object = new Mesh(geometry, material);
|
|
break;
|
|
|
|
case 'InstancedMesh':
|
|
geometry = getGeometry(data.geometry);
|
|
material = getMaterial(data.material);
|
|
const count = data.count;
|
|
const instanceMatrix = data.instanceMatrix;
|
|
const instanceColor = data.instanceColor;
|
|
object = new InstancedMesh(geometry, material, count);
|
|
object.instanceMatrix = new InstancedBufferAttribute(new Float32Array(instanceMatrix.array), 16);
|
|
if (instanceColor !== undefined) object.instanceColor = new InstancedBufferAttribute(new Float32Array(instanceColor.array), instanceColor.itemSize);
|
|
break;
|
|
|
|
case 'LOD':
|
|
object = new LOD();
|
|
break;
|
|
|
|
case 'Line':
|
|
object = new Line(getGeometry(data.geometry), getMaterial(data.material));
|
|
break;
|
|
|
|
case 'LineLoop':
|
|
object = new LineLoop(getGeometry(data.geometry), getMaterial(data.material));
|
|
break;
|
|
|
|
case 'LineSegments':
|
|
object = new LineSegments(getGeometry(data.geometry), getMaterial(data.material));
|
|
break;
|
|
|
|
case 'PointCloud':
|
|
case 'Points':
|
|
object = new Points(getGeometry(data.geometry), getMaterial(data.material));
|
|
break;
|
|
|
|
case 'Sprite':
|
|
object = new Sprite(getMaterial(data.material));
|
|
break;
|
|
|
|
case 'Group':
|
|
object = new Group();
|
|
break;
|
|
|
|
case 'Bone':
|
|
object = new Bone();
|
|
break;
|
|
|
|
default:
|
|
object = new Object3D();
|
|
}
|
|
|
|
object.uuid = data.uuid;
|
|
if (data.name !== undefined) object.name = data.name;
|
|
|
|
if (data.matrix !== undefined) {
|
|
object.matrix.fromArray(data.matrix);
|
|
if (data.matrixAutoUpdate !== undefined) object.matrixAutoUpdate = data.matrixAutoUpdate;
|
|
if (object.matrixAutoUpdate) object.matrix.decompose(object.position, object.quaternion, object.scale);
|
|
} else {
|
|
if (data.position !== undefined) object.position.fromArray(data.position);
|
|
if (data.rotation !== undefined) object.rotation.fromArray(data.rotation);
|
|
if (data.quaternion !== undefined) object.quaternion.fromArray(data.quaternion);
|
|
if (data.scale !== undefined) object.scale.fromArray(data.scale);
|
|
}
|
|
|
|
if (data.castShadow !== undefined) object.castShadow = data.castShadow;
|
|
if (data.receiveShadow !== undefined) object.receiveShadow = data.receiveShadow;
|
|
|
|
if (data.shadow) {
|
|
if (data.shadow.bias !== undefined) object.shadow.bias = data.shadow.bias;
|
|
if (data.shadow.normalBias !== undefined) object.shadow.normalBias = data.shadow.normalBias;
|
|
if (data.shadow.radius !== undefined) object.shadow.radius = data.shadow.radius;
|
|
if (data.shadow.mapSize !== undefined) object.shadow.mapSize.fromArray(data.shadow.mapSize);
|
|
if (data.shadow.camera !== undefined) object.shadow.camera = this.parseObject(data.shadow.camera);
|
|
}
|
|
|
|
if (data.visible !== undefined) object.visible = data.visible;
|
|
if (data.frustumCulled !== undefined) object.frustumCulled = data.frustumCulled;
|
|
if (data.renderOrder !== undefined) object.renderOrder = data.renderOrder;
|
|
if (data.userData !== undefined) object.userData = data.userData;
|
|
if (data.layers !== undefined) object.layers.mask = data.layers;
|
|
|
|
if (data.children !== undefined) {
|
|
const children = data.children;
|
|
|
|
for (let i = 0; i < children.length; i++) {
|
|
object.add(this.parseObject(children[i], geometries, materials, textures, animations));
|
|
}
|
|
}
|
|
|
|
if (data.animations !== undefined) {
|
|
const objectAnimations = data.animations;
|
|
|
|
for (let i = 0; i < objectAnimations.length; i++) {
|
|
const uuid = objectAnimations[i];
|
|
object.animations.push(animations[uuid]);
|
|
}
|
|
}
|
|
|
|
if (data.type === 'LOD') {
|
|
if (data.autoUpdate !== undefined) object.autoUpdate = data.autoUpdate;
|
|
const levels = data.levels;
|
|
|
|
for (let l = 0; l < levels.length; l++) {
|
|
const level = levels[l];
|
|
const child = object.getObjectByProperty('uuid', level.object);
|
|
|
|
if (child !== undefined) {
|
|
object.addLevel(child, level.distance);
|
|
}
|
|
}
|
|
}
|
|
|
|
return object;
|
|
}
|
|
|
|
bindSkeletons(object, skeletons) {
|
|
if (Object.keys(skeletons).length === 0) return;
|
|
object.traverse(function (child) {
|
|
if (child.isSkinnedMesh === true && child.skeleton !== undefined) {
|
|
const skeleton = skeletons[child.skeleton];
|
|
|
|
if (skeleton === undefined) {
|
|
console.warn('THREE.ObjectLoader: No skeleton found with UUID:', child.skeleton);
|
|
} else {
|
|
child.bind(skeleton, child.bindMatrix);
|
|
}
|
|
}
|
|
});
|
|
}
|
|
/* DEPRECATED */
|
|
|
|
|
|
setTexturePath(value) {
|
|
console.warn('THREE.ObjectLoader: .setTexturePath() has been renamed to .setResourcePath().');
|
|
return this.setResourcePath(value);
|
|
}
|
|
|
|
}
|
|
|
|
const TEXTURE_MAPPING = {
|
|
UVMapping: UVMapping,
|
|
CubeReflectionMapping: CubeReflectionMapping,
|
|
CubeRefractionMapping: CubeRefractionMapping,
|
|
EquirectangularReflectionMapping: EquirectangularReflectionMapping,
|
|
EquirectangularRefractionMapping: EquirectangularRefractionMapping,
|
|
CubeUVReflectionMapping: CubeUVReflectionMapping,
|
|
CubeUVRefractionMapping: CubeUVRefractionMapping
|
|
};
|
|
const TEXTURE_WRAPPING = {
|
|
RepeatWrapping: RepeatWrapping,
|
|
ClampToEdgeWrapping: ClampToEdgeWrapping,
|
|
MirroredRepeatWrapping: MirroredRepeatWrapping
|
|
};
|
|
const TEXTURE_FILTER = {
|
|
NearestFilter: NearestFilter,
|
|
NearestMipmapNearestFilter: NearestMipmapNearestFilter,
|
|
NearestMipmapLinearFilter: NearestMipmapLinearFilter,
|
|
LinearFilter: LinearFilter,
|
|
LinearMipmapNearestFilter: LinearMipmapNearestFilter,
|
|
LinearMipmapLinearFilter: LinearMipmapLinearFilter
|
|
};
|
|
|
|
class ImageBitmapLoader extends Loader {
|
|
constructor(manager) {
|
|
super(manager);
|
|
|
|
if (typeof createImageBitmap === 'undefined') {
|
|
console.warn('THREE.ImageBitmapLoader: createImageBitmap() not supported.');
|
|
}
|
|
|
|
if (typeof fetch === 'undefined') {
|
|
console.warn('THREE.ImageBitmapLoader: fetch() not supported.');
|
|
}
|
|
|
|
this.options = {
|
|
premultiplyAlpha: 'none'
|
|
};
|
|
}
|
|
|
|
setOptions(options) {
|
|
this.options = options;
|
|
return this;
|
|
}
|
|
|
|
load(url, onLoad, onProgress, onError) {
|
|
if (url === undefined) url = '';
|
|
if (this.path !== undefined) url = this.path + url;
|
|
url = this.manager.resolveURL(url);
|
|
const scope = this;
|
|
const cached = Cache.get(url);
|
|
|
|
if (cached !== undefined) {
|
|
scope.manager.itemStart(url);
|
|
setTimeout(function () {
|
|
if (onLoad) onLoad(cached);
|
|
scope.manager.itemEnd(url);
|
|
}, 0);
|
|
return cached;
|
|
}
|
|
|
|
const fetchOptions = {};
|
|
fetchOptions.credentials = this.crossOrigin === 'anonymous' ? 'same-origin' : 'include';
|
|
fetchOptions.headers = this.requestHeader;
|
|
fetch(url, fetchOptions).then(function (res) {
|
|
return res.blob();
|
|
}).then(function (blob) {
|
|
return createImageBitmap(blob, Object.assign(scope.options, {
|
|
colorSpaceConversion: 'none'
|
|
}));
|
|
}).then(function (imageBitmap) {
|
|
Cache.add(url, imageBitmap);
|
|
if (onLoad) onLoad(imageBitmap);
|
|
scope.manager.itemEnd(url);
|
|
}).catch(function (e) {
|
|
if (onError) onError(e);
|
|
scope.manager.itemError(url);
|
|
scope.manager.itemEnd(url);
|
|
});
|
|
scope.manager.itemStart(url);
|
|
}
|
|
|
|
}
|
|
|
|
ImageBitmapLoader.prototype.isImageBitmapLoader = true;
|
|
|
|
let _context;
|
|
|
|
const AudioContext = {
|
|
getContext: function () {
|
|
if (_context === undefined) {
|
|
_context = new (window.AudioContext || window.webkitAudioContext)();
|
|
}
|
|
|
|
return _context;
|
|
},
|
|
setContext: function (value) {
|
|
_context = value;
|
|
}
|
|
};
|
|
|
|
class AudioLoader extends Loader {
|
|
constructor(manager) {
|
|
super(manager);
|
|
}
|
|
|
|
load(url, onLoad, onProgress, onError) {
|
|
const scope = this;
|
|
const loader = new FileLoader(this.manager);
|
|
loader.setResponseType('arraybuffer');
|
|
loader.setPath(this.path);
|
|
loader.setRequestHeader(this.requestHeader);
|
|
loader.setWithCredentials(this.withCredentials);
|
|
loader.load(url, function (buffer) {
|
|
try {
|
|
// Create a copy of the buffer. The `decodeAudioData` method
|
|
// detaches the buffer when complete, preventing reuse.
|
|
const bufferCopy = buffer.slice(0);
|
|
const context = AudioContext.getContext();
|
|
context.decodeAudioData(bufferCopy, function (audioBuffer) {
|
|
onLoad(audioBuffer);
|
|
});
|
|
} catch (e) {
|
|
if (onError) {
|
|
onError(e);
|
|
} else {
|
|
console.error(e);
|
|
}
|
|
|
|
scope.manager.itemError(url);
|
|
}
|
|
}, onProgress, onError);
|
|
}
|
|
|
|
}
|
|
|
|
class HemisphereLightProbe extends LightProbe {
|
|
constructor(skyColor, groundColor, intensity = 1) {
|
|
super(undefined, intensity);
|
|
const color1 = new Color().set(skyColor);
|
|
const color2 = new Color().set(groundColor);
|
|
const sky = new Vector3(color1.r, color1.g, color1.b);
|
|
const ground = new Vector3(color2.r, color2.g, color2.b); // without extra factor of PI in the shader, should = 1 / Math.sqrt( Math.PI );
|
|
|
|
const c0 = Math.sqrt(Math.PI);
|
|
const c1 = c0 * Math.sqrt(0.75);
|
|
this.sh.coefficients[0].copy(sky).add(ground).multiplyScalar(c0);
|
|
this.sh.coefficients[1].copy(sky).sub(ground).multiplyScalar(c1);
|
|
}
|
|
|
|
}
|
|
|
|
HemisphereLightProbe.prototype.isHemisphereLightProbe = true;
|
|
|
|
class AmbientLightProbe extends LightProbe {
|
|
constructor(color, intensity = 1) {
|
|
super(undefined, intensity);
|
|
const color1 = new Color().set(color); // without extra factor of PI in the shader, would be 2 / Math.sqrt( Math.PI );
|
|
|
|
this.sh.coefficients[0].set(color1.r, color1.g, color1.b).multiplyScalar(2 * Math.sqrt(Math.PI));
|
|
}
|
|
|
|
}
|
|
|
|
AmbientLightProbe.prototype.isAmbientLightProbe = true;
|
|
|
|
const _eyeRight = /*@__PURE__*/new Matrix4();
|
|
|
|
const _eyeLeft = /*@__PURE__*/new Matrix4();
|
|
|
|
class StereoCamera {
|
|
constructor() {
|
|
this.type = 'StereoCamera';
|
|
this.aspect = 1;
|
|
this.eyeSep = 0.064;
|
|
this.cameraL = new PerspectiveCamera();
|
|
this.cameraL.layers.enable(1);
|
|
this.cameraL.matrixAutoUpdate = false;
|
|
this.cameraR = new PerspectiveCamera();
|
|
this.cameraR.layers.enable(2);
|
|
this.cameraR.matrixAutoUpdate = false;
|
|
this._cache = {
|
|
focus: null,
|
|
fov: null,
|
|
aspect: null,
|
|
near: null,
|
|
far: null,
|
|
zoom: null,
|
|
eyeSep: null
|
|
};
|
|
}
|
|
|
|
update(camera) {
|
|
const cache = this._cache;
|
|
const needsUpdate = cache.focus !== camera.focus || cache.fov !== camera.fov || cache.aspect !== camera.aspect * this.aspect || cache.near !== camera.near || cache.far !== camera.far || cache.zoom !== camera.zoom || cache.eyeSep !== this.eyeSep;
|
|
|
|
if (needsUpdate) {
|
|
cache.focus = camera.focus;
|
|
cache.fov = camera.fov;
|
|
cache.aspect = camera.aspect * this.aspect;
|
|
cache.near = camera.near;
|
|
cache.far = camera.far;
|
|
cache.zoom = camera.zoom;
|
|
cache.eyeSep = this.eyeSep; // Off-axis stereoscopic effect based on
|
|
// http://paulbourke.net/stereographics/stereorender/
|
|
|
|
const projectionMatrix = camera.projectionMatrix.clone();
|
|
const eyeSepHalf = cache.eyeSep / 2;
|
|
const eyeSepOnProjection = eyeSepHalf * cache.near / cache.focus;
|
|
const ymax = cache.near * Math.tan(DEG2RAD * cache.fov * 0.5) / cache.zoom;
|
|
let xmin, xmax; // translate xOffset
|
|
|
|
_eyeLeft.elements[12] = -eyeSepHalf;
|
|
_eyeRight.elements[12] = eyeSepHalf; // for left eye
|
|
|
|
xmin = -ymax * cache.aspect + eyeSepOnProjection;
|
|
xmax = ymax * cache.aspect + eyeSepOnProjection;
|
|
projectionMatrix.elements[0] = 2 * cache.near / (xmax - xmin);
|
|
projectionMatrix.elements[8] = (xmax + xmin) / (xmax - xmin);
|
|
this.cameraL.projectionMatrix.copy(projectionMatrix); // for right eye
|
|
|
|
xmin = -ymax * cache.aspect - eyeSepOnProjection;
|
|
xmax = ymax * cache.aspect - eyeSepOnProjection;
|
|
projectionMatrix.elements[0] = 2 * cache.near / (xmax - xmin);
|
|
projectionMatrix.elements[8] = (xmax + xmin) / (xmax - xmin);
|
|
this.cameraR.projectionMatrix.copy(projectionMatrix);
|
|
}
|
|
|
|
this.cameraL.matrixWorld.copy(camera.matrixWorld).multiply(_eyeLeft);
|
|
this.cameraR.matrixWorld.copy(camera.matrixWorld).multiply(_eyeRight);
|
|
}
|
|
|
|
}
|
|
|
|
class Clock {
|
|
constructor(autoStart = true) {
|
|
this.autoStart = autoStart;
|
|
this.startTime = 0;
|
|
this.oldTime = 0;
|
|
this.elapsedTime = 0;
|
|
this.running = false;
|
|
}
|
|
|
|
start() {
|
|
this.startTime = now();
|
|
this.oldTime = this.startTime;
|
|
this.elapsedTime = 0;
|
|
this.running = true;
|
|
}
|
|
|
|
stop() {
|
|
this.getElapsedTime();
|
|
this.running = false;
|
|
this.autoStart = false;
|
|
}
|
|
|
|
getElapsedTime() {
|
|
this.getDelta();
|
|
return this.elapsedTime;
|
|
}
|
|
|
|
getDelta() {
|
|
let diff = 0;
|
|
|
|
if (this.autoStart && !this.running) {
|
|
this.start();
|
|
return 0;
|
|
}
|
|
|
|
if (this.running) {
|
|
const newTime = now();
|
|
diff = (newTime - this.oldTime) / 1000;
|
|
this.oldTime = newTime;
|
|
this.elapsedTime += diff;
|
|
}
|
|
|
|
return diff;
|
|
}
|
|
|
|
}
|
|
|
|
function now() {
|
|
return (typeof performance === 'undefined' ? Date : performance).now(); // see #10732
|
|
}
|
|
|
|
const _position$1 = /*@__PURE__*/new Vector3();
|
|
|
|
const _quaternion$1 = /*@__PURE__*/new Quaternion();
|
|
|
|
const _scale$1 = /*@__PURE__*/new Vector3();
|
|
|
|
const _orientation$1 = /*@__PURE__*/new Vector3();
|
|
|
|
class AudioListener extends Object3D {
|
|
constructor() {
|
|
super();
|
|
this.type = 'AudioListener';
|
|
this.context = AudioContext.getContext();
|
|
this.gain = this.context.createGain();
|
|
this.gain.connect(this.context.destination);
|
|
this.filter = null;
|
|
this.timeDelta = 0; // private
|
|
|
|
this._clock = new Clock();
|
|
}
|
|
|
|
getInput() {
|
|
return this.gain;
|
|
}
|
|
|
|
removeFilter() {
|
|
if (this.filter !== null) {
|
|
this.gain.disconnect(this.filter);
|
|
this.filter.disconnect(this.context.destination);
|
|
this.gain.connect(this.context.destination);
|
|
this.filter = null;
|
|
}
|
|
|
|
return this;
|
|
}
|
|
|
|
getFilter() {
|
|
return this.filter;
|
|
}
|
|
|
|
setFilter(value) {
|
|
if (this.filter !== null) {
|
|
this.gain.disconnect(this.filter);
|
|
this.filter.disconnect(this.context.destination);
|
|
} else {
|
|
this.gain.disconnect(this.context.destination);
|
|
}
|
|
|
|
this.filter = value;
|
|
this.gain.connect(this.filter);
|
|
this.filter.connect(this.context.destination);
|
|
return this;
|
|
}
|
|
|
|
getMasterVolume() {
|
|
return this.gain.gain.value;
|
|
}
|
|
|
|
setMasterVolume(value) {
|
|
this.gain.gain.setTargetAtTime(value, this.context.currentTime, 0.01);
|
|
return this;
|
|
}
|
|
|
|
updateMatrixWorld(force) {
|
|
super.updateMatrixWorld(force);
|
|
const listener = this.context.listener;
|
|
const up = this.up;
|
|
this.timeDelta = this._clock.getDelta();
|
|
this.matrixWorld.decompose(_position$1, _quaternion$1, _scale$1);
|
|
|
|
_orientation$1.set(0, 0, -1).applyQuaternion(_quaternion$1);
|
|
|
|
if (listener.positionX) {
|
|
// code path for Chrome (see #14393)
|
|
const endTime = this.context.currentTime + this.timeDelta;
|
|
listener.positionX.linearRampToValueAtTime(_position$1.x, endTime);
|
|
listener.positionY.linearRampToValueAtTime(_position$1.y, endTime);
|
|
listener.positionZ.linearRampToValueAtTime(_position$1.z, endTime);
|
|
listener.forwardX.linearRampToValueAtTime(_orientation$1.x, endTime);
|
|
listener.forwardY.linearRampToValueAtTime(_orientation$1.y, endTime);
|
|
listener.forwardZ.linearRampToValueAtTime(_orientation$1.z, endTime);
|
|
listener.upX.linearRampToValueAtTime(up.x, endTime);
|
|
listener.upY.linearRampToValueAtTime(up.y, endTime);
|
|
listener.upZ.linearRampToValueAtTime(up.z, endTime);
|
|
} else {
|
|
listener.setPosition(_position$1.x, _position$1.y, _position$1.z);
|
|
listener.setOrientation(_orientation$1.x, _orientation$1.y, _orientation$1.z, up.x, up.y, up.z);
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
class Audio extends Object3D {
|
|
constructor(listener) {
|
|
super();
|
|
this.type = 'Audio';
|
|
this.listener = listener;
|
|
this.context = listener.context;
|
|
this.gain = this.context.createGain();
|
|
this.gain.connect(listener.getInput());
|
|
this.autoplay = false;
|
|
this.buffer = null;
|
|
this.detune = 0;
|
|
this.loop = false;
|
|
this.loopStart = 0;
|
|
this.loopEnd = 0;
|
|
this.offset = 0;
|
|
this.duration = undefined;
|
|
this.playbackRate = 1;
|
|
this.isPlaying = false;
|
|
this.hasPlaybackControl = true;
|
|
this.source = null;
|
|
this.sourceType = 'empty';
|
|
this._startedAt = 0;
|
|
this._progress = 0;
|
|
this._connected = false;
|
|
this.filters = [];
|
|
}
|
|
|
|
getOutput() {
|
|
return this.gain;
|
|
}
|
|
|
|
setNodeSource(audioNode) {
|
|
this.hasPlaybackControl = false;
|
|
this.sourceType = 'audioNode';
|
|
this.source = audioNode;
|
|
this.connect();
|
|
return this;
|
|
}
|
|
|
|
setMediaElementSource(mediaElement) {
|
|
this.hasPlaybackControl = false;
|
|
this.sourceType = 'mediaNode';
|
|
this.source = this.context.createMediaElementSource(mediaElement);
|
|
this.connect();
|
|
return this;
|
|
}
|
|
|
|
setMediaStreamSource(mediaStream) {
|
|
this.hasPlaybackControl = false;
|
|
this.sourceType = 'mediaStreamNode';
|
|
this.source = this.context.createMediaStreamSource(mediaStream);
|
|
this.connect();
|
|
return this;
|
|
}
|
|
|
|
setBuffer(audioBuffer) {
|
|
this.buffer = audioBuffer;
|
|
this.sourceType = 'buffer';
|
|
if (this.autoplay) this.play();
|
|
return this;
|
|
}
|
|
|
|
play(delay = 0) {
|
|
if (this.isPlaying === true) {
|
|
console.warn('THREE.Audio: Audio is already playing.');
|
|
return;
|
|
}
|
|
|
|
if (this.hasPlaybackControl === false) {
|
|
console.warn('THREE.Audio: this Audio has no playback control.');
|
|
return;
|
|
}
|
|
|
|
this._startedAt = this.context.currentTime + delay;
|
|
const source = this.context.createBufferSource();
|
|
source.buffer = this.buffer;
|
|
source.loop = this.loop;
|
|
source.loopStart = this.loopStart;
|
|
source.loopEnd = this.loopEnd;
|
|
source.onended = this.onEnded.bind(this);
|
|
source.start(this._startedAt, this._progress + this.offset, this.duration);
|
|
this.isPlaying = true;
|
|
this.source = source;
|
|
this.setDetune(this.detune);
|
|
this.setPlaybackRate(this.playbackRate);
|
|
return this.connect();
|
|
}
|
|
|
|
pause() {
|
|
if (this.hasPlaybackControl === false) {
|
|
console.warn('THREE.Audio: this Audio has no playback control.');
|
|
return;
|
|
}
|
|
|
|
if (this.isPlaying === true) {
|
|
// update current progress
|
|
this._progress += Math.max(this.context.currentTime - this._startedAt, 0) * this.playbackRate;
|
|
|
|
if (this.loop === true) {
|
|
// ensure _progress does not exceed duration with looped audios
|
|
this._progress = this._progress % (this.duration || this.buffer.duration);
|
|
}
|
|
|
|
this.source.stop();
|
|
this.source.onended = null;
|
|
this.isPlaying = false;
|
|
}
|
|
|
|
return this;
|
|
}
|
|
|
|
stop() {
|
|
if (this.hasPlaybackControl === false) {
|
|
console.warn('THREE.Audio: this Audio has no playback control.');
|
|
return;
|
|
}
|
|
|
|
this._progress = 0;
|
|
this.source.stop();
|
|
this.source.onended = null;
|
|
this.isPlaying = false;
|
|
return this;
|
|
}
|
|
|
|
connect() {
|
|
if (this.filters.length > 0) {
|
|
this.source.connect(this.filters[0]);
|
|
|
|
for (let i = 1, l = this.filters.length; i < l; i++) {
|
|
this.filters[i - 1].connect(this.filters[i]);
|
|
}
|
|
|
|
this.filters[this.filters.length - 1].connect(this.getOutput());
|
|
} else {
|
|
this.source.connect(this.getOutput());
|
|
}
|
|
|
|
this._connected = true;
|
|
return this;
|
|
}
|
|
|
|
disconnect() {
|
|
if (this.filters.length > 0) {
|
|
this.source.disconnect(this.filters[0]);
|
|
|
|
for (let i = 1, l = this.filters.length; i < l; i++) {
|
|
this.filters[i - 1].disconnect(this.filters[i]);
|
|
}
|
|
|
|
this.filters[this.filters.length - 1].disconnect(this.getOutput());
|
|
} else {
|
|
this.source.disconnect(this.getOutput());
|
|
}
|
|
|
|
this._connected = false;
|
|
return this;
|
|
}
|
|
|
|
getFilters() {
|
|
return this.filters;
|
|
}
|
|
|
|
setFilters(value) {
|
|
if (!value) value = [];
|
|
|
|
if (this._connected === true) {
|
|
this.disconnect();
|
|
this.filters = value.slice();
|
|
this.connect();
|
|
} else {
|
|
this.filters = value.slice();
|
|
}
|
|
|
|
return this;
|
|
}
|
|
|
|
setDetune(value) {
|
|
this.detune = value;
|
|
if (this.source.detune === undefined) return; // only set detune when available
|
|
|
|
if (this.isPlaying === true) {
|
|
this.source.detune.setTargetAtTime(this.detune, this.context.currentTime, 0.01);
|
|
}
|
|
|
|
return this;
|
|
}
|
|
|
|
getDetune() {
|
|
return this.detune;
|
|
}
|
|
|
|
getFilter() {
|
|
return this.getFilters()[0];
|
|
}
|
|
|
|
setFilter(filter) {
|
|
return this.setFilters(filter ? [filter] : []);
|
|
}
|
|
|
|
setPlaybackRate(value) {
|
|
if (this.hasPlaybackControl === false) {
|
|
console.warn('THREE.Audio: this Audio has no playback control.');
|
|
return;
|
|
}
|
|
|
|
this.playbackRate = value;
|
|
|
|
if (this.isPlaying === true) {
|
|
this.source.playbackRate.setTargetAtTime(this.playbackRate, this.context.currentTime, 0.01);
|
|
}
|
|
|
|
return this;
|
|
}
|
|
|
|
getPlaybackRate() {
|
|
return this.playbackRate;
|
|
}
|
|
|
|
onEnded() {
|
|
this.isPlaying = false;
|
|
}
|
|
|
|
getLoop() {
|
|
if (this.hasPlaybackControl === false) {
|
|
console.warn('THREE.Audio: this Audio has no playback control.');
|
|
return false;
|
|
}
|
|
|
|
return this.loop;
|
|
}
|
|
|
|
setLoop(value) {
|
|
if (this.hasPlaybackControl === false) {
|
|
console.warn('THREE.Audio: this Audio has no playback control.');
|
|
return;
|
|
}
|
|
|
|
this.loop = value;
|
|
|
|
if (this.isPlaying === true) {
|
|
this.source.loop = this.loop;
|
|
}
|
|
|
|
return this;
|
|
}
|
|
|
|
setLoopStart(value) {
|
|
this.loopStart = value;
|
|
return this;
|
|
}
|
|
|
|
setLoopEnd(value) {
|
|
this.loopEnd = value;
|
|
return this;
|
|
}
|
|
|
|
getVolume() {
|
|
return this.gain.gain.value;
|
|
}
|
|
|
|
setVolume(value) {
|
|
this.gain.gain.setTargetAtTime(value, this.context.currentTime, 0.01);
|
|
return this;
|
|
}
|
|
|
|
}
|
|
|
|
const _position = /*@__PURE__*/new Vector3();
|
|
|
|
const _quaternion = /*@__PURE__*/new Quaternion();
|
|
|
|
const _scale = /*@__PURE__*/new Vector3();
|
|
|
|
const _orientation = /*@__PURE__*/new Vector3();
|
|
|
|
class PositionalAudio extends Audio {
|
|
constructor(listener) {
|
|
super(listener);
|
|
this.panner = this.context.createPanner();
|
|
this.panner.panningModel = 'HRTF';
|
|
this.panner.connect(this.gain);
|
|
}
|
|
|
|
getOutput() {
|
|
return this.panner;
|
|
}
|
|
|
|
getRefDistance() {
|
|
return this.panner.refDistance;
|
|
}
|
|
|
|
setRefDistance(value) {
|
|
this.panner.refDistance = value;
|
|
return this;
|
|
}
|
|
|
|
getRolloffFactor() {
|
|
return this.panner.rolloffFactor;
|
|
}
|
|
|
|
setRolloffFactor(value) {
|
|
this.panner.rolloffFactor = value;
|
|
return this;
|
|
}
|
|
|
|
getDistanceModel() {
|
|
return this.panner.distanceModel;
|
|
}
|
|
|
|
setDistanceModel(value) {
|
|
this.panner.distanceModel = value;
|
|
return this;
|
|
}
|
|
|
|
getMaxDistance() {
|
|
return this.panner.maxDistance;
|
|
}
|
|
|
|
setMaxDistance(value) {
|
|
this.panner.maxDistance = value;
|
|
return this;
|
|
}
|
|
|
|
setDirectionalCone(coneInnerAngle, coneOuterAngle, coneOuterGain) {
|
|
this.panner.coneInnerAngle = coneInnerAngle;
|
|
this.panner.coneOuterAngle = coneOuterAngle;
|
|
this.panner.coneOuterGain = coneOuterGain;
|
|
return this;
|
|
}
|
|
|
|
updateMatrixWorld(force) {
|
|
super.updateMatrixWorld(force);
|
|
if (this.hasPlaybackControl === true && this.isPlaying === false) return;
|
|
this.matrixWorld.decompose(_position, _quaternion, _scale);
|
|
|
|
_orientation.set(0, 0, 1).applyQuaternion(_quaternion);
|
|
|
|
const panner = this.panner;
|
|
|
|
if (panner.positionX) {
|
|
// code path for Chrome and Firefox (see #14393)
|
|
const endTime = this.context.currentTime + this.listener.timeDelta;
|
|
panner.positionX.linearRampToValueAtTime(_position.x, endTime);
|
|
panner.positionY.linearRampToValueAtTime(_position.y, endTime);
|
|
panner.positionZ.linearRampToValueAtTime(_position.z, endTime);
|
|
panner.orientationX.linearRampToValueAtTime(_orientation.x, endTime);
|
|
panner.orientationY.linearRampToValueAtTime(_orientation.y, endTime);
|
|
panner.orientationZ.linearRampToValueAtTime(_orientation.z, endTime);
|
|
} else {
|
|
panner.setPosition(_position.x, _position.y, _position.z);
|
|
panner.setOrientation(_orientation.x, _orientation.y, _orientation.z);
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
class AudioAnalyser {
|
|
constructor(audio, fftSize = 2048) {
|
|
this.analyser = audio.context.createAnalyser();
|
|
this.analyser.fftSize = fftSize;
|
|
this.data = new Uint8Array(this.analyser.frequencyBinCount);
|
|
audio.getOutput().connect(this.analyser);
|
|
}
|
|
|
|
getFrequencyData() {
|
|
this.analyser.getByteFrequencyData(this.data);
|
|
return this.data;
|
|
}
|
|
|
|
getAverageFrequency() {
|
|
let value = 0;
|
|
const data = this.getFrequencyData();
|
|
|
|
for (let i = 0; i < data.length; i++) {
|
|
value += data[i];
|
|
}
|
|
|
|
return value / data.length;
|
|
}
|
|
|
|
}
|
|
|
|
class PropertyMixer {
|
|
constructor(binding, typeName, valueSize) {
|
|
this.binding = binding;
|
|
this.valueSize = valueSize;
|
|
let mixFunction, mixFunctionAdditive, setIdentity; // buffer layout: [ incoming | accu0 | accu1 | orig | addAccu | (optional work) ]
|
|
//
|
|
// interpolators can use .buffer as their .result
|
|
// the data then goes to 'incoming'
|
|
//
|
|
// 'accu0' and 'accu1' are used frame-interleaved for
|
|
// the cumulative result and are compared to detect
|
|
// changes
|
|
//
|
|
// 'orig' stores the original state of the property
|
|
//
|
|
// 'add' is used for additive cumulative results
|
|
//
|
|
// 'work' is optional and is only present for quaternion types. It is used
|
|
// to store intermediate quaternion multiplication results
|
|
|
|
switch (typeName) {
|
|
case 'quaternion':
|
|
mixFunction = this._slerp;
|
|
mixFunctionAdditive = this._slerpAdditive;
|
|
setIdentity = this._setAdditiveIdentityQuaternion;
|
|
this.buffer = new Float64Array(valueSize * 6);
|
|
this._workIndex = 5;
|
|
break;
|
|
|
|
case 'string':
|
|
case 'bool':
|
|
mixFunction = this._select; // Use the regular mix function and for additive on these types,
|
|
// additive is not relevant for non-numeric types
|
|
|
|
mixFunctionAdditive = this._select;
|
|
setIdentity = this._setAdditiveIdentityOther;
|
|
this.buffer = new Array(valueSize * 5);
|
|
break;
|
|
|
|
default:
|
|
mixFunction = this._lerp;
|
|
mixFunctionAdditive = this._lerpAdditive;
|
|
setIdentity = this._setAdditiveIdentityNumeric;
|
|
this.buffer = new Float64Array(valueSize * 5);
|
|
}
|
|
|
|
this._mixBufferRegion = mixFunction;
|
|
this._mixBufferRegionAdditive = mixFunctionAdditive;
|
|
this._setIdentity = setIdentity;
|
|
this._origIndex = 3;
|
|
this._addIndex = 4;
|
|
this.cumulativeWeight = 0;
|
|
this.cumulativeWeightAdditive = 0;
|
|
this.useCount = 0;
|
|
this.referenceCount = 0;
|
|
} // accumulate data in the 'incoming' region into 'accu<i>'
|
|
|
|
|
|
accumulate(accuIndex, weight) {
|
|
// note: happily accumulating nothing when weight = 0, the caller knows
|
|
// the weight and shouldn't have made the call in the first place
|
|
const buffer = this.buffer,
|
|
stride = this.valueSize,
|
|
offset = accuIndex * stride + stride;
|
|
let currentWeight = this.cumulativeWeight;
|
|
|
|
if (currentWeight === 0) {
|
|
// accuN := incoming * weight
|
|
for (let i = 0; i !== stride; ++i) {
|
|
buffer[offset + i] = buffer[i];
|
|
}
|
|
|
|
currentWeight = weight;
|
|
} else {
|
|
// accuN := accuN + incoming * weight
|
|
currentWeight += weight;
|
|
const mix = weight / currentWeight;
|
|
|
|
this._mixBufferRegion(buffer, offset, 0, mix, stride);
|
|
}
|
|
|
|
this.cumulativeWeight = currentWeight;
|
|
} // accumulate data in the 'incoming' region into 'add'
|
|
|
|
|
|
accumulateAdditive(weight) {
|
|
const buffer = this.buffer,
|
|
stride = this.valueSize,
|
|
offset = stride * this._addIndex;
|
|
|
|
if (this.cumulativeWeightAdditive === 0) {
|
|
// add = identity
|
|
this._setIdentity();
|
|
} // add := add + incoming * weight
|
|
|
|
|
|
this._mixBufferRegionAdditive(buffer, offset, 0, weight, stride);
|
|
|
|
this.cumulativeWeightAdditive += weight;
|
|
} // apply the state of 'accu<i>' to the binding when accus differ
|
|
|
|
|
|
apply(accuIndex) {
|
|
const stride = this.valueSize,
|
|
buffer = this.buffer,
|
|
offset = accuIndex * stride + stride,
|
|
weight = this.cumulativeWeight,
|
|
weightAdditive = this.cumulativeWeightAdditive,
|
|
binding = this.binding;
|
|
this.cumulativeWeight = 0;
|
|
this.cumulativeWeightAdditive = 0;
|
|
|
|
if (weight < 1) {
|
|
// accuN := accuN + original * ( 1 - cumulativeWeight )
|
|
const originalValueOffset = stride * this._origIndex;
|
|
|
|
this._mixBufferRegion(buffer, offset, originalValueOffset, 1 - weight, stride);
|
|
}
|
|
|
|
if (weightAdditive > 0) {
|
|
// accuN := accuN + additive accuN
|
|
this._mixBufferRegionAdditive(buffer, offset, this._addIndex * stride, 1, stride);
|
|
}
|
|
|
|
for (let i = stride, e = stride + stride; i !== e; ++i) {
|
|
if (buffer[i] !== buffer[i + stride]) {
|
|
// value has changed -> update scene graph
|
|
binding.setValue(buffer, offset);
|
|
break;
|
|
}
|
|
}
|
|
} // remember the state of the bound property and copy it to both accus
|
|
|
|
|
|
saveOriginalState() {
|
|
const binding = this.binding;
|
|
const buffer = this.buffer,
|
|
stride = this.valueSize,
|
|
originalValueOffset = stride * this._origIndex;
|
|
binding.getValue(buffer, originalValueOffset); // accu[0..1] := orig -- initially detect changes against the original
|
|
|
|
for (let i = stride, e = originalValueOffset; i !== e; ++i) {
|
|
buffer[i] = buffer[originalValueOffset + i % stride];
|
|
} // Add to identity for additive
|
|
|
|
|
|
this._setIdentity();
|
|
|
|
this.cumulativeWeight = 0;
|
|
this.cumulativeWeightAdditive = 0;
|
|
} // apply the state previously taken via 'saveOriginalState' to the binding
|
|
|
|
|
|
restoreOriginalState() {
|
|
const originalValueOffset = this.valueSize * 3;
|
|
this.binding.setValue(this.buffer, originalValueOffset);
|
|
}
|
|
|
|
_setAdditiveIdentityNumeric() {
|
|
const startIndex = this._addIndex * this.valueSize;
|
|
const endIndex = startIndex + this.valueSize;
|
|
|
|
for (let i = startIndex; i < endIndex; i++) {
|
|
this.buffer[i] = 0;
|
|
}
|
|
}
|
|
|
|
_setAdditiveIdentityQuaternion() {
|
|
this._setAdditiveIdentityNumeric();
|
|
|
|
this.buffer[this._addIndex * this.valueSize + 3] = 1;
|
|
}
|
|
|
|
_setAdditiveIdentityOther() {
|
|
const startIndex = this._origIndex * this.valueSize;
|
|
const targetIndex = this._addIndex * this.valueSize;
|
|
|
|
for (let i = 0; i < this.valueSize; i++) {
|
|
this.buffer[targetIndex + i] = this.buffer[startIndex + i];
|
|
}
|
|
} // mix functions
|
|
|
|
|
|
_select(buffer, dstOffset, srcOffset, t, stride) {
|
|
if (t >= 0.5) {
|
|
for (let i = 0; i !== stride; ++i) {
|
|
buffer[dstOffset + i] = buffer[srcOffset + i];
|
|
}
|
|
}
|
|
}
|
|
|
|
_slerp(buffer, dstOffset, srcOffset, t) {
|
|
Quaternion.slerpFlat(buffer, dstOffset, buffer, dstOffset, buffer, srcOffset, t);
|
|
}
|
|
|
|
_slerpAdditive(buffer, dstOffset, srcOffset, t, stride) {
|
|
const workOffset = this._workIndex * stride; // Store result in intermediate buffer offset
|
|
|
|
Quaternion.multiplyQuaternionsFlat(buffer, workOffset, buffer, dstOffset, buffer, srcOffset); // Slerp to the intermediate result
|
|
|
|
Quaternion.slerpFlat(buffer, dstOffset, buffer, dstOffset, buffer, workOffset, t);
|
|
}
|
|
|
|
_lerp(buffer, dstOffset, srcOffset, t, stride) {
|
|
const s = 1 - t;
|
|
|
|
for (let i = 0; i !== stride; ++i) {
|
|
const j = dstOffset + i;
|
|
buffer[j] = buffer[j] * s + buffer[srcOffset + i] * t;
|
|
}
|
|
}
|
|
|
|
_lerpAdditive(buffer, dstOffset, srcOffset, t, stride) {
|
|
for (let i = 0; i !== stride; ++i) {
|
|
const j = dstOffset + i;
|
|
buffer[j] = buffer[j] + buffer[srcOffset + i] * t;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
// Characters [].:/ are reserved for track binding syntax.
|
|
const _RESERVED_CHARS_RE = '\\[\\]\\.:\\/';
|
|
|
|
const _reservedRe = new RegExp('[' + _RESERVED_CHARS_RE + ']', 'g'); // Attempts to allow node names from any language. ES5's `\w` regexp matches
|
|
// only latin characters, and the unicode \p{L} is not yet supported. So
|
|
// instead, we exclude reserved characters and match everything else.
|
|
|
|
|
|
const _wordChar = '[^' + _RESERVED_CHARS_RE + ']';
|
|
|
|
const _wordCharOrDot = '[^' + _RESERVED_CHARS_RE.replace('\\.', '') + ']'; // Parent directories, delimited by '/' or ':'. Currently unused, but must
|
|
// be matched to parse the rest of the track name.
|
|
|
|
|
|
const _directoryRe = /((?:WC+[\/:])*)/.source.replace('WC', _wordChar); // Target node. May contain word characters (a-zA-Z0-9_) and '.' or '-'.
|
|
|
|
|
|
const _nodeRe = /(WCOD+)?/.source.replace('WCOD', _wordCharOrDot); // Object on target node, and accessor. May not contain reserved
|
|
// characters. Accessor may contain any character except closing bracket.
|
|
|
|
|
|
const _objectRe = /(?:\.(WC+)(?:\[(.+)\])?)?/.source.replace('WC', _wordChar); // Property and accessor. May not contain reserved characters. Accessor may
|
|
// contain any non-bracket characters.
|
|
|
|
|
|
const _propertyRe = /\.(WC+)(?:\[(.+)\])?/.source.replace('WC', _wordChar);
|
|
|
|
const _trackRe = new RegExp('' + '^' + _directoryRe + _nodeRe + _objectRe + _propertyRe + '$');
|
|
|
|
const _supportedObjectNames = ['material', 'materials', 'bones'];
|
|
|
|
class Composite {
|
|
constructor(targetGroup, path, optionalParsedPath) {
|
|
const parsedPath = optionalParsedPath || PropertyBinding.parseTrackName(path);
|
|
this._targetGroup = targetGroup;
|
|
this._bindings = targetGroup.subscribe_(path, parsedPath);
|
|
}
|
|
|
|
getValue(array, offset) {
|
|
this.bind(); // bind all binding
|
|
|
|
const firstValidIndex = this._targetGroup.nCachedObjects_,
|
|
binding = this._bindings[firstValidIndex]; // and only call .getValue on the first
|
|
|
|
if (binding !== undefined) binding.getValue(array, offset);
|
|
}
|
|
|
|
setValue(array, offset) {
|
|
const bindings = this._bindings;
|
|
|
|
for (let i = this._targetGroup.nCachedObjects_, n = bindings.length; i !== n; ++i) {
|
|
bindings[i].setValue(array, offset);
|
|
}
|
|
}
|
|
|
|
bind() {
|
|
const bindings = this._bindings;
|
|
|
|
for (let i = this._targetGroup.nCachedObjects_, n = bindings.length; i !== n; ++i) {
|
|
bindings[i].bind();
|
|
}
|
|
}
|
|
|
|
unbind() {
|
|
const bindings = this._bindings;
|
|
|
|
for (let i = this._targetGroup.nCachedObjects_, n = bindings.length; i !== n; ++i) {
|
|
bindings[i].unbind();
|
|
}
|
|
}
|
|
|
|
} // Note: This class uses a State pattern on a per-method basis:
|
|
// 'bind' sets 'this.getValue' / 'setValue' and shadows the
|
|
// prototype version of these methods with one that represents
|
|
// the bound state. When the property is not found, the methods
|
|
// become no-ops.
|
|
|
|
|
|
class PropertyBinding {
|
|
constructor(rootNode, path, parsedPath) {
|
|
this.path = path;
|
|
this.parsedPath = parsedPath || PropertyBinding.parseTrackName(path);
|
|
this.node = PropertyBinding.findNode(rootNode, this.parsedPath.nodeName) || rootNode;
|
|
this.rootNode = rootNode; // initial state of these methods that calls 'bind'
|
|
|
|
this.getValue = this._getValue_unbound;
|
|
this.setValue = this._setValue_unbound;
|
|
}
|
|
|
|
static create(root, path, parsedPath) {
|
|
if (!(root && root.isAnimationObjectGroup)) {
|
|
return new PropertyBinding(root, path, parsedPath);
|
|
} else {
|
|
return new PropertyBinding.Composite(root, path, parsedPath);
|
|
}
|
|
}
|
|
/**
|
|
* Replaces spaces with underscores and removes unsupported characters from
|
|
* node names, to ensure compatibility with parseTrackName().
|
|
*
|
|
* @param {string} name Node name to be sanitized.
|
|
* @return {string}
|
|
*/
|
|
|
|
|
|
static sanitizeNodeName(name) {
|
|
return name.replace(/\s/g, '_').replace(_reservedRe, '');
|
|
}
|
|
|
|
static parseTrackName(trackName) {
|
|
const matches = _trackRe.exec(trackName);
|
|
|
|
if (!matches) {
|
|
throw new Error('PropertyBinding: Cannot parse trackName: ' + trackName);
|
|
}
|
|
|
|
const results = {
|
|
// directoryName: matches[ 1 ], // (tschw) currently unused
|
|
nodeName: matches[2],
|
|
objectName: matches[3],
|
|
objectIndex: matches[4],
|
|
propertyName: matches[5],
|
|
// required
|
|
propertyIndex: matches[6]
|
|
};
|
|
const lastDot = results.nodeName && results.nodeName.lastIndexOf('.');
|
|
|
|
if (lastDot !== undefined && lastDot !== -1) {
|
|
const objectName = results.nodeName.substring(lastDot + 1); // Object names must be checked against an allowlist. Otherwise, there
|
|
// is no way to parse 'foo.bar.baz': 'baz' must be a property, but
|
|
// 'bar' could be the objectName, or part of a nodeName (which can
|
|
// include '.' characters).
|
|
|
|
if (_supportedObjectNames.indexOf(objectName) !== -1) {
|
|
results.nodeName = results.nodeName.substring(0, lastDot);
|
|
results.objectName = objectName;
|
|
}
|
|
}
|
|
|
|
if (results.propertyName === null || results.propertyName.length === 0) {
|
|
throw new Error('PropertyBinding: can not parse propertyName from trackName: ' + trackName);
|
|
}
|
|
|
|
return results;
|
|
}
|
|
|
|
static findNode(root, nodeName) {
|
|
if (!nodeName || nodeName === '' || nodeName === '.' || nodeName === -1 || nodeName === root.name || nodeName === root.uuid) {
|
|
return root;
|
|
} // search into skeleton bones.
|
|
|
|
|
|
if (root.skeleton) {
|
|
const bone = root.skeleton.getBoneByName(nodeName);
|
|
|
|
if (bone !== undefined) {
|
|
return bone;
|
|
}
|
|
} // search into node subtree.
|
|
|
|
|
|
if (root.children) {
|
|
const searchNodeSubtree = function (children) {
|
|
for (let i = 0; i < children.length; i++) {
|
|
const childNode = children[i];
|
|
|
|
if (childNode.name === nodeName || childNode.uuid === nodeName) {
|
|
return childNode;
|
|
}
|
|
|
|
const result = searchNodeSubtree(childNode.children);
|
|
if (result) return result;
|
|
}
|
|
|
|
return null;
|
|
};
|
|
|
|
const subTreeNode = searchNodeSubtree(root.children);
|
|
|
|
if (subTreeNode) {
|
|
return subTreeNode;
|
|
}
|
|
}
|
|
|
|
return null;
|
|
} // these are used to "bind" a nonexistent property
|
|
|
|
|
|
_getValue_unavailable() {}
|
|
|
|
_setValue_unavailable() {} // Getters
|
|
|
|
|
|
_getValue_direct(buffer, offset) {
|
|
buffer[offset] = this.targetObject[this.propertyName];
|
|
}
|
|
|
|
_getValue_array(buffer, offset) {
|
|
const source = this.resolvedProperty;
|
|
|
|
for (let i = 0, n = source.length; i !== n; ++i) {
|
|
buffer[offset++] = source[i];
|
|
}
|
|
}
|
|
|
|
_getValue_arrayElement(buffer, offset) {
|
|
buffer[offset] = this.resolvedProperty[this.propertyIndex];
|
|
}
|
|
|
|
_getValue_toArray(buffer, offset) {
|
|
this.resolvedProperty.toArray(buffer, offset);
|
|
} // Direct
|
|
|
|
|
|
_setValue_direct(buffer, offset) {
|
|
this.targetObject[this.propertyName] = buffer[offset];
|
|
}
|
|
|
|
_setValue_direct_setNeedsUpdate(buffer, offset) {
|
|
this.targetObject[this.propertyName] = buffer[offset];
|
|
this.targetObject.needsUpdate = true;
|
|
}
|
|
|
|
_setValue_direct_setMatrixWorldNeedsUpdate(buffer, offset) {
|
|
this.targetObject[this.propertyName] = buffer[offset];
|
|
this.targetObject.matrixWorldNeedsUpdate = true;
|
|
} // EntireArray
|
|
|
|
|
|
_setValue_array(buffer, offset) {
|
|
const dest = this.resolvedProperty;
|
|
|
|
for (let i = 0, n = dest.length; i !== n; ++i) {
|
|
dest[i] = buffer[offset++];
|
|
}
|
|
}
|
|
|
|
_setValue_array_setNeedsUpdate(buffer, offset) {
|
|
const dest = this.resolvedProperty;
|
|
|
|
for (let i = 0, n = dest.length; i !== n; ++i) {
|
|
dest[i] = buffer[offset++];
|
|
}
|
|
|
|
this.targetObject.needsUpdate = true;
|
|
}
|
|
|
|
_setValue_array_setMatrixWorldNeedsUpdate(buffer, offset) {
|
|
const dest = this.resolvedProperty;
|
|
|
|
for (let i = 0, n = dest.length; i !== n; ++i) {
|
|
dest[i] = buffer[offset++];
|
|
}
|
|
|
|
this.targetObject.matrixWorldNeedsUpdate = true;
|
|
} // ArrayElement
|
|
|
|
|
|
_setValue_arrayElement(buffer, offset) {
|
|
this.resolvedProperty[this.propertyIndex] = buffer[offset];
|
|
}
|
|
|
|
_setValue_arrayElement_setNeedsUpdate(buffer, offset) {
|
|
this.resolvedProperty[this.propertyIndex] = buffer[offset];
|
|
this.targetObject.needsUpdate = true;
|
|
}
|
|
|
|
_setValue_arrayElement_setMatrixWorldNeedsUpdate(buffer, offset) {
|
|
this.resolvedProperty[this.propertyIndex] = buffer[offset];
|
|
this.targetObject.matrixWorldNeedsUpdate = true;
|
|
} // HasToFromArray
|
|
|
|
|
|
_setValue_fromArray(buffer, offset) {
|
|
this.resolvedProperty.fromArray(buffer, offset);
|
|
}
|
|
|
|
_setValue_fromArray_setNeedsUpdate(buffer, offset) {
|
|
this.resolvedProperty.fromArray(buffer, offset);
|
|
this.targetObject.needsUpdate = true;
|
|
}
|
|
|
|
_setValue_fromArray_setMatrixWorldNeedsUpdate(buffer, offset) {
|
|
this.resolvedProperty.fromArray(buffer, offset);
|
|
this.targetObject.matrixWorldNeedsUpdate = true;
|
|
}
|
|
|
|
_getValue_unbound(targetArray, offset) {
|
|
this.bind();
|
|
this.getValue(targetArray, offset);
|
|
}
|
|
|
|
_setValue_unbound(sourceArray, offset) {
|
|
this.bind();
|
|
this.setValue(sourceArray, offset);
|
|
} // create getter / setter pair for a property in the scene graph
|
|
|
|
|
|
bind() {
|
|
let targetObject = this.node;
|
|
const parsedPath = this.parsedPath;
|
|
const objectName = parsedPath.objectName;
|
|
const propertyName = parsedPath.propertyName;
|
|
let propertyIndex = parsedPath.propertyIndex;
|
|
|
|
if (!targetObject) {
|
|
targetObject = PropertyBinding.findNode(this.rootNode, parsedPath.nodeName) || this.rootNode;
|
|
this.node = targetObject;
|
|
} // set fail state so we can just 'return' on error
|
|
|
|
|
|
this.getValue = this._getValue_unavailable;
|
|
this.setValue = this._setValue_unavailable; // ensure there is a value node
|
|
|
|
if (!targetObject) {
|
|
console.error('THREE.PropertyBinding: Trying to update node for track: ' + this.path + ' but it wasn\'t found.');
|
|
return;
|
|
}
|
|
|
|
if (objectName) {
|
|
let objectIndex = parsedPath.objectIndex; // special cases were we need to reach deeper into the hierarchy to get the face materials....
|
|
|
|
switch (objectName) {
|
|
case 'materials':
|
|
if (!targetObject.material) {
|
|
console.error('THREE.PropertyBinding: Can not bind to material as node does not have a material.', this);
|
|
return;
|
|
}
|
|
|
|
if (!targetObject.material.materials) {
|
|
console.error('THREE.PropertyBinding: Can not bind to material.materials as node.material does not have a materials array.', this);
|
|
return;
|
|
}
|
|
|
|
targetObject = targetObject.material.materials;
|
|
break;
|
|
|
|
case 'bones':
|
|
if (!targetObject.skeleton) {
|
|
console.error('THREE.PropertyBinding: Can not bind to bones as node does not have a skeleton.', this);
|
|
return;
|
|
} // potential future optimization: skip this if propertyIndex is already an integer
|
|
// and convert the integer string to a true integer.
|
|
|
|
|
|
targetObject = targetObject.skeleton.bones; // support resolving morphTarget names into indices.
|
|
|
|
for (let i = 0; i < targetObject.length; i++) {
|
|
if (targetObject[i].name === objectIndex) {
|
|
objectIndex = i;
|
|
break;
|
|
}
|
|
}
|
|
|
|
break;
|
|
|
|
default:
|
|
if (targetObject[objectName] === undefined) {
|
|
console.error('THREE.PropertyBinding: Can not bind to objectName of node undefined.', this);
|
|
return;
|
|
}
|
|
|
|
targetObject = targetObject[objectName];
|
|
}
|
|
|
|
if (objectIndex !== undefined) {
|
|
if (targetObject[objectIndex] === undefined) {
|
|
console.error('THREE.PropertyBinding: Trying to bind to objectIndex of objectName, but is undefined.', this, targetObject);
|
|
return;
|
|
}
|
|
|
|
targetObject = targetObject[objectIndex];
|
|
}
|
|
} // resolve property
|
|
|
|
|
|
const nodeProperty = targetObject[propertyName];
|
|
|
|
if (nodeProperty === undefined) {
|
|
const nodeName = parsedPath.nodeName;
|
|
console.error('THREE.PropertyBinding: Trying to update property for track: ' + nodeName + '.' + propertyName + ' but it wasn\'t found.', targetObject);
|
|
return;
|
|
} // determine versioning scheme
|
|
|
|
|
|
let versioning = this.Versioning.None;
|
|
this.targetObject = targetObject;
|
|
|
|
if (targetObject.needsUpdate !== undefined) {
|
|
// material
|
|
versioning = this.Versioning.NeedsUpdate;
|
|
} else if (targetObject.matrixWorldNeedsUpdate !== undefined) {
|
|
// node transform
|
|
versioning = this.Versioning.MatrixWorldNeedsUpdate;
|
|
} // determine how the property gets bound
|
|
|
|
|
|
let bindingType = this.BindingType.Direct;
|
|
|
|
if (propertyIndex !== undefined) {
|
|
// access a sub element of the property array (only primitives are supported right now)
|
|
if (propertyName === 'morphTargetInfluences') {
|
|
// potential optimization, skip this if propertyIndex is already an integer, and convert the integer string to a true integer.
|
|
// support resolving morphTarget names into indices.
|
|
if (!targetObject.geometry) {
|
|
console.error('THREE.PropertyBinding: Can not bind to morphTargetInfluences because node does not have a geometry.', this);
|
|
return;
|
|
}
|
|
|
|
if (targetObject.geometry.isBufferGeometry) {
|
|
if (!targetObject.geometry.morphAttributes) {
|
|
console.error('THREE.PropertyBinding: Can not bind to morphTargetInfluences because node does not have a geometry.morphAttributes.', this);
|
|
return;
|
|
}
|
|
|
|
if (targetObject.morphTargetDictionary[propertyIndex] !== undefined) {
|
|
propertyIndex = targetObject.morphTargetDictionary[propertyIndex];
|
|
}
|
|
} else {
|
|
console.error('THREE.PropertyBinding: Can not bind to morphTargetInfluences on THREE.Geometry. Use THREE.BufferGeometry instead.', this);
|
|
return;
|
|
}
|
|
}
|
|
|
|
bindingType = this.BindingType.ArrayElement;
|
|
this.resolvedProperty = nodeProperty;
|
|
this.propertyIndex = propertyIndex;
|
|
} else if (nodeProperty.fromArray !== undefined && nodeProperty.toArray !== undefined) {
|
|
// must use copy for Object3D.Euler/Quaternion
|
|
bindingType = this.BindingType.HasFromToArray;
|
|
this.resolvedProperty = nodeProperty;
|
|
} else if (Array.isArray(nodeProperty)) {
|
|
bindingType = this.BindingType.EntireArray;
|
|
this.resolvedProperty = nodeProperty;
|
|
} else {
|
|
this.propertyName = propertyName;
|
|
} // select getter / setter
|
|
|
|
|
|
this.getValue = this.GetterByBindingType[bindingType];
|
|
this.setValue = this.SetterByBindingTypeAndVersioning[bindingType][versioning];
|
|
}
|
|
|
|
unbind() {
|
|
this.node = null; // back to the prototype version of getValue / setValue
|
|
// note: avoiding to mutate the shape of 'this' via 'delete'
|
|
|
|
this.getValue = this._getValue_unbound;
|
|
this.setValue = this._setValue_unbound;
|
|
}
|
|
|
|
}
|
|
|
|
PropertyBinding.Composite = Composite;
|
|
PropertyBinding.prototype.BindingType = {
|
|
Direct: 0,
|
|
EntireArray: 1,
|
|
ArrayElement: 2,
|
|
HasFromToArray: 3
|
|
};
|
|
PropertyBinding.prototype.Versioning = {
|
|
None: 0,
|
|
NeedsUpdate: 1,
|
|
MatrixWorldNeedsUpdate: 2
|
|
};
|
|
PropertyBinding.prototype.GetterByBindingType = [PropertyBinding.prototype._getValue_direct, PropertyBinding.prototype._getValue_array, PropertyBinding.prototype._getValue_arrayElement, PropertyBinding.prototype._getValue_toArray];
|
|
PropertyBinding.prototype.SetterByBindingTypeAndVersioning = [[// Direct
|
|
PropertyBinding.prototype._setValue_direct, PropertyBinding.prototype._setValue_direct_setNeedsUpdate, PropertyBinding.prototype._setValue_direct_setMatrixWorldNeedsUpdate], [// EntireArray
|
|
PropertyBinding.prototype._setValue_array, PropertyBinding.prototype._setValue_array_setNeedsUpdate, PropertyBinding.prototype._setValue_array_setMatrixWorldNeedsUpdate], [// ArrayElement
|
|
PropertyBinding.prototype._setValue_arrayElement, PropertyBinding.prototype._setValue_arrayElement_setNeedsUpdate, PropertyBinding.prototype._setValue_arrayElement_setMatrixWorldNeedsUpdate], [// HasToFromArray
|
|
PropertyBinding.prototype._setValue_fromArray, PropertyBinding.prototype._setValue_fromArray_setNeedsUpdate, PropertyBinding.prototype._setValue_fromArray_setMatrixWorldNeedsUpdate]];
|
|
|
|
/**
|
|
*
|
|
* A group of objects that receives a shared animation state.
|
|
*
|
|
* Usage:
|
|
*
|
|
* - Add objects you would otherwise pass as 'root' to the
|
|
* constructor or the .clipAction method of AnimationMixer.
|
|
*
|
|
* - Instead pass this object as 'root'.
|
|
*
|
|
* - You can also add and remove objects later when the mixer
|
|
* is running.
|
|
*
|
|
* Note:
|
|
*
|
|
* Objects of this class appear as one object to the mixer,
|
|
* so cache control of the individual objects must be done
|
|
* on the group.
|
|
*
|
|
* Limitation:
|
|
*
|
|
* - The animated properties must be compatible among the
|
|
* all objects in the group.
|
|
*
|
|
* - A single property can either be controlled through a
|
|
* target group or directly, but not both.
|
|
*/
|
|
|
|
class AnimationObjectGroup {
|
|
constructor() {
|
|
this.uuid = generateUUID(); // cached objects followed by the active ones
|
|
|
|
this._objects = Array.prototype.slice.call(arguments);
|
|
this.nCachedObjects_ = 0; // threshold
|
|
// note: read by PropertyBinding.Composite
|
|
|
|
const indices = {};
|
|
this._indicesByUUID = indices; // for bookkeeping
|
|
|
|
for (let i = 0, n = arguments.length; i !== n; ++i) {
|
|
indices[arguments[i].uuid] = i;
|
|
}
|
|
|
|
this._paths = []; // inside: string
|
|
|
|
this._parsedPaths = []; // inside: { we don't care, here }
|
|
|
|
this._bindings = []; // inside: Array< PropertyBinding >
|
|
|
|
this._bindingsIndicesByPath = {}; // inside: indices in these arrays
|
|
|
|
const scope = this;
|
|
this.stats = {
|
|
objects: {
|
|
get total() {
|
|
return scope._objects.length;
|
|
},
|
|
|
|
get inUse() {
|
|
return this.total - scope.nCachedObjects_;
|
|
}
|
|
|
|
},
|
|
|
|
get bindingsPerObject() {
|
|
return scope._bindings.length;
|
|
}
|
|
|
|
};
|
|
}
|
|
|
|
add() {
|
|
const objects = this._objects,
|
|
indicesByUUID = this._indicesByUUID,
|
|
paths = this._paths,
|
|
parsedPaths = this._parsedPaths,
|
|
bindings = this._bindings,
|
|
nBindings = bindings.length;
|
|
let knownObject = undefined,
|
|
nObjects = objects.length,
|
|
nCachedObjects = this.nCachedObjects_;
|
|
|
|
for (let i = 0, n = arguments.length; i !== n; ++i) {
|
|
const object = arguments[i],
|
|
uuid = object.uuid;
|
|
let index = indicesByUUID[uuid];
|
|
|
|
if (index === undefined) {
|
|
// unknown object -> add it to the ACTIVE region
|
|
index = nObjects++;
|
|
indicesByUUID[uuid] = index;
|
|
objects.push(object); // accounting is done, now do the same for all bindings
|
|
|
|
for (let j = 0, m = nBindings; j !== m; ++j) {
|
|
bindings[j].push(new PropertyBinding(object, paths[j], parsedPaths[j]));
|
|
}
|
|
} else if (index < nCachedObjects) {
|
|
knownObject = objects[index]; // move existing object to the ACTIVE region
|
|
|
|
const firstActiveIndex = --nCachedObjects,
|
|
lastCachedObject = objects[firstActiveIndex];
|
|
indicesByUUID[lastCachedObject.uuid] = index;
|
|
objects[index] = lastCachedObject;
|
|
indicesByUUID[uuid] = firstActiveIndex;
|
|
objects[firstActiveIndex] = object; // accounting is done, now do the same for all bindings
|
|
|
|
for (let j = 0, m = nBindings; j !== m; ++j) {
|
|
const bindingsForPath = bindings[j],
|
|
lastCached = bindingsForPath[firstActiveIndex];
|
|
let binding = bindingsForPath[index];
|
|
bindingsForPath[index] = lastCached;
|
|
|
|
if (binding === undefined) {
|
|
// since we do not bother to create new bindings
|
|
// for objects that are cached, the binding may
|
|
// or may not exist
|
|
binding = new PropertyBinding(object, paths[j], parsedPaths[j]);
|
|
}
|
|
|
|
bindingsForPath[firstActiveIndex] = binding;
|
|
}
|
|
} else if (objects[index] !== knownObject) {
|
|
console.error('THREE.AnimationObjectGroup: Different objects with the same UUID ' + 'detected. Clean the caches or recreate your infrastructure when reloading scenes.');
|
|
} // else the object is already where we want it to be
|
|
|
|
} // for arguments
|
|
|
|
|
|
this.nCachedObjects_ = nCachedObjects;
|
|
}
|
|
|
|
remove() {
|
|
const objects = this._objects,
|
|
indicesByUUID = this._indicesByUUID,
|
|
bindings = this._bindings,
|
|
nBindings = bindings.length;
|
|
let nCachedObjects = this.nCachedObjects_;
|
|
|
|
for (let i = 0, n = arguments.length; i !== n; ++i) {
|
|
const object = arguments[i],
|
|
uuid = object.uuid,
|
|
index = indicesByUUID[uuid];
|
|
|
|
if (index !== undefined && index >= nCachedObjects) {
|
|
// move existing object into the CACHED region
|
|
const lastCachedIndex = nCachedObjects++,
|
|
firstActiveObject = objects[lastCachedIndex];
|
|
indicesByUUID[firstActiveObject.uuid] = index;
|
|
objects[index] = firstActiveObject;
|
|
indicesByUUID[uuid] = lastCachedIndex;
|
|
objects[lastCachedIndex] = object; // accounting is done, now do the same for all bindings
|
|
|
|
for (let j = 0, m = nBindings; j !== m; ++j) {
|
|
const bindingsForPath = bindings[j],
|
|
firstActive = bindingsForPath[lastCachedIndex],
|
|
binding = bindingsForPath[index];
|
|
bindingsForPath[index] = firstActive;
|
|
bindingsForPath[lastCachedIndex] = binding;
|
|
}
|
|
}
|
|
} // for arguments
|
|
|
|
|
|
this.nCachedObjects_ = nCachedObjects;
|
|
} // remove & forget
|
|
|
|
|
|
uncache() {
|
|
const objects = this._objects,
|
|
indicesByUUID = this._indicesByUUID,
|
|
bindings = this._bindings,
|
|
nBindings = bindings.length;
|
|
let nCachedObjects = this.nCachedObjects_,
|
|
nObjects = objects.length;
|
|
|
|
for (let i = 0, n = arguments.length; i !== n; ++i) {
|
|
const object = arguments[i],
|
|
uuid = object.uuid,
|
|
index = indicesByUUID[uuid];
|
|
|
|
if (index !== undefined) {
|
|
delete indicesByUUID[uuid];
|
|
|
|
if (index < nCachedObjects) {
|
|
// object is cached, shrink the CACHED region
|
|
const firstActiveIndex = --nCachedObjects,
|
|
lastCachedObject = objects[firstActiveIndex],
|
|
lastIndex = --nObjects,
|
|
lastObject = objects[lastIndex]; // last cached object takes this object's place
|
|
|
|
indicesByUUID[lastCachedObject.uuid] = index;
|
|
objects[index] = lastCachedObject; // last object goes to the activated slot and pop
|
|
|
|
indicesByUUID[lastObject.uuid] = firstActiveIndex;
|
|
objects[firstActiveIndex] = lastObject;
|
|
objects.pop(); // accounting is done, now do the same for all bindings
|
|
|
|
for (let j = 0, m = nBindings; j !== m; ++j) {
|
|
const bindingsForPath = bindings[j],
|
|
lastCached = bindingsForPath[firstActiveIndex],
|
|
last = bindingsForPath[lastIndex];
|
|
bindingsForPath[index] = lastCached;
|
|
bindingsForPath[firstActiveIndex] = last;
|
|
bindingsForPath.pop();
|
|
}
|
|
} else {
|
|
// object is active, just swap with the last and pop
|
|
const lastIndex = --nObjects,
|
|
lastObject = objects[lastIndex];
|
|
|
|
if (lastIndex > 0) {
|
|
indicesByUUID[lastObject.uuid] = index;
|
|
}
|
|
|
|
objects[index] = lastObject;
|
|
objects.pop(); // accounting is done, now do the same for all bindings
|
|
|
|
for (let j = 0, m = nBindings; j !== m; ++j) {
|
|
const bindingsForPath = bindings[j];
|
|
bindingsForPath[index] = bindingsForPath[lastIndex];
|
|
bindingsForPath.pop();
|
|
}
|
|
} // cached or active
|
|
|
|
} // if object is known
|
|
|
|
} // for arguments
|
|
|
|
|
|
this.nCachedObjects_ = nCachedObjects;
|
|
} // Internal interface used by befriended PropertyBinding.Composite:
|
|
|
|
|
|
subscribe_(path, parsedPath) {
|
|
// returns an array of bindings for the given path that is changed
|
|
// according to the contained objects in the group
|
|
const indicesByPath = this._bindingsIndicesByPath;
|
|
let index = indicesByPath[path];
|
|
const bindings = this._bindings;
|
|
if (index !== undefined) return bindings[index];
|
|
const paths = this._paths,
|
|
parsedPaths = this._parsedPaths,
|
|
objects = this._objects,
|
|
nObjects = objects.length,
|
|
nCachedObjects = this.nCachedObjects_,
|
|
bindingsForPath = new Array(nObjects);
|
|
index = bindings.length;
|
|
indicesByPath[path] = index;
|
|
paths.push(path);
|
|
parsedPaths.push(parsedPath);
|
|
bindings.push(bindingsForPath);
|
|
|
|
for (let i = nCachedObjects, n = objects.length; i !== n; ++i) {
|
|
const object = objects[i];
|
|
bindingsForPath[i] = new PropertyBinding(object, path, parsedPath);
|
|
}
|
|
|
|
return bindingsForPath;
|
|
}
|
|
|
|
unsubscribe_(path) {
|
|
// tells the group to forget about a property path and no longer
|
|
// update the array previously obtained with 'subscribe_'
|
|
const indicesByPath = this._bindingsIndicesByPath,
|
|
index = indicesByPath[path];
|
|
|
|
if (index !== undefined) {
|
|
const paths = this._paths,
|
|
parsedPaths = this._parsedPaths,
|
|
bindings = this._bindings,
|
|
lastBindingsIndex = bindings.length - 1,
|
|
lastBindings = bindings[lastBindingsIndex],
|
|
lastBindingsPath = path[lastBindingsIndex];
|
|
indicesByPath[lastBindingsPath] = index;
|
|
bindings[index] = lastBindings;
|
|
bindings.pop();
|
|
parsedPaths[index] = parsedPaths[lastBindingsIndex];
|
|
parsedPaths.pop();
|
|
paths[index] = paths[lastBindingsIndex];
|
|
paths.pop();
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
AnimationObjectGroup.prototype.isAnimationObjectGroup = true;
|
|
|
|
class AnimationAction {
|
|
constructor(mixer, clip, localRoot = null, blendMode = clip.blendMode) {
|
|
this._mixer = mixer;
|
|
this._clip = clip;
|
|
this._localRoot = localRoot;
|
|
this.blendMode = blendMode;
|
|
const tracks = clip.tracks,
|
|
nTracks = tracks.length,
|
|
interpolants = new Array(nTracks);
|
|
const interpolantSettings = {
|
|
endingStart: ZeroCurvatureEnding,
|
|
endingEnd: ZeroCurvatureEnding
|
|
};
|
|
|
|
for (let i = 0; i !== nTracks; ++i) {
|
|
const interpolant = tracks[i].createInterpolant(null);
|
|
interpolants[i] = interpolant;
|
|
interpolant.settings = interpolantSettings;
|
|
}
|
|
|
|
this._interpolantSettings = interpolantSettings;
|
|
this._interpolants = interpolants; // bound by the mixer
|
|
// inside: PropertyMixer (managed by the mixer)
|
|
|
|
this._propertyBindings = new Array(nTracks);
|
|
this._cacheIndex = null; // for the memory manager
|
|
|
|
this._byClipCacheIndex = null; // for the memory manager
|
|
|
|
this._timeScaleInterpolant = null;
|
|
this._weightInterpolant = null;
|
|
this.loop = LoopRepeat;
|
|
this._loopCount = -1; // global mixer time when the action is to be started
|
|
// it's set back to 'null' upon start of the action
|
|
|
|
this._startTime = null; // scaled local time of the action
|
|
// gets clamped or wrapped to 0..clip.duration according to loop
|
|
|
|
this.time = 0;
|
|
this.timeScale = 1;
|
|
this._effectiveTimeScale = 1;
|
|
this.weight = 1;
|
|
this._effectiveWeight = 1;
|
|
this.repetitions = Infinity; // no. of repetitions when looping
|
|
|
|
this.paused = false; // true -> zero effective time scale
|
|
|
|
this.enabled = true; // false -> zero effective weight
|
|
|
|
this.clampWhenFinished = false; // keep feeding the last frame?
|
|
|
|
this.zeroSlopeAtStart = true; // for smooth interpolation w/o separate
|
|
|
|
this.zeroSlopeAtEnd = true; // clips for start, loop and end
|
|
} // State & Scheduling
|
|
|
|
|
|
play() {
|
|
this._mixer._activateAction(this);
|
|
|
|
return this;
|
|
}
|
|
|
|
stop() {
|
|
this._mixer._deactivateAction(this);
|
|
|
|
return this.reset();
|
|
}
|
|
|
|
reset() {
|
|
this.paused = false;
|
|
this.enabled = true;
|
|
this.time = 0; // restart clip
|
|
|
|
this._loopCount = -1; // forget previous loops
|
|
|
|
this._startTime = null; // forget scheduling
|
|
|
|
return this.stopFading().stopWarping();
|
|
}
|
|
|
|
isRunning() {
|
|
return this.enabled && !this.paused && this.timeScale !== 0 && this._startTime === null && this._mixer._isActiveAction(this);
|
|
} // return true when play has been called
|
|
|
|
|
|
isScheduled() {
|
|
return this._mixer._isActiveAction(this);
|
|
}
|
|
|
|
startAt(time) {
|
|
this._startTime = time;
|
|
return this;
|
|
}
|
|
|
|
setLoop(mode, repetitions) {
|
|
this.loop = mode;
|
|
this.repetitions = repetitions;
|
|
return this;
|
|
} // Weight
|
|
// set the weight stopping any scheduled fading
|
|
// although .enabled = false yields an effective weight of zero, this
|
|
// method does *not* change .enabled, because it would be confusing
|
|
|
|
|
|
setEffectiveWeight(weight) {
|
|
this.weight = weight; // note: same logic as when updated at runtime
|
|
|
|
this._effectiveWeight = this.enabled ? weight : 0;
|
|
return this.stopFading();
|
|
} // return the weight considering fading and .enabled
|
|
|
|
|
|
getEffectiveWeight() {
|
|
return this._effectiveWeight;
|
|
}
|
|
|
|
fadeIn(duration) {
|
|
return this._scheduleFading(duration, 0, 1);
|
|
}
|
|
|
|
fadeOut(duration) {
|
|
return this._scheduleFading(duration, 1, 0);
|
|
}
|
|
|
|
crossFadeFrom(fadeOutAction, duration, warp) {
|
|
fadeOutAction.fadeOut(duration);
|
|
this.fadeIn(duration);
|
|
|
|
if (warp) {
|
|
const fadeInDuration = this._clip.duration,
|
|
fadeOutDuration = fadeOutAction._clip.duration,
|
|
startEndRatio = fadeOutDuration / fadeInDuration,
|
|
endStartRatio = fadeInDuration / fadeOutDuration;
|
|
fadeOutAction.warp(1.0, startEndRatio, duration);
|
|
this.warp(endStartRatio, 1.0, duration);
|
|
}
|
|
|
|
return this;
|
|
}
|
|
|
|
crossFadeTo(fadeInAction, duration, warp) {
|
|
return fadeInAction.crossFadeFrom(this, duration, warp);
|
|
}
|
|
|
|
stopFading() {
|
|
const weightInterpolant = this._weightInterpolant;
|
|
|
|
if (weightInterpolant !== null) {
|
|
this._weightInterpolant = null;
|
|
|
|
this._mixer._takeBackControlInterpolant(weightInterpolant);
|
|
}
|
|
|
|
return this;
|
|
} // Time Scale Control
|
|
// set the time scale stopping any scheduled warping
|
|
// although .paused = true yields an effective time scale of zero, this
|
|
// method does *not* change .paused, because it would be confusing
|
|
|
|
|
|
setEffectiveTimeScale(timeScale) {
|
|
this.timeScale = timeScale;
|
|
this._effectiveTimeScale = this.paused ? 0 : timeScale;
|
|
return this.stopWarping();
|
|
} // return the time scale considering warping and .paused
|
|
|
|
|
|
getEffectiveTimeScale() {
|
|
return this._effectiveTimeScale;
|
|
}
|
|
|
|
setDuration(duration) {
|
|
this.timeScale = this._clip.duration / duration;
|
|
return this.stopWarping();
|
|
}
|
|
|
|
syncWith(action) {
|
|
this.time = action.time;
|
|
this.timeScale = action.timeScale;
|
|
return this.stopWarping();
|
|
}
|
|
|
|
halt(duration) {
|
|
return this.warp(this._effectiveTimeScale, 0, duration);
|
|
}
|
|
|
|
warp(startTimeScale, endTimeScale, duration) {
|
|
const mixer = this._mixer,
|
|
now = mixer.time,
|
|
timeScale = this.timeScale;
|
|
let interpolant = this._timeScaleInterpolant;
|
|
|
|
if (interpolant === null) {
|
|
interpolant = mixer._lendControlInterpolant();
|
|
this._timeScaleInterpolant = interpolant;
|
|
}
|
|
|
|
const times = interpolant.parameterPositions,
|
|
values = interpolant.sampleValues;
|
|
times[0] = now;
|
|
times[1] = now + duration;
|
|
values[0] = startTimeScale / timeScale;
|
|
values[1] = endTimeScale / timeScale;
|
|
return this;
|
|
}
|
|
|
|
stopWarping() {
|
|
const timeScaleInterpolant = this._timeScaleInterpolant;
|
|
|
|
if (timeScaleInterpolant !== null) {
|
|
this._timeScaleInterpolant = null;
|
|
|
|
this._mixer._takeBackControlInterpolant(timeScaleInterpolant);
|
|
}
|
|
|
|
return this;
|
|
} // Object Accessors
|
|
|
|
|
|
getMixer() {
|
|
return this._mixer;
|
|
}
|
|
|
|
getClip() {
|
|
return this._clip;
|
|
}
|
|
|
|
getRoot() {
|
|
return this._localRoot || this._mixer._root;
|
|
} // Interna
|
|
|
|
|
|
_update(time, deltaTime, timeDirection, accuIndex) {
|
|
// called by the mixer
|
|
if (!this.enabled) {
|
|
// call ._updateWeight() to update ._effectiveWeight
|
|
this._updateWeight(time);
|
|
|
|
return;
|
|
}
|
|
|
|
const startTime = this._startTime;
|
|
|
|
if (startTime !== null) {
|
|
// check for scheduled start of action
|
|
const timeRunning = (time - startTime) * timeDirection;
|
|
|
|
if (timeRunning < 0 || timeDirection === 0) {
|
|
return; // yet to come / don't decide when delta = 0
|
|
} // start
|
|
|
|
|
|
this._startTime = null; // unschedule
|
|
|
|
deltaTime = timeDirection * timeRunning;
|
|
} // apply time scale and advance time
|
|
|
|
|
|
deltaTime *= this._updateTimeScale(time);
|
|
|
|
const clipTime = this._updateTime(deltaTime); // note: _updateTime may disable the action resulting in
|
|
// an effective weight of 0
|
|
|
|
|
|
const weight = this._updateWeight(time);
|
|
|
|
if (weight > 0) {
|
|
const interpolants = this._interpolants;
|
|
const propertyMixers = this._propertyBindings;
|
|
|
|
switch (this.blendMode) {
|
|
case AdditiveAnimationBlendMode:
|
|
for (let j = 0, m = interpolants.length; j !== m; ++j) {
|
|
interpolants[j].evaluate(clipTime);
|
|
propertyMixers[j].accumulateAdditive(weight);
|
|
}
|
|
|
|
break;
|
|
|
|
case NormalAnimationBlendMode:
|
|
default:
|
|
for (let j = 0, m = interpolants.length; j !== m; ++j) {
|
|
interpolants[j].evaluate(clipTime);
|
|
propertyMixers[j].accumulate(accuIndex, weight);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
_updateWeight(time) {
|
|
let weight = 0;
|
|
|
|
if (this.enabled) {
|
|
weight = this.weight;
|
|
const interpolant = this._weightInterpolant;
|
|
|
|
if (interpolant !== null) {
|
|
const interpolantValue = interpolant.evaluate(time)[0];
|
|
weight *= interpolantValue;
|
|
|
|
if (time > interpolant.parameterPositions[1]) {
|
|
this.stopFading();
|
|
|
|
if (interpolantValue === 0) {
|
|
// faded out, disable
|
|
this.enabled = false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
this._effectiveWeight = weight;
|
|
return weight;
|
|
}
|
|
|
|
_updateTimeScale(time) {
|
|
let timeScale = 0;
|
|
|
|
if (!this.paused) {
|
|
timeScale = this.timeScale;
|
|
const interpolant = this._timeScaleInterpolant;
|
|
|
|
if (interpolant !== null) {
|
|
const interpolantValue = interpolant.evaluate(time)[0];
|
|
timeScale *= interpolantValue;
|
|
|
|
if (time > interpolant.parameterPositions[1]) {
|
|
this.stopWarping();
|
|
|
|
if (timeScale === 0) {
|
|
// motion has halted, pause
|
|
this.paused = true;
|
|
} else {
|
|
// warp done - apply final time scale
|
|
this.timeScale = timeScale;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
this._effectiveTimeScale = timeScale;
|
|
return timeScale;
|
|
}
|
|
|
|
_updateTime(deltaTime) {
|
|
const duration = this._clip.duration;
|
|
const loop = this.loop;
|
|
let time = this.time + deltaTime;
|
|
let loopCount = this._loopCount;
|
|
const pingPong = loop === LoopPingPong;
|
|
|
|
if (deltaTime === 0) {
|
|
if (loopCount === -1) return time;
|
|
return pingPong && (loopCount & 1) === 1 ? duration - time : time;
|
|
}
|
|
|
|
if (loop === LoopOnce) {
|
|
if (loopCount === -1) {
|
|
// just started
|
|
this._loopCount = 0;
|
|
|
|
this._setEndings(true, true, false);
|
|
}
|
|
|
|
handle_stop: {
|
|
if (time >= duration) {
|
|
time = duration;
|
|
} else if (time < 0) {
|
|
time = 0;
|
|
} else {
|
|
this.time = time;
|
|
break handle_stop;
|
|
}
|
|
|
|
if (this.clampWhenFinished) this.paused = true;else this.enabled = false;
|
|
this.time = time;
|
|
|
|
this._mixer.dispatchEvent({
|
|
type: 'finished',
|
|
action: this,
|
|
direction: deltaTime < 0 ? -1 : 1
|
|
});
|
|
}
|
|
} else {
|
|
// repetitive Repeat or PingPong
|
|
if (loopCount === -1) {
|
|
// just started
|
|
if (deltaTime >= 0) {
|
|
loopCount = 0;
|
|
|
|
this._setEndings(true, this.repetitions === 0, pingPong);
|
|
} else {
|
|
// when looping in reverse direction, the initial
|
|
// transition through zero counts as a repetition,
|
|
// so leave loopCount at -1
|
|
this._setEndings(this.repetitions === 0, true, pingPong);
|
|
}
|
|
}
|
|
|
|
if (time >= duration || time < 0) {
|
|
// wrap around
|
|
const loopDelta = Math.floor(time / duration); // signed
|
|
|
|
time -= duration * loopDelta;
|
|
loopCount += Math.abs(loopDelta);
|
|
const pending = this.repetitions - loopCount;
|
|
|
|
if (pending <= 0) {
|
|
// have to stop (switch state, clamp time, fire event)
|
|
if (this.clampWhenFinished) this.paused = true;else this.enabled = false;
|
|
time = deltaTime > 0 ? duration : 0;
|
|
this.time = time;
|
|
|
|
this._mixer.dispatchEvent({
|
|
type: 'finished',
|
|
action: this,
|
|
direction: deltaTime > 0 ? 1 : -1
|
|
});
|
|
} else {
|
|
// keep running
|
|
if (pending === 1) {
|
|
// entering the last round
|
|
const atStart = deltaTime < 0;
|
|
|
|
this._setEndings(atStart, !atStart, pingPong);
|
|
} else {
|
|
this._setEndings(false, false, pingPong);
|
|
}
|
|
|
|
this._loopCount = loopCount;
|
|
this.time = time;
|
|
|
|
this._mixer.dispatchEvent({
|
|
type: 'loop',
|
|
action: this,
|
|
loopDelta: loopDelta
|
|
});
|
|
}
|
|
} else {
|
|
this.time = time;
|
|
}
|
|
|
|
if (pingPong && (loopCount & 1) === 1) {
|
|
// invert time for the "pong round"
|
|
return duration - time;
|
|
}
|
|
}
|
|
|
|
return time;
|
|
}
|
|
|
|
_setEndings(atStart, atEnd, pingPong) {
|
|
const settings = this._interpolantSettings;
|
|
|
|
if (pingPong) {
|
|
settings.endingStart = ZeroSlopeEnding;
|
|
settings.endingEnd = ZeroSlopeEnding;
|
|
} else {
|
|
// assuming for LoopOnce atStart == atEnd == true
|
|
if (atStart) {
|
|
settings.endingStart = this.zeroSlopeAtStart ? ZeroSlopeEnding : ZeroCurvatureEnding;
|
|
} else {
|
|
settings.endingStart = WrapAroundEnding;
|
|
}
|
|
|
|
if (atEnd) {
|
|
settings.endingEnd = this.zeroSlopeAtEnd ? ZeroSlopeEnding : ZeroCurvatureEnding;
|
|
} else {
|
|
settings.endingEnd = WrapAroundEnding;
|
|
}
|
|
}
|
|
}
|
|
|
|
_scheduleFading(duration, weightNow, weightThen) {
|
|
const mixer = this._mixer,
|
|
now = mixer.time;
|
|
let interpolant = this._weightInterpolant;
|
|
|
|
if (interpolant === null) {
|
|
interpolant = mixer._lendControlInterpolant();
|
|
this._weightInterpolant = interpolant;
|
|
}
|
|
|
|
const times = interpolant.parameterPositions,
|
|
values = interpolant.sampleValues;
|
|
times[0] = now;
|
|
values[0] = weightNow;
|
|
times[1] = now + duration;
|
|
values[1] = weightThen;
|
|
return this;
|
|
}
|
|
|
|
}
|
|
|
|
class AnimationMixer extends EventDispatcher {
|
|
constructor(root) {
|
|
super();
|
|
this._root = root;
|
|
|
|
this._initMemoryManager();
|
|
|
|
this._accuIndex = 0;
|
|
this.time = 0;
|
|
this.timeScale = 1.0;
|
|
}
|
|
|
|
_bindAction(action, prototypeAction) {
|
|
const root = action._localRoot || this._root,
|
|
tracks = action._clip.tracks,
|
|
nTracks = tracks.length,
|
|
bindings = action._propertyBindings,
|
|
interpolants = action._interpolants,
|
|
rootUuid = root.uuid,
|
|
bindingsByRoot = this._bindingsByRootAndName;
|
|
let bindingsByName = bindingsByRoot[rootUuid];
|
|
|
|
if (bindingsByName === undefined) {
|
|
bindingsByName = {};
|
|
bindingsByRoot[rootUuid] = bindingsByName;
|
|
}
|
|
|
|
for (let i = 0; i !== nTracks; ++i) {
|
|
const track = tracks[i],
|
|
trackName = track.name;
|
|
let binding = bindingsByName[trackName];
|
|
|
|
if (binding !== undefined) {
|
|
bindings[i] = binding;
|
|
} else {
|
|
binding = bindings[i];
|
|
|
|
if (binding !== undefined) {
|
|
// existing binding, make sure the cache knows
|
|
if (binding._cacheIndex === null) {
|
|
++binding.referenceCount;
|
|
|
|
this._addInactiveBinding(binding, rootUuid, trackName);
|
|
}
|
|
|
|
continue;
|
|
}
|
|
|
|
const path = prototypeAction && prototypeAction._propertyBindings[i].binding.parsedPath;
|
|
binding = new PropertyMixer(PropertyBinding.create(root, trackName, path), track.ValueTypeName, track.getValueSize());
|
|
++binding.referenceCount;
|
|
|
|
this._addInactiveBinding(binding, rootUuid, trackName);
|
|
|
|
bindings[i] = binding;
|
|
}
|
|
|
|
interpolants[i].resultBuffer = binding.buffer;
|
|
}
|
|
}
|
|
|
|
_activateAction(action) {
|
|
if (!this._isActiveAction(action)) {
|
|
if (action._cacheIndex === null) {
|
|
// this action has been forgotten by the cache, but the user
|
|
// appears to be still using it -> rebind
|
|
const rootUuid = (action._localRoot || this._root).uuid,
|
|
clipUuid = action._clip.uuid,
|
|
actionsForClip = this._actionsByClip[clipUuid];
|
|
|
|
this._bindAction(action, actionsForClip && actionsForClip.knownActions[0]);
|
|
|
|
this._addInactiveAction(action, clipUuid, rootUuid);
|
|
}
|
|
|
|
const bindings = action._propertyBindings; // increment reference counts / sort out state
|
|
|
|
for (let i = 0, n = bindings.length; i !== n; ++i) {
|
|
const binding = bindings[i];
|
|
|
|
if (binding.useCount++ === 0) {
|
|
this._lendBinding(binding);
|
|
|
|
binding.saveOriginalState();
|
|
}
|
|
}
|
|
|
|
this._lendAction(action);
|
|
}
|
|
}
|
|
|
|
_deactivateAction(action) {
|
|
if (this._isActiveAction(action)) {
|
|
const bindings = action._propertyBindings; // decrement reference counts / sort out state
|
|
|
|
for (let i = 0, n = bindings.length; i !== n; ++i) {
|
|
const binding = bindings[i];
|
|
|
|
if (--binding.useCount === 0) {
|
|
binding.restoreOriginalState();
|
|
|
|
this._takeBackBinding(binding);
|
|
}
|
|
}
|
|
|
|
this._takeBackAction(action);
|
|
}
|
|
} // Memory manager
|
|
|
|
|
|
_initMemoryManager() {
|
|
this._actions = []; // 'nActiveActions' followed by inactive ones
|
|
|
|
this._nActiveActions = 0;
|
|
this._actionsByClip = {}; // inside:
|
|
// {
|
|
// knownActions: Array< AnimationAction > - used as prototypes
|
|
// actionByRoot: AnimationAction - lookup
|
|
// }
|
|
|
|
this._bindings = []; // 'nActiveBindings' followed by inactive ones
|
|
|
|
this._nActiveBindings = 0;
|
|
this._bindingsByRootAndName = {}; // inside: Map< name, PropertyMixer >
|
|
|
|
this._controlInterpolants = []; // same game as above
|
|
|
|
this._nActiveControlInterpolants = 0;
|
|
const scope = this;
|
|
this.stats = {
|
|
actions: {
|
|
get total() {
|
|
return scope._actions.length;
|
|
},
|
|
|
|
get inUse() {
|
|
return scope._nActiveActions;
|
|
}
|
|
|
|
},
|
|
bindings: {
|
|
get total() {
|
|
return scope._bindings.length;
|
|
},
|
|
|
|
get inUse() {
|
|
return scope._nActiveBindings;
|
|
}
|
|
|
|
},
|
|
controlInterpolants: {
|
|
get total() {
|
|
return scope._controlInterpolants.length;
|
|
},
|
|
|
|
get inUse() {
|
|
return scope._nActiveControlInterpolants;
|
|
}
|
|
|
|
}
|
|
};
|
|
} // Memory management for AnimationAction objects
|
|
|
|
|
|
_isActiveAction(action) {
|
|
const index = action._cacheIndex;
|
|
return index !== null && index < this._nActiveActions;
|
|
}
|
|
|
|
_addInactiveAction(action, clipUuid, rootUuid) {
|
|
const actions = this._actions,
|
|
actionsByClip = this._actionsByClip;
|
|
let actionsForClip = actionsByClip[clipUuid];
|
|
|
|
if (actionsForClip === undefined) {
|
|
actionsForClip = {
|
|
knownActions: [action],
|
|
actionByRoot: {}
|
|
};
|
|
action._byClipCacheIndex = 0;
|
|
actionsByClip[clipUuid] = actionsForClip;
|
|
} else {
|
|
const knownActions = actionsForClip.knownActions;
|
|
action._byClipCacheIndex = knownActions.length;
|
|
knownActions.push(action);
|
|
}
|
|
|
|
action._cacheIndex = actions.length;
|
|
actions.push(action);
|
|
actionsForClip.actionByRoot[rootUuid] = action;
|
|
}
|
|
|
|
_removeInactiveAction(action) {
|
|
const actions = this._actions,
|
|
lastInactiveAction = actions[actions.length - 1],
|
|
cacheIndex = action._cacheIndex;
|
|
lastInactiveAction._cacheIndex = cacheIndex;
|
|
actions[cacheIndex] = lastInactiveAction;
|
|
actions.pop();
|
|
action._cacheIndex = null;
|
|
const clipUuid = action._clip.uuid,
|
|
actionsByClip = this._actionsByClip,
|
|
actionsForClip = actionsByClip[clipUuid],
|
|
knownActionsForClip = actionsForClip.knownActions,
|
|
lastKnownAction = knownActionsForClip[knownActionsForClip.length - 1],
|
|
byClipCacheIndex = action._byClipCacheIndex;
|
|
lastKnownAction._byClipCacheIndex = byClipCacheIndex;
|
|
knownActionsForClip[byClipCacheIndex] = lastKnownAction;
|
|
knownActionsForClip.pop();
|
|
action._byClipCacheIndex = null;
|
|
const actionByRoot = actionsForClip.actionByRoot,
|
|
rootUuid = (action._localRoot || this._root).uuid;
|
|
delete actionByRoot[rootUuid];
|
|
|
|
if (knownActionsForClip.length === 0) {
|
|
delete actionsByClip[clipUuid];
|
|
}
|
|
|
|
this._removeInactiveBindingsForAction(action);
|
|
}
|
|
|
|
_removeInactiveBindingsForAction(action) {
|
|
const bindings = action._propertyBindings;
|
|
|
|
for (let i = 0, n = bindings.length; i !== n; ++i) {
|
|
const binding = bindings[i];
|
|
|
|
if (--binding.referenceCount === 0) {
|
|
this._removeInactiveBinding(binding);
|
|
}
|
|
}
|
|
}
|
|
|
|
_lendAction(action) {
|
|
// [ active actions | inactive actions ]
|
|
// [ active actions >| inactive actions ]
|
|
// s a
|
|
// <-swap->
|
|
// a s
|
|
const actions = this._actions,
|
|
prevIndex = action._cacheIndex,
|
|
lastActiveIndex = this._nActiveActions++,
|
|
firstInactiveAction = actions[lastActiveIndex];
|
|
action._cacheIndex = lastActiveIndex;
|
|
actions[lastActiveIndex] = action;
|
|
firstInactiveAction._cacheIndex = prevIndex;
|
|
actions[prevIndex] = firstInactiveAction;
|
|
}
|
|
|
|
_takeBackAction(action) {
|
|
// [ active actions | inactive actions ]
|
|
// [ active actions |< inactive actions ]
|
|
// a s
|
|
// <-swap->
|
|
// s a
|
|
const actions = this._actions,
|
|
prevIndex = action._cacheIndex,
|
|
firstInactiveIndex = --this._nActiveActions,
|
|
lastActiveAction = actions[firstInactiveIndex];
|
|
action._cacheIndex = firstInactiveIndex;
|
|
actions[firstInactiveIndex] = action;
|
|
lastActiveAction._cacheIndex = prevIndex;
|
|
actions[prevIndex] = lastActiveAction;
|
|
} // Memory management for PropertyMixer objects
|
|
|
|
|
|
_addInactiveBinding(binding, rootUuid, trackName) {
|
|
const bindingsByRoot = this._bindingsByRootAndName,
|
|
bindings = this._bindings;
|
|
let bindingByName = bindingsByRoot[rootUuid];
|
|
|
|
if (bindingByName === undefined) {
|
|
bindingByName = {};
|
|
bindingsByRoot[rootUuid] = bindingByName;
|
|
}
|
|
|
|
bindingByName[trackName] = binding;
|
|
binding._cacheIndex = bindings.length;
|
|
bindings.push(binding);
|
|
}
|
|
|
|
_removeInactiveBinding(binding) {
|
|
const bindings = this._bindings,
|
|
propBinding = binding.binding,
|
|
rootUuid = propBinding.rootNode.uuid,
|
|
trackName = propBinding.path,
|
|
bindingsByRoot = this._bindingsByRootAndName,
|
|
bindingByName = bindingsByRoot[rootUuid],
|
|
lastInactiveBinding = bindings[bindings.length - 1],
|
|
cacheIndex = binding._cacheIndex;
|
|
lastInactiveBinding._cacheIndex = cacheIndex;
|
|
bindings[cacheIndex] = lastInactiveBinding;
|
|
bindings.pop();
|
|
delete bindingByName[trackName];
|
|
|
|
if (Object.keys(bindingByName).length === 0) {
|
|
delete bindingsByRoot[rootUuid];
|
|
}
|
|
}
|
|
|
|
_lendBinding(binding) {
|
|
const bindings = this._bindings,
|
|
prevIndex = binding._cacheIndex,
|
|
lastActiveIndex = this._nActiveBindings++,
|
|
firstInactiveBinding = bindings[lastActiveIndex];
|
|
binding._cacheIndex = lastActiveIndex;
|
|
bindings[lastActiveIndex] = binding;
|
|
firstInactiveBinding._cacheIndex = prevIndex;
|
|
bindings[prevIndex] = firstInactiveBinding;
|
|
}
|
|
|
|
_takeBackBinding(binding) {
|
|
const bindings = this._bindings,
|
|
prevIndex = binding._cacheIndex,
|
|
firstInactiveIndex = --this._nActiveBindings,
|
|
lastActiveBinding = bindings[firstInactiveIndex];
|
|
binding._cacheIndex = firstInactiveIndex;
|
|
bindings[firstInactiveIndex] = binding;
|
|
lastActiveBinding._cacheIndex = prevIndex;
|
|
bindings[prevIndex] = lastActiveBinding;
|
|
} // Memory management of Interpolants for weight and time scale
|
|
|
|
|
|
_lendControlInterpolant() {
|
|
const interpolants = this._controlInterpolants,
|
|
lastActiveIndex = this._nActiveControlInterpolants++;
|
|
let interpolant = interpolants[lastActiveIndex];
|
|
|
|
if (interpolant === undefined) {
|
|
interpolant = new LinearInterpolant(new Float32Array(2), new Float32Array(2), 1, this._controlInterpolantsResultBuffer);
|
|
interpolant.__cacheIndex = lastActiveIndex;
|
|
interpolants[lastActiveIndex] = interpolant;
|
|
}
|
|
|
|
return interpolant;
|
|
}
|
|
|
|
_takeBackControlInterpolant(interpolant) {
|
|
const interpolants = this._controlInterpolants,
|
|
prevIndex = interpolant.__cacheIndex,
|
|
firstInactiveIndex = --this._nActiveControlInterpolants,
|
|
lastActiveInterpolant = interpolants[firstInactiveIndex];
|
|
interpolant.__cacheIndex = firstInactiveIndex;
|
|
interpolants[firstInactiveIndex] = interpolant;
|
|
lastActiveInterpolant.__cacheIndex = prevIndex;
|
|
interpolants[prevIndex] = lastActiveInterpolant;
|
|
} // return an action for a clip optionally using a custom root target
|
|
// object (this method allocates a lot of dynamic memory in case a
|
|
// previously unknown clip/root combination is specified)
|
|
|
|
|
|
clipAction(clip, optionalRoot, blendMode) {
|
|
const root = optionalRoot || this._root,
|
|
rootUuid = root.uuid;
|
|
let clipObject = typeof clip === 'string' ? AnimationClip.findByName(root, clip) : clip;
|
|
const clipUuid = clipObject !== null ? clipObject.uuid : clip;
|
|
const actionsForClip = this._actionsByClip[clipUuid];
|
|
let prototypeAction = null;
|
|
|
|
if (blendMode === undefined) {
|
|
if (clipObject !== null) {
|
|
blendMode = clipObject.blendMode;
|
|
} else {
|
|
blendMode = NormalAnimationBlendMode;
|
|
}
|
|
}
|
|
|
|
if (actionsForClip !== undefined) {
|
|
const existingAction = actionsForClip.actionByRoot[rootUuid];
|
|
|
|
if (existingAction !== undefined && existingAction.blendMode === blendMode) {
|
|
return existingAction;
|
|
} // we know the clip, so we don't have to parse all
|
|
// the bindings again but can just copy
|
|
|
|
|
|
prototypeAction = actionsForClip.knownActions[0]; // also, take the clip from the prototype action
|
|
|
|
if (clipObject === null) clipObject = prototypeAction._clip;
|
|
} // clip must be known when specified via string
|
|
|
|
|
|
if (clipObject === null) return null; // allocate all resources required to run it
|
|
|
|
const newAction = new AnimationAction(this, clipObject, optionalRoot, blendMode);
|
|
|
|
this._bindAction(newAction, prototypeAction); // and make the action known to the memory manager
|
|
|
|
|
|
this._addInactiveAction(newAction, clipUuid, rootUuid);
|
|
|
|
return newAction;
|
|
} // get an existing action
|
|
|
|
|
|
existingAction(clip, optionalRoot) {
|
|
const root = optionalRoot || this._root,
|
|
rootUuid = root.uuid,
|
|
clipObject = typeof clip === 'string' ? AnimationClip.findByName(root, clip) : clip,
|
|
clipUuid = clipObject ? clipObject.uuid : clip,
|
|
actionsForClip = this._actionsByClip[clipUuid];
|
|
|
|
if (actionsForClip !== undefined) {
|
|
return actionsForClip.actionByRoot[rootUuid] || null;
|
|
}
|
|
|
|
return null;
|
|
} // deactivates all previously scheduled actions
|
|
|
|
|
|
stopAllAction() {
|
|
const actions = this._actions,
|
|
nActions = this._nActiveActions;
|
|
|
|
for (let i = nActions - 1; i >= 0; --i) {
|
|
actions[i].stop();
|
|
}
|
|
|
|
return this;
|
|
} // advance the time and update apply the animation
|
|
|
|
|
|
update(deltaTime) {
|
|
deltaTime *= this.timeScale;
|
|
const actions = this._actions,
|
|
nActions = this._nActiveActions,
|
|
time = this.time += deltaTime,
|
|
timeDirection = Math.sign(deltaTime),
|
|
accuIndex = this._accuIndex ^= 1; // run active actions
|
|
|
|
for (let i = 0; i !== nActions; ++i) {
|
|
const action = actions[i];
|
|
|
|
action._update(time, deltaTime, timeDirection, accuIndex);
|
|
} // update scene graph
|
|
|
|
|
|
const bindings = this._bindings,
|
|
nBindings = this._nActiveBindings;
|
|
|
|
for (let i = 0; i !== nBindings; ++i) {
|
|
bindings[i].apply(accuIndex);
|
|
}
|
|
|
|
return this;
|
|
} // Allows you to seek to a specific time in an animation.
|
|
|
|
|
|
setTime(timeInSeconds) {
|
|
this.time = 0; // Zero out time attribute for AnimationMixer object;
|
|
|
|
for (let i = 0; i < this._actions.length; i++) {
|
|
this._actions[i].time = 0; // Zero out time attribute for all associated AnimationAction objects.
|
|
}
|
|
|
|
return this.update(timeInSeconds); // Update used to set exact time. Returns "this" AnimationMixer object.
|
|
} // return this mixer's root target object
|
|
|
|
|
|
getRoot() {
|
|
return this._root;
|
|
} // free all resources specific to a particular clip
|
|
|
|
|
|
uncacheClip(clip) {
|
|
const actions = this._actions,
|
|
clipUuid = clip.uuid,
|
|
actionsByClip = this._actionsByClip,
|
|
actionsForClip = actionsByClip[clipUuid];
|
|
|
|
if (actionsForClip !== undefined) {
|
|
// note: just calling _removeInactiveAction would mess up the
|
|
// iteration state and also require updating the state we can
|
|
// just throw away
|
|
const actionsToRemove = actionsForClip.knownActions;
|
|
|
|
for (let i = 0, n = actionsToRemove.length; i !== n; ++i) {
|
|
const action = actionsToRemove[i];
|
|
|
|
this._deactivateAction(action);
|
|
|
|
const cacheIndex = action._cacheIndex,
|
|
lastInactiveAction = actions[actions.length - 1];
|
|
action._cacheIndex = null;
|
|
action._byClipCacheIndex = null;
|
|
lastInactiveAction._cacheIndex = cacheIndex;
|
|
actions[cacheIndex] = lastInactiveAction;
|
|
actions.pop();
|
|
|
|
this._removeInactiveBindingsForAction(action);
|
|
}
|
|
|
|
delete actionsByClip[clipUuid];
|
|
}
|
|
} // free all resources specific to a particular root target object
|
|
|
|
|
|
uncacheRoot(root) {
|
|
const rootUuid = root.uuid,
|
|
actionsByClip = this._actionsByClip;
|
|
|
|
for (const clipUuid in actionsByClip) {
|
|
const actionByRoot = actionsByClip[clipUuid].actionByRoot,
|
|
action = actionByRoot[rootUuid];
|
|
|
|
if (action !== undefined) {
|
|
this._deactivateAction(action);
|
|
|
|
this._removeInactiveAction(action);
|
|
}
|
|
}
|
|
|
|
const bindingsByRoot = this._bindingsByRootAndName,
|
|
bindingByName = bindingsByRoot[rootUuid];
|
|
|
|
if (bindingByName !== undefined) {
|
|
for (const trackName in bindingByName) {
|
|
const binding = bindingByName[trackName];
|
|
binding.restoreOriginalState();
|
|
|
|
this._removeInactiveBinding(binding);
|
|
}
|
|
}
|
|
} // remove a targeted clip from the cache
|
|
|
|
|
|
uncacheAction(clip, optionalRoot) {
|
|
const action = this.existingAction(clip, optionalRoot);
|
|
|
|
if (action !== null) {
|
|
this._deactivateAction(action);
|
|
|
|
this._removeInactiveAction(action);
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
AnimationMixer.prototype._controlInterpolantsResultBuffer = new Float32Array(1);
|
|
|
|
class Uniform {
|
|
constructor(value) {
|
|
if (typeof value === 'string') {
|
|
console.warn('THREE.Uniform: Type parameter is no longer needed.');
|
|
value = arguments[1];
|
|
}
|
|
|
|
this.value = value;
|
|
}
|
|
|
|
clone() {
|
|
return new Uniform(this.value.clone === undefined ? this.value : this.value.clone());
|
|
}
|
|
|
|
}
|
|
|
|
class InstancedInterleavedBuffer extends InterleavedBuffer {
|
|
constructor(array, stride, meshPerAttribute = 1) {
|
|
super(array, stride);
|
|
this.meshPerAttribute = meshPerAttribute;
|
|
}
|
|
|
|
copy(source) {
|
|
super.copy(source);
|
|
this.meshPerAttribute = source.meshPerAttribute;
|
|
return this;
|
|
}
|
|
|
|
clone(data) {
|
|
const ib = super.clone(data);
|
|
ib.meshPerAttribute = this.meshPerAttribute;
|
|
return ib;
|
|
}
|
|
|
|
toJSON(data) {
|
|
const json = super.toJSON(data);
|
|
json.isInstancedInterleavedBuffer = true;
|
|
json.meshPerAttribute = this.meshPerAttribute;
|
|
return json;
|
|
}
|
|
|
|
}
|
|
|
|
InstancedInterleavedBuffer.prototype.isInstancedInterleavedBuffer = true;
|
|
|
|
class GLBufferAttribute {
|
|
constructor(buffer, type, itemSize, elementSize, count) {
|
|
this.buffer = buffer;
|
|
this.type = type;
|
|
this.itemSize = itemSize;
|
|
this.elementSize = elementSize;
|
|
this.count = count;
|
|
this.version = 0;
|
|
}
|
|
|
|
set needsUpdate(value) {
|
|
if (value === true) this.version++;
|
|
}
|
|
|
|
setBuffer(buffer) {
|
|
this.buffer = buffer;
|
|
return this;
|
|
}
|
|
|
|
setType(type, elementSize) {
|
|
this.type = type;
|
|
this.elementSize = elementSize;
|
|
return this;
|
|
}
|
|
|
|
setItemSize(itemSize) {
|
|
this.itemSize = itemSize;
|
|
return this;
|
|
}
|
|
|
|
setCount(count) {
|
|
this.count = count;
|
|
return this;
|
|
}
|
|
|
|
}
|
|
|
|
GLBufferAttribute.prototype.isGLBufferAttribute = true;
|
|
|
|
class Raycaster {
|
|
constructor(origin, direction, near = 0, far = Infinity) {
|
|
this.ray = new Ray(origin, direction); // direction is assumed to be normalized (for accurate distance calculations)
|
|
|
|
this.near = near;
|
|
this.far = far;
|
|
this.camera = null;
|
|
this.layers = new Layers();
|
|
this.params = {
|
|
Mesh: {},
|
|
Line: {
|
|
threshold: 1
|
|
},
|
|
LOD: {},
|
|
Points: {
|
|
threshold: 1
|
|
},
|
|
Sprite: {}
|
|
};
|
|
}
|
|
|
|
set(origin, direction) {
|
|
// direction is assumed to be normalized (for accurate distance calculations)
|
|
this.ray.set(origin, direction);
|
|
}
|
|
|
|
setFromCamera(coords, camera) {
|
|
if (camera && camera.isPerspectiveCamera) {
|
|
this.ray.origin.setFromMatrixPosition(camera.matrixWorld);
|
|
this.ray.direction.set(coords.x, coords.y, 0.5).unproject(camera).sub(this.ray.origin).normalize();
|
|
this.camera = camera;
|
|
} else if (camera && camera.isOrthographicCamera) {
|
|
this.ray.origin.set(coords.x, coords.y, (camera.near + camera.far) / (camera.near - camera.far)).unproject(camera); // set origin in plane of camera
|
|
|
|
this.ray.direction.set(0, 0, -1).transformDirection(camera.matrixWorld);
|
|
this.camera = camera;
|
|
} else {
|
|
console.error('THREE.Raycaster: Unsupported camera type: ' + camera.type);
|
|
}
|
|
}
|
|
|
|
intersectObject(object, recursive = true, intersects = []) {
|
|
intersectObject(object, this, intersects, recursive);
|
|
intersects.sort(ascSort);
|
|
return intersects;
|
|
}
|
|
|
|
intersectObjects(objects, recursive = true, intersects = []) {
|
|
for (let i = 0, l = objects.length; i < l; i++) {
|
|
intersectObject(objects[i], this, intersects, recursive);
|
|
}
|
|
|
|
intersects.sort(ascSort);
|
|
return intersects;
|
|
}
|
|
|
|
}
|
|
|
|
function ascSort(a, b) {
|
|
return a.distance - b.distance;
|
|
}
|
|
|
|
function intersectObject(object, raycaster, intersects, recursive) {
|
|
if (object.layers.test(raycaster.layers)) {
|
|
object.raycast(raycaster, intersects);
|
|
}
|
|
|
|
if (recursive === true) {
|
|
const children = object.children;
|
|
|
|
for (let i = 0, l = children.length; i < l; i++) {
|
|
intersectObject(children[i], raycaster, intersects, true);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Ref: https://en.wikipedia.org/wiki/Spherical_coordinate_system
|
|
*
|
|
* The polar angle (phi) is measured from the positive y-axis. The positive y-axis is up.
|
|
* The azimuthal angle (theta) is measured from the positive z-axis.
|
|
*/
|
|
|
|
class Spherical {
|
|
constructor(radius = 1, phi = 0, theta = 0) {
|
|
this.radius = radius;
|
|
this.phi = phi; // polar angle
|
|
|
|
this.theta = theta; // azimuthal angle
|
|
|
|
return this;
|
|
}
|
|
|
|
set(radius, phi, theta) {
|
|
this.radius = radius;
|
|
this.phi = phi;
|
|
this.theta = theta;
|
|
return this;
|
|
}
|
|
|
|
copy(other) {
|
|
this.radius = other.radius;
|
|
this.phi = other.phi;
|
|
this.theta = other.theta;
|
|
return this;
|
|
} // restrict phi to be betwee EPS and PI-EPS
|
|
|
|
|
|
makeSafe() {
|
|
const EPS = 0.000001;
|
|
this.phi = Math.max(EPS, Math.min(Math.PI - EPS, this.phi));
|
|
return this;
|
|
}
|
|
|
|
setFromVector3(v) {
|
|
return this.setFromCartesianCoords(v.x, v.y, v.z);
|
|
}
|
|
|
|
setFromCartesianCoords(x, y, z) {
|
|
this.radius = Math.sqrt(x * x + y * y + z * z);
|
|
|
|
if (this.radius === 0) {
|
|
this.theta = 0;
|
|
this.phi = 0;
|
|
} else {
|
|
this.theta = Math.atan2(x, z);
|
|
this.phi = Math.acos(clamp(y / this.radius, -1, 1));
|
|
}
|
|
|
|
return this;
|
|
}
|
|
|
|
clone() {
|
|
return new this.constructor().copy(this);
|
|
}
|
|
|
|
}
|
|
|
|
/**
|
|
* Ref: https://en.wikipedia.org/wiki/Cylindrical_coordinate_system
|
|
*/
|
|
class Cylindrical {
|
|
constructor(radius = 1, theta = 0, y = 0) {
|
|
this.radius = radius; // distance from the origin to a point in the x-z plane
|
|
|
|
this.theta = theta; // counterclockwise angle in the x-z plane measured in radians from the positive z-axis
|
|
|
|
this.y = y; // height above the x-z plane
|
|
|
|
return this;
|
|
}
|
|
|
|
set(radius, theta, y) {
|
|
this.radius = radius;
|
|
this.theta = theta;
|
|
this.y = y;
|
|
return this;
|
|
}
|
|
|
|
copy(other) {
|
|
this.radius = other.radius;
|
|
this.theta = other.theta;
|
|
this.y = other.y;
|
|
return this;
|
|
}
|
|
|
|
setFromVector3(v) {
|
|
return this.setFromCartesianCoords(v.x, v.y, v.z);
|
|
}
|
|
|
|
setFromCartesianCoords(x, y, z) {
|
|
this.radius = Math.sqrt(x * x + z * z);
|
|
this.theta = Math.atan2(x, z);
|
|
this.y = y;
|
|
return this;
|
|
}
|
|
|
|
clone() {
|
|
return new this.constructor().copy(this);
|
|
}
|
|
|
|
}
|
|
|
|
const _vector$4 = /*@__PURE__*/new Vector2();
|
|
|
|
class Box2 {
|
|
constructor(min = new Vector2(+Infinity, +Infinity), max = new Vector2(-Infinity, -Infinity)) {
|
|
this.min = min;
|
|
this.max = max;
|
|
}
|
|
|
|
set(min, max) {
|
|
this.min.copy(min);
|
|
this.max.copy(max);
|
|
return this;
|
|
}
|
|
|
|
setFromPoints(points) {
|
|
this.makeEmpty();
|
|
|
|
for (let i = 0, il = points.length; i < il; i++) {
|
|
this.expandByPoint(points[i]);
|
|
}
|
|
|
|
return this;
|
|
}
|
|
|
|
setFromCenterAndSize(center, size) {
|
|
const halfSize = _vector$4.copy(size).multiplyScalar(0.5);
|
|
|
|
this.min.copy(center).sub(halfSize);
|
|
this.max.copy(center).add(halfSize);
|
|
return this;
|
|
}
|
|
|
|
clone() {
|
|
return new this.constructor().copy(this);
|
|
}
|
|
|
|
copy(box) {
|
|
this.min.copy(box.min);
|
|
this.max.copy(box.max);
|
|
return this;
|
|
}
|
|
|
|
makeEmpty() {
|
|
this.min.x = this.min.y = +Infinity;
|
|
this.max.x = this.max.y = -Infinity;
|
|
return this;
|
|
}
|
|
|
|
isEmpty() {
|
|
// this is a more robust check for empty than ( volume <= 0 ) because volume can get positive with two negative axes
|
|
return this.max.x < this.min.x || this.max.y < this.min.y;
|
|
}
|
|
|
|
getCenter(target) {
|
|
return this.isEmpty() ? target.set(0, 0) : target.addVectors(this.min, this.max).multiplyScalar(0.5);
|
|
}
|
|
|
|
getSize(target) {
|
|
return this.isEmpty() ? target.set(0, 0) : target.subVectors(this.max, this.min);
|
|
}
|
|
|
|
expandByPoint(point) {
|
|
this.min.min(point);
|
|
this.max.max(point);
|
|
return this;
|
|
}
|
|
|
|
expandByVector(vector) {
|
|
this.min.sub(vector);
|
|
this.max.add(vector);
|
|
return this;
|
|
}
|
|
|
|
expandByScalar(scalar) {
|
|
this.min.addScalar(-scalar);
|
|
this.max.addScalar(scalar);
|
|
return this;
|
|
}
|
|
|
|
containsPoint(point) {
|
|
return point.x < this.min.x || point.x > this.max.x || point.y < this.min.y || point.y > this.max.y ? false : true;
|
|
}
|
|
|
|
containsBox(box) {
|
|
return this.min.x <= box.min.x && box.max.x <= this.max.x && this.min.y <= box.min.y && box.max.y <= this.max.y;
|
|
}
|
|
|
|
getParameter(point, target) {
|
|
// This can potentially have a divide by zero if the box
|
|
// has a size dimension of 0.
|
|
return target.set((point.x - this.min.x) / (this.max.x - this.min.x), (point.y - this.min.y) / (this.max.y - this.min.y));
|
|
}
|
|
|
|
intersectsBox(box) {
|
|
// using 4 splitting planes to rule out intersections
|
|
return box.max.x < this.min.x || box.min.x > this.max.x || box.max.y < this.min.y || box.min.y > this.max.y ? false : true;
|
|
}
|
|
|
|
clampPoint(point, target) {
|
|
return target.copy(point).clamp(this.min, this.max);
|
|
}
|
|
|
|
distanceToPoint(point) {
|
|
const clampedPoint = _vector$4.copy(point).clamp(this.min, this.max);
|
|
|
|
return clampedPoint.sub(point).length();
|
|
}
|
|
|
|
intersect(box) {
|
|
this.min.max(box.min);
|
|
this.max.min(box.max);
|
|
return this;
|
|
}
|
|
|
|
union(box) {
|
|
this.min.min(box.min);
|
|
this.max.max(box.max);
|
|
return this;
|
|
}
|
|
|
|
translate(offset) {
|
|
this.min.add(offset);
|
|
this.max.add(offset);
|
|
return this;
|
|
}
|
|
|
|
equals(box) {
|
|
return box.min.equals(this.min) && box.max.equals(this.max);
|
|
}
|
|
|
|
}
|
|
|
|
Box2.prototype.isBox2 = true;
|
|
|
|
const _startP = /*@__PURE__*/new Vector3();
|
|
|
|
const _startEnd = /*@__PURE__*/new Vector3();
|
|
|
|
class Line3 {
|
|
constructor(start = new Vector3(), end = new Vector3()) {
|
|
this.start = start;
|
|
this.end = end;
|
|
}
|
|
|
|
set(start, end) {
|
|
this.start.copy(start);
|
|
this.end.copy(end);
|
|
return this;
|
|
}
|
|
|
|
copy(line) {
|
|
this.start.copy(line.start);
|
|
this.end.copy(line.end);
|
|
return this;
|
|
}
|
|
|
|
getCenter(target) {
|
|
return target.addVectors(this.start, this.end).multiplyScalar(0.5);
|
|
}
|
|
|
|
delta(target) {
|
|
return target.subVectors(this.end, this.start);
|
|
}
|
|
|
|
distanceSq() {
|
|
return this.start.distanceToSquared(this.end);
|
|
}
|
|
|
|
distance() {
|
|
return this.start.distanceTo(this.end);
|
|
}
|
|
|
|
at(t, target) {
|
|
return this.delta(target).multiplyScalar(t).add(this.start);
|
|
}
|
|
|
|
closestPointToPointParameter(point, clampToLine) {
|
|
_startP.subVectors(point, this.start);
|
|
|
|
_startEnd.subVectors(this.end, this.start);
|
|
|
|
const startEnd2 = _startEnd.dot(_startEnd);
|
|
|
|
const startEnd_startP = _startEnd.dot(_startP);
|
|
|
|
let t = startEnd_startP / startEnd2;
|
|
|
|
if (clampToLine) {
|
|
t = clamp(t, 0, 1);
|
|
}
|
|
|
|
return t;
|
|
}
|
|
|
|
closestPointToPoint(point, clampToLine, target) {
|
|
const t = this.closestPointToPointParameter(point, clampToLine);
|
|
return this.delta(target).multiplyScalar(t).add(this.start);
|
|
}
|
|
|
|
applyMatrix4(matrix) {
|
|
this.start.applyMatrix4(matrix);
|
|
this.end.applyMatrix4(matrix);
|
|
return this;
|
|
}
|
|
|
|
equals(line) {
|
|
return line.start.equals(this.start) && line.end.equals(this.end);
|
|
}
|
|
|
|
clone() {
|
|
return new this.constructor().copy(this);
|
|
}
|
|
|
|
}
|
|
|
|
const _vector$3 = /*@__PURE__*/new Vector3();
|
|
|
|
class SpotLightHelper extends Object3D {
|
|
constructor(light, color) {
|
|
super();
|
|
this.light = light;
|
|
this.light.updateMatrixWorld();
|
|
this.matrix = light.matrixWorld;
|
|
this.matrixAutoUpdate = false;
|
|
this.color = color;
|
|
const geometry = new BufferGeometry();
|
|
const positions = [0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, -1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, -1, 1];
|
|
|
|
for (let i = 0, j = 1, l = 32; i < l; i++, j++) {
|
|
const p1 = i / l * Math.PI * 2;
|
|
const p2 = j / l * Math.PI * 2;
|
|
positions.push(Math.cos(p1), Math.sin(p1), 1, Math.cos(p2), Math.sin(p2), 1);
|
|
}
|
|
|
|
geometry.setAttribute('position', new Float32BufferAttribute(positions, 3));
|
|
const material = new LineBasicMaterial({
|
|
fog: false,
|
|
toneMapped: false
|
|
});
|
|
this.cone = new LineSegments(geometry, material);
|
|
this.add(this.cone);
|
|
this.update();
|
|
}
|
|
|
|
dispose() {
|
|
this.cone.geometry.dispose();
|
|
this.cone.material.dispose();
|
|
}
|
|
|
|
update() {
|
|
this.light.updateMatrixWorld();
|
|
const coneLength = this.light.distance ? this.light.distance : 1000;
|
|
const coneWidth = coneLength * Math.tan(this.light.angle);
|
|
this.cone.scale.set(coneWidth, coneWidth, coneLength);
|
|
|
|
_vector$3.setFromMatrixPosition(this.light.target.matrixWorld);
|
|
|
|
this.cone.lookAt(_vector$3);
|
|
|
|
if (this.color !== undefined) {
|
|
this.cone.material.color.set(this.color);
|
|
} else {
|
|
this.cone.material.color.copy(this.light.color);
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
const _vector$2 = /*@__PURE__*/new Vector3();
|
|
|
|
const _boneMatrix = /*@__PURE__*/new Matrix4();
|
|
|
|
const _matrixWorldInv = /*@__PURE__*/new Matrix4();
|
|
|
|
class SkeletonHelper extends LineSegments {
|
|
constructor(object) {
|
|
const bones = getBoneList(object);
|
|
const geometry = new BufferGeometry();
|
|
const vertices = [];
|
|
const colors = [];
|
|
const color1 = new Color(0, 0, 1);
|
|
const color2 = new Color(0, 1, 0);
|
|
|
|
for (let i = 0; i < bones.length; i++) {
|
|
const bone = bones[i];
|
|
|
|
if (bone.parent && bone.parent.isBone) {
|
|
vertices.push(0, 0, 0);
|
|
vertices.push(0, 0, 0);
|
|
colors.push(color1.r, color1.g, color1.b);
|
|
colors.push(color2.r, color2.g, color2.b);
|
|
}
|
|
}
|
|
|
|
geometry.setAttribute('position', new Float32BufferAttribute(vertices, 3));
|
|
geometry.setAttribute('color', new Float32BufferAttribute(colors, 3));
|
|
const material = new LineBasicMaterial({
|
|
vertexColors: true,
|
|
depthTest: false,
|
|
depthWrite: false,
|
|
toneMapped: false,
|
|
transparent: true
|
|
});
|
|
super(geometry, material);
|
|
this.type = 'SkeletonHelper';
|
|
this.isSkeletonHelper = true;
|
|
this.root = object;
|
|
this.bones = bones;
|
|
this.matrix = object.matrixWorld;
|
|
this.matrixAutoUpdate = false;
|
|
}
|
|
|
|
updateMatrixWorld(force) {
|
|
const bones = this.bones;
|
|
const geometry = this.geometry;
|
|
const position = geometry.getAttribute('position');
|
|
|
|
_matrixWorldInv.copy(this.root.matrixWorld).invert();
|
|
|
|
for (let i = 0, j = 0; i < bones.length; i++) {
|
|
const bone = bones[i];
|
|
|
|
if (bone.parent && bone.parent.isBone) {
|
|
_boneMatrix.multiplyMatrices(_matrixWorldInv, bone.matrixWorld);
|
|
|
|
_vector$2.setFromMatrixPosition(_boneMatrix);
|
|
|
|
position.setXYZ(j, _vector$2.x, _vector$2.y, _vector$2.z);
|
|
|
|
_boneMatrix.multiplyMatrices(_matrixWorldInv, bone.parent.matrixWorld);
|
|
|
|
_vector$2.setFromMatrixPosition(_boneMatrix);
|
|
|
|
position.setXYZ(j + 1, _vector$2.x, _vector$2.y, _vector$2.z);
|
|
j += 2;
|
|
}
|
|
}
|
|
|
|
geometry.getAttribute('position').needsUpdate = true;
|
|
super.updateMatrixWorld(force);
|
|
}
|
|
|
|
}
|
|
|
|
function getBoneList(object) {
|
|
const boneList = [];
|
|
|
|
if (object && object.isBone) {
|
|
boneList.push(object);
|
|
}
|
|
|
|
for (let i = 0; i < object.children.length; i++) {
|
|
boneList.push.apply(boneList, getBoneList(object.children[i]));
|
|
}
|
|
|
|
return boneList;
|
|
}
|
|
|
|
class PointLightHelper extends Mesh {
|
|
constructor(light, sphereSize, color) {
|
|
const geometry = new SphereGeometry(sphereSize, 4, 2);
|
|
const material = new MeshBasicMaterial({
|
|
wireframe: true,
|
|
fog: false,
|
|
toneMapped: false
|
|
});
|
|
super(geometry, material);
|
|
this.light = light;
|
|
this.light.updateMatrixWorld();
|
|
this.color = color;
|
|
this.type = 'PointLightHelper';
|
|
this.matrix = this.light.matrixWorld;
|
|
this.matrixAutoUpdate = false;
|
|
this.update();
|
|
/*
|
|
// TODO: delete this comment?
|
|
const distanceGeometry = new THREE.IcosahedronBufferGeometry( 1, 2 );
|
|
const distanceMaterial = new THREE.MeshBasicMaterial( { color: hexColor, fog: false, wireframe: true, opacity: 0.1, transparent: true } );
|
|
this.lightSphere = new THREE.Mesh( bulbGeometry, bulbMaterial );
|
|
this.lightDistance = new THREE.Mesh( distanceGeometry, distanceMaterial );
|
|
const d = light.distance;
|
|
if ( d === 0.0 ) {
|
|
this.lightDistance.visible = false;
|
|
} else {
|
|
this.lightDistance.scale.set( d, d, d );
|
|
}
|
|
this.add( this.lightDistance );
|
|
*/
|
|
}
|
|
|
|
dispose() {
|
|
this.geometry.dispose();
|
|
this.material.dispose();
|
|
}
|
|
|
|
update() {
|
|
if (this.color !== undefined) {
|
|
this.material.color.set(this.color);
|
|
} else {
|
|
this.material.color.copy(this.light.color);
|
|
}
|
|
/*
|
|
const d = this.light.distance;
|
|
if ( d === 0.0 ) {
|
|
this.lightDistance.visible = false;
|
|
} else {
|
|
this.lightDistance.visible = true;
|
|
this.lightDistance.scale.set( d, d, d );
|
|
}
|
|
*/
|
|
|
|
}
|
|
|
|
}
|
|
|
|
const _vector$1 = /*@__PURE__*/new Vector3();
|
|
|
|
const _color1 = /*@__PURE__*/new Color();
|
|
|
|
const _color2 = /*@__PURE__*/new Color();
|
|
|
|
class HemisphereLightHelper extends Object3D {
|
|
constructor(light, size, color) {
|
|
super();
|
|
this.light = light;
|
|
this.light.updateMatrixWorld();
|
|
this.matrix = light.matrixWorld;
|
|
this.matrixAutoUpdate = false;
|
|
this.color = color;
|
|
const geometry = new OctahedronGeometry(size);
|
|
geometry.rotateY(Math.PI * 0.5);
|
|
this.material = new MeshBasicMaterial({
|
|
wireframe: true,
|
|
fog: false,
|
|
toneMapped: false
|
|
});
|
|
if (this.color === undefined) this.material.vertexColors = true;
|
|
const position = geometry.getAttribute('position');
|
|
const colors = new Float32Array(position.count * 3);
|
|
geometry.setAttribute('color', new BufferAttribute(colors, 3));
|
|
this.add(new Mesh(geometry, this.material));
|
|
this.update();
|
|
}
|
|
|
|
dispose() {
|
|
this.children[0].geometry.dispose();
|
|
this.children[0].material.dispose();
|
|
}
|
|
|
|
update() {
|
|
const mesh = this.children[0];
|
|
|
|
if (this.color !== undefined) {
|
|
this.material.color.set(this.color);
|
|
} else {
|
|
const colors = mesh.geometry.getAttribute('color');
|
|
|
|
_color1.copy(this.light.color);
|
|
|
|
_color2.copy(this.light.groundColor);
|
|
|
|
for (let i = 0, l = colors.count; i < l; i++) {
|
|
const color = i < l / 2 ? _color1 : _color2;
|
|
colors.setXYZ(i, color.r, color.g, color.b);
|
|
}
|
|
|
|
colors.needsUpdate = true;
|
|
}
|
|
|
|
mesh.lookAt(_vector$1.setFromMatrixPosition(this.light.matrixWorld).negate());
|
|
}
|
|
|
|
}
|
|
|
|
class GridHelper extends LineSegments {
|
|
constructor(size = 10, divisions = 10, color1 = 0x444444, color2 = 0x888888) {
|
|
color1 = new Color(color1);
|
|
color2 = new Color(color2);
|
|
const center = divisions / 2;
|
|
const step = size / divisions;
|
|
const halfSize = size / 2;
|
|
const vertices = [],
|
|
colors = [];
|
|
|
|
for (let i = 0, j = 0, k = -halfSize; i <= divisions; i++, k += step) {
|
|
vertices.push(-halfSize, 0, k, halfSize, 0, k);
|
|
vertices.push(k, 0, -halfSize, k, 0, halfSize);
|
|
const color = i === center ? color1 : color2;
|
|
color.toArray(colors, j);
|
|
j += 3;
|
|
color.toArray(colors, j);
|
|
j += 3;
|
|
color.toArray(colors, j);
|
|
j += 3;
|
|
color.toArray(colors, j);
|
|
j += 3;
|
|
}
|
|
|
|
const geometry = new BufferGeometry();
|
|
geometry.setAttribute('position', new Float32BufferAttribute(vertices, 3));
|
|
geometry.setAttribute('color', new Float32BufferAttribute(colors, 3));
|
|
const material = new LineBasicMaterial({
|
|
vertexColors: true,
|
|
toneMapped: false
|
|
});
|
|
super(geometry, material);
|
|
this.type = 'GridHelper';
|
|
}
|
|
|
|
}
|
|
|
|
class PolarGridHelper extends LineSegments {
|
|
constructor(radius = 10, radials = 16, circles = 8, divisions = 64, color1 = 0x444444, color2 = 0x888888) {
|
|
color1 = new Color(color1);
|
|
color2 = new Color(color2);
|
|
const vertices = [];
|
|
const colors = []; // create the radials
|
|
|
|
for (let i = 0; i <= radials; i++) {
|
|
const v = i / radials * (Math.PI * 2);
|
|
const x = Math.sin(v) * radius;
|
|
const z = Math.cos(v) * radius;
|
|
vertices.push(0, 0, 0);
|
|
vertices.push(x, 0, z);
|
|
const color = i & 1 ? color1 : color2;
|
|
colors.push(color.r, color.g, color.b);
|
|
colors.push(color.r, color.g, color.b);
|
|
} // create the circles
|
|
|
|
|
|
for (let i = 0; i <= circles; i++) {
|
|
const color = i & 1 ? color1 : color2;
|
|
const r = radius - radius / circles * i;
|
|
|
|
for (let j = 0; j < divisions; j++) {
|
|
// first vertex
|
|
let v = j / divisions * (Math.PI * 2);
|
|
let x = Math.sin(v) * r;
|
|
let z = Math.cos(v) * r;
|
|
vertices.push(x, 0, z);
|
|
colors.push(color.r, color.g, color.b); // second vertex
|
|
|
|
v = (j + 1) / divisions * (Math.PI * 2);
|
|
x = Math.sin(v) * r;
|
|
z = Math.cos(v) * r;
|
|
vertices.push(x, 0, z);
|
|
colors.push(color.r, color.g, color.b);
|
|
}
|
|
}
|
|
|
|
const geometry = new BufferGeometry();
|
|
geometry.setAttribute('position', new Float32BufferAttribute(vertices, 3));
|
|
geometry.setAttribute('color', new Float32BufferAttribute(colors, 3));
|
|
const material = new LineBasicMaterial({
|
|
vertexColors: true,
|
|
toneMapped: false
|
|
});
|
|
super(geometry, material);
|
|
this.type = 'PolarGridHelper';
|
|
}
|
|
|
|
}
|
|
|
|
const _v1 = /*@__PURE__*/new Vector3();
|
|
|
|
const _v2 = /*@__PURE__*/new Vector3();
|
|
|
|
const _v3 = /*@__PURE__*/new Vector3();
|
|
|
|
class DirectionalLightHelper extends Object3D {
|
|
constructor(light, size, color) {
|
|
super();
|
|
this.light = light;
|
|
this.light.updateMatrixWorld();
|
|
this.matrix = light.matrixWorld;
|
|
this.matrixAutoUpdate = false;
|
|
this.color = color;
|
|
if (size === undefined) size = 1;
|
|
let geometry = new BufferGeometry();
|
|
geometry.setAttribute('position', new Float32BufferAttribute([-size, size, 0, size, size, 0, size, -size, 0, -size, -size, 0, -size, size, 0], 3));
|
|
const material = new LineBasicMaterial({
|
|
fog: false,
|
|
toneMapped: false
|
|
});
|
|
this.lightPlane = new Line(geometry, material);
|
|
this.add(this.lightPlane);
|
|
geometry = new BufferGeometry();
|
|
geometry.setAttribute('position', new Float32BufferAttribute([0, 0, 0, 0, 0, 1], 3));
|
|
this.targetLine = new Line(geometry, material);
|
|
this.add(this.targetLine);
|
|
this.update();
|
|
}
|
|
|
|
dispose() {
|
|
this.lightPlane.geometry.dispose();
|
|
this.lightPlane.material.dispose();
|
|
this.targetLine.geometry.dispose();
|
|
this.targetLine.material.dispose();
|
|
}
|
|
|
|
update() {
|
|
_v1.setFromMatrixPosition(this.light.matrixWorld);
|
|
|
|
_v2.setFromMatrixPosition(this.light.target.matrixWorld);
|
|
|
|
_v3.subVectors(_v2, _v1);
|
|
|
|
this.lightPlane.lookAt(_v2);
|
|
|
|
if (this.color !== undefined) {
|
|
this.lightPlane.material.color.set(this.color);
|
|
this.targetLine.material.color.set(this.color);
|
|
} else {
|
|
this.lightPlane.material.color.copy(this.light.color);
|
|
this.targetLine.material.color.copy(this.light.color);
|
|
}
|
|
|
|
this.targetLine.lookAt(_v2);
|
|
this.targetLine.scale.z = _v3.length();
|
|
}
|
|
|
|
}
|
|
|
|
const _vector = /*@__PURE__*/new Vector3();
|
|
|
|
const _camera = /*@__PURE__*/new Camera();
|
|
/**
|
|
* - shows frustum, line of sight and up of the camera
|
|
* - suitable for fast updates
|
|
* - based on frustum visualization in lightgl.js shadowmap example
|
|
* http://evanw.github.com/lightgl.js/tests/shadowmap.html
|
|
*/
|
|
|
|
|
|
class CameraHelper extends LineSegments {
|
|
constructor(camera) {
|
|
const geometry = new BufferGeometry();
|
|
const material = new LineBasicMaterial({
|
|
color: 0xffffff,
|
|
vertexColors: true,
|
|
toneMapped: false
|
|
});
|
|
const vertices = [];
|
|
const colors = [];
|
|
const pointMap = {}; // colors
|
|
|
|
const colorFrustum = new Color(0xffaa00);
|
|
const colorCone = new Color(0xff0000);
|
|
const colorUp = new Color(0x00aaff);
|
|
const colorTarget = new Color(0xffffff);
|
|
const colorCross = new Color(0x333333); // near
|
|
|
|
addLine('n1', 'n2', colorFrustum);
|
|
addLine('n2', 'n4', colorFrustum);
|
|
addLine('n4', 'n3', colorFrustum);
|
|
addLine('n3', 'n1', colorFrustum); // far
|
|
|
|
addLine('f1', 'f2', colorFrustum);
|
|
addLine('f2', 'f4', colorFrustum);
|
|
addLine('f4', 'f3', colorFrustum);
|
|
addLine('f3', 'f1', colorFrustum); // sides
|
|
|
|
addLine('n1', 'f1', colorFrustum);
|
|
addLine('n2', 'f2', colorFrustum);
|
|
addLine('n3', 'f3', colorFrustum);
|
|
addLine('n4', 'f4', colorFrustum); // cone
|
|
|
|
addLine('p', 'n1', colorCone);
|
|
addLine('p', 'n2', colorCone);
|
|
addLine('p', 'n3', colorCone);
|
|
addLine('p', 'n4', colorCone); // up
|
|
|
|
addLine('u1', 'u2', colorUp);
|
|
addLine('u2', 'u3', colorUp);
|
|
addLine('u3', 'u1', colorUp); // target
|
|
|
|
addLine('c', 't', colorTarget);
|
|
addLine('p', 'c', colorCross); // cross
|
|
|
|
addLine('cn1', 'cn2', colorCross);
|
|
addLine('cn3', 'cn4', colorCross);
|
|
addLine('cf1', 'cf2', colorCross);
|
|
addLine('cf3', 'cf4', colorCross);
|
|
|
|
function addLine(a, b, color) {
|
|
addPoint(a, color);
|
|
addPoint(b, color);
|
|
}
|
|
|
|
function addPoint(id, color) {
|
|
vertices.push(0, 0, 0);
|
|
colors.push(color.r, color.g, color.b);
|
|
|
|
if (pointMap[id] === undefined) {
|
|
pointMap[id] = [];
|
|
}
|
|
|
|
pointMap[id].push(vertices.length / 3 - 1);
|
|
}
|
|
|
|
geometry.setAttribute('position', new Float32BufferAttribute(vertices, 3));
|
|
geometry.setAttribute('color', new Float32BufferAttribute(colors, 3));
|
|
super(geometry, material);
|
|
this.type = 'CameraHelper';
|
|
this.camera = camera;
|
|
if (this.camera.updateProjectionMatrix) this.camera.updateProjectionMatrix();
|
|
this.matrix = camera.matrixWorld;
|
|
this.matrixAutoUpdate = false;
|
|
this.pointMap = pointMap;
|
|
this.update();
|
|
}
|
|
|
|
update() {
|
|
const geometry = this.geometry;
|
|
const pointMap = this.pointMap;
|
|
const w = 1,
|
|
h = 1; // we need just camera projection matrix inverse
|
|
// world matrix must be identity
|
|
|
|
_camera.projectionMatrixInverse.copy(this.camera.projectionMatrixInverse); // center / target
|
|
|
|
|
|
setPoint('c', pointMap, geometry, _camera, 0, 0, -1);
|
|
setPoint('t', pointMap, geometry, _camera, 0, 0, 1); // near
|
|
|
|
setPoint('n1', pointMap, geometry, _camera, -w, -h, -1);
|
|
setPoint('n2', pointMap, geometry, _camera, w, -h, -1);
|
|
setPoint('n3', pointMap, geometry, _camera, -w, h, -1);
|
|
setPoint('n4', pointMap, geometry, _camera, w, h, -1); // far
|
|
|
|
setPoint('f1', pointMap, geometry, _camera, -w, -h, 1);
|
|
setPoint('f2', pointMap, geometry, _camera, w, -h, 1);
|
|
setPoint('f3', pointMap, geometry, _camera, -w, h, 1);
|
|
setPoint('f4', pointMap, geometry, _camera, w, h, 1); // up
|
|
|
|
setPoint('u1', pointMap, geometry, _camera, w * 0.7, h * 1.1, -1);
|
|
setPoint('u2', pointMap, geometry, _camera, -w * 0.7, h * 1.1, -1);
|
|
setPoint('u3', pointMap, geometry, _camera, 0, h * 2, -1); // cross
|
|
|
|
setPoint('cf1', pointMap, geometry, _camera, -w, 0, 1);
|
|
setPoint('cf2', pointMap, geometry, _camera, w, 0, 1);
|
|
setPoint('cf3', pointMap, geometry, _camera, 0, -h, 1);
|
|
setPoint('cf4', pointMap, geometry, _camera, 0, h, 1);
|
|
setPoint('cn1', pointMap, geometry, _camera, -w, 0, -1);
|
|
setPoint('cn2', pointMap, geometry, _camera, w, 0, -1);
|
|
setPoint('cn3', pointMap, geometry, _camera, 0, -h, -1);
|
|
setPoint('cn4', pointMap, geometry, _camera, 0, h, -1);
|
|
geometry.getAttribute('position').needsUpdate = true;
|
|
}
|
|
|
|
dispose() {
|
|
this.geometry.dispose();
|
|
this.material.dispose();
|
|
}
|
|
|
|
}
|
|
|
|
function setPoint(point, pointMap, geometry, camera, x, y, z) {
|
|
_vector.set(x, y, z).unproject(camera);
|
|
|
|
const points = pointMap[point];
|
|
|
|
if (points !== undefined) {
|
|
const position = geometry.getAttribute('position');
|
|
|
|
for (let i = 0, l = points.length; i < l; i++) {
|
|
position.setXYZ(points[i], _vector.x, _vector.y, _vector.z);
|
|
}
|
|
}
|
|
}
|
|
|
|
const _box = /*@__PURE__*/new Box3();
|
|
|
|
class BoxHelper extends LineSegments {
|
|
constructor(object, color = 0xffff00) {
|
|
const indices = new Uint16Array([0, 1, 1, 2, 2, 3, 3, 0, 4, 5, 5, 6, 6, 7, 7, 4, 0, 4, 1, 5, 2, 6, 3, 7]);
|
|
const positions = new Float32Array(8 * 3);
|
|
const geometry = new BufferGeometry();
|
|
geometry.setIndex(new BufferAttribute(indices, 1));
|
|
geometry.setAttribute('position', new BufferAttribute(positions, 3));
|
|
super(geometry, new LineBasicMaterial({
|
|
color: color,
|
|
toneMapped: false
|
|
}));
|
|
this.object = object;
|
|
this.type = 'BoxHelper';
|
|
this.matrixAutoUpdate = false;
|
|
this.update();
|
|
}
|
|
|
|
update(object) {
|
|
if (object !== undefined) {
|
|
console.warn('THREE.BoxHelper: .update() has no longer arguments.');
|
|
}
|
|
|
|
if (this.object !== undefined) {
|
|
_box.setFromObject(this.object);
|
|
}
|
|
|
|
if (_box.isEmpty()) return;
|
|
const min = _box.min;
|
|
const max = _box.max;
|
|
/*
|
|
5____4
|
|
1/___0/|
|
|
| 6__|_7
|
|
2/___3/
|
|
0: max.x, max.y, max.z
|
|
1: min.x, max.y, max.z
|
|
2: min.x, min.y, max.z
|
|
3: max.x, min.y, max.z
|
|
4: max.x, max.y, min.z
|
|
5: min.x, max.y, min.z
|
|
6: min.x, min.y, min.z
|
|
7: max.x, min.y, min.z
|
|
*/
|
|
|
|
const position = this.geometry.attributes.position;
|
|
const array = position.array;
|
|
array[0] = max.x;
|
|
array[1] = max.y;
|
|
array[2] = max.z;
|
|
array[3] = min.x;
|
|
array[4] = max.y;
|
|
array[5] = max.z;
|
|
array[6] = min.x;
|
|
array[7] = min.y;
|
|
array[8] = max.z;
|
|
array[9] = max.x;
|
|
array[10] = min.y;
|
|
array[11] = max.z;
|
|
array[12] = max.x;
|
|
array[13] = max.y;
|
|
array[14] = min.z;
|
|
array[15] = min.x;
|
|
array[16] = max.y;
|
|
array[17] = min.z;
|
|
array[18] = min.x;
|
|
array[19] = min.y;
|
|
array[20] = min.z;
|
|
array[21] = max.x;
|
|
array[22] = min.y;
|
|
array[23] = min.z;
|
|
position.needsUpdate = true;
|
|
this.geometry.computeBoundingSphere();
|
|
}
|
|
|
|
setFromObject(object) {
|
|
this.object = object;
|
|
this.update();
|
|
return this;
|
|
}
|
|
|
|
copy(source) {
|
|
LineSegments.prototype.copy.call(this, source);
|
|
this.object = source.object;
|
|
return this;
|
|
}
|
|
|
|
}
|
|
|
|
class Box3Helper extends LineSegments {
|
|
constructor(box, color = 0xffff00) {
|
|
const indices = new Uint16Array([0, 1, 1, 2, 2, 3, 3, 0, 4, 5, 5, 6, 6, 7, 7, 4, 0, 4, 1, 5, 2, 6, 3, 7]);
|
|
const positions = [1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, -1, -1, 1, -1, -1, -1, -1, 1, -1, -1];
|
|
const geometry = new BufferGeometry();
|
|
geometry.setIndex(new BufferAttribute(indices, 1));
|
|
geometry.setAttribute('position', new Float32BufferAttribute(positions, 3));
|
|
super(geometry, new LineBasicMaterial({
|
|
color: color,
|
|
toneMapped: false
|
|
}));
|
|
this.box = box;
|
|
this.type = 'Box3Helper';
|
|
this.geometry.computeBoundingSphere();
|
|
}
|
|
|
|
updateMatrixWorld(force) {
|
|
const box = this.box;
|
|
if (box.isEmpty()) return;
|
|
box.getCenter(this.position);
|
|
box.getSize(this.scale);
|
|
this.scale.multiplyScalar(0.5);
|
|
super.updateMatrixWorld(force);
|
|
}
|
|
|
|
}
|
|
|
|
class PlaneHelper extends Line {
|
|
constructor(plane, size = 1, hex = 0xffff00) {
|
|
const color = hex;
|
|
const positions = [1, -1, 1, -1, 1, 1, -1, -1, 1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0];
|
|
const geometry = new BufferGeometry();
|
|
geometry.setAttribute('position', new Float32BufferAttribute(positions, 3));
|
|
geometry.computeBoundingSphere();
|
|
super(geometry, new LineBasicMaterial({
|
|
color: color,
|
|
toneMapped: false
|
|
}));
|
|
this.type = 'PlaneHelper';
|
|
this.plane = plane;
|
|
this.size = size;
|
|
const positions2 = [1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, -1, 1];
|
|
const geometry2 = new BufferGeometry();
|
|
geometry2.setAttribute('position', new Float32BufferAttribute(positions2, 3));
|
|
geometry2.computeBoundingSphere();
|
|
this.add(new Mesh(geometry2, new MeshBasicMaterial({
|
|
color: color,
|
|
opacity: 0.2,
|
|
transparent: true,
|
|
depthWrite: false,
|
|
toneMapped: false
|
|
})));
|
|
}
|
|
|
|
updateMatrixWorld(force) {
|
|
let scale = -this.plane.constant;
|
|
if (Math.abs(scale) < 1e-8) scale = 1e-8; // sign does not matter
|
|
|
|
this.scale.set(0.5 * this.size, 0.5 * this.size, scale);
|
|
this.children[0].material.side = scale < 0 ? BackSide : FrontSide; // renderer flips side when determinant < 0; flipping not wanted here
|
|
|
|
this.lookAt(this.plane.normal);
|
|
super.updateMatrixWorld(force);
|
|
}
|
|
|
|
}
|
|
|
|
const _axis = /*@__PURE__*/new Vector3();
|
|
|
|
let _lineGeometry, _coneGeometry;
|
|
|
|
class ArrowHelper extends Object3D {
|
|
// dir is assumed to be normalized
|
|
constructor(dir = new Vector3(0, 0, 1), origin = new Vector3(0, 0, 0), length = 1, color = 0xffff00, headLength = length * 0.2, headWidth = headLength * 0.2) {
|
|
super();
|
|
this.type = 'ArrowHelper';
|
|
|
|
if (_lineGeometry === undefined) {
|
|
_lineGeometry = new BufferGeometry();
|
|
|
|
_lineGeometry.setAttribute('position', new Float32BufferAttribute([0, 0, 0, 0, 1, 0], 3));
|
|
|
|
_coneGeometry = new CylinderGeometry(0, 0.5, 1, 5, 1);
|
|
|
|
_coneGeometry.translate(0, -0.5, 0);
|
|
}
|
|
|
|
this.position.copy(origin);
|
|
this.line = new Line(_lineGeometry, new LineBasicMaterial({
|
|
color: color,
|
|
toneMapped: false
|
|
}));
|
|
this.line.matrixAutoUpdate = false;
|
|
this.add(this.line);
|
|
this.cone = new Mesh(_coneGeometry, new MeshBasicMaterial({
|
|
color: color,
|
|
toneMapped: false
|
|
}));
|
|
this.cone.matrixAutoUpdate = false;
|
|
this.add(this.cone);
|
|
this.setDirection(dir);
|
|
this.setLength(length, headLength, headWidth);
|
|
}
|
|
|
|
setDirection(dir) {
|
|
// dir is assumed to be normalized
|
|
if (dir.y > 0.99999) {
|
|
this.quaternion.set(0, 0, 0, 1);
|
|
} else if (dir.y < -0.99999) {
|
|
this.quaternion.set(1, 0, 0, 0);
|
|
} else {
|
|
_axis.set(dir.z, 0, -dir.x).normalize();
|
|
|
|
const radians = Math.acos(dir.y);
|
|
this.quaternion.setFromAxisAngle(_axis, radians);
|
|
}
|
|
}
|
|
|
|
setLength(length, headLength = length * 0.2, headWidth = headLength * 0.2) {
|
|
this.line.scale.set(1, Math.max(0.0001, length - headLength), 1); // see #17458
|
|
|
|
this.line.updateMatrix();
|
|
this.cone.scale.set(headWidth, headLength, headWidth);
|
|
this.cone.position.y = length;
|
|
this.cone.updateMatrix();
|
|
}
|
|
|
|
setColor(color) {
|
|
this.line.material.color.set(color);
|
|
this.cone.material.color.set(color);
|
|
}
|
|
|
|
copy(source) {
|
|
super.copy(source, false);
|
|
this.line.copy(source.line);
|
|
this.cone.copy(source.cone);
|
|
return this;
|
|
}
|
|
|
|
}
|
|
|
|
class AxesHelper extends LineSegments {
|
|
constructor(size = 1) {
|
|
const vertices = [0, 0, 0, size, 0, 0, 0, 0, 0, 0, size, 0, 0, 0, 0, 0, 0, size];
|
|
const colors = [1, 0, 0, 1, 0.6, 0, 0, 1, 0, 0.6, 1, 0, 0, 0, 1, 0, 0.6, 1];
|
|
const geometry = new BufferGeometry();
|
|
geometry.setAttribute('position', new Float32BufferAttribute(vertices, 3));
|
|
geometry.setAttribute('color', new Float32BufferAttribute(colors, 3));
|
|
const material = new LineBasicMaterial({
|
|
vertexColors: true,
|
|
toneMapped: false
|
|
});
|
|
super(geometry, material);
|
|
this.type = 'AxesHelper';
|
|
}
|
|
|
|
setColors(xAxisColor, yAxisColor, zAxisColor) {
|
|
const color = new Color();
|
|
const array = this.geometry.attributes.color.array;
|
|
color.set(xAxisColor);
|
|
color.toArray(array, 0);
|
|
color.toArray(array, 3);
|
|
color.set(yAxisColor);
|
|
color.toArray(array, 6);
|
|
color.toArray(array, 9);
|
|
color.set(zAxisColor);
|
|
color.toArray(array, 12);
|
|
color.toArray(array, 15);
|
|
this.geometry.attributes.color.needsUpdate = true;
|
|
return this;
|
|
}
|
|
|
|
dispose() {
|
|
this.geometry.dispose();
|
|
this.material.dispose();
|
|
}
|
|
|
|
}
|
|
|
|
class ShapePath {
|
|
constructor() {
|
|
this.type = 'ShapePath';
|
|
this.color = new Color();
|
|
this.subPaths = [];
|
|
this.currentPath = null;
|
|
}
|
|
|
|
moveTo(x, y) {
|
|
this.currentPath = new Path();
|
|
this.subPaths.push(this.currentPath);
|
|
this.currentPath.moveTo(x, y);
|
|
return this;
|
|
}
|
|
|
|
lineTo(x, y) {
|
|
this.currentPath.lineTo(x, y);
|
|
return this;
|
|
}
|
|
|
|
quadraticCurveTo(aCPx, aCPy, aX, aY) {
|
|
this.currentPath.quadraticCurveTo(aCPx, aCPy, aX, aY);
|
|
return this;
|
|
}
|
|
|
|
bezierCurveTo(aCP1x, aCP1y, aCP2x, aCP2y, aX, aY) {
|
|
this.currentPath.bezierCurveTo(aCP1x, aCP1y, aCP2x, aCP2y, aX, aY);
|
|
return this;
|
|
}
|
|
|
|
splineThru(pts) {
|
|
this.currentPath.splineThru(pts);
|
|
return this;
|
|
}
|
|
|
|
toShapes(isCCW, noHoles) {
|
|
function toShapesNoHoles(inSubpaths) {
|
|
const shapes = [];
|
|
|
|
for (let i = 0, l = inSubpaths.length; i < l; i++) {
|
|
const tmpPath = inSubpaths[i];
|
|
const tmpShape = new Shape();
|
|
tmpShape.curves = tmpPath.curves;
|
|
shapes.push(tmpShape);
|
|
}
|
|
|
|
return shapes;
|
|
}
|
|
|
|
function isPointInsidePolygon(inPt, inPolygon) {
|
|
const polyLen = inPolygon.length; // inPt on polygon contour => immediate success or
|
|
// toggling of inside/outside at every single! intersection point of an edge
|
|
// with the horizontal line through inPt, left of inPt
|
|
// not counting lowerY endpoints of edges and whole edges on that line
|
|
|
|
let inside = false;
|
|
|
|
for (let p = polyLen - 1, q = 0; q < polyLen; p = q++) {
|
|
let edgeLowPt = inPolygon[p];
|
|
let edgeHighPt = inPolygon[q];
|
|
let edgeDx = edgeHighPt.x - edgeLowPt.x;
|
|
let edgeDy = edgeHighPt.y - edgeLowPt.y;
|
|
|
|
if (Math.abs(edgeDy) > Number.EPSILON) {
|
|
// not parallel
|
|
if (edgeDy < 0) {
|
|
edgeLowPt = inPolygon[q];
|
|
edgeDx = -edgeDx;
|
|
edgeHighPt = inPolygon[p];
|
|
edgeDy = -edgeDy;
|
|
}
|
|
|
|
if (inPt.y < edgeLowPt.y || inPt.y > edgeHighPt.y) continue;
|
|
|
|
if (inPt.y === edgeLowPt.y) {
|
|
if (inPt.x === edgeLowPt.x) return true; // inPt is on contour ?
|
|
// continue; // no intersection or edgeLowPt => doesn't count !!!
|
|
} else {
|
|
const perpEdge = edgeDy * (inPt.x - edgeLowPt.x) - edgeDx * (inPt.y - edgeLowPt.y);
|
|
if (perpEdge === 0) return true; // inPt is on contour ?
|
|
|
|
if (perpEdge < 0) continue;
|
|
inside = !inside; // true intersection left of inPt
|
|
}
|
|
} else {
|
|
// parallel or collinear
|
|
if (inPt.y !== edgeLowPt.y) continue; // parallel
|
|
// edge lies on the same horizontal line as inPt
|
|
|
|
if (edgeHighPt.x <= inPt.x && inPt.x <= edgeLowPt.x || edgeLowPt.x <= inPt.x && inPt.x <= edgeHighPt.x) return true; // inPt: Point on contour !
|
|
// continue;
|
|
}
|
|
}
|
|
|
|
return inside;
|
|
}
|
|
|
|
const isClockWise = ShapeUtils.isClockWise;
|
|
const subPaths = this.subPaths;
|
|
if (subPaths.length === 0) return [];
|
|
if (noHoles === true) return toShapesNoHoles(subPaths);
|
|
let solid, tmpPath, tmpShape;
|
|
const shapes = [];
|
|
|
|
if (subPaths.length === 1) {
|
|
tmpPath = subPaths[0];
|
|
tmpShape = new Shape();
|
|
tmpShape.curves = tmpPath.curves;
|
|
shapes.push(tmpShape);
|
|
return shapes;
|
|
}
|
|
|
|
let holesFirst = !isClockWise(subPaths[0].getPoints());
|
|
holesFirst = isCCW ? !holesFirst : holesFirst; // console.log("Holes first", holesFirst);
|
|
|
|
const betterShapeHoles = [];
|
|
const newShapes = [];
|
|
let newShapeHoles = [];
|
|
let mainIdx = 0;
|
|
let tmpPoints;
|
|
newShapes[mainIdx] = undefined;
|
|
newShapeHoles[mainIdx] = [];
|
|
|
|
for (let i = 0, l = subPaths.length; i < l; i++) {
|
|
tmpPath = subPaths[i];
|
|
tmpPoints = tmpPath.getPoints();
|
|
solid = isClockWise(tmpPoints);
|
|
solid = isCCW ? !solid : solid;
|
|
|
|
if (solid) {
|
|
if (!holesFirst && newShapes[mainIdx]) mainIdx++;
|
|
newShapes[mainIdx] = {
|
|
s: new Shape(),
|
|
p: tmpPoints
|
|
};
|
|
newShapes[mainIdx].s.curves = tmpPath.curves;
|
|
if (holesFirst) mainIdx++;
|
|
newShapeHoles[mainIdx] = []; //console.log('cw', i);
|
|
} else {
|
|
newShapeHoles[mainIdx].push({
|
|
h: tmpPath,
|
|
p: tmpPoints[0]
|
|
}); //console.log('ccw', i);
|
|
}
|
|
} // only Holes? -> probably all Shapes with wrong orientation
|
|
|
|
|
|
if (!newShapes[0]) return toShapesNoHoles(subPaths);
|
|
|
|
if (newShapes.length > 1) {
|
|
let ambiguous = false;
|
|
const toChange = [];
|
|
|
|
for (let sIdx = 0, sLen = newShapes.length; sIdx < sLen; sIdx++) {
|
|
betterShapeHoles[sIdx] = [];
|
|
}
|
|
|
|
for (let sIdx = 0, sLen = newShapes.length; sIdx < sLen; sIdx++) {
|
|
const sho = newShapeHoles[sIdx];
|
|
|
|
for (let hIdx = 0; hIdx < sho.length; hIdx++) {
|
|
const ho = sho[hIdx];
|
|
let hole_unassigned = true;
|
|
|
|
for (let s2Idx = 0; s2Idx < newShapes.length; s2Idx++) {
|
|
if (isPointInsidePolygon(ho.p, newShapes[s2Idx].p)) {
|
|
if (sIdx !== s2Idx) toChange.push({
|
|
froms: sIdx,
|
|
tos: s2Idx,
|
|
hole: hIdx
|
|
});
|
|
|
|
if (hole_unassigned) {
|
|
hole_unassigned = false;
|
|
betterShapeHoles[s2Idx].push(ho);
|
|
} else {
|
|
ambiguous = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (hole_unassigned) {
|
|
betterShapeHoles[sIdx].push(ho);
|
|
}
|
|
}
|
|
} // console.log("ambiguous: ", ambiguous);
|
|
|
|
|
|
if (toChange.length > 0) {
|
|
// console.log("to change: ", toChange);
|
|
if (!ambiguous) newShapeHoles = betterShapeHoles;
|
|
}
|
|
}
|
|
|
|
let tmpHoles;
|
|
|
|
for (let i = 0, il = newShapes.length; i < il; i++) {
|
|
tmpShape = newShapes[i].s;
|
|
shapes.push(tmpShape);
|
|
tmpHoles = newShapeHoles[i];
|
|
|
|
for (let j = 0, jl = tmpHoles.length; j < jl; j++) {
|
|
tmpShape.holes.push(tmpHoles[j].h);
|
|
}
|
|
} //console.log("shape", shapes);
|
|
|
|
|
|
return shapes;
|
|
}
|
|
|
|
}
|
|
|
|
const _floatView = new Float32Array(1);
|
|
|
|
const _int32View = new Int32Array(_floatView.buffer);
|
|
|
|
class DataUtils {
|
|
// Converts float32 to float16 (stored as uint16 value).
|
|
static toHalfFloat(val) {
|
|
if (val > 65504) {
|
|
console.warn('THREE.DataUtils.toHalfFloat(): value exceeds 65504.');
|
|
val = 65504; // maximum representable value in float16
|
|
} // Source: http://gamedev.stackexchange.com/questions/17326/conversion-of-a-number-from-single-precision-floating-point-representation-to-a/17410#17410
|
|
|
|
/* This method is faster than the OpenEXR implementation (very often
|
|
* used, eg. in Ogre), with the additional benefit of rounding, inspired
|
|
* by James Tursa?s half-precision code. */
|
|
|
|
|
|
_floatView[0] = val;
|
|
const x = _int32View[0];
|
|
let bits = x >> 16 & 0x8000;
|
|
/* Get the sign */
|
|
|
|
let m = x >> 12 & 0x07ff;
|
|
/* Keep one extra bit for rounding */
|
|
|
|
const e = x >> 23 & 0xff;
|
|
/* Using int is faster here */
|
|
|
|
/* If zero, or denormal, or exponent underflows too much for a denormal
|
|
* half, return signed zero. */
|
|
|
|
if (e < 103) return bits;
|
|
/* If NaN, return NaN. If Inf or exponent overflow, return Inf. */
|
|
|
|
if (e > 142) {
|
|
bits |= 0x7c00;
|
|
/* If exponent was 0xff and one mantissa bit was set, it means NaN,
|
|
* not Inf, so make sure we set one mantissa bit too. */
|
|
|
|
bits |= (e == 255 ? 0 : 1) && x & 0x007fffff;
|
|
return bits;
|
|
}
|
|
/* If exponent underflows but not too much, return a denormal */
|
|
|
|
|
|
if (e < 113) {
|
|
m |= 0x0800;
|
|
/* Extra rounding may overflow and set mantissa to 0 and exponent
|
|
* to 1, which is OK. */
|
|
|
|
bits |= (m >> 114 - e) + (m >> 113 - e & 1);
|
|
return bits;
|
|
}
|
|
|
|
bits |= e - 112 << 10 | m >> 1;
|
|
/* Extra rounding. An overflow will set mantissa to 0 and increment
|
|
* the exponent, which is OK. */
|
|
|
|
bits += m & 1;
|
|
return bits;
|
|
}
|
|
|
|
}
|
|
|
|
const LineStrip = 0;
|
|
const LinePieces = 1;
|
|
const NoColors = 0;
|
|
const FaceColors = 1;
|
|
const VertexColors = 2;
|
|
function MeshFaceMaterial(materials) {
|
|
console.warn('THREE.MeshFaceMaterial has been removed. Use an Array instead.');
|
|
return materials;
|
|
}
|
|
function MultiMaterial(materials = []) {
|
|
console.warn('THREE.MultiMaterial has been removed. Use an Array instead.');
|
|
materials.isMultiMaterial = true;
|
|
materials.materials = materials;
|
|
|
|
materials.clone = function () {
|
|
return materials.slice();
|
|
};
|
|
|
|
return materials;
|
|
}
|
|
function PointCloud(geometry, material) {
|
|
console.warn('THREE.PointCloud has been renamed to THREE.Points.');
|
|
return new Points(geometry, material);
|
|
}
|
|
function Particle(material) {
|
|
console.warn('THREE.Particle has been renamed to THREE.Sprite.');
|
|
return new Sprite(material);
|
|
}
|
|
function ParticleSystem(geometry, material) {
|
|
console.warn('THREE.ParticleSystem has been renamed to THREE.Points.');
|
|
return new Points(geometry, material);
|
|
}
|
|
function PointCloudMaterial(parameters) {
|
|
console.warn('THREE.PointCloudMaterial has been renamed to THREE.PointsMaterial.');
|
|
return new PointsMaterial(parameters);
|
|
}
|
|
function ParticleBasicMaterial(parameters) {
|
|
console.warn('THREE.ParticleBasicMaterial has been renamed to THREE.PointsMaterial.');
|
|
return new PointsMaterial(parameters);
|
|
}
|
|
function ParticleSystemMaterial(parameters) {
|
|
console.warn('THREE.ParticleSystemMaterial has been renamed to THREE.PointsMaterial.');
|
|
return new PointsMaterial(parameters);
|
|
}
|
|
function Vertex(x, y, z) {
|
|
console.warn('THREE.Vertex has been removed. Use THREE.Vector3 instead.');
|
|
return new Vector3(x, y, z);
|
|
} //
|
|
|
|
function DynamicBufferAttribute(array, itemSize) {
|
|
console.warn('THREE.DynamicBufferAttribute has been removed. Use new THREE.BufferAttribute().setUsage( THREE.DynamicDrawUsage ) instead.');
|
|
return new BufferAttribute(array, itemSize).setUsage(DynamicDrawUsage);
|
|
}
|
|
function Int8Attribute(array, itemSize) {
|
|
console.warn('THREE.Int8Attribute has been removed. Use new THREE.Int8BufferAttribute() instead.');
|
|
return new Int8BufferAttribute(array, itemSize);
|
|
}
|
|
function Uint8Attribute(array, itemSize) {
|
|
console.warn('THREE.Uint8Attribute has been removed. Use new THREE.Uint8BufferAttribute() instead.');
|
|
return new Uint8BufferAttribute(array, itemSize);
|
|
}
|
|
function Uint8ClampedAttribute(array, itemSize) {
|
|
console.warn('THREE.Uint8ClampedAttribute has been removed. Use new THREE.Uint8ClampedBufferAttribute() instead.');
|
|
return new Uint8ClampedBufferAttribute(array, itemSize);
|
|
}
|
|
function Int16Attribute(array, itemSize) {
|
|
console.warn('THREE.Int16Attribute has been removed. Use new THREE.Int16BufferAttribute() instead.');
|
|
return new Int16BufferAttribute(array, itemSize);
|
|
}
|
|
function Uint16Attribute(array, itemSize) {
|
|
console.warn('THREE.Uint16Attribute has been removed. Use new THREE.Uint16BufferAttribute() instead.');
|
|
return new Uint16BufferAttribute(array, itemSize);
|
|
}
|
|
function Int32Attribute(array, itemSize) {
|
|
console.warn('THREE.Int32Attribute has been removed. Use new THREE.Int32BufferAttribute() instead.');
|
|
return new Int32BufferAttribute(array, itemSize);
|
|
}
|
|
function Uint32Attribute(array, itemSize) {
|
|
console.warn('THREE.Uint32Attribute has been removed. Use new THREE.Uint32BufferAttribute() instead.');
|
|
return new Uint32BufferAttribute(array, itemSize);
|
|
}
|
|
function Float32Attribute(array, itemSize) {
|
|
console.warn('THREE.Float32Attribute has been removed. Use new THREE.Float32BufferAttribute() instead.');
|
|
return new Float32BufferAttribute(array, itemSize);
|
|
}
|
|
function Float64Attribute(array, itemSize) {
|
|
console.warn('THREE.Float64Attribute has been removed. Use new THREE.Float64BufferAttribute() instead.');
|
|
return new Float64BufferAttribute(array, itemSize);
|
|
} //
|
|
|
|
Curve.create = function (construct, getPoint) {
|
|
console.log('THREE.Curve.create() has been deprecated');
|
|
construct.prototype = Object.create(Curve.prototype);
|
|
construct.prototype.constructor = construct;
|
|
construct.prototype.getPoint = getPoint;
|
|
return construct;
|
|
}; //
|
|
|
|
|
|
Path.prototype.fromPoints = function (points) {
|
|
console.warn('THREE.Path: .fromPoints() has been renamed to .setFromPoints().');
|
|
return this.setFromPoints(points);
|
|
}; //
|
|
|
|
|
|
function AxisHelper(size) {
|
|
console.warn('THREE.AxisHelper has been renamed to THREE.AxesHelper.');
|
|
return new AxesHelper(size);
|
|
}
|
|
function BoundingBoxHelper(object, color) {
|
|
console.warn('THREE.BoundingBoxHelper has been deprecated. Creating a THREE.BoxHelper instead.');
|
|
return new BoxHelper(object, color);
|
|
}
|
|
function EdgesHelper(object, hex) {
|
|
console.warn('THREE.EdgesHelper has been removed. Use THREE.EdgesGeometry instead.');
|
|
return new LineSegments(new EdgesGeometry(object.geometry), new LineBasicMaterial({
|
|
color: hex !== undefined ? hex : 0xffffff
|
|
}));
|
|
}
|
|
|
|
GridHelper.prototype.setColors = function () {
|
|
console.error('THREE.GridHelper: setColors() has been deprecated, pass them in the constructor instead.');
|
|
};
|
|
|
|
SkeletonHelper.prototype.update = function () {
|
|
console.error('THREE.SkeletonHelper: update() no longer needs to be called.');
|
|
};
|
|
|
|
function WireframeHelper(object, hex) {
|
|
console.warn('THREE.WireframeHelper has been removed. Use THREE.WireframeGeometry instead.');
|
|
return new LineSegments(new WireframeGeometry(object.geometry), new LineBasicMaterial({
|
|
color: hex !== undefined ? hex : 0xffffff
|
|
}));
|
|
} //
|
|
|
|
Loader.prototype.extractUrlBase = function (url) {
|
|
console.warn('THREE.Loader: .extractUrlBase() has been deprecated. Use THREE.LoaderUtils.extractUrlBase() instead.');
|
|
return LoaderUtils.extractUrlBase(url);
|
|
};
|
|
|
|
Loader.Handlers = {
|
|
add: function () {
|
|
console.error('THREE.Loader: Handlers.add() has been removed. Use LoadingManager.addHandler() instead.');
|
|
},
|
|
get: function () {
|
|
console.error('THREE.Loader: Handlers.get() has been removed. Use LoadingManager.getHandler() instead.');
|
|
}
|
|
};
|
|
function XHRLoader(manager) {
|
|
console.warn('THREE.XHRLoader has been renamed to THREE.FileLoader.');
|
|
return new FileLoader(manager);
|
|
}
|
|
function BinaryTextureLoader(manager) {
|
|
console.warn('THREE.BinaryTextureLoader has been renamed to THREE.DataTextureLoader.');
|
|
return new DataTextureLoader(manager);
|
|
} //
|
|
|
|
Box2.prototype.center = function (optionalTarget) {
|
|
console.warn('THREE.Box2: .center() has been renamed to .getCenter().');
|
|
return this.getCenter(optionalTarget);
|
|
};
|
|
|
|
Box2.prototype.empty = function () {
|
|
console.warn('THREE.Box2: .empty() has been renamed to .isEmpty().');
|
|
return this.isEmpty();
|
|
};
|
|
|
|
Box2.prototype.isIntersectionBox = function (box) {
|
|
console.warn('THREE.Box2: .isIntersectionBox() has been renamed to .intersectsBox().');
|
|
return this.intersectsBox(box);
|
|
};
|
|
|
|
Box2.prototype.size = function (optionalTarget) {
|
|
console.warn('THREE.Box2: .size() has been renamed to .getSize().');
|
|
return this.getSize(optionalTarget);
|
|
}; //
|
|
|
|
|
|
Box3.prototype.center = function (optionalTarget) {
|
|
console.warn('THREE.Box3: .center() has been renamed to .getCenter().');
|
|
return this.getCenter(optionalTarget);
|
|
};
|
|
|
|
Box3.prototype.empty = function () {
|
|
console.warn('THREE.Box3: .empty() has been renamed to .isEmpty().');
|
|
return this.isEmpty();
|
|
};
|
|
|
|
Box3.prototype.isIntersectionBox = function (box) {
|
|
console.warn('THREE.Box3: .isIntersectionBox() has been renamed to .intersectsBox().');
|
|
return this.intersectsBox(box);
|
|
};
|
|
|
|
Box3.prototype.isIntersectionSphere = function (sphere) {
|
|
console.warn('THREE.Box3: .isIntersectionSphere() has been renamed to .intersectsSphere().');
|
|
return this.intersectsSphere(sphere);
|
|
};
|
|
|
|
Box3.prototype.size = function (optionalTarget) {
|
|
console.warn('THREE.Box3: .size() has been renamed to .getSize().');
|
|
return this.getSize(optionalTarget);
|
|
}; //
|
|
|
|
|
|
Sphere.prototype.empty = function () {
|
|
console.warn('THREE.Sphere: .empty() has been renamed to .isEmpty().');
|
|
return this.isEmpty();
|
|
}; //
|
|
|
|
|
|
Frustum.prototype.setFromMatrix = function (m) {
|
|
console.warn('THREE.Frustum: .setFromMatrix() has been renamed to .setFromProjectionMatrix().');
|
|
return this.setFromProjectionMatrix(m);
|
|
}; //
|
|
|
|
|
|
Line3.prototype.center = function (optionalTarget) {
|
|
console.warn('THREE.Line3: .center() has been renamed to .getCenter().');
|
|
return this.getCenter(optionalTarget);
|
|
}; //
|
|
|
|
|
|
Matrix3.prototype.flattenToArrayOffset = function (array, offset) {
|
|
console.warn('THREE.Matrix3: .flattenToArrayOffset() has been deprecated. Use .toArray() instead.');
|
|
return this.toArray(array, offset);
|
|
};
|
|
|
|
Matrix3.prototype.multiplyVector3 = function (vector) {
|
|
console.warn('THREE.Matrix3: .multiplyVector3() has been removed. Use vector.applyMatrix3( matrix ) instead.');
|
|
return vector.applyMatrix3(this);
|
|
};
|
|
|
|
Matrix3.prototype.multiplyVector3Array = function () {
|
|
console.error('THREE.Matrix3: .multiplyVector3Array() has been removed.');
|
|
};
|
|
|
|
Matrix3.prototype.applyToBufferAttribute = function (attribute) {
|
|
console.warn('THREE.Matrix3: .applyToBufferAttribute() has been removed. Use attribute.applyMatrix3( matrix ) instead.');
|
|
return attribute.applyMatrix3(this);
|
|
};
|
|
|
|
Matrix3.prototype.applyToVector3Array = function () {
|
|
console.error('THREE.Matrix3: .applyToVector3Array() has been removed.');
|
|
};
|
|
|
|
Matrix3.prototype.getInverse = function (matrix) {
|
|
console.warn('THREE.Matrix3: .getInverse() has been removed. Use matrixInv.copy( matrix ).invert(); instead.');
|
|
return this.copy(matrix).invert();
|
|
}; //
|
|
|
|
|
|
Matrix4.prototype.extractPosition = function (m) {
|
|
console.warn('THREE.Matrix4: .extractPosition() has been renamed to .copyPosition().');
|
|
return this.copyPosition(m);
|
|
};
|
|
|
|
Matrix4.prototype.flattenToArrayOffset = function (array, offset) {
|
|
console.warn('THREE.Matrix4: .flattenToArrayOffset() has been deprecated. Use .toArray() instead.');
|
|
return this.toArray(array, offset);
|
|
};
|
|
|
|
Matrix4.prototype.getPosition = function () {
|
|
console.warn('THREE.Matrix4: .getPosition() has been removed. Use Vector3.setFromMatrixPosition( matrix ) instead.');
|
|
return new Vector3().setFromMatrixColumn(this, 3);
|
|
};
|
|
|
|
Matrix4.prototype.setRotationFromQuaternion = function (q) {
|
|
console.warn('THREE.Matrix4: .setRotationFromQuaternion() has been renamed to .makeRotationFromQuaternion().');
|
|
return this.makeRotationFromQuaternion(q);
|
|
};
|
|
|
|
Matrix4.prototype.multiplyToArray = function () {
|
|
console.warn('THREE.Matrix4: .multiplyToArray() has been removed.');
|
|
};
|
|
|
|
Matrix4.prototype.multiplyVector3 = function (vector) {
|
|
console.warn('THREE.Matrix4: .multiplyVector3() has been removed. Use vector.applyMatrix4( matrix ) instead.');
|
|
return vector.applyMatrix4(this);
|
|
};
|
|
|
|
Matrix4.prototype.multiplyVector4 = function (vector) {
|
|
console.warn('THREE.Matrix4: .multiplyVector4() has been removed. Use vector.applyMatrix4( matrix ) instead.');
|
|
return vector.applyMatrix4(this);
|
|
};
|
|
|
|
Matrix4.prototype.multiplyVector3Array = function () {
|
|
console.error('THREE.Matrix4: .multiplyVector3Array() has been removed.');
|
|
};
|
|
|
|
Matrix4.prototype.rotateAxis = function (v) {
|
|
console.warn('THREE.Matrix4: .rotateAxis() has been removed. Use Vector3.transformDirection( matrix ) instead.');
|
|
v.transformDirection(this);
|
|
};
|
|
|
|
Matrix4.prototype.crossVector = function (vector) {
|
|
console.warn('THREE.Matrix4: .crossVector() has been removed. Use vector.applyMatrix4( matrix ) instead.');
|
|
return vector.applyMatrix4(this);
|
|
};
|
|
|
|
Matrix4.prototype.translate = function () {
|
|
console.error('THREE.Matrix4: .translate() has been removed.');
|
|
};
|
|
|
|
Matrix4.prototype.rotateX = function () {
|
|
console.error('THREE.Matrix4: .rotateX() has been removed.');
|
|
};
|
|
|
|
Matrix4.prototype.rotateY = function () {
|
|
console.error('THREE.Matrix4: .rotateY() has been removed.');
|
|
};
|
|
|
|
Matrix4.prototype.rotateZ = function () {
|
|
console.error('THREE.Matrix4: .rotateZ() has been removed.');
|
|
};
|
|
|
|
Matrix4.prototype.rotateByAxis = function () {
|
|
console.error('THREE.Matrix4: .rotateByAxis() has been removed.');
|
|
};
|
|
|
|
Matrix4.prototype.applyToBufferAttribute = function (attribute) {
|
|
console.warn('THREE.Matrix4: .applyToBufferAttribute() has been removed. Use attribute.applyMatrix4( matrix ) instead.');
|
|
return attribute.applyMatrix4(this);
|
|
};
|
|
|
|
Matrix4.prototype.applyToVector3Array = function () {
|
|
console.error('THREE.Matrix4: .applyToVector3Array() has been removed.');
|
|
};
|
|
|
|
Matrix4.prototype.makeFrustum = function (left, right, bottom, top, near, far) {
|
|
console.warn('THREE.Matrix4: .makeFrustum() has been removed. Use .makePerspective( left, right, top, bottom, near, far ) instead.');
|
|
return this.makePerspective(left, right, top, bottom, near, far);
|
|
};
|
|
|
|
Matrix4.prototype.getInverse = function (matrix) {
|
|
console.warn('THREE.Matrix4: .getInverse() has been removed. Use matrixInv.copy( matrix ).invert(); instead.');
|
|
return this.copy(matrix).invert();
|
|
}; //
|
|
|
|
|
|
Plane.prototype.isIntersectionLine = function (line) {
|
|
console.warn('THREE.Plane: .isIntersectionLine() has been renamed to .intersectsLine().');
|
|
return this.intersectsLine(line);
|
|
}; //
|
|
|
|
|
|
Quaternion.prototype.multiplyVector3 = function (vector) {
|
|
console.warn('THREE.Quaternion: .multiplyVector3() has been removed. Use is now vector.applyQuaternion( quaternion ) instead.');
|
|
return vector.applyQuaternion(this);
|
|
};
|
|
|
|
Quaternion.prototype.inverse = function () {
|
|
console.warn('THREE.Quaternion: .inverse() has been renamed to invert().');
|
|
return this.invert();
|
|
}; //
|
|
|
|
|
|
Ray.prototype.isIntersectionBox = function (box) {
|
|
console.warn('THREE.Ray: .isIntersectionBox() has been renamed to .intersectsBox().');
|
|
return this.intersectsBox(box);
|
|
};
|
|
|
|
Ray.prototype.isIntersectionPlane = function (plane) {
|
|
console.warn('THREE.Ray: .isIntersectionPlane() has been renamed to .intersectsPlane().');
|
|
return this.intersectsPlane(plane);
|
|
};
|
|
|
|
Ray.prototype.isIntersectionSphere = function (sphere) {
|
|
console.warn('THREE.Ray: .isIntersectionSphere() has been renamed to .intersectsSphere().');
|
|
return this.intersectsSphere(sphere);
|
|
}; //
|
|
|
|
|
|
Triangle.prototype.area = function () {
|
|
console.warn('THREE.Triangle: .area() has been renamed to .getArea().');
|
|
return this.getArea();
|
|
};
|
|
|
|
Triangle.prototype.barycoordFromPoint = function (point, target) {
|
|
console.warn('THREE.Triangle: .barycoordFromPoint() has been renamed to .getBarycoord().');
|
|
return this.getBarycoord(point, target);
|
|
};
|
|
|
|
Triangle.prototype.midpoint = function (target) {
|
|
console.warn('THREE.Triangle: .midpoint() has been renamed to .getMidpoint().');
|
|
return this.getMidpoint(target);
|
|
};
|
|
|
|
Triangle.prototypenormal = function (target) {
|
|
console.warn('THREE.Triangle: .normal() has been renamed to .getNormal().');
|
|
return this.getNormal(target);
|
|
};
|
|
|
|
Triangle.prototype.plane = function (target) {
|
|
console.warn('THREE.Triangle: .plane() has been renamed to .getPlane().');
|
|
return this.getPlane(target);
|
|
};
|
|
|
|
Triangle.barycoordFromPoint = function (point, a, b, c, target) {
|
|
console.warn('THREE.Triangle: .barycoordFromPoint() has been renamed to .getBarycoord().');
|
|
return Triangle.getBarycoord(point, a, b, c, target);
|
|
};
|
|
|
|
Triangle.normal = function (a, b, c, target) {
|
|
console.warn('THREE.Triangle: .normal() has been renamed to .getNormal().');
|
|
return Triangle.getNormal(a, b, c, target);
|
|
}; //
|
|
|
|
|
|
Shape.prototype.extractAllPoints = function (divisions) {
|
|
console.warn('THREE.Shape: .extractAllPoints() has been removed. Use .extractPoints() instead.');
|
|
return this.extractPoints(divisions);
|
|
};
|
|
|
|
Shape.prototype.extrude = function (options) {
|
|
console.warn('THREE.Shape: .extrude() has been removed. Use ExtrudeGeometry() instead.');
|
|
return new ExtrudeGeometry(this, options);
|
|
};
|
|
|
|
Shape.prototype.makeGeometry = function (options) {
|
|
console.warn('THREE.Shape: .makeGeometry() has been removed. Use ShapeGeometry() instead.');
|
|
return new ShapeGeometry(this, options);
|
|
}; //
|
|
|
|
|
|
Vector2.prototype.fromAttribute = function (attribute, index, offset) {
|
|
console.warn('THREE.Vector2: .fromAttribute() has been renamed to .fromBufferAttribute().');
|
|
return this.fromBufferAttribute(attribute, index, offset);
|
|
};
|
|
|
|
Vector2.prototype.distanceToManhattan = function (v) {
|
|
console.warn('THREE.Vector2: .distanceToManhattan() has been renamed to .manhattanDistanceTo().');
|
|
return this.manhattanDistanceTo(v);
|
|
};
|
|
|
|
Vector2.prototype.lengthManhattan = function () {
|
|
console.warn('THREE.Vector2: .lengthManhattan() has been renamed to .manhattanLength().');
|
|
return this.manhattanLength();
|
|
}; //
|
|
|
|
|
|
Vector3.prototype.setEulerFromRotationMatrix = function () {
|
|
console.error('THREE.Vector3: .setEulerFromRotationMatrix() has been removed. Use Euler.setFromRotationMatrix() instead.');
|
|
};
|
|
|
|
Vector3.prototype.setEulerFromQuaternion = function () {
|
|
console.error('THREE.Vector3: .setEulerFromQuaternion() has been removed. Use Euler.setFromQuaternion() instead.');
|
|
};
|
|
|
|
Vector3.prototype.getPositionFromMatrix = function (m) {
|
|
console.warn('THREE.Vector3: .getPositionFromMatrix() has been renamed to .setFromMatrixPosition().');
|
|
return this.setFromMatrixPosition(m);
|
|
};
|
|
|
|
Vector3.prototype.getScaleFromMatrix = function (m) {
|
|
console.warn('THREE.Vector3: .getScaleFromMatrix() has been renamed to .setFromMatrixScale().');
|
|
return this.setFromMatrixScale(m);
|
|
};
|
|
|
|
Vector3.prototype.getColumnFromMatrix = function (index, matrix) {
|
|
console.warn('THREE.Vector3: .getColumnFromMatrix() has been renamed to .setFromMatrixColumn().');
|
|
return this.setFromMatrixColumn(matrix, index);
|
|
};
|
|
|
|
Vector3.prototype.applyProjection = function (m) {
|
|
console.warn('THREE.Vector3: .applyProjection() has been removed. Use .applyMatrix4( m ) instead.');
|
|
return this.applyMatrix4(m);
|
|
};
|
|
|
|
Vector3.prototype.fromAttribute = function (attribute, index, offset) {
|
|
console.warn('THREE.Vector3: .fromAttribute() has been renamed to .fromBufferAttribute().');
|
|
return this.fromBufferAttribute(attribute, index, offset);
|
|
};
|
|
|
|
Vector3.prototype.distanceToManhattan = function (v) {
|
|
console.warn('THREE.Vector3: .distanceToManhattan() has been renamed to .manhattanDistanceTo().');
|
|
return this.manhattanDistanceTo(v);
|
|
};
|
|
|
|
Vector3.prototype.lengthManhattan = function () {
|
|
console.warn('THREE.Vector3: .lengthManhattan() has been renamed to .manhattanLength().');
|
|
return this.manhattanLength();
|
|
}; //
|
|
|
|
|
|
Vector4.prototype.fromAttribute = function (attribute, index, offset) {
|
|
console.warn('THREE.Vector4: .fromAttribute() has been renamed to .fromBufferAttribute().');
|
|
return this.fromBufferAttribute(attribute, index, offset);
|
|
};
|
|
|
|
Vector4.prototype.lengthManhattan = function () {
|
|
console.warn('THREE.Vector4: .lengthManhattan() has been renamed to .manhattanLength().');
|
|
return this.manhattanLength();
|
|
}; //
|
|
|
|
|
|
Object3D.prototype.getChildByName = function (name) {
|
|
console.warn('THREE.Object3D: .getChildByName() has been renamed to .getObjectByName().');
|
|
return this.getObjectByName(name);
|
|
};
|
|
|
|
Object3D.prototype.renderDepth = function () {
|
|
console.warn('THREE.Object3D: .renderDepth has been removed. Use .renderOrder, instead.');
|
|
};
|
|
|
|
Object3D.prototype.translate = function (distance, axis) {
|
|
console.warn('THREE.Object3D: .translate() has been removed. Use .translateOnAxis( axis, distance ) instead.');
|
|
return this.translateOnAxis(axis, distance);
|
|
};
|
|
|
|
Object3D.prototype.getWorldRotation = function () {
|
|
console.error('THREE.Object3D: .getWorldRotation() has been removed. Use THREE.Object3D.getWorldQuaternion( target ) instead.');
|
|
};
|
|
|
|
Object3D.prototype.applyMatrix = function (matrix) {
|
|
console.warn('THREE.Object3D: .applyMatrix() has been renamed to .applyMatrix4().');
|
|
return this.applyMatrix4(matrix);
|
|
};
|
|
|
|
Object.defineProperties(Object3D.prototype, {
|
|
eulerOrder: {
|
|
get: function () {
|
|
console.warn('THREE.Object3D: .eulerOrder is now .rotation.order.');
|
|
return this.rotation.order;
|
|
},
|
|
set: function (value) {
|
|
console.warn('THREE.Object3D: .eulerOrder is now .rotation.order.');
|
|
this.rotation.order = value;
|
|
}
|
|
},
|
|
useQuaternion: {
|
|
get: function () {
|
|
console.warn('THREE.Object3D: .useQuaternion has been removed. The library now uses quaternions by default.');
|
|
},
|
|
set: function () {
|
|
console.warn('THREE.Object3D: .useQuaternion has been removed. The library now uses quaternions by default.');
|
|
}
|
|
}
|
|
});
|
|
|
|
Mesh.prototype.setDrawMode = function () {
|
|
console.error('THREE.Mesh: .setDrawMode() has been removed. The renderer now always assumes THREE.TrianglesDrawMode. Transform your geometry via BufferGeometryUtils.toTrianglesDrawMode() if necessary.');
|
|
};
|
|
|
|
Object.defineProperties(Mesh.prototype, {
|
|
drawMode: {
|
|
get: function () {
|
|
console.error('THREE.Mesh: .drawMode has been removed. The renderer now always assumes THREE.TrianglesDrawMode.');
|
|
return TrianglesDrawMode;
|
|
},
|
|
set: function () {
|
|
console.error('THREE.Mesh: .drawMode has been removed. The renderer now always assumes THREE.TrianglesDrawMode. Transform your geometry via BufferGeometryUtils.toTrianglesDrawMode() if necessary.');
|
|
}
|
|
}
|
|
});
|
|
|
|
SkinnedMesh.prototype.initBones = function () {
|
|
console.error('THREE.SkinnedMesh: initBones() has been removed.');
|
|
}; //
|
|
|
|
|
|
PerspectiveCamera.prototype.setLens = function (focalLength, filmGauge) {
|
|
console.warn('THREE.PerspectiveCamera.setLens is deprecated. ' + 'Use .setFocalLength and .filmGauge for a photographic setup.');
|
|
if (filmGauge !== undefined) this.filmGauge = filmGauge;
|
|
this.setFocalLength(focalLength);
|
|
}; //
|
|
|
|
|
|
Object.defineProperties(Light.prototype, {
|
|
onlyShadow: {
|
|
set: function () {
|
|
console.warn('THREE.Light: .onlyShadow has been removed.');
|
|
}
|
|
},
|
|
shadowCameraFov: {
|
|
set: function (value) {
|
|
console.warn('THREE.Light: .shadowCameraFov is now .shadow.camera.fov.');
|
|
this.shadow.camera.fov = value;
|
|
}
|
|
},
|
|
shadowCameraLeft: {
|
|
set: function (value) {
|
|
console.warn('THREE.Light: .shadowCameraLeft is now .shadow.camera.left.');
|
|
this.shadow.camera.left = value;
|
|
}
|
|
},
|
|
shadowCameraRight: {
|
|
set: function (value) {
|
|
console.warn('THREE.Light: .shadowCameraRight is now .shadow.camera.right.');
|
|
this.shadow.camera.right = value;
|
|
}
|
|
},
|
|
shadowCameraTop: {
|
|
set: function (value) {
|
|
console.warn('THREE.Light: .shadowCameraTop is now .shadow.camera.top.');
|
|
this.shadow.camera.top = value;
|
|
}
|
|
},
|
|
shadowCameraBottom: {
|
|
set: function (value) {
|
|
console.warn('THREE.Light: .shadowCameraBottom is now .shadow.camera.bottom.');
|
|
this.shadow.camera.bottom = value;
|
|
}
|
|
},
|
|
shadowCameraNear: {
|
|
set: function (value) {
|
|
console.warn('THREE.Light: .shadowCameraNear is now .shadow.camera.near.');
|
|
this.shadow.camera.near = value;
|
|
}
|
|
},
|
|
shadowCameraFar: {
|
|
set: function (value) {
|
|
console.warn('THREE.Light: .shadowCameraFar is now .shadow.camera.far.');
|
|
this.shadow.camera.far = value;
|
|
}
|
|
},
|
|
shadowCameraVisible: {
|
|
set: function () {
|
|
console.warn('THREE.Light: .shadowCameraVisible has been removed. Use new THREE.CameraHelper( light.shadow.camera ) instead.');
|
|
}
|
|
},
|
|
shadowBias: {
|
|
set: function (value) {
|
|
console.warn('THREE.Light: .shadowBias is now .shadow.bias.');
|
|
this.shadow.bias = value;
|
|
}
|
|
},
|
|
shadowDarkness: {
|
|
set: function () {
|
|
console.warn('THREE.Light: .shadowDarkness has been removed.');
|
|
}
|
|
},
|
|
shadowMapWidth: {
|
|
set: function (value) {
|
|
console.warn('THREE.Light: .shadowMapWidth is now .shadow.mapSize.width.');
|
|
this.shadow.mapSize.width = value;
|
|
}
|
|
},
|
|
shadowMapHeight: {
|
|
set: function (value) {
|
|
console.warn('THREE.Light: .shadowMapHeight is now .shadow.mapSize.height.');
|
|
this.shadow.mapSize.height = value;
|
|
}
|
|
}
|
|
}); //
|
|
|
|
Object.defineProperties(BufferAttribute.prototype, {
|
|
length: {
|
|
get: function () {
|
|
console.warn('THREE.BufferAttribute: .length has been deprecated. Use .count instead.');
|
|
return this.array.length;
|
|
}
|
|
},
|
|
dynamic: {
|
|
get: function () {
|
|
console.warn('THREE.BufferAttribute: .dynamic has been deprecated. Use .usage instead.');
|
|
return this.usage === DynamicDrawUsage;
|
|
},
|
|
set: function () {
|
|
console.warn('THREE.BufferAttribute: .dynamic has been deprecated. Use .usage instead.');
|
|
this.setUsage(DynamicDrawUsage);
|
|
}
|
|
}
|
|
});
|
|
|
|
BufferAttribute.prototype.setDynamic = function (value) {
|
|
console.warn('THREE.BufferAttribute: .setDynamic() has been deprecated. Use .setUsage() instead.');
|
|
this.setUsage(value === true ? DynamicDrawUsage : StaticDrawUsage);
|
|
return this;
|
|
};
|
|
|
|
BufferAttribute.prototype.copyIndicesArray = function () {
|
|
console.error('THREE.BufferAttribute: .copyIndicesArray() has been removed.');
|
|
}, BufferAttribute.prototype.setArray = function () {
|
|
console.error('THREE.BufferAttribute: .setArray has been removed. Use BufferGeometry .setAttribute to replace/resize attribute buffers');
|
|
}; //
|
|
|
|
BufferGeometry.prototype.addIndex = function (index) {
|
|
console.warn('THREE.BufferGeometry: .addIndex() has been renamed to .setIndex().');
|
|
this.setIndex(index);
|
|
};
|
|
|
|
BufferGeometry.prototype.addAttribute = function (name, attribute) {
|
|
console.warn('THREE.BufferGeometry: .addAttribute() has been renamed to .setAttribute().');
|
|
|
|
if (!(attribute && attribute.isBufferAttribute) && !(attribute && attribute.isInterleavedBufferAttribute)) {
|
|
console.warn('THREE.BufferGeometry: .addAttribute() now expects ( name, attribute ).');
|
|
return this.setAttribute(name, new BufferAttribute(arguments[1], arguments[2]));
|
|
}
|
|
|
|
if (name === 'index') {
|
|
console.warn('THREE.BufferGeometry.addAttribute: Use .setIndex() for index attribute.');
|
|
this.setIndex(attribute);
|
|
return this;
|
|
}
|
|
|
|
return this.setAttribute(name, attribute);
|
|
};
|
|
|
|
BufferGeometry.prototype.addDrawCall = function (start, count, indexOffset) {
|
|
if (indexOffset !== undefined) {
|
|
console.warn('THREE.BufferGeometry: .addDrawCall() no longer supports indexOffset.');
|
|
}
|
|
|
|
console.warn('THREE.BufferGeometry: .addDrawCall() is now .addGroup().');
|
|
this.addGroup(start, count);
|
|
};
|
|
|
|
BufferGeometry.prototype.clearDrawCalls = function () {
|
|
console.warn('THREE.BufferGeometry: .clearDrawCalls() is now .clearGroups().');
|
|
this.clearGroups();
|
|
};
|
|
|
|
BufferGeometry.prototype.computeOffsets = function () {
|
|
console.warn('THREE.BufferGeometry: .computeOffsets() has been removed.');
|
|
};
|
|
|
|
BufferGeometry.prototype.removeAttribute = function (name) {
|
|
console.warn('THREE.BufferGeometry: .removeAttribute() has been renamed to .deleteAttribute().');
|
|
return this.deleteAttribute(name);
|
|
};
|
|
|
|
BufferGeometry.prototype.applyMatrix = function (matrix) {
|
|
console.warn('THREE.BufferGeometry: .applyMatrix() has been renamed to .applyMatrix4().');
|
|
return this.applyMatrix4(matrix);
|
|
};
|
|
|
|
Object.defineProperties(BufferGeometry.prototype, {
|
|
drawcalls: {
|
|
get: function () {
|
|
console.error('THREE.BufferGeometry: .drawcalls has been renamed to .groups.');
|
|
return this.groups;
|
|
}
|
|
},
|
|
offsets: {
|
|
get: function () {
|
|
console.warn('THREE.BufferGeometry: .offsets has been renamed to .groups.');
|
|
return this.groups;
|
|
}
|
|
}
|
|
});
|
|
|
|
InterleavedBuffer.prototype.setDynamic = function (value) {
|
|
console.warn('THREE.InterleavedBuffer: .setDynamic() has been deprecated. Use .setUsage() instead.');
|
|
this.setUsage(value === true ? DynamicDrawUsage : StaticDrawUsage);
|
|
return this;
|
|
};
|
|
|
|
InterleavedBuffer.prototype.setArray = function () {
|
|
console.error('THREE.InterleavedBuffer: .setArray has been removed. Use BufferGeometry .setAttribute to replace/resize attribute buffers');
|
|
}; //
|
|
|
|
|
|
ExtrudeGeometry.prototype.getArrays = function () {
|
|
console.error('THREE.ExtrudeGeometry: .getArrays() has been removed.');
|
|
};
|
|
|
|
ExtrudeGeometry.prototype.addShapeList = function () {
|
|
console.error('THREE.ExtrudeGeometry: .addShapeList() has been removed.');
|
|
};
|
|
|
|
ExtrudeGeometry.prototype.addShape = function () {
|
|
console.error('THREE.ExtrudeGeometry: .addShape() has been removed.');
|
|
}; //
|
|
|
|
|
|
Scene.prototype.dispose = function () {
|
|
console.error('THREE.Scene: .dispose() has been removed.');
|
|
}; //
|
|
|
|
|
|
Uniform.prototype.onUpdate = function () {
|
|
console.warn('THREE.Uniform: .onUpdate() has been removed. Use object.onBeforeRender() instead.');
|
|
return this;
|
|
}; //
|
|
|
|
|
|
Object.defineProperties(Material.prototype, {
|
|
wrapAround: {
|
|
get: function () {
|
|
console.warn('THREE.Material: .wrapAround has been removed.');
|
|
},
|
|
set: function () {
|
|
console.warn('THREE.Material: .wrapAround has been removed.');
|
|
}
|
|
},
|
|
overdraw: {
|
|
get: function () {
|
|
console.warn('THREE.Material: .overdraw has been removed.');
|
|
},
|
|
set: function () {
|
|
console.warn('THREE.Material: .overdraw has been removed.');
|
|
}
|
|
},
|
|
wrapRGB: {
|
|
get: function () {
|
|
console.warn('THREE.Material: .wrapRGB has been removed.');
|
|
return new Color();
|
|
}
|
|
},
|
|
shading: {
|
|
get: function () {
|
|
console.error('THREE.' + this.type + ': .shading has been removed. Use the boolean .flatShading instead.');
|
|
},
|
|
set: function (value) {
|
|
console.warn('THREE.' + this.type + ': .shading has been removed. Use the boolean .flatShading instead.');
|
|
this.flatShading = value === FlatShading;
|
|
}
|
|
},
|
|
stencilMask: {
|
|
get: function () {
|
|
console.warn('THREE.' + this.type + ': .stencilMask has been removed. Use .stencilFuncMask instead.');
|
|
return this.stencilFuncMask;
|
|
},
|
|
set: function (value) {
|
|
console.warn('THREE.' + this.type + ': .stencilMask has been removed. Use .stencilFuncMask instead.');
|
|
this.stencilFuncMask = value;
|
|
}
|
|
},
|
|
vertexTangents: {
|
|
get: function () {
|
|
console.warn('THREE.' + this.type + ': .vertexTangents has been removed.');
|
|
},
|
|
set: function () {
|
|
console.warn('THREE.' + this.type + ': .vertexTangents has been removed.');
|
|
}
|
|
}
|
|
});
|
|
Object.defineProperties(ShaderMaterial.prototype, {
|
|
derivatives: {
|
|
get: function () {
|
|
console.warn('THREE.ShaderMaterial: .derivatives has been moved to .extensions.derivatives.');
|
|
return this.extensions.derivatives;
|
|
},
|
|
set: function (value) {
|
|
console.warn('THREE. ShaderMaterial: .derivatives has been moved to .extensions.derivatives.');
|
|
this.extensions.derivatives = value;
|
|
}
|
|
}
|
|
}); //
|
|
|
|
WebGLRenderer.prototype.clearTarget = function (renderTarget, color, depth, stencil) {
|
|
console.warn('THREE.WebGLRenderer: .clearTarget() has been deprecated. Use .setRenderTarget() and .clear() instead.');
|
|
this.setRenderTarget(renderTarget);
|
|
this.clear(color, depth, stencil);
|
|
};
|
|
|
|
WebGLRenderer.prototype.animate = function (callback) {
|
|
console.warn('THREE.WebGLRenderer: .animate() is now .setAnimationLoop().');
|
|
this.setAnimationLoop(callback);
|
|
};
|
|
|
|
WebGLRenderer.prototype.getCurrentRenderTarget = function () {
|
|
console.warn('THREE.WebGLRenderer: .getCurrentRenderTarget() is now .getRenderTarget().');
|
|
return this.getRenderTarget();
|
|
};
|
|
|
|
WebGLRenderer.prototype.getMaxAnisotropy = function () {
|
|
console.warn('THREE.WebGLRenderer: .getMaxAnisotropy() is now .capabilities.getMaxAnisotropy().');
|
|
return this.capabilities.getMaxAnisotropy();
|
|
};
|
|
|
|
WebGLRenderer.prototype.getPrecision = function () {
|
|
console.warn('THREE.WebGLRenderer: .getPrecision() is now .capabilities.precision.');
|
|
return this.capabilities.precision;
|
|
};
|
|
|
|
WebGLRenderer.prototype.resetGLState = function () {
|
|
console.warn('THREE.WebGLRenderer: .resetGLState() is now .state.reset().');
|
|
return this.state.reset();
|
|
};
|
|
|
|
WebGLRenderer.prototype.supportsFloatTextures = function () {
|
|
console.warn('THREE.WebGLRenderer: .supportsFloatTextures() is now .extensions.get( \'OES_texture_float\' ).');
|
|
return this.extensions.get('OES_texture_float');
|
|
};
|
|
|
|
WebGLRenderer.prototype.supportsHalfFloatTextures = function () {
|
|
console.warn('THREE.WebGLRenderer: .supportsHalfFloatTextures() is now .extensions.get( \'OES_texture_half_float\' ).');
|
|
return this.extensions.get('OES_texture_half_float');
|
|
};
|
|
|
|
WebGLRenderer.prototype.supportsStandardDerivatives = function () {
|
|
console.warn('THREE.WebGLRenderer: .supportsStandardDerivatives() is now .extensions.get( \'OES_standard_derivatives\' ).');
|
|
return this.extensions.get('OES_standard_derivatives');
|
|
};
|
|
|
|
WebGLRenderer.prototype.supportsCompressedTextureS3TC = function () {
|
|
console.warn('THREE.WebGLRenderer: .supportsCompressedTextureS3TC() is now .extensions.get( \'WEBGL_compressed_texture_s3tc\' ).');
|
|
return this.extensions.get('WEBGL_compressed_texture_s3tc');
|
|
};
|
|
|
|
WebGLRenderer.prototype.supportsCompressedTexturePVRTC = function () {
|
|
console.warn('THREE.WebGLRenderer: .supportsCompressedTexturePVRTC() is now .extensions.get( \'WEBGL_compressed_texture_pvrtc\' ).');
|
|
return this.extensions.get('WEBGL_compressed_texture_pvrtc');
|
|
};
|
|
|
|
WebGLRenderer.prototype.supportsBlendMinMax = function () {
|
|
console.warn('THREE.WebGLRenderer: .supportsBlendMinMax() is now .extensions.get( \'EXT_blend_minmax\' ).');
|
|
return this.extensions.get('EXT_blend_minmax');
|
|
};
|
|
|
|
WebGLRenderer.prototype.supportsVertexTextures = function () {
|
|
console.warn('THREE.WebGLRenderer: .supportsVertexTextures() is now .capabilities.vertexTextures.');
|
|
return this.capabilities.vertexTextures;
|
|
};
|
|
|
|
WebGLRenderer.prototype.supportsInstancedArrays = function () {
|
|
console.warn('THREE.WebGLRenderer: .supportsInstancedArrays() is now .extensions.get( \'ANGLE_instanced_arrays\' ).');
|
|
return this.extensions.get('ANGLE_instanced_arrays');
|
|
};
|
|
|
|
WebGLRenderer.prototype.enableScissorTest = function (boolean) {
|
|
console.warn('THREE.WebGLRenderer: .enableScissorTest() is now .setScissorTest().');
|
|
this.setScissorTest(boolean);
|
|
};
|
|
|
|
WebGLRenderer.prototype.initMaterial = function () {
|
|
console.warn('THREE.WebGLRenderer: .initMaterial() has been removed.');
|
|
};
|
|
|
|
WebGLRenderer.prototype.addPrePlugin = function () {
|
|
console.warn('THREE.WebGLRenderer: .addPrePlugin() has been removed.');
|
|
};
|
|
|
|
WebGLRenderer.prototype.addPostPlugin = function () {
|
|
console.warn('THREE.WebGLRenderer: .addPostPlugin() has been removed.');
|
|
};
|
|
|
|
WebGLRenderer.prototype.updateShadowMap = function () {
|
|
console.warn('THREE.WebGLRenderer: .updateShadowMap() has been removed.');
|
|
};
|
|
|
|
WebGLRenderer.prototype.setFaceCulling = function () {
|
|
console.warn('THREE.WebGLRenderer: .setFaceCulling() has been removed.');
|
|
};
|
|
|
|
WebGLRenderer.prototype.allocTextureUnit = function () {
|
|
console.warn('THREE.WebGLRenderer: .allocTextureUnit() has been removed.');
|
|
};
|
|
|
|
WebGLRenderer.prototype.setTexture = function () {
|
|
console.warn('THREE.WebGLRenderer: .setTexture() has been removed.');
|
|
};
|
|
|
|
WebGLRenderer.prototype.setTexture2D = function () {
|
|
console.warn('THREE.WebGLRenderer: .setTexture2D() has been removed.');
|
|
};
|
|
|
|
WebGLRenderer.prototype.setTextureCube = function () {
|
|
console.warn('THREE.WebGLRenderer: .setTextureCube() has been removed.');
|
|
};
|
|
|
|
WebGLRenderer.prototype.getActiveMipMapLevel = function () {
|
|
console.warn('THREE.WebGLRenderer: .getActiveMipMapLevel() is now .getActiveMipmapLevel().');
|
|
return this.getActiveMipmapLevel();
|
|
};
|
|
|
|
Object.defineProperties(WebGLRenderer.prototype, {
|
|
shadowMapEnabled: {
|
|
get: function () {
|
|
return this.shadowMap.enabled;
|
|
},
|
|
set: function (value) {
|
|
console.warn('THREE.WebGLRenderer: .shadowMapEnabled is now .shadowMap.enabled.');
|
|
this.shadowMap.enabled = value;
|
|
}
|
|
},
|
|
shadowMapType: {
|
|
get: function () {
|
|
return this.shadowMap.type;
|
|
},
|
|
set: function (value) {
|
|
console.warn('THREE.WebGLRenderer: .shadowMapType is now .shadowMap.type.');
|
|
this.shadowMap.type = value;
|
|
}
|
|
},
|
|
shadowMapCullFace: {
|
|
get: function () {
|
|
console.warn('THREE.WebGLRenderer: .shadowMapCullFace has been removed. Set Material.shadowSide instead.');
|
|
return undefined;
|
|
},
|
|
set: function () {
|
|
console.warn('THREE.WebGLRenderer: .shadowMapCullFace has been removed. Set Material.shadowSide instead.');
|
|
}
|
|
},
|
|
context: {
|
|
get: function () {
|
|
console.warn('THREE.WebGLRenderer: .context has been removed. Use .getContext() instead.');
|
|
return this.getContext();
|
|
}
|
|
},
|
|
vr: {
|
|
get: function () {
|
|
console.warn('THREE.WebGLRenderer: .vr has been renamed to .xr');
|
|
return this.xr;
|
|
}
|
|
},
|
|
gammaInput: {
|
|
get: function () {
|
|
console.warn('THREE.WebGLRenderer: .gammaInput has been removed. Set the encoding for textures via Texture.encoding instead.');
|
|
return false;
|
|
},
|
|
set: function () {
|
|
console.warn('THREE.WebGLRenderer: .gammaInput has been removed. Set the encoding for textures via Texture.encoding instead.');
|
|
}
|
|
},
|
|
gammaOutput: {
|
|
get: function () {
|
|
console.warn('THREE.WebGLRenderer: .gammaOutput has been removed. Set WebGLRenderer.outputEncoding instead.');
|
|
return false;
|
|
},
|
|
set: function (value) {
|
|
console.warn('THREE.WebGLRenderer: .gammaOutput has been removed. Set WebGLRenderer.outputEncoding instead.');
|
|
this.outputEncoding = value === true ? sRGBEncoding : LinearEncoding;
|
|
}
|
|
},
|
|
toneMappingWhitePoint: {
|
|
get: function () {
|
|
console.warn('THREE.WebGLRenderer: .toneMappingWhitePoint has been removed.');
|
|
return 1.0;
|
|
},
|
|
set: function () {
|
|
console.warn('THREE.WebGLRenderer: .toneMappingWhitePoint has been removed.');
|
|
}
|
|
}
|
|
});
|
|
Object.defineProperties(WebGLShadowMap.prototype, {
|
|
cullFace: {
|
|
get: function () {
|
|
console.warn('THREE.WebGLRenderer: .shadowMap.cullFace has been removed. Set Material.shadowSide instead.');
|
|
return undefined;
|
|
},
|
|
set: function () {
|
|
console.warn('THREE.WebGLRenderer: .shadowMap.cullFace has been removed. Set Material.shadowSide instead.');
|
|
}
|
|
},
|
|
renderReverseSided: {
|
|
get: function () {
|
|
console.warn('THREE.WebGLRenderer: .shadowMap.renderReverseSided has been removed. Set Material.shadowSide instead.');
|
|
return undefined;
|
|
},
|
|
set: function () {
|
|
console.warn('THREE.WebGLRenderer: .shadowMap.renderReverseSided has been removed. Set Material.shadowSide instead.');
|
|
}
|
|
},
|
|
renderSingleSided: {
|
|
get: function () {
|
|
console.warn('THREE.WebGLRenderer: .shadowMap.renderSingleSided has been removed. Set Material.shadowSide instead.');
|
|
return undefined;
|
|
},
|
|
set: function () {
|
|
console.warn('THREE.WebGLRenderer: .shadowMap.renderSingleSided has been removed. Set Material.shadowSide instead.');
|
|
}
|
|
}
|
|
});
|
|
function WebGLRenderTargetCube(width, height, options) {
|
|
console.warn('THREE.WebGLRenderTargetCube( width, height, options ) is now WebGLCubeRenderTarget( size, options ).');
|
|
return new WebGLCubeRenderTarget(width, options);
|
|
} //
|
|
|
|
Object.defineProperties(WebGLRenderTarget.prototype, {
|
|
wrapS: {
|
|
get: function () {
|
|
console.warn('THREE.WebGLRenderTarget: .wrapS is now .texture.wrapS.');
|
|
return this.texture.wrapS;
|
|
},
|
|
set: function (value) {
|
|
console.warn('THREE.WebGLRenderTarget: .wrapS is now .texture.wrapS.');
|
|
this.texture.wrapS = value;
|
|
}
|
|
},
|
|
wrapT: {
|
|
get: function () {
|
|
console.warn('THREE.WebGLRenderTarget: .wrapT is now .texture.wrapT.');
|
|
return this.texture.wrapT;
|
|
},
|
|
set: function (value) {
|
|
console.warn('THREE.WebGLRenderTarget: .wrapT is now .texture.wrapT.');
|
|
this.texture.wrapT = value;
|
|
}
|
|
},
|
|
magFilter: {
|
|
get: function () {
|
|
console.warn('THREE.WebGLRenderTarget: .magFilter is now .texture.magFilter.');
|
|
return this.texture.magFilter;
|
|
},
|
|
set: function (value) {
|
|
console.warn('THREE.WebGLRenderTarget: .magFilter is now .texture.magFilter.');
|
|
this.texture.magFilter = value;
|
|
}
|
|
},
|
|
minFilter: {
|
|
get: function () {
|
|
console.warn('THREE.WebGLRenderTarget: .minFilter is now .texture.minFilter.');
|
|
return this.texture.minFilter;
|
|
},
|
|
set: function (value) {
|
|
console.warn('THREE.WebGLRenderTarget: .minFilter is now .texture.minFilter.');
|
|
this.texture.minFilter = value;
|
|
}
|
|
},
|
|
anisotropy: {
|
|
get: function () {
|
|
console.warn('THREE.WebGLRenderTarget: .anisotropy is now .texture.anisotropy.');
|
|
return this.texture.anisotropy;
|
|
},
|
|
set: function (value) {
|
|
console.warn('THREE.WebGLRenderTarget: .anisotropy is now .texture.anisotropy.');
|
|
this.texture.anisotropy = value;
|
|
}
|
|
},
|
|
offset: {
|
|
get: function () {
|
|
console.warn('THREE.WebGLRenderTarget: .offset is now .texture.offset.');
|
|
return this.texture.offset;
|
|
},
|
|
set: function (value) {
|
|
console.warn('THREE.WebGLRenderTarget: .offset is now .texture.offset.');
|
|
this.texture.offset = value;
|
|
}
|
|
},
|
|
repeat: {
|
|
get: function () {
|
|
console.warn('THREE.WebGLRenderTarget: .repeat is now .texture.repeat.');
|
|
return this.texture.repeat;
|
|
},
|
|
set: function (value) {
|
|
console.warn('THREE.WebGLRenderTarget: .repeat is now .texture.repeat.');
|
|
this.texture.repeat = value;
|
|
}
|
|
},
|
|
format: {
|
|
get: function () {
|
|
console.warn('THREE.WebGLRenderTarget: .format is now .texture.format.');
|
|
return this.texture.format;
|
|
},
|
|
set: function (value) {
|
|
console.warn('THREE.WebGLRenderTarget: .format is now .texture.format.');
|
|
this.texture.format = value;
|
|
}
|
|
},
|
|
type: {
|
|
get: function () {
|
|
console.warn('THREE.WebGLRenderTarget: .type is now .texture.type.');
|
|
return this.texture.type;
|
|
},
|
|
set: function (value) {
|
|
console.warn('THREE.WebGLRenderTarget: .type is now .texture.type.');
|
|
this.texture.type = value;
|
|
}
|
|
},
|
|
generateMipmaps: {
|
|
get: function () {
|
|
console.warn('THREE.WebGLRenderTarget: .generateMipmaps is now .texture.generateMipmaps.');
|
|
return this.texture.generateMipmaps;
|
|
},
|
|
set: function (value) {
|
|
console.warn('THREE.WebGLRenderTarget: .generateMipmaps is now .texture.generateMipmaps.');
|
|
this.texture.generateMipmaps = value;
|
|
}
|
|
}
|
|
}); //
|
|
|
|
Audio.prototype.load = function (file) {
|
|
console.warn('THREE.Audio: .load has been deprecated. Use THREE.AudioLoader instead.');
|
|
const scope = this;
|
|
const audioLoader = new AudioLoader();
|
|
audioLoader.load(file, function (buffer) {
|
|
scope.setBuffer(buffer);
|
|
});
|
|
return this;
|
|
};
|
|
|
|
AudioAnalyser.prototype.getData = function () {
|
|
console.warn('THREE.AudioAnalyser: .getData() is now .getFrequencyData().');
|
|
return this.getFrequencyData();
|
|
}; //
|
|
|
|
|
|
CubeCamera.prototype.updateCubeMap = function (renderer, scene) {
|
|
console.warn('THREE.CubeCamera: .updateCubeMap() is now .update().');
|
|
return this.update(renderer, scene);
|
|
};
|
|
|
|
CubeCamera.prototype.clear = function (renderer, color, depth, stencil) {
|
|
console.warn('THREE.CubeCamera: .clear() is now .renderTarget.clear().');
|
|
return this.renderTarget.clear(renderer, color, depth, stencil);
|
|
};
|
|
|
|
ImageUtils.crossOrigin = undefined;
|
|
|
|
ImageUtils.loadTexture = function (url, mapping, onLoad, onError) {
|
|
console.warn('THREE.ImageUtils.loadTexture has been deprecated. Use THREE.TextureLoader() instead.');
|
|
const loader = new TextureLoader();
|
|
loader.setCrossOrigin(this.crossOrigin);
|
|
const texture = loader.load(url, onLoad, undefined, onError);
|
|
if (mapping) texture.mapping = mapping;
|
|
return texture;
|
|
};
|
|
|
|
ImageUtils.loadTextureCube = function (urls, mapping, onLoad, onError) {
|
|
console.warn('THREE.ImageUtils.loadTextureCube has been deprecated. Use THREE.CubeTextureLoader() instead.');
|
|
const loader = new CubeTextureLoader();
|
|
loader.setCrossOrigin(this.crossOrigin);
|
|
const texture = loader.load(urls, onLoad, undefined, onError);
|
|
if (mapping) texture.mapping = mapping;
|
|
return texture;
|
|
};
|
|
|
|
ImageUtils.loadCompressedTexture = function () {
|
|
console.error('THREE.ImageUtils.loadCompressedTexture has been removed. Use THREE.DDSLoader instead.');
|
|
};
|
|
|
|
ImageUtils.loadCompressedTextureCube = function () {
|
|
console.error('THREE.ImageUtils.loadCompressedTextureCube has been removed. Use THREE.DDSLoader instead.');
|
|
}; //
|
|
|
|
|
|
function CanvasRenderer() {
|
|
console.error('THREE.CanvasRenderer has been removed');
|
|
} //
|
|
|
|
function JSONLoader() {
|
|
console.error('THREE.JSONLoader has been removed.');
|
|
} //
|
|
|
|
const SceneUtils = {
|
|
createMultiMaterialObject: function () {
|
|
console.error('THREE.SceneUtils has been moved to /examples/jsm/utils/SceneUtils.js');
|
|
},
|
|
detach: function () {
|
|
console.error('THREE.SceneUtils has been moved to /examples/jsm/utils/SceneUtils.js');
|
|
},
|
|
attach: function () {
|
|
console.error('THREE.SceneUtils has been moved to /examples/jsm/utils/SceneUtils.js');
|
|
}
|
|
}; //
|
|
|
|
function LensFlare() {
|
|
console.error('THREE.LensFlare has been moved to /examples/jsm/objects/Lensflare.js');
|
|
} //
|
|
|
|
function ParametricGeometry() {
|
|
console.error('THREE.ParametricGeometry has been moved to /examples/jsm/geometries/ParametricGeometry.js');
|
|
return new BufferGeometry();
|
|
}
|
|
function TextGeometry() {
|
|
console.error('THREE.TextGeometry has been moved to /examples/jsm/geometries/TextGeometry.js');
|
|
return new BufferGeometry();
|
|
}
|
|
function FontLoader() {
|
|
console.error('THREE.FontLoader has been moved to /examples/jsm/loaders/FontLoader.js');
|
|
}
|
|
function Font() {
|
|
console.error('THREE.Font has been moved to /examples/jsm/loaders/FontLoader.js');
|
|
}
|
|
function ImmediateRenderObject() {
|
|
console.error('THREE.ImmediateRenderObject has been removed.');
|
|
}
|
|
|
|
if (typeof __THREE_DEVTOOLS__ !== 'undefined') {
|
|
/* eslint-disable no-undef */
|
|
__THREE_DEVTOOLS__.dispatchEvent(new CustomEvent('register', {
|
|
detail: {
|
|
revision: REVISION
|
|
}
|
|
}));
|
|
/* eslint-enable no-undef */
|
|
|
|
}
|
|
|
|
if (typeof window !== 'undefined') {
|
|
if (window.__THREE__) {
|
|
console.warn('WARNING: Multiple instances of Three.js being imported.');
|
|
} else {
|
|
window.__THREE__ = REVISION;
|
|
}
|
|
}
|
|
|
|
exports.ACESFilmicToneMapping = ACESFilmicToneMapping;
|
|
exports.AddEquation = AddEquation;
|
|
exports.AddOperation = AddOperation;
|
|
exports.AdditiveAnimationBlendMode = AdditiveAnimationBlendMode;
|
|
exports.AdditiveBlending = AdditiveBlending;
|
|
exports.AlphaFormat = AlphaFormat;
|
|
exports.AlwaysDepth = AlwaysDepth;
|
|
exports.AlwaysStencilFunc = AlwaysStencilFunc;
|
|
exports.AmbientLight = AmbientLight;
|
|
exports.AmbientLightProbe = AmbientLightProbe;
|
|
exports.AnimationClip = AnimationClip;
|
|
exports.AnimationLoader = AnimationLoader;
|
|
exports.AnimationMixer = AnimationMixer;
|
|
exports.AnimationObjectGroup = AnimationObjectGroup;
|
|
exports.AnimationUtils = AnimationUtils;
|
|
exports.ArcCurve = ArcCurve;
|
|
exports.ArrayCamera = ArrayCamera;
|
|
exports.ArrowHelper = ArrowHelper;
|
|
exports.Audio = Audio;
|
|
exports.AudioAnalyser = AudioAnalyser;
|
|
exports.AudioContext = AudioContext;
|
|
exports.AudioListener = AudioListener;
|
|
exports.AudioLoader = AudioLoader;
|
|
exports.AxesHelper = AxesHelper;
|
|
exports.AxisHelper = AxisHelper;
|
|
exports.BackSide = BackSide;
|
|
exports.BasicDepthPacking = BasicDepthPacking;
|
|
exports.BasicShadowMap = BasicShadowMap;
|
|
exports.BinaryTextureLoader = BinaryTextureLoader;
|
|
exports.Bone = Bone;
|
|
exports.BooleanKeyframeTrack = BooleanKeyframeTrack;
|
|
exports.BoundingBoxHelper = BoundingBoxHelper;
|
|
exports.Box2 = Box2;
|
|
exports.Box3 = Box3;
|
|
exports.Box3Helper = Box3Helper;
|
|
exports.BoxBufferGeometry = BoxGeometry;
|
|
exports.BoxGeometry = BoxGeometry;
|
|
exports.BoxHelper = BoxHelper;
|
|
exports.BufferAttribute = BufferAttribute;
|
|
exports.BufferGeometry = BufferGeometry;
|
|
exports.BufferGeometryLoader = BufferGeometryLoader;
|
|
exports.ByteType = ByteType;
|
|
exports.Cache = Cache;
|
|
exports.Camera = Camera;
|
|
exports.CameraHelper = CameraHelper;
|
|
exports.CanvasRenderer = CanvasRenderer;
|
|
exports.CanvasTexture = CanvasTexture;
|
|
exports.CatmullRomCurve3 = CatmullRomCurve3;
|
|
exports.CineonToneMapping = CineonToneMapping;
|
|
exports.CircleBufferGeometry = CircleGeometry;
|
|
exports.CircleGeometry = CircleGeometry;
|
|
exports.ClampToEdgeWrapping = ClampToEdgeWrapping;
|
|
exports.Clock = Clock;
|
|
exports.Color = Color;
|
|
exports.ColorKeyframeTrack = ColorKeyframeTrack;
|
|
exports.CompressedTexture = CompressedTexture;
|
|
exports.CompressedTextureLoader = CompressedTextureLoader;
|
|
exports.ConeBufferGeometry = ConeGeometry;
|
|
exports.ConeGeometry = ConeGeometry;
|
|
exports.CubeCamera = CubeCamera;
|
|
exports.CubeReflectionMapping = CubeReflectionMapping;
|
|
exports.CubeRefractionMapping = CubeRefractionMapping;
|
|
exports.CubeTexture = CubeTexture;
|
|
exports.CubeTextureLoader = CubeTextureLoader;
|
|
exports.CubeUVReflectionMapping = CubeUVReflectionMapping;
|
|
exports.CubeUVRefractionMapping = CubeUVRefractionMapping;
|
|
exports.CubicBezierCurve = CubicBezierCurve;
|
|
exports.CubicBezierCurve3 = CubicBezierCurve3;
|
|
exports.CubicInterpolant = CubicInterpolant;
|
|
exports.CullFaceBack = CullFaceBack;
|
|
exports.CullFaceFront = CullFaceFront;
|
|
exports.CullFaceFrontBack = CullFaceFrontBack;
|
|
exports.CullFaceNone = CullFaceNone;
|
|
exports.Curve = Curve;
|
|
exports.CurvePath = CurvePath;
|
|
exports.CustomBlending = CustomBlending;
|
|
exports.CustomToneMapping = CustomToneMapping;
|
|
exports.CylinderBufferGeometry = CylinderGeometry;
|
|
exports.CylinderGeometry = CylinderGeometry;
|
|
exports.Cylindrical = Cylindrical;
|
|
exports.DataTexture = DataTexture;
|
|
exports.DataTexture2DArray = DataTexture2DArray;
|
|
exports.DataTexture3D = DataTexture3D;
|
|
exports.DataTextureLoader = DataTextureLoader;
|
|
exports.DataUtils = DataUtils;
|
|
exports.DecrementStencilOp = DecrementStencilOp;
|
|
exports.DecrementWrapStencilOp = DecrementWrapStencilOp;
|
|
exports.DefaultLoadingManager = DefaultLoadingManager;
|
|
exports.DepthFormat = DepthFormat;
|
|
exports.DepthStencilFormat = DepthStencilFormat;
|
|
exports.DepthTexture = DepthTexture;
|
|
exports.DirectionalLight = DirectionalLight;
|
|
exports.DirectionalLightHelper = DirectionalLightHelper;
|
|
exports.DiscreteInterpolant = DiscreteInterpolant;
|
|
exports.DodecahedronBufferGeometry = DodecahedronGeometry;
|
|
exports.DodecahedronGeometry = DodecahedronGeometry;
|
|
exports.DoubleSide = DoubleSide;
|
|
exports.DstAlphaFactor = DstAlphaFactor;
|
|
exports.DstColorFactor = DstColorFactor;
|
|
exports.DynamicBufferAttribute = DynamicBufferAttribute;
|
|
exports.DynamicCopyUsage = DynamicCopyUsage;
|
|
exports.DynamicDrawUsage = DynamicDrawUsage;
|
|
exports.DynamicReadUsage = DynamicReadUsage;
|
|
exports.EdgesGeometry = EdgesGeometry;
|
|
exports.EdgesHelper = EdgesHelper;
|
|
exports.EllipseCurve = EllipseCurve;
|
|
exports.EqualDepth = EqualDepth;
|
|
exports.EqualStencilFunc = EqualStencilFunc;
|
|
exports.EquirectangularReflectionMapping = EquirectangularReflectionMapping;
|
|
exports.EquirectangularRefractionMapping = EquirectangularRefractionMapping;
|
|
exports.Euler = Euler;
|
|
exports.EventDispatcher = EventDispatcher;
|
|
exports.ExtrudeBufferGeometry = ExtrudeGeometry;
|
|
exports.ExtrudeGeometry = ExtrudeGeometry;
|
|
exports.FaceColors = FaceColors;
|
|
exports.FileLoader = FileLoader;
|
|
exports.FlatShading = FlatShading;
|
|
exports.Float16BufferAttribute = Float16BufferAttribute;
|
|
exports.Float32Attribute = Float32Attribute;
|
|
exports.Float32BufferAttribute = Float32BufferAttribute;
|
|
exports.Float64Attribute = Float64Attribute;
|
|
exports.Float64BufferAttribute = Float64BufferAttribute;
|
|
exports.FloatType = FloatType;
|
|
exports.Fog = Fog;
|
|
exports.FogExp2 = FogExp2;
|
|
exports.Font = Font;
|
|
exports.FontLoader = FontLoader;
|
|
exports.FrontSide = FrontSide;
|
|
exports.Frustum = Frustum;
|
|
exports.GLBufferAttribute = GLBufferAttribute;
|
|
exports.GLSL1 = GLSL1;
|
|
exports.GLSL3 = GLSL3;
|
|
exports.GammaEncoding = GammaEncoding;
|
|
exports.GreaterDepth = GreaterDepth;
|
|
exports.GreaterEqualDepth = GreaterEqualDepth;
|
|
exports.GreaterEqualStencilFunc = GreaterEqualStencilFunc;
|
|
exports.GreaterStencilFunc = GreaterStencilFunc;
|
|
exports.GridHelper = GridHelper;
|
|
exports.Group = Group;
|
|
exports.HalfFloatType = HalfFloatType;
|
|
exports.HemisphereLight = HemisphereLight;
|
|
exports.HemisphereLightHelper = HemisphereLightHelper;
|
|
exports.HemisphereLightProbe = HemisphereLightProbe;
|
|
exports.IcosahedronBufferGeometry = IcosahedronGeometry;
|
|
exports.IcosahedronGeometry = IcosahedronGeometry;
|
|
exports.ImageBitmapLoader = ImageBitmapLoader;
|
|
exports.ImageLoader = ImageLoader;
|
|
exports.ImageUtils = ImageUtils;
|
|
exports.ImmediateRenderObject = ImmediateRenderObject;
|
|
exports.IncrementStencilOp = IncrementStencilOp;
|
|
exports.IncrementWrapStencilOp = IncrementWrapStencilOp;
|
|
exports.InstancedBufferAttribute = InstancedBufferAttribute;
|
|
exports.InstancedBufferGeometry = InstancedBufferGeometry;
|
|
exports.InstancedInterleavedBuffer = InstancedInterleavedBuffer;
|
|
exports.InstancedMesh = InstancedMesh;
|
|
exports.Int16Attribute = Int16Attribute;
|
|
exports.Int16BufferAttribute = Int16BufferAttribute;
|
|
exports.Int32Attribute = Int32Attribute;
|
|
exports.Int32BufferAttribute = Int32BufferAttribute;
|
|
exports.Int8Attribute = Int8Attribute;
|
|
exports.Int8BufferAttribute = Int8BufferAttribute;
|
|
exports.IntType = IntType;
|
|
exports.InterleavedBuffer = InterleavedBuffer;
|
|
exports.InterleavedBufferAttribute = InterleavedBufferAttribute;
|
|
exports.Interpolant = Interpolant;
|
|
exports.InterpolateDiscrete = InterpolateDiscrete;
|
|
exports.InterpolateLinear = InterpolateLinear;
|
|
exports.InterpolateSmooth = InterpolateSmooth;
|
|
exports.InvertStencilOp = InvertStencilOp;
|
|
exports.JSONLoader = JSONLoader;
|
|
exports.KeepStencilOp = KeepStencilOp;
|
|
exports.KeyframeTrack = KeyframeTrack;
|
|
exports.LOD = LOD;
|
|
exports.LatheBufferGeometry = LatheGeometry;
|
|
exports.LatheGeometry = LatheGeometry;
|
|
exports.Layers = Layers;
|
|
exports.LensFlare = LensFlare;
|
|
exports.LessDepth = LessDepth;
|
|
exports.LessEqualDepth = LessEqualDepth;
|
|
exports.LessEqualStencilFunc = LessEqualStencilFunc;
|
|
exports.LessStencilFunc = LessStencilFunc;
|
|
exports.Light = Light;
|
|
exports.LightProbe = LightProbe;
|
|
exports.Line = Line;
|
|
exports.Line3 = Line3;
|
|
exports.LineBasicMaterial = LineBasicMaterial;
|
|
exports.LineCurve = LineCurve;
|
|
exports.LineCurve3 = LineCurve3;
|
|
exports.LineDashedMaterial = LineDashedMaterial;
|
|
exports.LineLoop = LineLoop;
|
|
exports.LinePieces = LinePieces;
|
|
exports.LineSegments = LineSegments;
|
|
exports.LineStrip = LineStrip;
|
|
exports.LinearEncoding = LinearEncoding;
|
|
exports.LinearFilter = LinearFilter;
|
|
exports.LinearInterpolant = LinearInterpolant;
|
|
exports.LinearMipMapLinearFilter = LinearMipMapLinearFilter;
|
|
exports.LinearMipMapNearestFilter = LinearMipMapNearestFilter;
|
|
exports.LinearMipmapLinearFilter = LinearMipmapLinearFilter;
|
|
exports.LinearMipmapNearestFilter = LinearMipmapNearestFilter;
|
|
exports.LinearToneMapping = LinearToneMapping;
|
|
exports.Loader = Loader;
|
|
exports.LoaderUtils = LoaderUtils;
|
|
exports.LoadingManager = LoadingManager;
|
|
exports.LogLuvEncoding = LogLuvEncoding;
|
|
exports.LoopOnce = LoopOnce;
|
|
exports.LoopPingPong = LoopPingPong;
|
|
exports.LoopRepeat = LoopRepeat;
|
|
exports.LuminanceAlphaFormat = LuminanceAlphaFormat;
|
|
exports.LuminanceFormat = LuminanceFormat;
|
|
exports.MOUSE = MOUSE;
|
|
exports.Material = Material;
|
|
exports.MaterialLoader = MaterialLoader;
|
|
exports.Math = MathUtils;
|
|
exports.MathUtils = MathUtils;
|
|
exports.Matrix3 = Matrix3;
|
|
exports.Matrix4 = Matrix4;
|
|
exports.MaxEquation = MaxEquation;
|
|
exports.Mesh = Mesh;
|
|
exports.MeshBasicMaterial = MeshBasicMaterial;
|
|
exports.MeshDepthMaterial = MeshDepthMaterial;
|
|
exports.MeshDistanceMaterial = MeshDistanceMaterial;
|
|
exports.MeshFaceMaterial = MeshFaceMaterial;
|
|
exports.MeshLambertMaterial = MeshLambertMaterial;
|
|
exports.MeshMatcapMaterial = MeshMatcapMaterial;
|
|
exports.MeshNormalMaterial = MeshNormalMaterial;
|
|
exports.MeshPhongMaterial = MeshPhongMaterial;
|
|
exports.MeshPhysicalMaterial = MeshPhysicalMaterial;
|
|
exports.MeshStandardMaterial = MeshStandardMaterial;
|
|
exports.MeshToonMaterial = MeshToonMaterial;
|
|
exports.MinEquation = MinEquation;
|
|
exports.MirroredRepeatWrapping = MirroredRepeatWrapping;
|
|
exports.MixOperation = MixOperation;
|
|
exports.MultiMaterial = MultiMaterial;
|
|
exports.MultiplyBlending = MultiplyBlending;
|
|
exports.MultiplyOperation = MultiplyOperation;
|
|
exports.NearestFilter = NearestFilter;
|
|
exports.NearestMipMapLinearFilter = NearestMipMapLinearFilter;
|
|
exports.NearestMipMapNearestFilter = NearestMipMapNearestFilter;
|
|
exports.NearestMipmapLinearFilter = NearestMipmapLinearFilter;
|
|
exports.NearestMipmapNearestFilter = NearestMipmapNearestFilter;
|
|
exports.NeverDepth = NeverDepth;
|
|
exports.NeverStencilFunc = NeverStencilFunc;
|
|
exports.NoBlending = NoBlending;
|
|
exports.NoColors = NoColors;
|
|
exports.NoToneMapping = NoToneMapping;
|
|
exports.NormalAnimationBlendMode = NormalAnimationBlendMode;
|
|
exports.NormalBlending = NormalBlending;
|
|
exports.NotEqualDepth = NotEqualDepth;
|
|
exports.NotEqualStencilFunc = NotEqualStencilFunc;
|
|
exports.NumberKeyframeTrack = NumberKeyframeTrack;
|
|
exports.Object3D = Object3D;
|
|
exports.ObjectLoader = ObjectLoader;
|
|
exports.ObjectSpaceNormalMap = ObjectSpaceNormalMap;
|
|
exports.OctahedronBufferGeometry = OctahedronGeometry;
|
|
exports.OctahedronGeometry = OctahedronGeometry;
|
|
exports.OneFactor = OneFactor;
|
|
exports.OneMinusDstAlphaFactor = OneMinusDstAlphaFactor;
|
|
exports.OneMinusDstColorFactor = OneMinusDstColorFactor;
|
|
exports.OneMinusSrcAlphaFactor = OneMinusSrcAlphaFactor;
|
|
exports.OneMinusSrcColorFactor = OneMinusSrcColorFactor;
|
|
exports.OrthographicCamera = OrthographicCamera;
|
|
exports.PCFShadowMap = PCFShadowMap;
|
|
exports.PCFSoftShadowMap = PCFSoftShadowMap;
|
|
exports.PMREMGenerator = PMREMGenerator;
|
|
exports.ParametricGeometry = ParametricGeometry;
|
|
exports.Particle = Particle;
|
|
exports.ParticleBasicMaterial = ParticleBasicMaterial;
|
|
exports.ParticleSystem = ParticleSystem;
|
|
exports.ParticleSystemMaterial = ParticleSystemMaterial;
|
|
exports.Path = Path;
|
|
exports.PerspectiveCamera = PerspectiveCamera;
|
|
exports.Plane = Plane;
|
|
exports.PlaneBufferGeometry = PlaneGeometry;
|
|
exports.PlaneGeometry = PlaneGeometry;
|
|
exports.PlaneHelper = PlaneHelper;
|
|
exports.PointCloud = PointCloud;
|
|
exports.PointCloudMaterial = PointCloudMaterial;
|
|
exports.PointLight = PointLight;
|
|
exports.PointLightHelper = PointLightHelper;
|
|
exports.Points = Points;
|
|
exports.PointsMaterial = PointsMaterial;
|
|
exports.PolarGridHelper = PolarGridHelper;
|
|
exports.PolyhedronBufferGeometry = PolyhedronGeometry;
|
|
exports.PolyhedronGeometry = PolyhedronGeometry;
|
|
exports.PositionalAudio = PositionalAudio;
|
|
exports.PropertyBinding = PropertyBinding;
|
|
exports.PropertyMixer = PropertyMixer;
|
|
exports.QuadraticBezierCurve = QuadraticBezierCurve;
|
|
exports.QuadraticBezierCurve3 = QuadraticBezierCurve3;
|
|
exports.Quaternion = Quaternion;
|
|
exports.QuaternionKeyframeTrack = QuaternionKeyframeTrack;
|
|
exports.QuaternionLinearInterpolant = QuaternionLinearInterpolant;
|
|
exports.REVISION = REVISION;
|
|
exports.RGBADepthPacking = RGBADepthPacking;
|
|
exports.RGBAFormat = RGBAFormat;
|
|
exports.RGBAIntegerFormat = RGBAIntegerFormat;
|
|
exports.RGBA_ASTC_10x10_Format = RGBA_ASTC_10x10_Format;
|
|
exports.RGBA_ASTC_10x5_Format = RGBA_ASTC_10x5_Format;
|
|
exports.RGBA_ASTC_10x6_Format = RGBA_ASTC_10x6_Format;
|
|
exports.RGBA_ASTC_10x8_Format = RGBA_ASTC_10x8_Format;
|
|
exports.RGBA_ASTC_12x10_Format = RGBA_ASTC_12x10_Format;
|
|
exports.RGBA_ASTC_12x12_Format = RGBA_ASTC_12x12_Format;
|
|
exports.RGBA_ASTC_4x4_Format = RGBA_ASTC_4x4_Format;
|
|
exports.RGBA_ASTC_5x4_Format = RGBA_ASTC_5x4_Format;
|
|
exports.RGBA_ASTC_5x5_Format = RGBA_ASTC_5x5_Format;
|
|
exports.RGBA_ASTC_6x5_Format = RGBA_ASTC_6x5_Format;
|
|
exports.RGBA_ASTC_6x6_Format = RGBA_ASTC_6x6_Format;
|
|
exports.RGBA_ASTC_8x5_Format = RGBA_ASTC_8x5_Format;
|
|
exports.RGBA_ASTC_8x6_Format = RGBA_ASTC_8x6_Format;
|
|
exports.RGBA_ASTC_8x8_Format = RGBA_ASTC_8x8_Format;
|
|
exports.RGBA_BPTC_Format = RGBA_BPTC_Format;
|
|
exports.RGBA_ETC2_EAC_Format = RGBA_ETC2_EAC_Format;
|
|
exports.RGBA_PVRTC_2BPPV1_Format = RGBA_PVRTC_2BPPV1_Format;
|
|
exports.RGBA_PVRTC_4BPPV1_Format = RGBA_PVRTC_4BPPV1_Format;
|
|
exports.RGBA_S3TC_DXT1_Format = RGBA_S3TC_DXT1_Format;
|
|
exports.RGBA_S3TC_DXT3_Format = RGBA_S3TC_DXT3_Format;
|
|
exports.RGBA_S3TC_DXT5_Format = RGBA_S3TC_DXT5_Format;
|
|
exports.RGBDEncoding = RGBDEncoding;
|
|
exports.RGBEEncoding = RGBEEncoding;
|
|
exports.RGBEFormat = RGBEFormat;
|
|
exports.RGBFormat = RGBFormat;
|
|
exports.RGBIntegerFormat = RGBIntegerFormat;
|
|
exports.RGBM16Encoding = RGBM16Encoding;
|
|
exports.RGBM7Encoding = RGBM7Encoding;
|
|
exports.RGB_ETC1_Format = RGB_ETC1_Format;
|
|
exports.RGB_ETC2_Format = RGB_ETC2_Format;
|
|
exports.RGB_PVRTC_2BPPV1_Format = RGB_PVRTC_2BPPV1_Format;
|
|
exports.RGB_PVRTC_4BPPV1_Format = RGB_PVRTC_4BPPV1_Format;
|
|
exports.RGB_S3TC_DXT1_Format = RGB_S3TC_DXT1_Format;
|
|
exports.RGFormat = RGFormat;
|
|
exports.RGIntegerFormat = RGIntegerFormat;
|
|
exports.RawShaderMaterial = RawShaderMaterial;
|
|
exports.Ray = Ray;
|
|
exports.Raycaster = Raycaster;
|
|
exports.RectAreaLight = RectAreaLight;
|
|
exports.RedFormat = RedFormat;
|
|
exports.RedIntegerFormat = RedIntegerFormat;
|
|
exports.ReinhardToneMapping = ReinhardToneMapping;
|
|
exports.RepeatWrapping = RepeatWrapping;
|
|
exports.ReplaceStencilOp = ReplaceStencilOp;
|
|
exports.ReverseSubtractEquation = ReverseSubtractEquation;
|
|
exports.RingBufferGeometry = RingGeometry;
|
|
exports.RingGeometry = RingGeometry;
|
|
exports.SRGB8_ALPHA8_ASTC_10x10_Format = SRGB8_ALPHA8_ASTC_10x10_Format;
|
|
exports.SRGB8_ALPHA8_ASTC_10x5_Format = SRGB8_ALPHA8_ASTC_10x5_Format;
|
|
exports.SRGB8_ALPHA8_ASTC_10x6_Format = SRGB8_ALPHA8_ASTC_10x6_Format;
|
|
exports.SRGB8_ALPHA8_ASTC_10x8_Format = SRGB8_ALPHA8_ASTC_10x8_Format;
|
|
exports.SRGB8_ALPHA8_ASTC_12x10_Format = SRGB8_ALPHA8_ASTC_12x10_Format;
|
|
exports.SRGB8_ALPHA8_ASTC_12x12_Format = SRGB8_ALPHA8_ASTC_12x12_Format;
|
|
exports.SRGB8_ALPHA8_ASTC_4x4_Format = SRGB8_ALPHA8_ASTC_4x4_Format;
|
|
exports.SRGB8_ALPHA8_ASTC_5x4_Format = SRGB8_ALPHA8_ASTC_5x4_Format;
|
|
exports.SRGB8_ALPHA8_ASTC_5x5_Format = SRGB8_ALPHA8_ASTC_5x5_Format;
|
|
exports.SRGB8_ALPHA8_ASTC_6x5_Format = SRGB8_ALPHA8_ASTC_6x5_Format;
|
|
exports.SRGB8_ALPHA8_ASTC_6x6_Format = SRGB8_ALPHA8_ASTC_6x6_Format;
|
|
exports.SRGB8_ALPHA8_ASTC_8x5_Format = SRGB8_ALPHA8_ASTC_8x5_Format;
|
|
exports.SRGB8_ALPHA8_ASTC_8x6_Format = SRGB8_ALPHA8_ASTC_8x6_Format;
|
|
exports.SRGB8_ALPHA8_ASTC_8x8_Format = SRGB8_ALPHA8_ASTC_8x8_Format;
|
|
exports.Scene = Scene;
|
|
exports.SceneUtils = SceneUtils;
|
|
exports.ShaderChunk = ShaderChunk;
|
|
exports.ShaderLib = ShaderLib;
|
|
exports.ShaderMaterial = ShaderMaterial;
|
|
exports.ShadowMaterial = ShadowMaterial;
|
|
exports.Shape = Shape;
|
|
exports.ShapeBufferGeometry = ShapeGeometry;
|
|
exports.ShapeGeometry = ShapeGeometry;
|
|
exports.ShapePath = ShapePath;
|
|
exports.ShapeUtils = ShapeUtils;
|
|
exports.ShortType = ShortType;
|
|
exports.Skeleton = Skeleton;
|
|
exports.SkeletonHelper = SkeletonHelper;
|
|
exports.SkinnedMesh = SkinnedMesh;
|
|
exports.SmoothShading = SmoothShading;
|
|
exports.Sphere = Sphere;
|
|
exports.SphereBufferGeometry = SphereGeometry;
|
|
exports.SphereGeometry = SphereGeometry;
|
|
exports.Spherical = Spherical;
|
|
exports.SphericalHarmonics3 = SphericalHarmonics3;
|
|
exports.SplineCurve = SplineCurve;
|
|
exports.SpotLight = SpotLight;
|
|
exports.SpotLightHelper = SpotLightHelper;
|
|
exports.Sprite = Sprite;
|
|
exports.SpriteMaterial = SpriteMaterial;
|
|
exports.SrcAlphaFactor = SrcAlphaFactor;
|
|
exports.SrcAlphaSaturateFactor = SrcAlphaSaturateFactor;
|
|
exports.SrcColorFactor = SrcColorFactor;
|
|
exports.StaticCopyUsage = StaticCopyUsage;
|
|
exports.StaticDrawUsage = StaticDrawUsage;
|
|
exports.StaticReadUsage = StaticReadUsage;
|
|
exports.StereoCamera = StereoCamera;
|
|
exports.StreamCopyUsage = StreamCopyUsage;
|
|
exports.StreamDrawUsage = StreamDrawUsage;
|
|
exports.StreamReadUsage = StreamReadUsage;
|
|
exports.StringKeyframeTrack = StringKeyframeTrack;
|
|
exports.SubtractEquation = SubtractEquation;
|
|
exports.SubtractiveBlending = SubtractiveBlending;
|
|
exports.TOUCH = TOUCH;
|
|
exports.TangentSpaceNormalMap = TangentSpaceNormalMap;
|
|
exports.TetrahedronBufferGeometry = TetrahedronGeometry;
|
|
exports.TetrahedronGeometry = TetrahedronGeometry;
|
|
exports.TextGeometry = TextGeometry;
|
|
exports.Texture = Texture;
|
|
exports.TextureLoader = TextureLoader;
|
|
exports.TorusBufferGeometry = TorusGeometry;
|
|
exports.TorusGeometry = TorusGeometry;
|
|
exports.TorusKnotBufferGeometry = TorusKnotGeometry;
|
|
exports.TorusKnotGeometry = TorusKnotGeometry;
|
|
exports.Triangle = Triangle;
|
|
exports.TriangleFanDrawMode = TriangleFanDrawMode;
|
|
exports.TriangleStripDrawMode = TriangleStripDrawMode;
|
|
exports.TrianglesDrawMode = TrianglesDrawMode;
|
|
exports.TubeBufferGeometry = TubeGeometry;
|
|
exports.TubeGeometry = TubeGeometry;
|
|
exports.UVMapping = UVMapping;
|
|
exports.Uint16Attribute = Uint16Attribute;
|
|
exports.Uint16BufferAttribute = Uint16BufferAttribute;
|
|
exports.Uint32Attribute = Uint32Attribute;
|
|
exports.Uint32BufferAttribute = Uint32BufferAttribute;
|
|
exports.Uint8Attribute = Uint8Attribute;
|
|
exports.Uint8BufferAttribute = Uint8BufferAttribute;
|
|
exports.Uint8ClampedAttribute = Uint8ClampedAttribute;
|
|
exports.Uint8ClampedBufferAttribute = Uint8ClampedBufferAttribute;
|
|
exports.Uniform = Uniform;
|
|
exports.UniformsLib = UniformsLib;
|
|
exports.UniformsUtils = UniformsUtils;
|
|
exports.UnsignedByteType = UnsignedByteType;
|
|
exports.UnsignedInt248Type = UnsignedInt248Type;
|
|
exports.UnsignedIntType = UnsignedIntType;
|
|
exports.UnsignedShort4444Type = UnsignedShort4444Type;
|
|
exports.UnsignedShort5551Type = UnsignedShort5551Type;
|
|
exports.UnsignedShort565Type = UnsignedShort565Type;
|
|
exports.UnsignedShortType = UnsignedShortType;
|
|
exports.VSMShadowMap = VSMShadowMap;
|
|
exports.Vector2 = Vector2;
|
|
exports.Vector3 = Vector3;
|
|
exports.Vector4 = Vector4;
|
|
exports.VectorKeyframeTrack = VectorKeyframeTrack;
|
|
exports.Vertex = Vertex;
|
|
exports.VertexColors = VertexColors;
|
|
exports.VideoTexture = VideoTexture;
|
|
exports.WebGL1Renderer = WebGL1Renderer;
|
|
exports.WebGLCubeRenderTarget = WebGLCubeRenderTarget;
|
|
exports.WebGLMultipleRenderTargets = WebGLMultipleRenderTargets;
|
|
exports.WebGLMultisampleRenderTarget = WebGLMultisampleRenderTarget;
|
|
exports.WebGLRenderTarget = WebGLRenderTarget;
|
|
exports.WebGLRenderTargetCube = WebGLRenderTargetCube;
|
|
exports.WebGLRenderer = WebGLRenderer;
|
|
exports.WebGLUtils = WebGLUtils;
|
|
exports.WireframeGeometry = WireframeGeometry;
|
|
exports.WireframeHelper = WireframeHelper;
|
|
exports.WrapAroundEnding = WrapAroundEnding;
|
|
exports.XHRLoader = XHRLoader;
|
|
exports.ZeroCurvatureEnding = ZeroCurvatureEnding;
|
|
exports.ZeroFactor = ZeroFactor;
|
|
exports.ZeroSlopeEnding = ZeroSlopeEnding;
|
|
exports.ZeroStencilOp = ZeroStencilOp;
|
|
exports.sRGBEncoding = sRGBEncoding;
|
|
|
|
Object.defineProperty(exports, '__esModule', { value: true });
|
|
|
|
})));
|